(a3ttps://ntrs.nasa.gov/search.jsp?R=19890019764 2020-03-20T00:35:08+00:00Z

Universiteit Twente

faculteit der
toegepaste wiskunde

DATE 0 GGI: R
DCAF

$$
090937
$$

MEMORANDUM NO. 760
A TORUS BIFURCATION THEOREM WITH SYMMETRY
S.A. VAN GILS
M. GOLUBITSKY*

JANUARY 1989

ISSN 0169-2690
*) Department of Mathematics, University of Houston, Houston, Texas 77204-3476, U.S.A.

Title: A torus bifurcation theorem with symmetry

Author(s): S.A. van Gils and M. Golubitsky

AMS Subject Classifications (1980): 34Cl5

Keywords: dihedral symmetry, periodic solutions, quasi-periodic solutiors, degenerate Hopf bifurcation.

* Abstract. A general theory for the study of degenerate Hopf bifurcation in the presence of symmetry has been carried out only in situations where the normal form equations decouple into phase/ amplitude equations. In this paper we prove a theorem showing that in general we expect such degeneracies to lead to secondary torus bifurcations. We then apply this theorem to the case of degenerate Hopf bifurcation with triangular $\left(D_{3}\right)$ symmetry proving that in codimension two there exist regions of parameter space where two branches of asymptotically staole 2 -tori coexist but where no stable periodic solutions are present
Although this study does not lead to a theory for degenerate Hopf bifurcations in the presence of symmetry, it does present examples that would have to be accounted for by any such general theory.

sl. Introduction

One of the more interesting features of degenerate Hopf bifurcations in the presence of symmetry is the appearance, via secondary blfurcation, of quasiperiodic motion on a torus. In this paper we concentrate on twoparameter systems of $O D E$ and prove theorems thet allow us to find and compute the direction of branching for some of these torl. The advantage of our approach is that we determine this information using only the Taylor expansion of the vector field at the polnt where degenerate Hopf bifurcation occurs.

The simplest form of Hopf bifurcation with symmetry group r occurs as follows. We assume that r is a compact Lie group acting absolutely irreducibly on a vector space V, that is, the only matrices on V which commute with I are multiples of the identity.

Let

$$
\begin{equation*}
d z / d t=f(z, \lambda), z \in V \in V=V \in C \tag{1.1}
\end{equation*}
$$

be a system of $O D E$ where f is r-equivarlant. In complex coordinates, absolute Irreduciblilty implies that

$$
\begin{equation*}
f(z, \lambda)=o(\lambda) z+\ldots \tag{1.2}
\end{equation*}
$$

where $a(\lambda) \in c$. We say that (1.1) has a Hopf bifurcation at $\lambda=0$ if $\theta(0)$ is purely imaginery.

The standard Hopf theorem (V:R, $=1)$ states that if the elgenvalue crossing condition

$$
\begin{equation*}
\frac{d}{d \lambda} \operatorname{Re}(a)(0) \neq 0 \tag{1.3}
\end{equation*}
$$

holds, then there exists a unique branch of perlodic solutions to (1.1). Moreover, if a certaln coefficient μ_{2} involving the second and third order terms in f satisfies

$$
\begin{equation*}
\mu_{2} \neq \sigma \tag{1.4}
\end{equation*}
$$

then the airection of branching (supercritical or subcritical) and the asymptotic stability of these periodic solutions are determined. We call a Hopf bifurcation degenerate if either (1.3) or (1.4) falls. Such singularities are'studied by Takens [1974] and Golubitsky 8 Langford [1981].

In Hopf bifurcation with symetry we have a degeneracy if either the direction of branching or the asymptotic stabllity of a branch of periodic solutions is not determined at the lowest order that it could have been. We are interested in slich degeneracies oecause they may be unavoldable in two parameter systems. Degenerste Hopf blfurcations with O(2)-symmetry have been studied extensively for the past few years and the results concerning this specific case are discussed in Section 2.

We now explain why one should expect Invariant tori to be produced by perturbing certain of these degeneracies. To do this we recall some of the theory of Hopf bifurcation with symmetry. We ossume that f is in Birkhoff normal form, that is we assume

$$
\begin{equation*}
f \text { is } r \times s^{l} \text {-equivariant } \tag{1.5}
\end{equation*}
$$

where for $x \in c$ Vec we have $(y, \theta)(x \in c)=(y x) \geqslant\left(e^{i \theta} c\right)$. The $5^{\text {b }}$ symmetry comes from phase shifts. We detect branches of perlodic solutions by choosing a subgroup $\Sigma=\Gamma \times S^{1}$ such that

$$
\begin{equation*}
\operatorname{dim} F \mid x(\Sigma)=2 \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
F\{x(\Sigma)=\{z \in V \in C: a z=z, \forall \sigma \in \varepsilon\} \tag{1.7}
\end{equation*}
$$

In normal form $: 1 F|x(\Sigma) \times R * F| x(\Sigma)$. Thus, the differentlal equation (I.l) restricted to $F i x(\Sigma)$ satisfies the hypotheses of standard Mopf bifurcation. In particular, if (1.3) and (1.4) hold for the restricted system then there
exists a branch of periodic solutions for (l.I) in $F i x(E)$ and the direction of branching (in λ) is determined. (Golubitsky \& Stewart [1985] show that the assumption that f is in Birkhoff normal form is not needed to prove these points.)

Stabillty of these solutions however, is not determined by the standard Hopf theorem, since the Floquet multipliers corresponaing to elgenvectors in Fix(I) ${ }^{\boldsymbol{d}}$ also enter intu this determination of stablilty. In this paper we focus on degeneracles produced when determining stabllity along known branches of perlodic solutions obtained using (1.6). Specifically, suppose that one tracks along a branch of periodic solutions and that at some special value $\lambda=\lambda_{0}$ the periodic solution loses stability by having a simple complex conjugate pair of floquet multipliers cross through the unlt circle with nonzero speed. The torus bifurcation theorem (see looss [198?j) guarantees the existence of invarian't torl. Suppose now that (1.1) depends on a second parameter u and that the critical value λ_{0} also depends on u. We can imagine a situation where as μ is varled λ_{0} moves into the origin, say at $u=0$. When this happens we will find a degenerate Hopf bifurcation with symmetry. Moreover, it seens reasonable that the speed of the floquet exponent that crosses through zero and the direction of branching of the branch of tor 1 can be determined from the Tayior expansion of f at the origin and with λ and μ set to zero. Our results are summarized in Theorems 4.5 and 4.6.

We note that several authors have consider ad the blfurcation of tori from branches of periodic solutions. See Renardy [1982]. Rand [1982] and Ruelle [1973]. An important point here is that the floquet matrix itself conmutes with the isotropy subgroup Σ and as a result the floquet multipliers may be forced by symmetry to have high multiplicity. See Chossat Golubltsky [1988]. Thus the assumption above that the floquet.multipliers are simple may not always be satisfied.

The scenario that we described above does happen in the case of $O(2)$ symmetry. However, as we explain in Section 2, there is a relatively simple way to analyze the resulting tori (the torus bifurcation theorem is not needed there). In addition, the resulting flow on the torus is particulariy simple. Symmetry forces the flow to be IInear.

A more interesting example occurs in Hopf bifurcation with D_{n} symmetry. Here the generic Hopf theory has been worked out (Goiubltsky stewart [1386] and van Gils \& Valkering [1986]). Because in thls case dim $V=2$, it follows that dim $F\left\{x(\Sigma)^{+}=2\right.$ and the floquet multipliers discussed above must be simple. It is this example (itself motivated by considering rings of oscillators) that has motivated our theorem. In Section 3 we discuss the general results for Hopf bifurcation with D_{n} symmetry while in Section 5 we illustrate our theorem by explicitly calculating the direction of branching of tori in the D_{3} case. Bifurcation diagrems corresponding to degenerate Hopf bifurcation with D_{3} symmetry are presented in Section 6.

In Section we present our hypotheses and theorens. This section can be read alrectly after the Introduction since explicit knowledge of the $O(2)$ and D_{n} exemples is not needed for the general theory. In Section 5 we show how to find two-frequency motions by applying stendard Hopf bifurcation results to a certain normal vector field whose existencs is found in Section 4 using resuits of Krupa [1988].

si. Degenerate Hopf Blfurcation with O(2) Symmetry

We begin by surveying some of the results on degenerate Hopf bifurcations with $O(2)$ symmetry. Yhis problem has been studied by Erneux \& Matkowsky [1984], Knobloch [1986], Chossat [1986], Golubltsky \& Roberts [1987], Nagats [1986], and Crawford 8 Knobloch [1988].

The action of $O(2)$ on $\mathbf{R}^{4}=\mathbf{C e C}$ is generated by

$$
\begin{align*}
& \text { (a) } \theta\left(z_{1}, z_{2}\right)=\left(e^{1 \theta} z_{1}, e^{1 \theta} z_{2}\right), \quad 4 \theta=\operatorname{So(2)} \tag{2.1}\\
& \text { (b) } k\left(z_{1}, z_{2}\right)=\left(\bar{z}_{1}, \bar{z}_{2}\right) .
\end{align*}
$$

Consider the $O(2)$-equivarlant system of $O D E$

$$
\begin{equation*}
\frac{d z}{d t}=f(z, \lambda), f(0, \lambda)=0 \tag{2.2}
\end{equation*}
$$

depending on a bifurcation parameter λ. We assume that (2.2) has a Hopf bifurcation at $\lambda=0 ;$ due to symmetry the eigenvalues $\sigma(\lambda) \pm i \omega(\lambda)$ of (df) $0, \lambda$ are each of multiplicity two. By Hopf bifurcation we mean that $\sigma(0)=0, \omega(0) \equiv \omega_{0} \neq 0$.

