
. 

DeparBment of AERONAUTlCS and ASTRONAUTlCS 

STANFORD UNIVER SITV / ? / / J :  d 

4 

1’f’,.Y f/’ 

// ; , -,r - ’ f-9 

Report to / 
* L.-’ 

o.z?3 3 y5 
NASA Ames Research Center 

IASA-  

NCC2-304 

COMPRESSION BEHAVIOR 

OF DELAMINATED COMPOSITE PLATES 

Scott 0. Peck and George S. Springer 

Department of Aeronautics and Astronautics 
Stanford University, Stanford, California 94305 

R-104816) C.OMPR€SSION BEHAVIOR O f  Na 9- 2 94 92 
DELAMINATED COMPOSITE PLATES (Stanford 
Univ.) 149 p CSCL 110 

Uncl as 
G 3 / 2 4  0 2 3 3 3 4 5  

October 1989 

https://ntrs.nasa.gov/search.jsp?R=19890020121 2020-03-20T00:32:32+00:00Z



Report to 

NASA Ames Research Center 

NCC2-304 

COMPRESSION BEHAVIOR 

OF DELAMINATED COMPOSITE PLATES 

Scott 0. Peck and George S. Springer 

Department of Aeronautics and Astronautics 
Stanford University, Stanford, California 94305 

October 1989 



Abstract 
The response of delaminated composite plates to compressive in-plane loads 

was investigated. The delaminated region may be either circular or elliptical, and 

may be located between any two plies of the laminate. For elliptical delaminations, 

the axes of the ellipse may be arbitrarily oriented with respect to the applied loads. 

A model was developed that describes the stresses, strains, and deformation of the 

sublaminate created by the delamination. The mathematical model is based on a 

two dimensional nonlinear plate theory that includes the effects of transverse shear 

deformation. The model takes into account thermal and moisture induced strains, 

transverse pressures acting on the sublaminate, and contact between the sublami- 

nate and plate. The solution technique used is the Ritz method. A computationally 

efficient computer implementation of the model was developed. The code can be 

used to predict the nonlinear load-strain behavior of the sublaminate including the 

buckling load, postbuckling behavior, and the onset of delamination growth. The 

accuracy of the code was evaluated by comparing the model results to benchmark 

analytical solutions. 

A series of experiments was conducted on Fiberite T300/976 graphite/epoxy 

laminates bonded to an aluminum honeycomb core forming a sandwich panel. Ei- 

ther circles or ellipses made from Teflon film were embedded in the laminates, sim- 

ulating the presence of a delamination. Each specimen was loaded in compression 

and the strain history of the sublaminate was recorded far into the postbuckling 

regime. The extent of delamination growth was evaluated by C-scan examination 

of each specimen. The experimental data were compared to code predictions. The 

code waa found to describe the data with reasonable accuracy. 

A sensitivity study examined the relative importance of various material prop- 

erties, the delamination dimensions, the contact model, the transverse pressure 

differential, the critical strain energy release rate, and the relative growth direc- 

tion on the buckling load, the postbuckling behavior, and the growth load of the 

sublaminate. 
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Chapter 1 

Introduction 

Fiber-reinforced organic matrix composite materials may contain delamina- 

tions introduced, for example, by manufacturing defects or impact damage. When 

subjected to compressive in-plane loads, the delaminated region may first buckle 

and then grow in size. Either of these occurrences may significantly limit the useful- 

ness of the composite plate. Therefore, to utilize the many inherent advantages of 

composite materials, the behavior of delaminations must be fully understood. This 

investigation addresses this problem, and specifically seeks to establish a model 

which predicts the buckling and postbuckling growth behavior of delaminations in 

composite plates subjected to in-plane compressive and shear loads. 

Owing to the significance of the problem, several investigators have proposed 

models describing the behavior of delaminated plates under compressive loading. 

The buckling and growth of through-width delaminations in plate strips have been 

analyzed by Chai et al. [l], Yin et al. [2], Simitses et al. [3], Gillespie and Pipes 

[4], Wang et al. [5,6], Sallam and Simitses [7], Williams et al. [8], El-Senussi and 

Webber [9], Vizzini and Lagace (101, Yin [ll]* and Kardomateas [12]. The buckling 

and growth of circular delaminations in isotropic plates under radial loads have 

been investigated by Bottega and Maewal [13], Yin and Fei [14], and Bruno [15]. 

In addition to these simple geometries, the behavior of plates containing rec- 

1 



Chapter 1: Introduction 2 

tangular delaminations have been analyzed by Konishi [16] and Jones et al. [17], 

while plates containing elliptical delaminations have been investigated by Konishi 

[16], Chai and Babcock [18], Kassapoglou [19], Shivakumar and Whitcomb [20], and 

Whitcomb [21, 221. In all but one of these analyses, the major axes of the rectangle 

or ellipse were assumed to be aligned with the direction of the compressive load. 

The one exception is the analysis of Shivakumar and Whitcomb [20], which assumed 

an arbitrary orientation for an elliptical delamination with respect to the applied 

load. However, Shivakumar and Whitcomb calculated only buckling loads and did 

not consider postbuckling deformation or growth. 

It appears that no model exists for predicting the buckling, postbuckling be- 

havior, and growth of: (a) circular delaminations or elliptical delaminations with 

axes arbitrarily oriented with respect to the applied in-plane loads, and (b) de- 

laminations located between any two plies of the composite plate. Therefore, the 

primary goal of this investigation was to develop a model capable of addressing this 

more general problem of delamination in a composite plate. 

In developing the model, an additional objective was to make the model readily 

useable in engineering practice. Substantial effort was made to keep the analysis 

simple and straightforward, to develop a computer implementation of the model 

that was computationally efficient, and to incorporate a user-friendly interface for 

the program so that meaningful results could readily be obtained. 

Finally, to firmly establish the credibility of the model, a series of experiments 

on graphite-epoxy face sheeted aluminum honeycomb sandwich panels containing 

embedded delaminations was conducted. Strain histories were measured far into the 

postbuckling regime, and the data were compared to the analytical results, verifying 

the validity of the model. 



Chapter 2 

Problem Statement 

Consider a multilayer laminated composite plate. The plate may be a “solid” 

laminate or a “sandwich” laminate consisting of two face sheets bonded to a honey- 

comb core (Figure 2-1). In either case, the plate must be symmetrically laminated 

with respect to its midplane. Each layer, or ply, in the plate may be made from 

a different material. Each material may be isotropic or orthotropic, the latter in- 

cluding continuous fiber reinforced composites. Each material must behave in a 

linearly elastic manner. A delamination exists between two adjacent plies in the 

plate (or face sheet) interior. The delamination may occur between any two plies, 

dividing the plate locally into two parts. The delamination may also be at the face 

sheet-honeycomb interface. Note that while the plate is symmetric, the two parts on 

either side of the delamination will, in general, be unsymmetric. The delamination 

is s m a l l  with respect to the plate planar dimensions but large with respect to the 

thickness of the plate. The delamination is either circular or elliptical. The ellipse 

may have an arbitrary orientation with respect to the plate (Figure 2-2). 

