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ABSTRACT 

An optical model description of momentum transfer in relativistic heavy ion 

collisions, based upon composite particle multiple scattering theory, is presented. 

The imaginary component of the complex momentum transfer, which comes from 

the absorptive part of the optical potential, is identified as the longitudinal 

momentum downshift of the projectile. Predictions of fragment momentum 

distribution observables are made and compared with experimental data. Use of the 

model as a tool for estimating collision impact parameters is discussed. 

1. INTRODUCI'ION 

Since the pioneering experiments on relativistic heavy ion fragmentation 

using carbon and oxygen beams,', attention has been directed toward 

understanding the underlying mechanisms of fragmentation processes. Over the 

past two decades, a substantial body of literature has resulted from studies of these 

phenomena, and several excellent reviews have been wri tten.34 Perhaps the most 

significant findings of the early experiments were the observations that the 

fragment momentum distributions were Gaussian in the projectile rest frame, and 

that the isotopic production cross sections factored into a product of target and beam- 

fragment terms. Initial attempts to explain these phenomena utilized a statis tical 

model to describe the reactions?-9 This later evolved into a two-step model called e 
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abrasion-ablation10 where the abrasion stage can be formulated using geometriclOtll 

or quantum mechanical arguments.'*# l3 In the present work, we use the impulsive 

excitation energy ideas of Fricke,14 within the context of composite particle multiple 

scattering theory, to derive a method for predicting momentum, transfers occurring 

in relativistic heavy ion collisions. This momentum transfer is a function of impact 

parameter. A new feature of this work is that the momentum transfer is a complex 

quantity. The real component is the usual transverse momentum transfer resulting 

from elastic scattering. The imaginary component is explicitly shown to be the 

longitudinal momentum transfer, or downshift, arising from the absorptive part of 

the complex optical potential. Using this formalism, projectile nucleus fragment 

momentum "downshifts" resulting from the dynamics of the nuclear collision can 

be calculated and compared with laboratory beam measurements. In addition, 

modifications to the widths of the momentum distributions can be estimated using 

the formalism. 

The outline of the paper is as follows. In section 2 the dynamical momentum 

transfer expression is derived, and representative calculations of momentum 

transfer as a function of impact parameter are presented. In section 3 the 

connections between collisional momentum transfer and fragment momentum 

downshifts/ widths are made. A method of choosing appropriate impact parameters 0 
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for each fragmentation channel is then described. Next, calculations of momentum 

downshifts for fragments produced by oxygen nuclei colliding with various targets 

are made and compared with experimental data.2 We also compute widths of 

momentum distributions for 139La fragments and compare with recent experimental 

measurements.*6 In section 4 we propose a method for using the momentum 

transfer model to estimate collision impact parameters. Finally, in section 5 we 

conclude by summarizing the current status of model development and discuss 

future directions for research. 

2. METHOD OF CALCULATION 

In reference 17, a coupled-channels Schradinger equation for composite 

particle scattering, which relates the entrance channel to all of the excited states of 

the target and projectile, was derived by assuming large incident projectile kinetic 

energies and closure of the accessible eigenstates. The equation is written as 

where the subscripts n and p (primed and unprimed) label the projectile and target 

eigenstates; m is the nucleon mass; A, and AT are the mass numbers of the 

projectile and target; I; is the projectile momentum relative to the center of mass; 

and j ;  is the projectile position vector relative to the target. In terms of the nucleon- e 
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-. 
nucleon scattering t-matrix taj, and the internal state vectors of the projectile g~ (5,) 

4 

and target (eT), it was also demonstrated that the potential matrix is expressible as 

where 

This same formalism can be used to investigate heavy ion collision momentum 

transfers. Within the context of eikonal scattering theory, the solution to the 

Schrodinger equation 

I -0 -.\ 1 * --I 

is 

(4) 

L J 

where v is the velocity. The total momentum of the projectile is then given by the 

matrix element involving the sum of the projectile single-nucleon momentum 

operators as 

where the subscript P on the gradient operator denotes that the gradient is to be e 
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taken with respect to the projectile internal coordinates. Equation (6) actually 

denotes a potential matrix Fnp, nvlL, in analogy with (2). Therefore, substituting (5) 

into (6) yields 

where 

Equation (7) can be further expressed as 

where the momentum before the collision is 

The total momentum transfer to the projectile is then given by 

For scattering near the forward directions, the couplings between various excited 

states is small and the off-diagonal elements in Eq. (11) can be neglected; hence, the 0 
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momentum transfer can be approximated by 
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In terms of projectile and target number densities, and the constituent-averaged two- 

nucleon transition amplitude,'* Eq. (12) becomes 

where the integration limit in the longitudinal direction has been extended to 

infinity. The momentum transfer in (13) is therefore only a function of the impact 

parameter of the collision. The projectile and target number densities (pp and p,) 

are normalized to unity as 

Ip(51)d3x=1.  (14) 

The constituent-averaged two-nucleon transition amplitude is obtained from the 

first-order t-matrix used in our previous s tudiesI3 of nucleus-nucleus collisions as 

(15) i (e, 3 = - ( q r n ~  a (e) [a (e) + i 1 [2m(e)jyz exp [ - G R B ( ~ ~  

where e is the two-nucleon kinetic energy in their center-of-mass frame, de )  is the 

nucleon-nucleon total cross section, a(e) is the ratio of the real-to-imaginary part of 
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the forward scattering amplitude, and B(e) is the nucleon-nucleon slope parameter. 