Van Glls 8 Mallet-Paret [1984], Chossat 8 looss [1985], Golubltsky 8 Stewart [1985] and others inave shown that if

$$
\begin{equation*}
\sigma^{\prime}(0)=0 \tag{2.3}
\end{equation*}
$$

then two branches of periodic solutions $z(t)$ bifurcate from the origin and, moreover, these solutions may be detected by their symmetry. They are:
(a; rotating waves (RW): $\theta z(t)=z(t-\theta)$
(b) standing waves $(5 W): k z(t)=z(t)$.

Generically, the exchange of stability for such systums goes as follows. Assume that $x=0$ is asymptotically stable when $\lambda<0$. Then for elther branch (2.4) to conslst of asymptotically stable periodic solutions, both .
branches must be supercritical and then precisely one branch conslsts of stable solutions. More precisely, there are two coefficients, derlved from the third order terms of f, which determine the direction of branching of solutions (2.4) with stability being determined by which coefficlent is larger.

Erneux 8 Matkowsky [1984] observed that when such systems depend on two parameters.

$$
\begin{equation*}
\frac{d z}{d t}=f(z, \lambda, u), \tag{2.5}
\end{equation*}
$$

it is possible to arrange for o distingulshed value of μ. say $\mu=0$, where both cubic coefficients are equal. They show that invariant 2-torl exist in (2.5) for u near 0 . The types of bifurcation diagrams which may occur are shown in Figure 2.1. (The direction of branching and the stablifty of the 2-tori depend on fifth and seventh order terms In f. See Golubltsky \& Roberts [1987].)

In retrospect the existence of these 2-torl can be understood in a relatively simple way. First, assume that (2.5) is In Birkhoff normal form which means that now f may be assumed to be $O(2) \times S^{l}$-equivarlant (cf. Golubitsky Stewart [1985]). In normal form. (2.5) splits Into phase-amplitude equations where the anplitude equations have the form

$$
\frac{d}{d t}\left[\begin{array}{l}
r_{1} \tag{2.6}\\
r_{2}
\end{array}\right]=\rho\left(r_{1}^{2}+r_{2}^{2}, r_{1}^{2} r_{2}^{2}, \lambda, \mu\right)\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]+q\left(r_{1}^{2}+r_{2}^{2}, r_{1}^{2} r_{2}^{2}, \lambda, \mu\right)\left(r_{2}^{2}-r_{1}^{2}\right)\left[\begin{array}{r}
r_{1} \\
-r_{2}
\end{array}\right]
$$

where $r_{j}=\left|z_{j}\right|$. Nontrivial equilibria $\left(r_{1}, r_{2}\right)$ of (2.6) correspond to standing waves $\left(r_{1}=r_{2}\right)$, rotating waves $\left(r_{1} r_{2}=0\right)$ or invariant 2-tori $\left(r_{1} * r_{2}, r_{1} r_{2} * 0\right)$.

Thus the Erneux 8 Matkowsky 2-torl are on the same footing as the perfodic solutions in the study of degenerate Hopf bifurcation with $0(2)$ symmetry. Swift [1984] noted that the amplitude ec lations (2.6) have D_{4}-symmetry (generated by $\left(r_{1}, r_{2}\right)+\left(r_{1},-r_{2}\right),\left(-r_{1}, r_{2}\right)$ and $\left.\left(r_{2}, r_{1}\right)\right)$.

Therefore, degenerate $O(2)$ Hopf bifurcations can be studied using D_{4}-equivariant singularity theory just as degenerate Hopf bifurcation without symmetry can be studied by z_{2}-equivarlant singularity theory (see Golubitsky 8 Langford [:981]). The D_{4}-classification was carried out up to (topological) D_{4}-codimension two in Golubitsky 8 Roberts [1987]. See ali.. rrawford 8 Knobloch [1989] or Golubitsky, Stewart \& Schaeffer [19?:

It should also be noted that these 2-tori have a sf x : scrus jre due to the $O(2) \times S^{l}$ symmetry of normal form. The flow on the $c^{+n,} \mid$ is inear. Chossat [1986] has shown that this property persists, even if fis not assumed to be In Blrkhoff normal form. His tichnlque is to use a LlapunovSchmidt reduction to look for two frequency sclutions of the form

$$
\begin{equation*}
z(t)=e^{i \omega t} R_{n t}{ }^{q} \tag{2.7}
\end{equation*}
$$

where Q_{θ} is the rotation matrix corresponding to $\theta \in S O(2)$. The function (2.7) has two Independent frequencies if $\omega / \boldsymbol{\eta}$ is irrational.

33. Generic Hopf Bifurcation with D_{n} symmetry

When $n \geqslant 3$ the group D_{n} has two-dinensional irreducible represen.intions. Thus, in systems with D_{n} symetry, Hopf bifurcation from a D_{n}-invarlant steady state may occur by algenvalues of multiplicity one or two crossing the Imaginary axis. In this section we review the results of Golubltaky 8 Stewart [1986] and van Glis s Valkering [1986] about generic 0_{n}-Hopf bifurcation in the ciouble eigenvalue case. See also Golubltsky, Stewart \& Schapffer [1988].

Without loss of generality we may assume that the action of D_{n} on $\mathbf{R}^{2}=\mathbf{C}$ is generated by
(a) $y \cdot z=e^{i y}$ where $y=2 \pi / n$, and
(b) $k(z)=\Sigma$.

It is possible to choose coordinates on c^{2} such that the action of $D_{n} \times S^{1}$ is generated by
(a) $\quad y \cdot\left(z, z_{2}\right)=\left(e^{i y_{-1}}, e^{i y_{z_{2}}}\right)$
(b) $k \cdot\left(z_{1}, z_{2}\right)=\left(z_{2}, z_{1}\right)$
(c) $\theta \cdot\left(z_{1}, z_{2}\right)=\left(e^{i \theta} z_{1}, e^{-1 \theta} z_{2}\right)$.

It can be shown that for sach n, there are precisely three (conJugacy classes of) isotropy subgroups whose flxed point subspaces ore twodimensional. There exists a unlque branch of perlodic solutions for each of these subgroups in D_{n}-symmetric generic Hopf blfurcation. There is o discrete analogue of a 'rotating wave' and two disorete analogues of 'standing waves'.

The rotating wave has isotropy subgroup

$$
\dot{z}_{n}=\left\{(r, r): r \& z_{n}\right\} .
$$

The standing waves each have isotropy subgroups isomorphic to z_{2}. The symmetry of one of the standing waves is generated by k; the symmetry of the other standing wave is generated by $(K, \pi) \propto D_{n} \times S^{l}$, at least when $n \neq 0$ mod 4. Ste Golubitsky \& Stewart [1986] for detalls.

The exchange of stability for these branches goes as follows. Suppose the D_{n}-linvarlant steady state is stable subcritically and loses stablilty by having eigenvalues cross the Imaginary axis with nonzero speed. When $n \neq 4$, no branch is stable ufiless all branches are supercritical. There is one third order term that determines thether the rotstlny waves are supercritical and another thlrd order term that determines whether the standing waves are (Jolntly) supercritical. No branch consists of stable trajectories unless all branches are supercritical. in which case precisely one branch consists of stable so: st lons.

Supposing that all branches are supercritical then it can be determined at third order whether the rocating wave or one of the standing waves is stable. If a standing wave is to be stable, then which one is stable is determined by a coefficient of order

$$
m=\left[\begin{array}{ll}
n+2 & n \text { osd } \tag{3.3}\\
\frac{n+2}{2} & n \text { even }
\end{array}\right.
$$

[^0]Recall m as defined in (3.3) and define
(a) $N=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
(b) $P=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}$
(c) $\quad s=\left(z_{1} \bar{z}_{2}\right)^{m}+\left(\bar{z}_{1} z_{2}\right)^{m}$
(d) $T=\left\{\left\{\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right\}\left\{\left(z_{1} \bar{z}_{2}\right)^{m}-\left(\bar{z}_{1} z_{2}\right)^{m}\right\}\right.$

Proposition 3.1: Let $D_{n} \times S^{1}$ act on c^{2} as defined by (3.2).
(a) Every smooth $r_{n} \times S^{\prime}$-invarlant gern $f: C^{2}+R$ has the forn

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=n(N, P, S . T) \tag{3.5}
\end{equation*}
$$

for some smooth germ $h: \mathbb{R}^{4} \rightarrow R$.
(b) Every smooth $D_{n} \times S^{1}$-equivariant germ $g: c^{2} \rightarrow c^{2}$ has the form

$$
y=A\left[\begin{array}{l}
z_{1} \tag{3.6}\\
z_{2}
\end{array}\right]+B\left[\begin{array}{l}
z_{1}^{2} z_{1} \\
z_{2}^{2} \bar{z}_{2}
\end{array}\right]+c\left[\begin{array}{l}
z_{1}^{m-1} z_{2}^{m} \\
z_{1}^{m} \\
\bar{z}_{2}^{m-1}
\end{array}\right]+\dot{u}\left[\begin{array}{l}
z_{1}^{m+1} z_{2}^{m} \\
\bar{z}_{1}^{m} \\
z_{2}^{m+1}
\end{array}\right]
$$

where A, B, C, D are complex-valued $D_{n} \times S^{1}$-invariant germs.

We consider the system of ODE

$$
\begin{equation*}
\frac{d z}{d t}=g(z, \lambda) \tag{3.7}
\end{equation*}
$$

where $g: c^{2} \times R+c^{2}$ is $D_{n} \times S^{1}$-equivarlant. That is, we assume that we are studying hopf bifurcation with D_{n}-symmetry for a system of ODE which is already in Poincaré-Birkhoff normal form to all orders.

In Table 3.1 we present the equations determining the branching of solutions for each of the three isutropy subgroups mentloned above. These results are taken from Golubltsky \& Stewart [1986].