In-plane tensile, compressive, and shear loads may act on the plate. The re- 

sponse of the plate to the applied loads is assumed to be initially unaffected by 

the behavior of the sublaminate formed by the delamination. The plate response 

to the applied loads determines the displacement boundary conditions for the sub- 

3 



Chapter 2: Problem Statement 4 

laminate. Under the action of the applied loads, the delaminated sublaminate may 

buckle and subsequently grow in area. Given the plate material properties and the 

delamination geometry, the problem is to find: (a) the load-strain behavior of the 

sublaminate, (b) the load applied to the plate at which the sublaminate buckles, 

and ( c )  the load applied to the plate which causes an onset of delamination growth. 

Honeycomb 
Core 

t 
Composite Plate Honeycomb Sandwich Plate 

Figure 2-1 Plate geometries investi ated and the division of the plate into two 
parts as a result of the B elamination. 



Chapter 3 

Delarninat ion Analysis 

53.1 Approach 

The major concepts of the analysis of a delaminated composite plate are pre- 

sented in this chapter. The analysis proceeds in four major steps. First, the displace 

ments, strains, and stresses in the plate are calculated as though the delamination 

were not present. Second, the load at which the delaminated sublaminate buckles is 

determined. Third, the displacements, strains, and stresses in the sublaminate are 

determined using the condition that the displacements at the delamination bound- 

ary match those of the plate determined in step one. Fourth, the load at which the 

sublaminate grows in size is established. In the first step, the behavior of the plate 

is calculated directly from laminated plate theory [23]. In the remaining steps, the 

approximate behavior of the sublaminate is determined using energy methods. 

The following fundamental assumptions of plate theory are employed in the 

analysis: 

1. The thicknesses of both the plate and the sublaminate are small compared to 

all other dimensions. 

2. The thicknesses of both the plate and sublaminate are constant. 

3. The material behaves in a linearly elastic manner. 

6 
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4. Each layer is either isotropic or orthotropic. 

5. The plate and the sublaminate undergo small strains, and the sublaminate 

experiences moderate rotations. 

6. The transverse normal stresses are zero in both the plate and the sublaminate. 

7. Perfect bonding exists between adjacent layers of the composite (except, of 

course, at the location of the delamination). 

8. The transverse displacements and rotations in the plate are zero. 

53.2 Coordinate Systems 

Three Cartesian coordinate systems are employed in the analysis (Figure 3- 

1). The coordinate system coincident with the principal material axes of each 

orthotropic ply is the x ,  y, z system. The coordinate system coincident with the 

semi-axes uf the delamination ellipse is the 21, 2 2 ,  5 3  system. The coordinate 

system of the plate is the 2 1 1 ,  5 2 1 ,  x31 system. The x, 9, z system is the on-axis 

system, while the other two systems are off-axis systems. The two off-axis systems 

are related to the on-axis system by rotations about the transverse axes, where 

these axes are all equivalent ( z  = 2 3  = ~ 3 ' ) .  

53.3 Constitutive Relations 

The constitutive relations for a linearly elastic material are 

where the C i j k l  are elastic constants relating the stresses a;j to the strains e k l .  For an 

orthotropic or isotropic material in the on-axis coordinate system, the constitutive 
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Fibers 

X 

1' 

Figure 3-1 Cartesian coordinate systems: X ~ I X ~ I X ~ I  for the plate, 2 1 2 2 2 3  for the 
sublaminate, and zyz for the material coordinates of each ply. 8 is 
the angle between the plate and sublaminate systems, and 4 is the 
angle between the plate and ply systems. 



Chapter 3: Delamination Analysis 9 

relations are 

where the a; are the on-axis linear coefficients of thermal expansion. The temper- 

ature difference AT is defined as 

AT = T - T, (3.3) 

where T is the d o r m  temperature of the composite and Tr is a reference temper- 

ature at which the thermal strain is defined to be zero. A convenient value for Tr 

is the temperature at which the material “solidifies” during curing. 

The effects of moisture absorption by the composite material can be treated 

in an analogous II1LLnner. The strain due to moisture uptake is PiAC, where the pi 

are the on-axis linear coeScients of moisture-induced expansion and Ac is the rel- 

ative change in moisture concentration. For simplicity, the analytical development 

presented here is in terms of thermal strains. However, an equivalent analysis of 

moisture effects can be made by substituting p;Ac for a;AT. 

Contracted notation will be used in the rest of the analysis except where noted. 

For example, in an off-axis xl, 22, and 2 3  coordinate system the stresses, strains, 

and elastic constants are represented by [24] 
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(3.4) 

6 1 1  + 6 1  €11 + €1 Cllll + Cll c 2 3 2 3  * c 4 4  

6 2 2  + 6 2  €22 + €2 c 2 2 2 2  + c 2 2  c 1 3 1 3  + C55 

6 3 3  + 6 3  €33 + €3 c 3 3 3 3  + c 3 3  c 1 2 1 2  + c 8 8  

6 2 3  + 6 4  2e23 * €4 c 2 2 3 3  + c 2 3  c 2 3 1 3  + c 4 5  

6 1 3  --* 6 5  2C13 €5 c 1 1 3 3  + c 1 3  c 2 3 1 2  + c48 

6 1 2  + 6 8  2612 + €8 c 1 1 2 2  -+ c 1 2  c 1 3 1 2  + c58 

Note that €4, €5, and €6 are engineering strains. 

For a material in plane stress, the constitutive relations (Eq. 3.2) may be 

conveniently written in an off-axis coordinate system as 

where the Q i j  are the plane stress reduced stXnesses defined as 

Qij = Cij - - C i 3  

Qij = Cij 

i , j  = 1,2,6 

i, j = 4,5 
c 3 3  (3.6) 

The stresses and strains have been arranged so as to group the in-plane and out- 

of-plane components separately. The apparent thermal shear term (a6AT) appears 

since the constitutive relations are expressed in an off-axis coordinate system. Ex- 

pressions for Qij in terms of engineering constants for isotropic and orthotropic 

materials are given in Appendix A. 

53.4 Displacements, Strains, and  Stresses in the  Plate 

In the plate coordinate system ( X I , ,  221, t a l ) ,  the in-plane total strains in the 

symmetrically laminated plate (containing no delamination) resulting from uni- 
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formly applied in-plane load resultants N11, N ~ I ,  and Ne' (Figure 3-2), and a tem- 

perature difference AT are [23] 

The m trix elements ai,, which are the inverses of the plate stiffness m-trix elements 

Aij [23], are 

where hp' is the thickness of the plate. The thermal load resultants N$T, N$T, 

and Nl!T are 

In the sublaminate coordinate system ( 5 1 ,  2 2 ,  z3), the total strain components 

are determined by a tensor rotation about the transverse axis 23' 

(3.10) 
m2 n2 
n2 m2 n m  

-2nm 2nm m 2 - n 2  
(ii) = ( 

where m and n are cos 8 and sin 8, respectively, and 8 is the angle between the plate 

and sublaminate coordinate systems (Figure 3-1). 