Values for these parameters taken from various compilations are listed in 

reference 18. 

The dynamical momentum transfer to the projectile, given by Eq. (13), results 

from interactions with the target. A new feature, unique to this work, is that it is a 

complex quantity. The real part of the momentum transfer, which comes from the 

real part of the complex optical potential, is the contribution arising from elastic 

scattering. It is purely transverse. The imaginary component, which comes from 

the - absorptive part of the complex optical potential, is the longitudinal kinetic 

momentum downshift. To demonstrate this last assertion, we rewrite Eq. (13) 
a 

symbolically as 

where i is fl and i; is the unit vector transverse to the beam direction. If ^z denotes 

the unit vector in the incident beam direction, then from elementary complex 

analysis1g we know that 

since i is an operator which rotates a unit vector counterclockwise through Jc/2 

radians. Therefore, the momentum transfer is 

Q = Q~ G- Q~ ^Z 



which we relabel for clarity as 

G=aG-Q,, A z. 

Note the similarity of this argument to that of complex indices of refraction in 

electromagnetic wave propagation. From Eq. (13), the transverse component is 

and the longitudinal component is 
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(19) 

(20) 

Calculated momentum transfers obtained using equations (20) and (21) are 

displayed in Figure 1 for l60 at 2.1 AGeV colliding with a beryllium target. These 

calculations utilize the harmonic well nuclear densities from our previous 

From the figure, two features are readily apparent. First, the longitudinal 

momentum transfer is larger than the transverse indicating the primarily 

absorptive nature of the nuclear collision at this energy. Second, the predicted. 

momentum transfers decrease rapidly with increasing impact parameter. This will 

be a subject of further discussion in subsequent sections of this paper. 
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3. RESULTS 

The collisional momentum transfers computed using the model described in 

the previous section can be related to experimentally-measured, heavy-ion fragment 

momentum downshifts/widths through considerations of energy and momentum 

conservation. As has been pointed out elsewhere!# 2o a momentum transfer in any 

direction Qj modifies the width hi of the momentum distribution in that direction 

# 2  2 F2 Q: 
(hj) = hj +- 

A* 

and the mean by 
a 

From the latter, the longitudinal momentum downshift is given by 

where QI I is the magnitude of the longitudinal momentum transfer [obtained from 

eq. (2111, F is the fragment mass number, and A is the initial mass number of the 

fragmenting nucleus. Recalling that QI I is a function of impact parameter, an 

appropriate method for choosing it for each fragmentation channel is necessary. 

Recently a semiempirical abrasion-ablation fragmcvi tation model, NUCFRAG, was 

proposed.21 Although it assumes simple uniform density distributions for the e 
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colliding ions, and a zero-range (delta function) interaction, it does include frictional- 

spectator-interactions (€31) and agrees with experimental cross section data to the 

extent that they agree among themselves. Also, and most importantly for this work, 

it is easily modified to yield the impact parameters for each fragmentation channel. 

Hence, the procedure for evaluating equations (22) and (24) is to extract impact 

parameters from NUCFRAG for each nucleon removal corresponding to AA = I, 2, 

3, . . . . These impact parameters are then inserted into Eqs. (20) and (21) to obtain 

the corresponding momentum transfers for use in evaluating Eqs. (22) and (24). 

Because NUCFRAG uses uniform densities, uniform densities are also used in a - 
evaluating (20) and (21). In addition, the zero-range interaction in NUCFRAG is 

simulated for numerical integration purposes in (20) and (21) through the use of a 

very narrow Gaussian form for the t-matrix given by eq. (15). This narrow Gaussian 

is the same width for all collision pairs and therefore is not an arbitrarily adjusted 

parameter. 

Representative calculations for momentum downshifts as a function of 

fragment mass number are displayed in Figure 2 for I6O projectiles at 2.1 AGeV 

colliding with targets of Be, C, Al, Cu, Ag, and Pb. These momentum downshifts are 

target-averaged using simple arithmetic averaging. For comparison, the target- 

averaged experimental data from reference 2 are also also displayed. For display and e 
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comparison purposes, the latter are also averaged over all isotopes contributing to 

each fragment mass number using 

i 

where oi is the experimental production cross section for the ith fragment isotope. 