Solution Tyoe

Rotating Wave

Standing Wave 1

$\left(z_{1} z_{2}\right)$ vibit Rep.

(u,0)
(u,u)

Branching Equations

$$
\begin{aligned}
& \operatorname{Re}\left(A+B u^{2}\right)=0 \\
& \operatorname{Re}\left(A+B u^{2}+C u^{2 m-2}+D u^{2 m}\right)=0
\end{aligned}
$$

Standing Wave 2

$$
\begin{array}{lll}
n \neq 0 \bmod 4 & (u,-u) & \operatorname{Re}\left(A+B u^{2}-C u^{2 m-2}-D u^{2 m ;}=0\right. \\
n=0 \bmod 4 & \left(u, e^{2 \pi i / n_{u}}\right) &
\end{array}
$$

Iable 3.1: Branching equations for maximal isotropy.

The asymototic stability of these solutions are determined by the sluns of the real parts of the eigenvalues of $d g$ evaluated at the solution. The actual computation of these eigenvalues is alded substantialiy by the existence of the $D_{n_{1}} \times S^{l}$ symmetry. In particular, for each of the three isotropy subgroups Σ, the space c^{2} may be written as

$$
\begin{equation*}
F i \times(\Sigma) \neq F i \times(\Sigma)^{\perp} \tag{3.8}
\end{equation*}
$$

where Σ acts nontrivially on $F \mid x(\Sigma)^{\perp}$. Since $d g$ evaluated at a solution commutes with Σ. it follows that both $F i x(\Sigma)$ and $F i x(\Sigma)^{\text {d }}$ are dg Invariant subspaces. Thus, the elgenvalues of dq are obtained in each case by finding the eigenvalues of two 2×2 matrices. Moreover, the s^{\prime} symmetry forces one eigenvalue of $d g!F \mid x(\Sigma)$ to have real part zero. Also, for rotating waves when $n \neq 4$, the group \dot{i}_{n} acts on $F i \times\left(\bar{i}_{n}\right)^{+}$as nontrivial rotations and forces. $d g i f i x\left(\dot{\vec{z}}_{n}\right)^{\perp}$ to 1 tself be a scalar multiole of a rotat $10 n$ matrix.

Using this group theoretic Information. It is possible to compute the signs of the real parts of the elgenvalues of dq. These results are summarized in Table 3.2.

Solution Type	EV of dg $1 \times 1 \times(5)$	EV's of dg IFix(g)
Rotating Wave	$-\operatorname{Re}\left(A_{N}+B\right)+0(u)$	-Re 8
Standing Wave 1	$-\operatorname{Re}\left(2 A_{N}+B\right)+O(u)$	$\begin{aligned} & \operatorname{tr}=\operatorname{Re}\left(B-(m+1) C u^{2 m-4}\right)+O\left(u^{2 m-2}\right) \\ & \operatorname{det}=-\operatorname{Re}(B C)+0(u) \end{aligned}$
Standing Wave 2	$-\operatorname{Re}\left(2 A_{N}+B\right)+O(u)$	$\begin{aligned} & \operatorname{tr}=\operatorname{Re}\left(B+(m+1) C u^{2 m-4}\right)+O\left(u^{2 m-2} ;\right. \\ & \operatorname{det}=\operatorname{Re}(B C)+O(u) \end{aligned}$

Iable 3.2: Signs of Elgenvalues of dg along primary branches.
The directions of branching and the asymptotic stablilty of the branches discussed above follow from Tables 3.1 and 3.2 assuming that the nondegenerack conditions
(a) $\operatorname{Re}\left(A_{N}+B\right) \neq 0$
(b) $\operatorname{Re}(B) \neq 0$
(c) $\operatorname{Re}\left(2 A_{N}+B\right) \neq 0$
(d) $\operatorname{Re}(B \bar{C}) \neq 0$
(e) $\operatorname{Re}\left(A_{\lambda}\right) \neq 0$
hold when evaluated at the origin. Observe that these branches are all neutrally stable at third order if

$$
\begin{equation*}
\operatorname{Re} \theta(0,0)=0 . \tag{3.10}
\end{equation*}
$$

It is this coefficient that may vanish in a two-paramater system and that must be zero in order to apply our torus bifurcation theorem.

54. The Torus Bifurcation Theorem

In this section we prove the existence, direction of branching and asymptotic stablifty of certain invariant 2-tori in codimension two blfurcations occurring in a class of symmetric systems of $00 E$. The general Theorems 4.5 and 4.6 are complemented by explicit formulas for computation that are derived in Section 5. A number of hypotheses are needed to prove our theorem and we descrlbe them now. These hypotheses abstract properties of the D_{n}-equivariant systems described in Section 3 . We return to D_{3} symmetry in Sections 5 and 6 , where the results of this section are applled.

Specifically, we consider the two-paraneter system of $O D E$

$$
\begin{equation*}
\frac{d z}{d t}=f(z, \lambda, \mu) \tag{4.1}
\end{equation*}
$$

where $f: C^{n} \times R^{2}+C^{n}$ is smooth. The roles of the parameters λ and μ are distingulshed as follows. We assume that (4.1) undergoes a Hopf bifurcation as the primary blfurcation parameter λ is varled and that a secondary torus bifurcates off of a prlawry branch of perlcin solutions as λ is further varied. The role c, the auxilifary parameter u is to allow the secondary torus bifurcation to coalesce with the primary Hopf bifurcation as u is varled. We study here the simplest Instances of such a codimension two blfurcation consistent with symmetry. We now state the nyootheses needed to define this simplest setting.

Our intention is to make a preliminary and nalve discussion of degenerate Hopf bifurcations in the presence of symmetry. We do not pretend to have a general theory. A general theory, however, will have to include the examples and setting we study here.

s4.1 Hypotheses on the primary Hopf bifurcation

The simplest form of Hopf bifurcation in the presence of symmetry occurs under the following hypotheses (see Golubitsky \& Stewart [1985]). We let $[$ be a finite subgroup of $O(n)$ and let: r act on $C^{r}=R^{n} \geqslant \mid R^{n}$ by $y(x+i y)=y x+i y y$. The reason for restricting r to be finite will be discussed in (H2) below. We assume:
(HI) r acts absolutely irreducibly on \mathbb{R}^{n},
that is, the only $n \times n$ real matrices commuting with r are scalar multiples of the identity.

We assume that the f in (4.1) commutes with r, undergoes a Hopf bifurcation at $\lambda=0$ when $\mu=0$, and is in Birkhoff normal form. The first and third of these assumptions are summarized by:
(H2) f is $\Gamma \times S^{1}$ - equivarlant
where the circle group s^{1} is viewed as the complex numbers of modulus one acting on c^{n} by complex multiplication. Thus

$$
0 \quad f(\sigma z, \lambda, \mu)=\sigma f(z, \lambda, \mu) \text { for all o }\left[\times S^{1}\right. \text {. }
$$

Hypotheses (H1) and (H2) imply
(a) $f(0, \lambda, \mu)=0$
(b) $f(-z, \lambda, u)=-f(z, \lambda, u)$
(c) (df) $0, \lambda, \mu^{v}=A(\lambda, \mu) v$ for all $v \in c^{n}$
where $A(\lambda, \mu) \in C$. Hypothesis (hil) implies that $r \times S^{1}$ acts irreducibly on C^{n} and nence (4.2a) is valla. Since E^{1} acts as -1 on C^{n}, (H2) Implies ($4.2 b$). ($H 2$) also implies that (df) $0, \lambda, \mu$ commutes with $r \times s^{1}$, from which (4.2c) follows.

The assumption that (4.1) undergoes a Hopf bifurcation at $\lambda=\mu=0$ implies that $A(0,0)$ is purely imaginary. We assume that periodic solutions to (4.1) are generated from this Hopf bifurcation in as simple a way as possible. We now describe this process Begin by assuming that the elgenvalue $A(\lambda, 0)$ crosses the imaginary axis with nonzero speed, that is,

$$
\begin{equation*}
\Delta_{3} \equiv \frac{\partial}{\partial \lambda}(\operatorname{Re} A)(0,0) \neq 0 \tag{H3}
\end{equation*}
$$

Assumption (H3) implles that for each u near 0 there is a unlque value $\lambda(\mu)$ at which $A(\lambda(\mu), \mu)$ is purely imaginary. For simplicity, and without loss of generality, we assume that $\lambda(\mu) \equiv 0$ so that
(H4) $A(0, \mu)=1 \omega_{0}(\mu)$.
where $\omega_{0}(0) \neq 0$. Thus, we assume that for each y a Hopf bifurcation from the trivial steady-state occurs $\ln (4.1)$ at $\lambda=0$.

Let $\Sigma \in \Gamma \times S^{1}$ ce an isotropy subgroup. Golubitsky and Stewart [1985] show that a unique branch of perlodic solutions to (4.1) with symetry group Σ can be found when
(H5) dim $F i x(\Sigma)=2$.