To simplify the buckling and post buckling analyses, proportional mechanical 

loading is assumed. Each of the in-plane load resultants may have a unique value, 

but the relationship of one to another is fixed. In this way, a single load parameter 

N suffices to characterize the total load on the plate 
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N2' 

Plate 

Figure 3-2 In-plane load resultants Nl#, NZ,, and Ne, in the plate coordinate 
system. 
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(3.11) 

with the relative magnitude of each load described by the fractions 71, 72, and 7 6  

(71 +72 + 7 6  = 1). The resulting total strains in the sublaminate coordinate system 

(21, 2 2 ,  23) may now be expressed as 

(3.12) 

where c1, c2, and c3 are defined by 

and the thermal strains in the plate by 

Integration of Equation 3.12 (Appendix B) gives the in-plane displacements of the 

plate 

L (3.15) 

Equation 3.15 together with Assumption 8 (OU;' = 0) completely describe the dis- 

placements in the plate. The displacements at the sublaminate boundary must 

match these displacements. Note again that the displacements and strains are 

taken to be zero when the temperature is T, and no mechanical loads act on the 

plat e. 
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93.5 Strain-Displacement Relations for the Sublaminate 

The nonlinear strain-displacement relations used for the sublaminate axe those 

proposed by von Karman [25] for the large displacement analysis of plates. Although 

von Karman discussed the use of these strain-displacement relations only in the 

context of classical plate theory, it has been shown (Appendix C) that they are 

appropriate for the moderate rotation, shear deformation theory used here. The 

strains e i j  (reverting to conventional notation for the moment) are related to the 

displacements by 

'ij = -(- hi hi +-+-- h3 &,I 
2 ax j  d ~ i  ax j  

(3.16) 

Using a higher order shear deformation theory [26-291, the sublaminate dis- 

placements are taken to be cubic functions of the transverse coordinate 2 3  

No shear forces act on any of the lateral surfaces of the sublaminate. Hence, 

the shear stress components (returning to contracted notation) on these surfaces 

are 

(3.18) ha' 
a4 =a5 = O  at 2 3  =f- 2 

where ha' is the thickness of the sublaminate. For a sublaminate constructed of iso- 

tropic or orthotropic materials, the above condition requires that the corresponding 
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shear strains on the lateral surfaces also be zero (Eq. 3.2). 

(3.19) 

Substituting the displacements (Eq. 3.17) into the strain-displacement relations 

(Eq. 3.16), differentiating, and applying the four boundary conditions (Eq. 3.19), 

the relationships between the rotation functions are [30] 

Using Eq. 3.20, the displacements (Eq. 3.17) may be rewritten as 

(3.20) 

(3.21) 

The displacements are now specified in terms of only five functions: three midplane 

displacements "u;', "uf, '+A;', and two rotation functions +I1 and $ ; I .  Using the 

displacements in Q. 3.21, the nonlinear strains (h. 3.16) may be expressed as 

(3.22) 
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In these expressions, oef' are the midplane strains, and On!' and 2 ~ t 1  are the midplane 

curvatures of the sublaminate defined by 

a 2 0  a1 
u3 

+ 2  a x ,  a x 2  ) 
(3.23) 

93.6 Displacements, Strains, and Stresses in the Sublaminate 

The displacements in the sublaminate are assumed to be a linear combination 

of two parts: (a) the displacements that would exist in the sublaminate in the 

absence of the delamination, plus (b) the displacements introduced by transverse 

deformation of the sublaminate. The five functions describing the sublaminate 

displacements are 

(3.24) 
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The in-plane displacements in the plate (Our', "uf) are given in Eq. 3.15. The second 

equalities in the last three expressions can be written because the transverse dis- 

placements and rotations in the plate are assumed to be zero (Assumption 8). The 

displacements in the sublaminate due to out-of-plane deformation (the quantities 

with the hat) are represented by 

j=1 
n. 

j=1 
n, 

j=1 
n. 

j=1 
nt 

(3.25) 

j=l 

where np through nt are the number of terms in each series. The parameters pj, qj, 

T j ,  si, and t j  are c d c i e n t s ,  while Pdj, g d j ,  'dj, ' d j ,  and ' d j  are functions of the 

coordinates x1 and 52. Expressions for these coordinate functions must be chosen 

such that they: (a) satisfy the boundary conditions on the sublaminate (discussed 

below) and (b) are linearly independent, continuous, and complete [30]. 

One of the fundamental assumptions of this analysis is that the displacements of 

the sublaminate and plate match along the boundary of the sublaminate. Along this 

boundary, the displacements are completely specified, while the force and moment 

resultants are unspecified. Thus, by definition, the sublaminate boundary is a 

clamped boundary (Figure 3-3). The appropriate clamped boundary conditions are 

~ 6 , 2 7 1  
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/ Clamped Boundary 

Sublaminate 

Figure 3-3 Illustration of the clamped boundary at the sublaminate edge. 

(3.26) 

The subscripts n and t refer to the normal and tangential directions, respectively, to 

the sublaminate boundary (Figure 3-4). Clearly, the first five boundary conditions 

require that the functions P d j ,  'dj, 'dj, "dj, and 'dj vanish at every point on the 

boundary (Eqs. 3.24 and 3.25). The final boundary condition of Eq. 3.26 requires 

that the derivative of rt$j also vanish on the boundary. Accordingly, the following 

polynomial coordinate functions were chosen 
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Figure 3-4 Ddnition of the tangent t and normal n coordinates along the sub- 
laminate boundary. 
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(3.27) 

where 

5 2  
3 2  = (T) 

These expreasions satisfy the boundary con& t ions for an ellipt ically-shaped sublam- 

inate (semi-axes a and b), and satisfy the condition that the functions be linearly 

independent, continuous, and complete. 

The functions in Eq. 3.27 are similar to those used by previous investigators 

[16,18,19]. However, previous investigators have omitted various terms from the 

series. Either the omission of terms from a series or the premature truncation of a 

series can affect the accuracy of the results. In particular, it is important to retain 
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1. Crossproduct terms (e.g. ~ - 4 3 1 ~ 2 )  for arbitrary delamination orientations; 

2. P 4 j  and Q d j  to at least one order higher than ' 4 j  for accurate postbuckling 

calculation of in-plane strains; and 

3. " d j  and 'dj to the same order as 2 for accurate representation of transverse 

shear rotations. 