Comparing the theoretical estimates to the experimental data, reasonable agreement 

is obtained considering the simplified form of the nuclear fragmentation model 

used in the calculations and the overall sensitivity of the calculated momentum 

transfer to the choice of impact parameter. Improved agreement is expected if 

impact parameters from a fragmentation model using realistic nuclear densities and 

interactions were available. This is especially true for collisions involving lighter 

ions, such as carbon, oxygen, and beryllium, which are poorly represented by simple 

uniform nuclear distributions. 

Figure 3 displays transverse momentum widths as a function of fragment 

mass number for 1.2 AGeV ls9La fragmenting in carbon targets. The experimental 

data are taken from reference 16. Again, impact parameters from NUCFRAG are 

used as inputs into the momentum transfer expressions [Eqs. (20) and (2111. For 

consistency with the use of these impact parameters, a narrow Gaussian t-matrix 

and uniform nuclear densities were again utilized in the momentum transfer 
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calculations. From Figure 3, it is clear that the agreement is much better than in 

Figure 2 and probably reflects the fact that a uniform nuclear density distribution is a 

more reasonable aproximation for a heavy nucleus-like lanthanum than for light 

nuclei such as oxygen. 

4. ESTIMATING COLLISION IMPACT PARAMETERS 

Thus far in this work, we have used collision impact parameters as inputs 

into a momentum transfer computational model which in turn has yielded 

estimates of heavy ion fragment momentum downshifts/ widths for comparison 

with experimental data. However, this procedure can be reversed and the model 

used to estimate collision impact parameters from measured momentum 
0 

downshifts for relativistic collisions. Let F be the fragment mass number with 

measured longitudinal momentum downshift AP I I produced in a relativistic 

collision between a projectile nucleus (mass number A) and some target. Then, 

from eq. (241, the longitudinal momentum transfer to the projectile from the target 

is 

QI=$API I. (26) 

The collision impact parameter can then be estimated from eq. (21) by computing 

Q, I as a function of impact parameter (e.g., in Figure 1) and using QI I from eq. (26) 

as the entry. To illustrate, consider a collision involving 2.1 AGeV oxygen colliding a 
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with a beryllium target. The calculated momentum transfer using realistic nuclear 

densities are displayed in Figure 1. If the measured (hypothetical) momentum 

downshift for the I4N fragment is 35 f 7 MeV/c, then eq. (26) yields a longitudinal 

momentum downshift of 40 f 8 MeV/c. From Figure 1, the corresponding range of 

impact parameters is 6.1 - 6.4 fm. A similar procedure incorporating measured 

momentum distribution widths and Eqs. (22) and (20) or (21) could also be used to 

estimate collision impact parameters. 

5. CONCLUDING REMARKS 

Beginning with composite particle multiple scattering theory, an optical 

model description of collision momentum transfer in relativistic heavy ion 

collisions was derived. General expressions for transverse and longitudinal 

momentum transfer, which utilize a finite-range two-nucleon interaction and 

relativistic nuclear densities, were presented. The theory was used to estimate 

heavy ion fragment momentum downshifts for relativistic oxygen and transverse 

momentum widths for relativistic lanthanum projectiles. The main new feature of 

this work was the identification of the imaginary component of the momentum 
A 

transfer as the longitudinal collision momentum transfhr. Finally, the use of the 

model as a mechanism for estimating collision impact parameters was described. 

The present theory is mainly applicable at intermediate or high energies 

because of the use of eikonal wavefunctions and the impulse approximation. At 

lower eoergies (below several hundred MeV/nucleon), the validity of straight line 
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trajectories and the assumption of a constant projectile velocity is questionable. 

Therefore, to compare theory with experiment at lower energies22 revisions to the 

model are necessary. In particular, deceleration corrections to the constant velocity 

assumption are being developed. For incident energies greater. than 1 AGeV, first- 

order deceleration corrections are small (< 1 percent). As the incident energy 

decreases, however, the first-order corrections increase significantly (over 50 percent 

at 100 A MeV), indicating that higher-order terms must be included. Work on this 

is in progress and will be reported when completed. 

The authors wish to thank Hank Crawford and Peter Lindstrom of Lawrence 

Berkeley Laboratory, and Frank Cucinotta of the Environmental Measurements 
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I 0 Figure 1: Momentum transfer to the l6O projectile, as a function of impact 

parameter, for 2.1 AGeV oxygen colliding with a beryllium target. 

Figure 2: Target-averaged longitudinal momentum downshifts as a function of 
projectile fragment mass number for 2.1 AGeV l60 colliding with Be, C, 
Al, Cu, Ag, and Pb targets. The experimental data, taken from 
reference 2, are averaged over isotopes for each fragment mass. 

Figure 3: Transverse momentum widths as a function of fragment mass number 
for 1.2 AGeV 139La colliding with a carbon target. The experimental data 
are taken from reference 16. 
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