Due to the assumption of Birkhoff normal form (H2), these periodic solutions all have the form

$$
\begin{equation*}
z(t)=c e^{i \omega t} p \tag{4.3}
\end{equation*}
$$

where $\varepsilon>0$ and

$$
\begin{equation*}
p \in f i x(\Sigma) \text { is chosen with }|p|=1 \text {. } \tag{4.4}
\end{equation*}
$$

Moreover, these perlodic solutlons are found by solving the equation

$$
\begin{equation*}
f(c p, \lambda, \mu)-i \epsilon \omega p=0 . \tag{4.5}
\end{equation*}
$$

and, assuming (H3), (4.5) can be solved uniquely for

$$
\begin{align*}
& \text { (a) } \omega=\omega^{*}\left(\varepsilon^{2}, \mu\right) \equiv \omega_{0}(\mu)+\omega_{2}(\mu) e^{2}+\omega_{4}(\mu) e^{4}+O\left(e^{6}\right) \\
& \text { (b) } \lambda=\lambda^{*}\left(\varepsilon^{2}, \mu\right)=\lambda_{2}(\mu) \varepsilon^{2}+\lambda_{4}(\mu) \varepsilon^{4}+O\left(\varepsilon^{6}\right) . \tag{4.6}
\end{align*}
$$

It follows from (4.6b) that this branch of perlodic solutions is supercritical (in λ) if $\lambda_{2}(0)>0$ and subcritical if $\lambda_{2}(0)$ < 0 . We assume
(H6) $\nabla_{6} \equiv \frac{1}{6}\left\langle\left(\partial^{3} f\right)_{0,0,0}(p, p, p), p^{*}\right\rangle \neq 0$
where (due to Birkhoff normal form) $p^{\prime \prime}=p$ is an elgenvector of (df)"0,0,0 with eigenvalue $\omega_{0}(0) 1$. A calculation shows that

$$
\begin{equation*}
\lambda_{2}(0)=-A_{6} / \Delta_{3} . \tag{4.7}
\end{equation*}
$$

To verify (4.7) substitute (4.6) in (4.5), set the coefficient of $e^{3} \operatorname{in}$ (4.6) to zero, and take, the real part of the inner product with p ".

4.2 Hypotheses on the secondary torus bifurcation

The assumption of Blrkhoff normal form allows us to reduce the problem of finding periodic solutions of (4.1) to finding stationary solutions of (4.5). With this assumption the problem of finding a secondary torus bifurcation of (4.1) is reduced to finding a secondary Hopf bifurcation of (4.5). We now discuss the group theoretic restrictions on the action of Γ wich will admit the possibility of purely Imaginary eigenvalues occurring in the linearization of (4.5) along the nontrivial branch of stationary solutions parametrized by (4.6).

Define

$$
\begin{equation*}
g(z, \lambda, \mu, \omega)=f(z, \lambda, \mu)-i \omega z . \tag{4.8}
\end{equation*}
$$

The Ifnearization $d g$, evaluated at a solution (4.6), must commute with the isotropy subgroup $\Sigma=\left[\times S^{1}\right.$. Let

$$
\begin{equation*}
c^{n}=v_{1} \bullet v_{2} \cdot \ldots \bullet v_{k} \tag{4.9}
\end{equation*}
$$

be the isotypic decomposition under ε, that $i s$, each of the V_{j} 's are sums of isomorphic irreducibile representations under Σ and the irreducible representations of Σ appearing in distinct V_{j} 's are themselves distinct. Since $F i x(\Sigma)$ is the sum of all the trivial representations of Σ, we may take

$$
\begin{equation*}
V_{1}=F i x(\Sigma) . \tag{4.10}
\end{equation*}
$$

Suppose now that dg has a complex conjugate pair of purely imaginary eigenvalues. Generically, we expect the (generalized) elgenspace associated with these elgenvalues to be in some V_{j}, without loss of generality we can take $J=2$. The simplest type of torus bifurcation occurs when the purely Imaginary elgenvalues are simpie and the simplest way to force this hypothesis to be valid is to assume
(H7) dim $V_{2}=2$.
Let $L=d g \mid V_{2}$ restricted to the branch of solutions parametrized by (4.6). So

$$
\begin{equation*}
L=L\left(\varepsilon^{2}, \mu\right) . \tag{4.11}
\end{equation*}
$$

We comment on (4.11). Along the branch (4.6)

$$
z=e p, \lambda=\lambda\left(e^{2}, \mu\right) \text { ard } \omega=\omega^{*}\left(e^{2}, \mu\right) \text {. }
$$

Moreover, by (4.2b) and (4.8) g is odd In z. Thus ag is even In z and hence in e and the form of L given $\ln (4.11)$ is valid.

Abstract

By (H7) L is a linear mapping on a two-dimensional space. So L has

 purely imaginary eigenvalues precisely when$$
\operatorname{tr}(L)=0 \quad \text { and } \quad \operatorname{det}(L)>0
$$

We want to guarantee that for some μ near 0 , there are values of ε^{2} for which L has purely imaginary eigenvalues. That is, we want to guarantee the exlstence of solutions to the equation $\operatorname{tr} L\left(\varepsilon^{2}, \mu\right)=0$. Now observe that

$$
(d g)_{0,0, \mu, 0}=(d f)_{0,0, \mu}-\left|\omega_{0}(\mu)\right|=0
$$

by (4.2c) and (H4). Thus $L(0, \mu) \equiv 0$ and Taylor's theorem allows us to write

$$
\begin{equation*}
L\left(\varepsilon^{2}, \mu\right)=\varepsilon^{2} L\left(\varepsilon^{2}, \mu\right) \tag{4.12}
\end{equation*}
$$

In order to guarantee the existence of solutions to $\operatorname{tr}(L)=0$, we assume $(H 8) \operatorname{tr} L(0,0)=0$.
(H9) $\Delta g \equiv \frac{\partial}{\partial c^{2}}(\operatorname{tr} L)(0,0) \geqslant 0$.

Mypotheses (H 8) and (H9) along with the implicit function Theorem guarantee a unlque solution to

$$
\begin{equation*}
\operatorname{tr} L\left(\varepsilon^{2}, u\right)=0 \tag{4,13}
\end{equation*}
$$

given by

$$
\begin{equation*}
\varepsilon^{2}=E(\mu) \tag{4,14}
\end{equation*}
$$

Now solutions to (4.13) can only exist when $E(\mu) 20$. Thus. to Insure the existence of such solutions, we assume
$(H 10) \quad \Delta_{10}=\frac{\partial}{\partial \mu}(\operatorname{tr} L)(0,0) * 0$.

Implicit differentlation of (4.13) shows that

$$
\begin{equation*}
\frac{d E}{d \mu}(0)=-\Delta_{10} / \Delta g . \tag{4.15}
\end{equation*}
$$

Thus, a unique solution to (4.13) exists when μ is near 0 and

$$
\begin{equation*}
\operatorname{sgn}(u)=-\operatorname{sgn}\left(\Delta_{g}\right) \operatorname{sgn}\left(\Delta_{10}\right) . \tag{4.16}
\end{equation*}
$$

Finally, in order for L to have purely imaginary eigenvalues, we must as sume
$(H \mid l) \operatorname{det} L(E(\mu), \mu)>0$
for all u near 0 satisfying (4.16). Hypothesis (HIl) will be the subject of further discussion below.

These eleven hypotheses describe the simplest situation where a secondary torus bifurcation of the type discussed at the beginning of this section might exist. In particular. these hypotheses guarantee the existence of a Hopf bifurcation along a nontrivial branch of the steady-state equation, (4.5). However, as we shall now discuss, the existence of $r \times 5^{l}$-symmetry in (4.1) Insures that the standard Hopf blfurcation, theorem does not apply since the 5^{1}-symmetry of normal form forces one elgenvalue of dgifix(I) to be zero. Oeserve that the group theoretic argument whlch guarantees that dg has one zero efgenvalue also implies that dg has dimr+1-dime zero eigenvalues.

Next we make the observation that group-theoretically there are two types of torus bifurcation. Consider the action of Σ on V_{2}. The assumption that L. dgiv 2 can have purely imaginary elgenvalues. coupled with the fact that L commutes with Σ, places restrictions on the action of Σ.

Let $K(\Sigma)$ be the kernel of the action of Σ on V_{2} and let $T(\Sigma)=$ ז/K(L). As observed in Golubitsky and Stewart [1985] either
(a) $V_{2}=R \in R$ where $T(\Sigma)$ acts absolutely irreducibly on R, or
(b) $T(\Sigma)$ acts irreducibly, but not absolutely irreducibly, on V_{2}.

Moreover, since $V_{2} \cap F \mid x(\Sigma)=\{0\}$ we know that $T(\Sigma)$ acts nontrivially on V_{2}. Hence in case (b). $T(\Sigma) \geq z_{q}$ for some $a \geqslant 3$, since these are the only finite groups which act faithfully, irreducloly, and not absolutely irreducibly on R^{2}, and in case (a) $T(I): Z_{2}$.

Definltion 4.1: When $T(I): z_{2}$ we call the torl resulting from the secondary torus bifurcation standing tori and when $T(\Sigma): z_{Q}(q \geqslant 3)$ we call these rotating tori.

Observe that (HIl) simplifles in the rotating tori case. There $L\left(\varepsilon^{\mathbf{2}}, u\right)$ commutes with Z_{q} and is hence a multiple of a rotation. Thus group theoretic restrictions rorce $\operatorname{det} L\left(\varepsilon^{2}, \mu\right) \geqslant 0$ and (Hll! simplifies to

$$
(H 11)_{r} \Delta_{1}^{r} \geq L(0,0) * 0
$$

The situation for standing torl is more complicated, as group restrictions may force $L(0, \mu)=0$, In this case we find in examoles that

$$
\begin{equation*}
L\left(c^{2}, \mu\right)=c^{2 m} 0\left(\varepsilon^{2}, \mu\right) \tag{4.17}
\end{equation*}
$$

where m depends on r and r but not, in general, on the particular f in (4.1). For standing tori we replace (HII) with
$(H I \mid)_{s} \Delta I_{1}=\operatorname{det} O(0,0)>0$

Note that (4.17) is valid for rotating waves; there $D=L$ and $m=1$.

We end this subsection by explicitly constructing the action of Σ on V_{2}. Observe that each V_{j} is invariant under S^{1}, since s^{1} cormutes with the full group $\Gamma \times S^{1}$. Since dim $V_{2}=2$ by ($H 7$), it follows that we may identify V_{2} with c and the action of Σ on V_{2} with a subgroup of s^{1} acting on C. Thus, the action of $T(\Sigma)$ on C is generated by

$$
z \rightarrow e^{2 \pi 1 / a} z
$$

for q as defined above. (Note that standing tori correspond to $q=2$.)