The displacements in the sublaminate (Eq. 3.21) are now specified in terms 

of the unknown coefficients pj, g j ,  rj, sj, and t j  and their associated coordinate 

functions (Eq. 3.27). The off-axis strains at any point in the sublaminate may 

be calculated from the midplane strain and curvature definitions (Eq. 3.23) and 

the strain-displacement relations (Eq. 3.22). Using the strains, the associated 

off-axis stresses in each ply of the sublaminate may be calculated from the off-axis 

constitutive relations (Eq. 3.5). On-axis strains and stresses in each ply are obtained 

by rotating the respective off-axis strains and stresses into the on-axis coordinate 

system [23]. 

The displacements, strains, and stresses in the sublaminate are thus specified 

in terms of the c d c i e n t s  pj, gj, rj, sj, and t j .  These coefficients are determined 

by the Ritz energy method. 

93.7 Total Potential Energy 

The total potential energy of tAAe sublaminate II" in the absence of body forces 

is [31] 

where V is the volume of the sublaminate, A is the lateral surface area of the 

sublaminate, and f is the force per unit area acting on the surface. The subscript 

3 is not included since the transverse normal stress 03 is assumed to be zero. Note 
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that repeated subscripts imply summation. Substituting the constitutive relations 

(Eq. 3.5) for yields 

Integration of Eq. 3.29 with respect to E ;  produces 

(3.30) 

Two kinds of surface traction are considered to act on the lateral surfaces of 

the sublaminate. First, a uniform transverse pressure may exist due to a pressure 

difference AP between the outside and inside surfaces of the sublaminate (Figure 3- 

5). The pressure on the outside surface is generally atmospheric. On the inside 

surface the pressure may be subatmospheric due to a partial vacuum that may 

form as the sublaminate buckles. Second, a force may result from contact between 

the buckled sublaminate and the plate over portions of the delaminated surface 

(Figure 3-6) [32]. Where the sublaminate tends to deform toward the plate, contact 

between the two will occur and a force resisting the sublaminate deformation will 

arise. This contact is modeled by considering the sublaminate to be resting on a 

detached elastic foundation (Figure 3-7). The restoring force is taken to vary linearly 

with the sublaminate transverse displacement uj' for positive displacements, and to 

vanish for negative displacements. Therefore, the force per unit area acting on the 

sublaminate at a given point is 

(3.31) 
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The foundation modulus K [33, 341 is estimated from (Appendix D) 

K % -  Ef (3.32) 

where Ef is the elastic modulus of the foundation and If is a characteristic length 

(for example, the sublaminate diameter). 

Note that the transverse pressure model only makes sense in conjunction with 

Without the contact model, the transverse pressure would the contact model. 

simply produce sublaminate bending toward the plate. 

Atmospheric Pressure 

Subatmospheric Pressure 

Figure 3-45 Possible pressure difference acting across the sublaminate thickness. 
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Figure 3-8 Contact between the sublaminate and plate. e 
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Contact Force, f 

Figure 3-7 Detached elastic foundation model of contact force. 
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Integration of Eq. 3.30 with respect to the thickness ha', together with the 

strain definitions (Eqs. 3.22 and 3.23), results in the following expression for the 

total potential energy [30] 

!r 

0 81 
€6 

0 rl 

0 81 

0 r l  
IC6 

2 .I 
2 .I 

Kg 

61 

6 2  

K1 

6 2  
( 2  .I 

dA 

~ 

where tr represents the matrix transpose, rtnd Aij, Bij, Dij, Eij, 4jl Hij =e 

sublaminate stiffnesses (Appendix E) defined by 
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The specific limits of integration over the area A of the elliptical sublaminate 

are 

(3.36) 

where the ellipse is bounded by 1 - (%)* - (9)' = 0, and u and b are the semi-axes 

in the x1 and 22 directions, respectively. 

53.8 Applied Load versus Deformation of the Sublaminate 

To establish the relationship between the applied mechanical and thermal loads 

(N and AT) and the sublaminate deformation ( u f ,  u f ,  and uf), the total potential 

energy of the sublaminate (II") is first assembled by substituting the displacement 

approximations (Eqs. 3.24, 3.25, and 3.27) into the midplane strain and curvature 

definitions (Eq. 3.23), and then substituting these results into the expressions for the 

total potential energy (Eq. 3.28). The resulting expression is extremely lengthy and 

will not be given here. Essentially, the total potential energy of the sublaminate 

is now expressed as a function of the known geometry (u,b) ,  material properties 
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( A i j ,  . . . , ai), and applied loads (N, AT), and a set of ~ t s  yet unknown coefficients 

(Pj, qj, rj, sj, tj> 

(3.37) 

The unknown coefficients are determined by minimizing the total potential energy 

with respect to the c d c i e n t s  (301 

= O  j = l t o 5 6  
ans' - (3.38) 

where m, is used as a generic unknown coeEcient representing pj, q j ,  r j ,  S j ,  or t j .  

The differentiations indicated in Eq. 3.38 result in a system of 56 nonlinear alge- 

braic equations in the unknown coefficients. These are the equilibrium equations. A 

solution to these equations yields a set of c d c i e n t s  ($j, dj, i j ,  i j ,  i j )  corresponding 

to specified values of the applied loads (fi,Af'), where the hat indicates a partic- 

ular set of loads. Knowing the c d c i e n t s ,  the displacements, strains and stresses 

throughout the sublaminate can be determined. 

A load-deformation history for the sublaminate is mapped out by solving the 

equilibrium equations over a range of applied loads. However, care must be exercised 

due to the nonlinearity of the equations. In general, more than one solution exists for 

a given load. The solution must correspond to a local minimum of the total potential 

energy, implying that the solution must be physically stable. Furthermore, multiple 

stable solutions are possible. Therefore, each possible solution ( @ j ,  i j ,  i j ,  3 j ,  i j )  must 

be tested to determine whether it corresponds to a local minimum of the the total 

potential energy (stable solution) or a local maximum (unstable solution). The 

stability test [35] requires that the determinant of the matrix of second partial 
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derivatives of the the total potential energy be positive definite 

(3.39) 

where mi is again a generic coefficient. If multiple stable solutions are shown to 

exist, each with an associated total potential energy, then the solution with the 

minimum total potential energy of the sublaminate is assumed to be the most likely 

solution. 

$3.9 Buckling Condition 

The buckling load is one at which the system changes from one configuration 

to another, energetically more favorable, configuration. This change occurs at a 

load for which the determinant of the matrix of second partial derivatives of the 

potential energy ceases to be positive definite [31, 361 

(3.40) 

In the equilibrium problem described above, the unknown co&cients are deter- 

mined for a known load. In the buckling problem, both the load and the coefficients 

for which EQ. 3.40 applies are desired. Two different approaches have been used 

to solve the buckling problem. In the linear method, the values of the unknown 

coefficients are assumed to be zero ( p i  = qj  = rj = s j  = t j  = 0) and the buckling 

load Nj satisfying Eq. 3.40 is found. In the equilibrium method, the load N is 

gradually incremented Over a range of values, each time solving the nonlinear equi- 

librium equations for the unknown c d c e n t s  as above. The point at which the 

displacements change dramatically with increasing load (Figure 3-8) is the buckling 

load Na. Since unsymmetric laminates may deform out-of-plane at loads less than 

the linear buckling load, the equilibrium method is recommended. 
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\ 

Actual Buckling Load, % 

\ 
Sublaminate Strain, E 1"' 

Figure 3-8 Illustration of the actual load-strain behavior and the calculated linear 
buckling load. 

93.10 Growth Criterion 

The strain energy released per unit area by the plate-sublaminate system for 

an increment of sublaminate growth is the strain energy release rate G. The delam- 

inated sublaminate is assumed to grow for a given load when G exceeds a critical 

strain energy release rate G, of the material [37] 

(3.41) 

where II" and IIP' refer to the strain energies of the sublaminate and plate, respec- 

tively, and A is the surface area of the sublaminate. The strain energy released by 

the plate is the strain energy of that portion of the plate which becomes part of the 
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new sublaminate after growth (Figure 3-9). Thus, the strain energy of the plate is 

(3.42) 

The stsnesses A i j  and thermal resultants N:lT are evaluated over the thickness 

of the sublaminate because the strain energy of the balance of the plate does not 

change during growth of the sublaminate. Only the sublaminate portion of the 

plat e contributes. 

Following Chai and Babcock [18], the total strain energy release is considered 

during growth of the sublaminate. That is, although the strain energy released 

during growth of the sublaminate varies along the sublaminate boundary, local 

variations in the strain energy release are not included here. For an elliptically- 

shaped sublaminate, Eq. 3.41 may be written (Appendix F) 

6W' do 6W' 6II" do an" G =  ( T X + T ) - ( T X  + X I  2 Gc (3.43) 
n(b% + a) 

where A = nab is the area of the elliptical delamination. The parameter % describes 

the direction in which the sublaminate grows (Figure 3-9). For example, 9 = 0 

implies growth in the b direction only, 9 = 00 implies growth in the a direction only, 

and 9 = 3 implies self-similar growth. The strain energy release rate is evaluated 

over a rauge of values of the parameter 9 so that the lowest G can be found. In 

practice, sublaminate growth is often observed in a direction perpendicular to the 

applied load. Thus, a suitable choice would be $f = 0 (growth in the b, or 2 2 ,  

direction) for a load applied in the 21 direction. 
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I I  
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I I  I 
I I  Before Growth I 1  
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& - = o  
db 

Figure 3-9 Definition of the growth parameter 9. 
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Implement at ion 

54.1 Introduction 

The FORTRAN computer code DELAM was developed from the analysis of 

sublaminate buckling and postbuckling behavior (Chapter 3). The program reads 

input data describing the delamination and the plate in which it is contained, in- 

cluding: (a) the plate material properties, geometry, and layup; (b) the location, 

dimensions and orientation of the delamination; and (c) the applied loads. A list of 

the required input data is given in Table 4-1. 

Fkom the input data, derived properties are calculated for subsequent use in 

the delamination analysis: (a) the on-axis stiffnesses of each ply (Appendix A); 

(b) the ply on-axis plane stress reduced stif€nesses (Eq. 3.6); (c) the ply off-axis 

reduced stifkesses which appear in Eq. 3.5 in both the plate and the sublaminate 

coordinate systems; (d) the laminate stiffnesses for the plate (Eq. 3.8) and the sub- 

laminate (Eq. 3.34) from the off-axis reduced stiffnesses; (e) the thermal resultants 

for the plate (Eq. 3.9) and sublaminate (Eq. 3.35) from the off-axis reduced stiff- 

nesses, the thermal coefficients of expansion (as rotated into the off-axis system 

[24]), and the specified temperature difference; (f)  the constants describing the me- 

chanical response of the plate (Eq. 3.13); and (g) the thermal strains (Eq. 3.14). 

33 
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Table 4-1 Input Parameters Required for the DELAM Computer Code 

Plate and sublaminate geometry and layup 

Number of plies in the plate, kp 

Number of plies in the sublaminate, kd 

Semi-axes of the ellipse, a,b 

Angle of the sublaminate axes with respect to the plate, 8 

Thickness of each ply, t ;  

Orientation of each ply, 4i 
Material properties for each ply 

Longitudinal Young’s modulus, E, 

Transverse Young’s modulus, E, 

Longitudinal to transverse Poisson’s ratio, v,, 

In-plane shear modulus, G,, 

Out-of-plane shear moduli, G,,, G,, 

Thermal (or hygro) c d c i e n t s  of expansion, a,, a9 (pz, Pr) 
Growth and contact parameters 

Critical strain energy release per unit area, G, 

Relative growth direction parameter, 9 
Contact law foundation modulus, K 

Load description 

Normal load in the 1 direction, 71 

Normal load in the 2 direction, 72 

Shear load in the 1-2 plane, 76 

Change from reference temperature (or from dry) state, AT (or Ac) 

Transverse pressure load, A P  
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54.2 Total Potential Energy 

The total potential energy of the sublaminate is calculated from Eq. 3.33, using 

the laminate st8nesses and thermal resultants which have already been determined. 

The substitutions and integration were performed by the symbolic mathematics 

program MACSYMA [38], with the exception of the contact model, which was in- 

tegrated numerically [39]. An expression for the total potential energy was thus 

established as a function of the known geometry, material properties, applied loads, 

and a set of unknown coefficients to be determined. The first and second mixed 

partial derivatives of the total potential energy with respect to the unknown c o d -  

cients were determined using MACSYMA. In addition, the partial derivatives of the 

total potential energy with respect to the major and minor axes of the sublaminate 

ellipse were evaluated using MACSYMA. The expressions for these derivatives were 

then inserted into the computer code DELAM for use in the load-strain behavior, 

buckling, and growth calculations. 

84.3 Nonlinear Load-Strain Behavior 

The stresses and strains in the sublaminate are determined by obtaining solu- 

tions to the equilibrium equations (Eq. 3.38) for specified values of the load N. The 

equilibrium equations are a set of 56 simultaneous algebraic equations nonlinear 

in the d c i e n t s  mi. These equations are solved for the unknown coefficents mi 

by the Newton-Raphson method [39]. Once a solution for a given N is found, the 

stability of the solution is checked by calculating the determinant of the matrix of 

second partial derivatives of the total potential strain energy using the values of the 

coefficients obtained in the solution (Eq. 3.39). A positive determinant indicates 

that the solution is stable. 

The displacements at any point in the sublaminate are calculated by substi- 
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tuting into Eq. 3.24 the solution coefficients and associated coordinate functions 

(Eqs. 3.25 and 3.27) together with the boundary conditions (Eq. 3.15). The mid- 

plane strains and curvatures are then determined from Eq. 3.23. The strains at any 

point in the sublaminate are calculated from Eq. 3.22. Finally, the stresses associ- 

ated with these strains are determined from the constitutive relationship (Eq. 3.5). 

The load versus strain behavior is determined by repeating the above procedure for 

different values of the applied load N. 