4.3 Hopf bifurcation with zero eigenvalues

In this subsection we use results of Krupa [1988] to prove a torus bifurcation theorem for vector flelds f satisfying (HI)-(HIl). Recall that f is assumed to be $r \times s^{1}$-equivariant and to have a periodic solution $z(t)=c e^{i \omega t} p$.

We now concentrate on determining the form of f on a nelghborhood of the group orbit $X=\left(r \times 5^{1}\right) \cdot p$. The existence of the periodic solution implies that f is tangent to X along X. We utilize two results from Krupa [1988]. Let $N(x)$ denote the $r \times S^{1}$-equivarlant normal bundle of $x \in c^{n}$, let N_{x} denote the fiber over x and let $w: N(x)+X$ be the projection.

Theorem 4.2 There exist $I \times S^{1}$-equivariant vector fields f_{T} and f_{N} such that

$$
\begin{equation*}
f=f_{T}+f_{N} \tag{4.18}
\end{equation*}
$$

where $f_{T}(y)$ is in the tangent space to the group orbit of $r \times s^{1}$ through y and $f(y) \in N_{R}(y)$.

Iheorem 4.3: Let $x(t)$ be the trajectory in $\dot{x}=f(x)$ with $x(0)=y$ and let $z(t)$ be the trajectory in $z=f_{N}(z)$ with $z(0)=y$. Then

$$
\begin{equation*}
x(t)=\delta(t) z(t) \tag{4.19}
\end{equation*}
$$

for some smooth curve $\delta(t) E \Gamma \times S^{1}$ with $\delta(0)=$ identity.
it follows from Theoremg 4.2 and 4.3 that a Hopf blfurcation to a periodic trajectory $z(t)$ for f_{N} leads to a trajectory for f on the union of group orblts through $z(t)$.

Remarks 4.4: (a) When $[$ is finite, all group orbits are circles and the flow is on a 2-torus. The s^{\prime}-action forces the flow to be conjugate to linear. To lowest order, this flow has the form $c e^{l \omega t} z(t)$. In perturbation theory language the flow will have the form

$$
\begin{equation*}
c e^{l(\omega+\theta) t}(p+h(t)) \tag{4.20}
\end{equation*}
$$

where $\theta \in R$ and $h(t) \in N_{p}$ are small. Moreover, $h(t)$ is a solution of

$$
\begin{equation*}
n^{\prime}(t)=f_{N}(D+n(t), \lambda, \mu) . \tag{4.21}
\end{equation*}
$$

To verify (4.21) let (4.20) be a solution to (4.1) and use the decumposition (4.18).
(b) Observe that

$$
\begin{equation*}
g \mid N_{p}=f i N_{p} \tag{4.22}
\end{equation*}
$$

where g is defined in (4.8). This follows slnce

$$
g=f-l \omega z=f_{N}+f_{T}-I_{\omega z} .
$$

and f_{T} and $i_{\omega z}$ vanish when restricted to N_{D}.

Theorem_4.5: Assume (HI)-(HII). Then for fixed μ satisfying (4.15), the e Is a branch of perlodic solutions to (4.1) parametrized by λ which undergoes a torus bifurcation at $\lambda=\lambda$ as in (4.6b). When r is finite, a unique branch of two-frequency trajectorles bifurcate from the branch of periodic solutions at $\lambda=\lambda^{*}$.

Proof: Under our hypotheses the complex conjugate palr of elgenvalues of L that cross through 0 as λ is varied, do so with nonzero speed. In fact, when u is fixed,

$$
\begin{equation*}
\frac{\partial}{\partial \lambda}(\operatorname{tr} L)=\frac{\partial}{\partial \epsilon^{2}}(\operatorname{tr} L) \frac{\partial \epsilon^{2}}{\partial \lambda} . \tag{4.23}
\end{equation*}
$$

Both of these factors are nonzero, the first by (H9) and the second by (H3), (H6) and (4.7). It remalns only to show that under the hypotheses above, the normel vector fleld $G=f_{N} \mid N_{p}$ undergoes a Hopf bifurcation at $\lambda=\lambda *$. However, it is easy to show that the elgenvalues of dG at ep are Just the floquet exponents of f at the periodic solution celwtp minus iw. Thus the elgenvaluss of $d G$ at $c p$ are the elgenvelues of dg in the direction N_{p} (where $: i$ is defined in (4.8)). Hence our hypotheses imply that f_{N} undergoes a (sinsile) Hopf blfurcation at $\lambda=\lambda$ * and that the corresponding complex elgenvalues cross the Imaginary axis with nonzero speed. The standard Hopf Theorem coupled with Remark (4.40) now applles.

4.4 Direction and Stability of the Branch of Invariant 2-tori

Next we consider the direction of branching of the branch of 2-tori by determining the direction of branching of the branch of periodic solutions in the Hopf bifurcation of $G=f_{N} \mid N_{\mathrm{D}}$. Theorem 4.3 implies that asymptotic stability of the periodic solutions of G in N_{p} implies asymptotic stability of the invariant 2 -tori in (4.1).

We review the relevant alscussion from the earlier subsections. Let $y=\varepsilon(p+h)$. There is a branch of equllibria of f_{N} at

$$
\begin{equation*}
h=0 \quad \text { and } \quad \lambda=\lambda \cdot\left(\varepsilon^{2}, \mu\right) \tag{4.24}
\end{equation*}
$$

where $\mu^{\prime \prime}$ is defined by (4.16). A Hopf bifurcation for f_{N} occurs along this branch of equllibria at

$$
\begin{equation*}
\varepsilon^{2}=E(\mu) \tag{4.25}
\end{equation*}
$$

as defined in (4.14), since $V_{2} \subset N_{\rho}$. Note that $E(0)=0$. In fact, $L\left(\varepsilon^{2}, \mu\right)$ is Just $\mathrm{df}_{\mathrm{N}} \mathrm{IV} \mathrm{V}_{2}$.

We assume that u has the correct s ign so that (4.16) is valid, and hence (4.25) has a solution for c^{2} when $E(u)$ is positive. We have assumed, moreover, that as λ varies through λ^{*} ", the Imaginary eigenvalues of $:$ cross the imaginary axis with nonzero speed, as noted in the oroof of Theorem 4.5.

The standard Hopf theorem asserts that there exists a single coefficient μ_{2}, depending on terms of f_{N} through cubic order, that determines the asymptotic stability of the periodic solutions (and thel firection of branching). Moreover, μ_{2} is defined at the polnt of Hopf bifurcation given by (4.24) and (4.25). Thus

$$
\begin{equation*}
\mu_{2}=\mu_{2}(\mu) \tag{4,26}
\end{equation*}
$$

Iheorem 4.5: Under the assumptions just described

$$
\mu_{2}(\mu)=\mu^{k} M(\mu)
$$

k for some integer k. A formula for $M(0)$ can be determined, in principal, from the Taylor expansion of f at the origin and the sign of $M(0)$ determines the asymptotic stability and direction of branching of the branch of 2-tori for (4.1). In particular, this branch is supercritical and consists of asymptctically stable 2-tori when $M(0)>0$ and the branch is subcritical when $M(0)<0$.

Our final (genericity) assumption is:

$$
\begin{equation*}
M(0) \neq 0 . \tag{H12}
\end{equation*}
$$

The most difficult part of any calculation of invarlant 2-tori is determining $M(0)$, that is, determining the direction of branching and stability of the 2-tori. In principle, it might be possible to derive a general formula for $M(0)$ when $k=1$ using only terms in the taylor expansion of f. In our D_{3} example in the next section we have chosen the computationally simpler route of just computing the secondary Hopf bifurcation on f_{N} directly. One reason is that we find that $k=1$ is valid for the standing tori and $k=2$ is valid for the rotating tori. At this stage we do not understand why certain isotropy subgroups force k to be greater than 1 .

25 Turus Bifurcations with Triangular Symmetry

In this section we apply our torus bifurcation theorem to a vector fielu

$$
\begin{equation*}
\frac{d z}{d t}=g(z, \lambda, u) \tag{5.1}
\end{equation*}
$$

in $D_{n} \times S^{1}$-normal form, that is. we assume g has the form (3.6). As we discussed in Section 3, see Table 3.1. generically there exist three primary branches of periodic solutioris to (5.1) corresponding to two-dimensional fixed point subspaces. We need to determine when hypotheses ($\mathrm{H}|-\mathrm{HI}| 2$) are valid for each of these branches. Note that nypotheses $(H I)-(H 3)$, (H5) and (H7) art automatically valid in these cases.

In (3.6) the invariant functions A-D are complex-valued and we denote these functiuns by

> (a) $A=a+i a$
> (b) $B=b+i B$
> (c) $C=c+i y$
> (d) $D=a+i \delta$

Hypothesis (H4) states that a Hopf bifurcation occurs at $\lambda=u=0$ and that the complex eigenvalue crosses the axis with nonzero speed. We slmplify our analysis here by assuming

$$
\begin{equation*}
a=\lambda+\{a \text { function depending on z-alone }\} \tag{5.3}
\end{equation*}
$$

and that $a(0) \equiv a_{0}>0$. Thus, we assume that the trivial steady state $z=0$ is asymptotically stable when $\lambda<0$ and loses stablifty at $\lambda=0$. Moreover, (H4) is valld as $\Delta_{3}=1 \neq 0$.