54.4 Buckling Load 

The linear buckling load NI is the load at which the determinant of the matrix 

of second partial derivatives of the total potential energy equals zero (Eq. 3.40). 

Using the given geometry and material properties, the elements of the matrix are 

numerically evaluated for an initial estimate of the buckling load, assuming that the 

unknown co&cients are equal to zero. The determinant of the matrix is found by 

decomposing the matrix into lower and upper triangular matrices. The product of 

the diagonal elements of the upper triangular matrix (LU decomposition [39]) is the 

value of the determinant. This constitutes a single evaluation of the determinant as 

a function of N. In general, the determinant is a nonlinear function of the load N, 

and explicit derivatives of the function with respect to N do not exist. The load at 

which the determinant is zero is found using the secant method [39]. 

Alternatively, the buckling load Nb is graphically determined by examining the 

complete load-strain behavior of the sublaminate. The load at which the sublam- 

inate behavior begins to markedly deviate from a linear response is defined to be 

the buckling load. 
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s4.5 Growth Load 

The growth load of the sublaminate is the load at which the strain energy 

release rate of the plate-sublaminate system exceeds the critical strain energy release 

rate of the material (Eq. 3.41). A value is assumed for the growth load N o ,  and the 

associated nonlinear equilibrium displacements are determined in the same manner 

as in Section 4.3 above. For the displacements thus obtained, the derivatives of the 

total potential energy with respect to the geometry are evaluated and the strain 

energy release rate G of the system is calculated (Eq. 3.43). This G is a nonlinear 

function of N. The value of N at which G equals G, is found using the secant 

method [39]. 

54.8 Code 

The computer program DELAM was specifically written to be used for design 

calculations as well as for research. It has a user friendly interface, and is computa- 

tionally efficient and fast. For example, the computation of the nonlinear load-strain 

behavior of a sublaminate over sixteen values of the applied load requires 7 minutes 

of CPU time on a Sun 3/160 workstation. The input parameters required by the 

code are given in Table 41. The outputs provided by the code are listed in Table 4- 

2 and illustrated in detail in Chapter 8. Sample input and output of the code are 

included in Appendix G. 
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Table 4-2 DELAM Output 

Linear buckling load, Ni  

Actual buckling load, Nb 

Growth load, N g  

Stress-strain behavior in the sublaminate, nf!(z, y), e$(,, y) 

Stress-strain behavior in the plate, n:;(s, y), c$(z, y) 



Chapter 5 

Analytical Verification 

85.1 Introduction 

Verification of the delamination behavior model consists of three tasks: (a) com- 

parison to known benchmark analytical solutions, (b) comparison to other approxi- 

mate solutions, and (c) comparison to experimental data. The first two verification 

tasks are presented here; the experimental procedure and results are presented in 

Chapters 6 and 7, respectively. 

The benchmark problems consider the behavior of circular and elliptical plates 

without delaminations under various loadings. The computer program DELAM 
must be able to predict the behavior of simple plates under edge compression and 

uniform pressure loads. For certain geometries and material properties, closed form 

analytical solutions exist. These have been chosen as the benchmark problems. 

Appmimate solutions to the behavior of plates containing elliptical delami- 

nations have been proposed by several investigators [16,18,19,20,21,22]. In general, 

these solutions pertain to problems more limited than the analysis presented here. 

Nevertheless, some of the approximate solutions may be compared to the present 

method for a select set of problems. 

39 



Chapter 5: Analytical Verification 40 

85.2 Buckling of Circular and Elliptical Plates Without Delaminations 

Consider the buckling of an isotropic, circular plate subjected to uniform edge 

compression. The buckling coefficients k, defined as 

a2 k = Nb- D 

were calculated by DELAM for both clamped and simply supported aluminum 

plates, where Nb is the critical buckling load and a is the plate radius. The plate 

bending stiffness D is 

E h3 D =  
12(1 - v2) 

where E is Young’s modulus, h is the plate thickness, and v is Poisson’s ratio. The 

classical buckling coefficients for clamped and simply supported plates are given by 

Timoshenko and Gere (331 as 14.68 and 4.20, respectively. The codcients are inde- 

pendent of the plate radius-tethickness (aspect) ratio f since the solution is based 

on classical plate theory. The DELAM and classical buckling coefficients are plot- 

ted versus the plate thickness ratio in Figure 5-1. The primary difference between 

classical plate theory and the present method is the inclusion of transverse shear 

deformation in DELAM. At large thickness ratios, the predictions are identical; at 

thickness ratios of less than 20, the effects of shear deformation become apparent 

as the DELAM buckling coefficient drops significantly below the classical value. 

Consider next the buckling of an isotropic elliptical plate under uniform edge 

compression. The buckling coefficients IC for clamped and simply supported plates 

were calculated by DELAM for an aluminum plate over a range of ellipticities ( f )  

from one to five. The present results are compared with an approximate solution 

developed by Voinovsky-Krieger [40] in Figure 5-2. As Voinovsky-Krieger did not 
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include shear deformation effects, a large thickness ratio (t = 100) was chosen for 

the present calculation to minimize the effects of shear deformation. At the lower 

ellipticities the results are virtually identical, while at higher ellipticities the present 

results are slightly lower. This is to be expected since the present solution uses more 

terms in the approximating functions than did Voinovsky-Krieger, thereby reduc- 

ing the stiffness of the approximation and lowering the buckling coefficients. The 

simple support prediction is included in the figure for completeness since Voinovsky- 

Krieger suggested that the buckling coefkients for simply supported plates could 

be estimated by dividing the clamped plate values by a factor of 3.5. 

95.3 Large Deflections of Circular Plates Without Delaminations 

The linear theory of plate bending is usually limited to transverse deflections 

on the order of fractions of the plate thickness. Nonlinear theories which include 

moderate rotations (such aa the present method) allow transverse deflections up to 

about two times the plate thickness. 

Consider an isotropic, clamped circular plate without delaminations subjected 

to a uniform transverse bad. The transverse deflections at the center of the plate 

were determined by DELAM as a function of the applied uniform load. In Figure 5- 

3, the present solution is compared to a perturbation method solution given by Chia 

[411 

wo 'I - 1 + -( 1 1 + ~ ) ( 1 7 3  - 73v)(-j;-) 
l6 wo [ 360 

-- - qoa4 
Eh4 3(1 - v' )  h (5.3) 

where qo is the transverse uniform pressure and to, the transverse deflection at the 

center of a thin plate. The present solution and Chia's solution agree very well 

out to transverse deflections of at least twice the plate thickness. As expected, the 

linear solution (which omits the higher order terms in the bracket) agrees with the 
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nonlinear solutions to transverse deflections of only about four-tenths of the plate 

thickness. 