Σ	Rotating Wave	Standing Wave 1	Standing Wave
Fix(Σ)	$\left(z_{1}, 0\right)$	$\left(z_{1}, z_{1}\right)$	$\left(z_{1},-z_{1}\right)$
$\operatorname{sgn}\left(\Delta_{6}\right)$	$-\left(a_{N}+b\right)$	$-\left(2 a_{N}+b\right)$	$-\left(2 a_{N}+b\right)$
v_{2}	$\left(0, z_{2}\right)$	$\left(z_{2},-z_{2}\right)$	$\left(z_{2}, z_{2}\right)$
$t-L=0$	$b=0$	$b=0$	$b=0$
$\operatorname{sgn}\left(\Delta_{g}\right)$	${ }^{-b}{ }_{N}$	$b_{N}-2 c$	$b_{14}+2 \mathrm{c}$
Δ_{10}	$-b_{\mu}$	b_{μ}	D_{4}
(H11)	$B \neq 0$	Br< 0	By > 0

Iable 5.1: Data needed to find torus bifurcations along primary branches ifi degenerate $D_{3} \times S^{1}$-equivariant Hopf bifurcation. All functions are evaluated at the origin.

In our analys!s, we begin by assuming that $n \neq 4$. The case of square symmetry $\left(\begin{array}{l}n=4)\end{array}\right.$ is more complicated (see Golubitsky 8 Stewart [1986] and Swift [1988]). In particular, when $n * 4$ the standing waves are efther both supercritical or both subcritical, and there are no branches of perlodic solutions corresponding to submaximal isotropy. The criticality of these branches is oetermined by $\operatorname{sgn}\left(\Delta_{6}\right)$, as noted in Table 5.1. Assuming $b \neq-a_{N},-2 a_{N}$ valldates (H6).

The degeneracy condition needed to have a torus blfurcation, hypothesis (H8), is $\operatorname{tr} L=0$. For each of the branches, (H8) corresponds to $D=0$ at the origin. This could have been seen directly from the stablity results in Golut!tsky \& Stewart [1986] since the coefficient b(0) belng nonzero was needed to determine which of these branches of perlodic solutions could be asymptotically stable. Assuming $b(0)=0$ implies that standing waves and
rotating waves must be all supercritical or subcritical, depending on the sigri of $a_{N}(0)$. which is assumed to be nonzero.

We again simplify our analysis by assuming that

$$
\begin{equation*}
b(z, \mu)=\mu+\{a \text { function depending only on } z\} . \tag{5.4}
\end{equation*}
$$

It then follows that $\Delta_{10}=-1$ for rotating waves and +1 for standing waves. Thus (HIO) is valid and we will have a torus bifurcation if the complex eigenvalues in the V_{2}-alrections are nonzero since (H 10) implies that these elgenvalues will cross the imaglnary axis with nonzero speed. That these eigenvalues will be nonzero and purely imaginary at the point of secondary bifurcation is governed by (HII). Thus we assume $B(0) y(0) \neq 0$, as indicated in Table 5.1.

In our discussion in Section 4 we also assumed that we could solve uniquely for the point of the secondary blfurcation, as a function of u, which follows from $\Delta_{g} \neq 0$. So we assume $b_{N}(0) \neq 0, \pm 2 c(0)$ and (H9) is verified. (Note that when $n \geqslant 5$, this condition would be $D_{N}(0) \neq 0$.)

We summarize our discussion by listing all conditions in Table 5.2
(a) $a(0)=0, a(0)>0$
(b) $a_{N}(0)>0$
(c) $b(0)=0$
(d) $8(0) \neq 0$
(e) $B(0) \times(0)<0 \quad(>0)$
(f) $b_{N}(0) \neq 0, \pm 2 \mathrm{c}(0)$
primary Hopf blfurcation
periodic solutions subcritical
possibility of secondary torus bifurcation
torus blfurcation on rotating waves
torus bifurcation on standing wave 1 (standing wave 2)

> See (4.16): unlaue torus bifurcation along rotating wave when $\operatorname{sgn}(\mu)=-\operatorname{sgn}\left(b_{N}(0)\right)$ standing wave 1 when $\operatorname{sgn}(\mu)=-\operatorname{sgn}\left(b_{N}(0)-2 c(0)\right)$ standing wave 2 when $\operatorname{sgn}(u)=-\operatorname{sgn}\left(b_{N}(0)+2 c(0)\right.$;

Table 5.2: Conditions for Torus Bifurcation with D_{3}-symmetry

The final issue we must address is the direction of branching of the secondary branch of 2-torl, hypothesis (H12). At the end of Section 4, we discussed the difficulty of deriving a formula for the direction of branching of the torus branches. Because of this fact, we compute, In Subsections 5.1 and 5.2, the direction of branching of the secondary 2-tori olfurcation along the rotating and standing waves branches only in the case of D_{3}-symmetry. Let $B_{0} \equiv B(0)$ and $r_{0} \equiv Y(0)$. We prove the following:

Theorem 5.1: In degenerate D_{3}-equivariant Hopf bifurcation, the direction of branching of the branch of rotating 2-tori is supercritical if

$$
\begin{equation*}
-2 a_{N}\left[b_{N}+\frac{y_{0}}{3 a_{0}}\right] \tag{5.5}
\end{equation*}
$$

is positive and subcritical if negative.
Theorem 5.2: in deyenerate D_{3}-equivarlant Hopf blfurcation, the direction of branching of the branch of standing 2-torl off of the branch of periodic standing waves 1 is s...er tical if

$$
\begin{equation*}
-\frac{B_{0}}{3 r_{0}}\left[\operatorname{sgn}\left(r_{0}\right) \frac{B_{0}^{2}}{2 a_{N} \sqrt{6\left|B_{0} r_{0}\right|}}+\frac{4 a_{N}}{3}\right] \frac{a_{N}}{2 c_{0}-b_{N}} \tag{5.6}
\end{equation*}
$$

is positive and subcritical if neqative. For secondary bifurcation off of standing waves 2 we replace (5.6) by:

$$
\begin{equation*}
-\frac{\beta_{0}}{3 r_{0}}\left[\operatorname{sgn}\left(r_{0}\right) \frac{8_{0}^{2}}{2 a_{N} \sqrt{61 B_{0} r_{0}}}-\frac{4 a_{N}}{3}\right] \frac{a_{N}}{2 c_{0}-b_{N}} \tag{5.7}
\end{equation*}
$$

It is possible to derive the direction of branching of standing torus 2 from that of standing torus 1 using the following observation first noted in

Swift [1988], using the terminology "parameter" symmetry.
We call the mapping

$$
\begin{equation*}
Q\left(z_{1}, z_{2}\right)=\left(z_{1},-z_{2}\right) \tag{5.8}
\end{equation*}
$$

a quasisymmetry since it is in the normalizer of r in $0(4)$ out is not in $\Gamma=O_{3} \times S^{1}$. It follows that the map

$$
h=Q g(Q z)
$$

is r-equivariant whenever g is r-equivariant. In this particular case. the quasisymmetrv Q interchanges standing waves i and 2 . Since n is vector field equivalent to g. the dynamics of h is the same as that of o. Thus. computing the direction of oranching of standina torus 1 for n, aives the direction of branching of standing torus 2 for 9 .

It remains only to note using (3.4) and (3.6) that when $n=3$. 9 transforms to n in (5.9) as follows:
(a) $(N, P, S, T) \rightarrow(N, P,-S,-T)$
(b) $(A, B, C, D) \rightarrow(A, B,-C,-D)$

Thus (5.7) may be derived from (5.6) by transforming r_{0} to -ro.
5.1 Rotating Tori for D_{3}-Symmetry

We let ε be the isotropy subgroup of rotating waves

$$
\left.\dot{z}_{3}=\{(\gamma,-\gamma)\}: r \in z_{3}\right\}
$$

with the two-dimensional fixed point space $\left\{\left(z_{1}, 0\right)\right\}$. The branching equation for the periodic solutions lying in $F(x(\Sigma)$ is given by

$$
\begin{equation*}
A+B U^{2}=0 \quad U \in R . \tag{5.11}
\end{equation*}
$$

From our discussion above concerning the torus bifurcation, we may assume that the system of $O D E$ (5.1) has the form:

$$
\frac{d}{d t}\left[\begin{array}{l}
z_{1} \tag{5.12}\\
z_{2}
\end{array}\right]=\left\{\left\{a_{0}+\lambda+a_{N} N+a_{N N} N^{2} / 2+a_{p} P\right\}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]\right.
$$

$$
+\left\{u+b_{N} N+\left\{s_{0}\right\}\left[\begin{array}{l}
z_{1}^{2} z_{1} \\
z_{2}^{2} z_{2}
\end{array}\right]+\left\{c_{0}+\left\{r_{0}\right\}\left[\begin{array}{l}
\vec{z}_{1}^{2} z_{2}^{3} \\
z_{1}^{3} z_{2}^{2}
\end{array}\right]+\right.\text { n.0.t }\right.
$$

where $N=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ and $P=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}$. The branch of perlodic solutions to (5.1) within \dot{z}_{3} is given by:

$$
z_{\varepsilon}(t)=e\left[\begin{array}{l}
i \tag{5.13}\\
0
\end{array}\right] e^{l \omega^{\prime} t}
$$

where $\omega=\omega^{*}\left(\varepsilon^{2}, u\right)=a_{0}+B_{0} \varepsilon^{2}+O\left(e^{4}\right)$. Along the branch of perlodic solutions, the elgenvector due to translation, corresponding to the elgenvalue zero, is constant. In fact (5.12) shows that thls elgenvector equals io where $p=(1,0)^{\top}$. We explolt this fact to explicitily reduce the vector field to the normal section. We let

$$
\begin{equation*}
v_{D}=\left\{z: c^{2}: \operatorname{Re}\langle z, \mid p\rangle=0\right\} \tag{5.14}
\end{equation*}
$$

By the implicit function theorem we can solve locally in (5.15a) for $\theta=\theta^{*}(h, \varepsilon, \mu)$ such that
(a) $\operatorname{Re}\left\langle f\left(\varepsilon(p+n), \lambda^{*}, \mu\right)-1\left(\omega^{*}+\theta\right) \varepsilon(p+n\rangle, \mid p\right\rangle=0$, and
(b)

$$
\begin{equation*}
\theta^{\prime \prime}(0,0,0)=0 \tag{5.15}
\end{equation*}
$$

If we now let

$$
\begin{equation*}
g(h, \varepsilon, \mu, \theta)=f\left(\varepsilon(p+h), \lambda^{*}(\varepsilon, \mu), \mu\right)-i\left(\omega^{*}(\varepsilon, \mu)+\theta^{*}\right) \varepsilon(D+h) \tag{5.16}
\end{equation*}
$$

then the subspace V_{p} is invariant under g and $g i V_{p}$ is the normal component of the vector field g. For the details of this reduction see Vanderbauwhede, Krupa \& Golubltsky [1988] and Krupa [1988].