$5.4 Change in Total Potential Energy of a Plate Without Delaminations 

Consider an isotropic, clamped circular aluminum plate of radius a subjected 

to a transverse load as in the previous section. The change in total potential energy 

II of the plate for an increment of the area (A = Tu2)  is 

where self-similar growth has been assumed. The change in total potential energy 

was calculated by DELAM as a function of the applied uniform load. For compar- 

ison, G was calculated using the perturbation method solution of Chia [41]. The 

total potential energy II was calculated using the stresses, strains, and displace- 

ments as given by Chia (Appendix H), and differentiated with respect to the area 

A to give G. The present solution is compared to that of Chia as a function of the 

applied load in Figure 5-4. At lower loads, the solutions agree well. At higher loads, 

the perturbation solution for G is somewhat higher than the present solution, due 

to the use of more terms for the displacement functions in the present method. 



Chapter 5: Analytical Verification 44 

a 
.C) 

0.5 lsOl 

0.01 ! 

i Present 
Cubic (Chia) 

---- Linear (Chia) 

- 
--- 

two 
I ~ . . . . 1 . . . . 1 .  I . . . . (  

10 20 30 40 0 

Uniform Load, %a 4 4  /Eh 

Figure 5-3 Center deflection d a circular aluminum plate subjected to a uniform 
applied load (a = 1.0 in., h = 0.01 in.). 

Present 
Chia 

- --- 
40 I 
30 

20 

10 

0 
0 10 20 30 

Uniform Load %a 4 4  /Eh 

Figure 5-4 Change in total potential energy of a clamped, circular ahiminum 
plate subjected to a uniform load (u = 1.0 in., h = 0.01 in.). 



Chapter 5: Analytical Verification 4s 

55.5 Buckling of Elliptical Sublaminates in Plates Containing 

Delaminations 

Several investigators have proposed approximate solutions to describe the be- 

havior of plates containing elliptical delaminations. To compare the present sublam- 

inate behavior model, which is quite general, to results presented in the literature, 

it is necessary to make several simplifications: 

1. The axes of the ellipse are aligned with the load axes. 

2. The sublaminate is a single layer which is either isotropic or orthotropic. 

3. The base plate is isotropic, and is much thicker than the sublaminate. 

The normalized critical buckling strain is defined as 

where ccr is the far field strain in the plate when the sublaminate buckles, and h is 

the sublaminate thickness. The normalized critical buckling strain wa,s calculated 

by DELAM as a function of the plate ellipticity (a /b )  for three cases: (a) an isotropic 

aluminum sublaminate and base plate, (b) a unidirectional sublaminate with the 

fibers aligned in the load direction (case A), and (c) a unidirectional sublaminate 

with the fibers aligned transversely to the load direction (case B). The base plate 

for these cases is a fictitious isotropic material. The material properties of the 

sublaminates and base plate are given in Table 5-1. 

The DELAM predictions are compared with those of Chai and Babcock [18] 

and Kassapoglou [19] for the isotropic, orthotropic A, and orthotropic B sublami- 

nates in Figures 5-5 through 5-7, respectively. For the isotropic and orthotropic A 

sublaminates, the present results agree well with those of Chai and Babcock and 

Kassapoglou. For the orthotropic B sublaminate, the present results agree with 

Chai and Babcock and Kassapoglou at ellipticities greater than three. At lower 
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ellipticities, all of the analyses show different results. The orthotropic sublaminate 

B is very stiff compared to the base plate in the direction transverse to the applied 

load. Thus, under compressive loading the transverse Poisson expansion of the base 

plate drives the sublaminate into tension in the fiber direction. Conversely, an ap- 

plied tensile load will cause a Poisson contraction of the base plate and compression 

in the fiber direction of the sublaminate. Both the present solution and Chai and 

Babcock actually predict buckling under an applied tensile load (not shown) for 

case B at lower ellipticities. In any event, case B is an extreme situation for which 

none of the methods presently agree. 

Table 5-1 Material Properties used in the Comparisons 

Material Isotropic Orthotropic Orthotropic Isotropic Base Plate 

Property Aluminum Case A Case B for Cases A and B 

E z  10.0 1.47 25.9 1.47 

4 10.0 25.9 1.47 1.47 

v z U  0.30 0.28 0.016 0.30 

Gz, 3.84 1.03 1.03 0.567 

Gz L 3.84 1.03 0.286 0.567 

G,, 3.84 0.286 1.03 0.567 
~ ~~~~~~ ~~ ~~ ~~ 

The elastic moduli are in Msi. Poisson's ratio is dimensionless. 
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gS.8 Summary 

The results indicate that the present analysis method can predict the buckling, 

postbuckling large deflection, and growth behavior of circular and elliptical plates 

and sublaminates subjected to various loads. Final verification of the method for 

the general cases of (a) elliptical delaminations with axes arbitrarily oriented with 

respect to the applied in-plane loads, and (b) delaminations located between any 

two plies of the composite plate, will be made in Chapter 7 by comparison to 

a 
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o t . ,  * I .  . . .  I . . .  , I ,  . . .  I . .  I .  I - ,  
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0 

Figure 5-5 Normalized critical buckling strain. Aluminum sublaminate on an 
aluminum base plate (Table 51) (b  = 0.5 in., h = 0.03 in.). 
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Chapter 6 

Experimental Procedure 

56.1 Specimen Design and Fabrication 

A testing program provides experimental data against which the analytical 

development can easily be verified. The requirements for this experimental program 

were: (a) that the test specimens contain well-characterized delaminations; (b) that 

the specimens be exposed to uniform loads, implying a uniform far field strain; and 

(c) that the sublaminate deformation aad growth be closely monitored. 

A sandwich constniction test specimen (Figure 6-1) was developed of two 

Fiberite T300/976 graphite/epoxy face sheets secondarily bonded to an 0.625” thick 

aluminum honeycomb core. The honeycomb sandwich construction provided a test 

specimen that could be easily loaded in compression without introducing signif- 

icant bending moments. One of the face sheets contained a 0.001’’ thick Teflon 

disk between two plies simulating the presence of a delamination. The facesheets 

were fabricated from unidirectional T300/976 prepreg tape and cured in an auto- 

clave at a maximum temperature of 350°F at 80 psi. The secondary bonding of 

the facesheet laminates to the honeycomb was accomplished using a Hysol 250°F 

curing film adhesive under 30 psi in the autoclave. 

49 
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The experimental parameters were delamination shape (circular or elliptical), 

orientation of the ellipse axes, delamination depth in the facesheet, and sublaminate 

layup. The specimens were nominally 3” wide by 6” long, and were fabricated 

in six groups, designated Series 1 through 6. After trimming, the ends of the 

specimens were filled with epoxy potting compound and milled flat and parallel to 

one another in preparation for testing. Series 1 through 3 were devoted to specimen 

development. Series 4 through 6 comprise the test matrix, the details of which are 

shown in Table 6-1. 