We note that θ° corresponds to an element n of the Lle algebra $L(r)$ and determines the drift along the group orbits.

In the language of asymptotic expanslons we are looking for solutions of the form:

$$
\varepsilon e^{i\left(\omega^{\prime \prime}+\varepsilon^{3} \theta\right) t}\left(p+h\left(\varepsilon^{2} B t\right)\right)
$$

where n is a 2π-periodic function.
In $\left(z_{1}, z_{2}\right)$ coordinates we write $n=\left(h_{1}, h_{2}\right)$ and $h_{1}=x+1 y$. The normal vectorfield then is given by

$$
\begin{aligned}
& \frac{d x}{d t}=\varepsilon^{2}\left[2\left(a_{N}+u\right) x+a_{N}\left|n_{2}\right|^{2}+0\left(|x|^{2}+|x|\left|n_{2}\right|^{2}+\left|n_{2}\right|^{4}+\varepsilon^{2} \mid x_{1}\right)\right\} \\
& \text { (5.17) } \\
& \frac{d h_{2}}{d t}=\varepsilon^{2}\left[-\left(\mu+\left|B_{0}+\right| \frac{\theta}{\varepsilon^{2}}\right) h_{2}+2 a_{N} \times h_{2}+a_{N} h_{2}\left|h_{2}\right|^{2}\right. \\
& \left.+O\left(\varepsilon^{2}+|\mu|\left|h_{2}\right|^{3}+\left|h_{2}\right|^{5}\right)\right\}
\end{aligned}
$$

We remark that θ^{*} is of order ε^{2} and occurs in the second equation in such a way that its value will only influence the period of the bifurcating
periodic solution, and not its stability. Therefore, we may suppress θ.
More importantly, we observe that the direction of branching is determined by the higher order terms. To see this, we rescale the time by letting $\bar{t}=-\varepsilon^{2} B_{o} t$, and eliminate the ε^{2} which factors $L(c, u)$ (see (4.11)). We obtain:

$$
\begin{align*}
& -B_{0} \frac{d x}{d t}=2\left(a_{N}+\mu\right) x+a_{N}\left|h_{2}\right|^{2}+\text { h.o.t. } \\
& -B_{0} \frac{d h_{2}}{d t}=-\left(\mu+\mid B_{0}\right) n_{2}+\left(2 a_{N} x+\left(a_{N}+\mid B_{0}\right)\left|n_{2}\right|^{2}\right) n_{2}+\text { h.o.t. } \tag{5.18}
\end{align*}
$$

From the first equation we see that $x=-\left|h_{2}\right|^{2} / 2+\ldots$, and inserting this in the second equation, we conclude that the direction of branching is not determined. To the next order in e^{2} we get (keeping the rescaled time)

$$
\begin{aligned}
-a_{0} \frac{d x}{d t}=2\left(a_{N}\right. & +u) x+a_{N}\left|h_{2}\right|^{2}+\varepsilon^{2}\left(2\left(a_{N N}+2 b_{N}\right) x+\left(a_{N N}+b_{N}\right)\left|h_{2}\right|^{2}\right) \\
& +O\left(\varepsilon^{2}\left(|x|+\left|h_{2}\right|^{2}\right)^{2}+\varepsilon^{4}\right)
\end{aligned}
$$

$$
\begin{equation*}
-B_{0} \frac{d n_{2}}{d t}=-\left(\mu+\mid B_{0}+\varepsilon^{2} b_{N}\right) n_{2}+\left(\theta_{N}+\mid B_{0}\right)\left|n_{2}\right|^{2} n_{2}+2 a_{N} \times n_{2} \tag{5.19}
\end{equation*}
$$

$$
+e^{2}\left(2 a_{N N} \times n_{2}+\left(c_{0}+\mid r_{0}\right) \vec{n}_{2}^{2}+\left(a_{N N}+b_{N}\right)\left|n_{2}\right|^{2} n_{2}\right)
$$

$$
+O\left(\left.\varepsilon^{2}|u| i n_{2}\right|^{3}+e^{2}\left(|x|+\left|n_{2}\right|^{2}\right)^{2}+\varepsilon^{4}\right)
$$

From (5.17) we derive that at a perlodic solution

$$
x=\frac{-\delta_{N}+\varepsilon^{2} b_{N}}{2 \theta_{N}}\left|h_{2}\right|^{2}+O\left(\varepsilon^{2}\left|n_{2}\right|^{4}+c^{4}\right)
$$

Then we find the direction of branchlng from (5.18)

$$
\begin{equation*}
\omega=e^{2}\left\{-b_{N}+2\left|h_{2}\right|^{2}\left[\frac{r_{0}}{3 s_{0}}+b_{N}\right]+0\left(e^{2}+\left|h_{2}\right|^{4}\right)\right\} \tag{5.19}
\end{equation*}
$$

From this equation Theorem 5.1 follows easlly.

5.2 Standing Tori for D_{3}-Symmetry

We let Σ be the isotropy subgroup z_{2} * $\tau_{2}^{〔}$ of Standing Waves 1 with two-dimensional fixed point space $\left\{\left(z_{1}, z_{1}\right)\right\}$. In order to construct V_{p} and θ^{*} as in the rotating case we first change coordinates in (5.12): $u=\left(z_{1}+z_{2}\right) / \sqrt{2}, v=\left(z_{1}-z_{2}\right) / \sqrt{2}$.

The construction of the reduced vector fleld is mutatis mutandis the same as in the case of the rotating torl. Again we wlll suppress θ°, because we are only interested in the olrection of branching. The effect of the crianae of coordinates is that the primary branch has the same form:

$$
z_{\varepsilon}(t)=\left\{\begin{array}{l}
1 \\
0
\end{array} \epsilon^{i \omega^{*} t} .\right.
$$

where in the standing wave case

$$
\omega^{*}\left(\varepsilon^{2}, \mu\right)=a_{0}+\frac{1}{2} B_{0} \varepsilon^{2}+O\left(\varepsilon^{4}\right) .
$$

It occurs at

$$
\lambda\left(\varepsilon^{2}, u\right)=-\left(a_{N}+\frac{u}{2}\right) e^{2}-\left(a_{N N}+\frac{a_{p}}{2}+b_{N}+\frac{c_{0}}{2}\right) e^{4} / 2 .
$$

The reduced vector field has the form (compare with (5.12))

$$
\begin{align*}
& \frac{d x}{d t}=\varepsilon^{2} f\left(x, h_{2}, u, e^{2}\right) \\
& \frac{d h_{2}}{d t}=e^{2} g\left(x, h_{2}, u, e^{2}\right) \tag{5.20}
\end{align*}
$$

The linear part of 3 depends only on h_{2}. It is given by the mapoing from c^{2} into itgelf by:

$$
v \rightarrow\left[\frac{\left(\mu+i \beta_{0}\right)}{2}+\left(\frac{D_{N}}{2}-c_{0}-i r_{0}\right) e^{2}\right] v+\left[\frac{\left(\mu-i \beta_{0}\right)}{2}+\frac{\left(O_{N}-c_{0}+i r_{0}\right)}{2} e^{2}\right] \bar{v}+O\left(\varepsilon^{4}\right)
$$

If we consider this mapning as a mapping on R^{2}, then its trace equals

$$
u+\left(b_{N}-2 c_{0}\right) e^{2}+0\left(e^{4}\right)
$$

and its determinant equals

$$
-\frac{3}{2}\left(\mu c_{0}-\gamma_{0} B_{0}\right) e^{2}+O(e)^{4} .
$$

We apply an e-dependent transformatlor, co put the linear part of the vector field into normal form. Writing $h_{2}=u+i v$ the transformation is:

$$
\begin{aligned}
& u+c u \\
& v \rightarrow \sqrt{-28_{0} / 3 y_{0}} v .
\end{aligned}
$$

We rescale the time by c, l.e. $e t=\bar{t}$. After these transformations the IInear part of the vector fleld has the form:

$$
\begin{aligned}
& \frac{d x}{d t}=\varepsilon\left(2 a_{N}+\mu\right) x \\
& \frac{d h_{2}}{d t}=\varepsilon \frac{\mu}{2}\left(n_{2}+\bar{h}_{2}\right)+1 e^{2} \tau_{0} h_{2} .
\end{aligned}
$$

where $i_{0}=\sqrt{-3 \beta_{0} y_{0} / 2}$. We rescale the time once more, e^{2} rot $=\bar{t}$. Then, the Ilnear vector field has a circle of periodic solutions:

$$
\left[\begin{array}{l}
x \\
n_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
n e^{1(s+\phi)}
\end{array}\right] \quad \phi=s^{1} \cdot n \in R^{+}
$$

We then put the full nonlinear vector field up to order three in $\left(x, n_{2}\right)$ into Birkhoff normal form. Phrased flifferently, ofter a near identlty transformation in the variables $\left(x_{1}, h_{2}\right)$ and a truncation at order three, the resulting vector field has the forma

$$
\begin{aligned}
\varepsilon \frac{d x}{d t} & =\dot{i}\left(x,\left|n_{2}\right|^{2}, u, \varepsilon\right) \\
\varepsilon^{2} \frac{d h_{2}}{d t} & =\dot{g}\left(x,\left|h_{2}\right|^{2}, u, \varepsilon\right) n_{2}
\end{aligned}
$$

If we can sulve the equation $\hat{f}=\tilde{g}=0$ then we will know the direction of branching. Stralghtforward (but rather lengthy) computations show that

$$
\dot{f}=2 a_{N} \xi+\frac{1}{3 Y_{0}} a_{N}\left|h_{2}\right|^{2} B_{0}+O\left[\left(\varepsilon^{2}+|\mu|\right)\left(|x|+\left|h_{2}\right|\right)+|x|\left|n_{2}\right|+\left|n_{2}\right|^{3}+|x|^{2}\right]
$$

where

$$
\varepsilon=x+\frac{c l}{6 y}\left(h_{2}^{2}-\bar{h}_{2}^{2}\right) B_{0}
$$

Therefore, at a solution of $\bar{f}=0$ we will have that

$$
x=-\frac{E_{0}}{6 y_{0}}\left[\left\lvert\, r_{2}^{2}-\frac{\varepsilon \mid}{2 a_{N}}\left(n_{2}^{2}-\bar{n}_{2}^{2}\right)\right.\right]+O\left(\varepsilon^{2}\left|n_{2}\right|+\mid n_{2}!^{3}\right)
$$

Substiting into the equations $\dot{g}=0$ then yields

$$
u=\left(2 c_{0}-b_{N}\right) \varepsilon^{2}-\left|h_{2}\right|^{2}\left(\frac{4 B_{0} \theta_{N}}{3 Y_{0}}+\frac{8_{0}^{3}}{18_{K} \theta_{N} Y_{0}^{2}}\right)+0\left(|\varepsilon|+\left|h_{2}\right|\right)^{3}
$$

where $k=\left(-2 B_{0} / 3 y_{0}\right)^{1 / 2}$. Fram this equation Theorem 5.2 follows.
The (above mentioned) lengthy calculations were checked with the formula manipulation program REDUCE.

56. The Bifurcation Dlagrams

The results of Section 5 imply that when deriving the bifurcation dlagrams for the torus bifurcation In degenerate Hcpf bifurcation with D_{3}-symmetry, we may assume
(a) $A=\lambda+a_{N} N+a_{0} I$
(b) $B=u+b_{N} N+B_{O} I$
(c) $C=C_{0}+Y_{0}$
(d) $D=0$.
as only these terms enter the determination of direction of branching and stabllity.

We assume:

$$
\begin{equation*}
a_{0}>0, B_{0}>0, v_{0}<0 \text { and } a_{N}<0 \tag{6.2}
\end{equation*}
$$

We make these cholces for the following reasons. First, without loss of generallty, the frequencles a_{0} and B_{0} may be assumed to be positive. Second, the quasisymmetry 0 transforms y_{0} to $-y_{0}$ (and c_{0} to $-c_{0}$); so we may assune that y_{0} is negative lat the expense of Interchanging the two branches of standing waves). Finally, we are interested mainly in those situations where asymptotically stable states miy exist. Indeed, steblilty can occur only when the primary branches are sufercriticai; hence we assume $\mathbf{a}_{\mathrm{N}} \leqslant 0$.

To simplify subsequent calculations rescale time and space to obtain

$$
\begin{equation*}
s_{0}^{2}=1 / 2 \text { and } r_{0}=-3 B_{0} \text {. } \tag{6.3}
\end{equation*}
$$

We now find that when a torus bifurcation occure. it occurs at
(a; $\lambda_{r}=\frac{a_{N}}{b_{N}} u+\ldots \quad$ (rotating torus)
(b) $\lambda_{S}=\frac{a_{N}}{b_{N}-2 c_{0}} u+\ldots \quad$ (standing torus)
and the direction of branching is determined by:
$\begin{array}{ll}\text { (a) } 1-\frac{1}{b_{H}} & \text { irotating torus) } \\ \text { (b) } \frac{1}{b_{N}-2 c_{0}}\left[4 a_{N}-\frac{i}{4 a_{N}}\right] & \text { istanding torus) }\end{array}$
and the diection of branching is deteralned by:
(6.5)
e sunercritical is positive and succritical is negative.
We note that it is posifble to choose coefficiencs independently so that for a fixed μ :
(i) standing wave 1 is stable at the initial b!furcation (choose $u<0$;
(ii) both a rotuting and a standing torus bifurcate (choose $b_{N}>0$ and $\left.b_{N}>2 c_{0}\right)$,
(ili) either torus may blfurcate first as 2 increases
(choose $\mathrm{c}_{0}>0$ to have standing wave first, c_{0} < 0 for rotating wave).
(iv) the rotating torus is either supercritical or subcritical (choose $b_{N}>1$ or $b_{N}(1)$.
(v) the standing torus is either supercritical or subcritical (choose $a_{N}\left\langle 0.25\right.$ or $0>a_{N}>-0.25$).

Therefore, it is possible to choose parameters so that the bifurcation diagram pictured in Figure 6.1 occurs. Here we find the possiblifty of two stable 2-tori and no stable perlodic solutions. Note that this phenomenon mav
not occur in codimension two for . $_{n}$-Hop bifurcation when $n 35$. since co is then a higher order term.

Ejaure 6.ل : Bifurcation diagram indicating values of λ having two branches of asymptotically stable 2 -tori and no stable steady-states or periodic solutions.

ACRNOWLEDGEMENT

This research was supported in part by the ACMP program of DARPA (MG), by NASA/Ames Grant NAG 2-432 (MG \& SVG), and by NSF Grant DMS-8700897 (MG). The first author would also like to thank the University of Houston for a visiting position during which time some of the research reported here was completed.

BIBLIOGRAPHY

P. Chossat [1986]. Remarques sur la bifurcation secondaire de solutions quasi-periodiques dans un probleme de bifurcation de Hopf de codimension 2 et invariant par symetrie $O(2)$. Comptes Rendus Acad. Sci. Paris 302, 539-541.
P. Chossat \& M. Golubitsky [1988]. Iterates of maps with symmetry. SIAM J. Math. Anal. 19, No. 6. To appear.
P. Chossat \& G. Iooss [1985]. Primary and secondary bifurcations in the Couette-Taylor problem. Japan J. Appl. Math. 2, No. 1, 3768.
J.D. Crawford \& E. Knobloch [1988]. Classification and unfolding of degenerate hopf bifurcations with $O(2)$ symmetry: no distinguished parameter. Physica D 31, 1-48.
T. Erneux \& B.J. Matkowsky [1984]. Quasi-periodic waves along a pulsating propagating front in a reaction-diffusion system. SIAM J. Appl. Math. 44, 536-544.
S. A. van Gils s J. Mallet-paret [1986]. Hopf bifurcation and symmetry: standing and travelling waves on a circle. proc. Royal Soc. Edinburgh 104A, 279-307.
S.A. van Gils \& T. Valkeriag [1985]. Hopf bifurcation and symmetry: standing and travelling waves in a circular chain. Japan J. Appl. Math. 3, 207-222.
M. Golubitsky \& J. Guckenheimer [1986]. Multiparameter Bifurcation Theory. Contemporary Mathematics 56, Amer. Math. Soc., Providence.
M. Golubitsky 6 W.F. Langford [1981]. Classification and unfoldings of degenerate Hopf bifurcations. J. Diff. Eq. 41 , 375-415.
M. Golubitsky \& M. Roberts [198"]. A classification of degenerate Hopf bifurcations with $O(2)$ symmetry. J. Diff. Eq. 69. No. 2, 216264.
M. Golubitsky \& I.N. Stewart [1985]. Hopf bifurcation in the presence of symmetry. Arch. Rational Mech. Anal. 87, No. 2, 107165.
750. H.Th. Jongen, P. Jonker and F. Twilt, On the classification of plane graphs representing structurally stable rational Newton-flows (November 1988).
751. W.M. Nawijn, Scheduling a single machine delay-loss system (December 1988).
752. A.J. van der Schaft and J.E. Oeloff, Model reduction of linear conservative mechanical systems (December 1988).
753. J.J. Bisschop and T.W. Smits, Language constructs and a search procedure to model and solve combinatorial problems (December 1988).
754. R.H.J. Gmelig Meyling, Three-dimensional reconstruction from serial cross-sections by set-valued interpolation (December 1988).
755. J.G.B. Beumee and H. Rabitz, Application of optimal control theory for selective vibrational excitation in molecules modeled as harmonic systems (December 1988).
756. W.W.E. Wetterling, Chebyshev approximation by parametrized curves (December 1988).
757. B.J. Geurts and R. van Damme, A graph-theoretical approach to block-co-polymer complexes I: Stars (December 1988).
758. B.J. Geurts and R. van Damme, A graph-theoretical approach to block-co-polymer complexes II: Tree approximation (December 1988).
759. A.J. van der Schaft, Hamiltonian control systems: Decomposition and clamped dynamics (January 1989).
*) Requests for Memoranda should be addressed to the author(s).

[^0]: In Section 5 we show that the condltions for our torus bifurcatlin thcorem (Theorem 4.5) may be satisfled when, in a two-parameter system, there Is an isolated value of the parameters where a Hopf blfurcation ociurs anci the bifurcating branches are neutrally steble at third order.

 The remalnder of thls section is devoted to discissing these results in more detall. The notation we set here will be used in Section 5 . We begln by describing the $D_{n} \times S^{\prime}$ invariants and equivariants.