56.2 Nondestructive Inspection 

Complete characterization of the delamination required an exact determination 

of the Teflon insert location in the facesheet. Despite careful positioning of the in- 

serts during fabrication of the laminates, trimming and milling operations changed 

the reference points. Every specimen was therefore ultrasonically C-scanned (Ap- 

pendix I) and the position of the Teflon insert mapped relative to the final dimen- 

sions. The location data were essential for the later mounting of the strain gauges. 

The C-scan dimensions of the delaminations were often 0.1” larger that the nominal 

size of the Teflon inserts, probably due to two phenomena: (a) incomplete bonding 

of adjacent plies at the edge of the Teflon, and (b) the lateral resolution of the 

c-scan. 

The C-scan was capable of mapping out not only the planar extent of the 

delamination, but also the depth of the delamination. This was useful as a check on 

the specimen fabrication, and particularly in the posttest inspection to determine 

whether delamination growth had occurred within the original ply interface or had 

progressed to other ply interfaces. 
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Table 6-1 Test Matrix 

Specimen Layup Teflon Orientation Depth* (plies) 

4- 1 

4-2 

4-3 

4-4 

5- 1 

5-2 

5-3 

5-4 

6- 1 

6-2 

6-3 

6-4 

2” circle 

2” circle 

2” circle 

2” circle 

2” circle 

2” circle 

2” circle 

2” circle 

2” x 1.5” ellipse 

2” x 1.5” ellipse 

2” x 1.5” ellipse 

2” x 1.5” ellipse 

0” 

0” 

0” 

0” 

0” 

0” 

0” 

0” 

0” 

30” 

60” 

90” 

2 

4 

6 

8 

3 

4 

5 

8 

4 

4 

4 

4 
~~ ~~ ~~ 

* Number of plies from the facesheet surface. 

58.3 Instrumentation 

Each specimen was instrumented with nine strain gauges arranged as shown 

in Figure 6-2. The individual type, orientation, and purpose of each gauge are 

shown in Table 6-2. In general, a single gauge was located at the center of the 

sublaminate to record the buckling and postbuckling strains during a test. One 

additional gauge was mounted on the front and three on the back facesheets to 

measure the far field strains in the specimen. The outputs of these gauges were 

used to adjust the relative load distribution between the faces during setup, to 

determine the actual load distribution during a test, and as a check against the 
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Sublaminate Side Back Side 

Figure 6-2 Specimen strain gauge locations and orientations. 

material properties given by the prepreg manufacturers . Four gauges were mounted 

on the periphery of the sublaminate, based on the C-scan data, to determine the 

onset of delamination growth. Up to the onset of growth, these gauges were also 

used to check the uniformity of the far field strains over the specimen. 
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$6.4 Testing to Failure 

Each specimen was loaded in compression between plattens in an MTS testing 

machine. One platten was a ball and socket self-aligning fixture to ensure that the 

loads were evenly distributed over the specimen. During each test, the plate was 

loaded at a constant displacement rate of .003 in/min. The outputs of all nine strain 

gauges (after amplification) and the MTS load cell were digitized and recorded in 

a spreadsheet computer file for later data reduction and plotting. Buckling of the 

sublaminate was observed, both visually and from the output of the strain gauge 

located at the center of the sublaminate. Growth of the delamination was detected 

by the four gauges surrounding the delamination. At extreme loads growth was also 

visually observed. 

Table 6-2 Strain Gauge Locations and Purposes 

Gauge Number Gauge Type Orient ation* Purpose 

CEA-06-062UW-350 

CEA-06-125UN-350 

CEA-06-125UN-350 

CEA-06- 125UN-350 

CEA-06-125UN-350 

CEA-06- 125UN-350 

CEA-06-125UN-350 

CEA-06- 125UN- 350 

CEA-06- 125UN- 350 

longitudinal 

longi t udinal 

longit udinal 

longitudinal 

longitudinal 

transverse 

longitudinal 

transverse 

transverse 

sublaminate strain 

far field - front 

far field - back 

far  field - back 

delamination growth 

delamination growth 

delamination growth 

delamination growth 

far field - back 

* With respect to the load direction. 
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Comparison of Experimental and Model Results 

$7.1 Introduction 

This chapter demonstrates the validity of the delamination behavior model 

through a comparison with experimental data. Two kinds of data are required for 

this validation: (a) load-strain histories of delaminated sublaminates from the onset 

of loading through buckling and into the postbuckling regime, and (b) the load at 

which growth of the sublaminate begins. 

The experimental data in the literature can be divided into two types. In the 

first, experimental investigations have demonstrated the reduction in strength in 

composite plates resulting from impact damage. Data from a number of researchers 

have been reviewed by Baker et al. [42]. These data are important in that they 

were the first to show that a significant problem existed. However, the behavior 

of the sublaminate was not characterized in any way. In the second, researchers 

implanted a release agent, such as a teflon film, in the laminate during fabrication 

to simulate the presence of a delamination. Thus, a flaw of known shape, size, 

orientation, and depth in the laminate was introduced. Gillespie and Pipes [4], Wang 

et al. [6], Williams et al. [8], Wang and Slomiana [43], and Ramkumar [44] have 

simulated delaminations using through-width implants in wide columns. Whitcomb 
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[22], Wang and Slomiana [43], Rarnkumar [MI, Konishi and Johnston [45], Byers 

[46], Webster [47], and Geier et al. [48] have simulated delaminations using circular 

implants, while Jones et al. [l?] and Reddy et al. [49] used rectangular implants and 

Kassapoglou [19] used elliptical implants. All have reported some features of the 

sublaminate behavior, such as buckling loads or growth loads. None, however, has 

reported a complete load-strain history. Therefore, an experimental investigation 

using implants was undertaken to generate a data base for validation of the model. 

56 

57.2 Experimental Measurements and Material Properties 

Load-strain histories during compression testing were recorded from each of the 

nine strain gauges mounted on each specimen. The strain data from gauge number 

1, located at the center of the delamination, was used to establish the buckling 

and postbuckling behavior of the sublaminate. A typical response is illustrated in 

Figure 7-1. The onset of delamination growth and the corresponding growth load 

were determined from gauges 5, 6, 7, and 8, which were located on the periphery 

of the delamination. Typical responses are shown in Figure 7-2. As gauges 5 and 7 

began to deviate significantly from a linear response, the delamination had grown to 

include the gauges aa part of the larger sublaminate. The growth load was estimated 

from the first gauge to show a change in linear behavior. 
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The material properties of the cured laminate are shown in Table 7-1. These 

material properties were used in all analytical predictions. The compressive load 

was applied along the longitudinal z1‘ axis of the specimens and the sublaminate 

orientations were measured counterclockwise with respect to this axis. The fol- 

lowing input data were common to all analyses (unless specified otherwise): (a) 

temperature difference, AT = -180°F; (b) transverse pressure difference, AP = 0 

psi; and ( c )  relative growth direction, % = 0. The strains shown in the comparisons 

were calculated at the outer surface of the sublaminate plus 0.004 in. to allow for 

the strain gauge thickness (21’ = O., 2 2 ’  = O., 23’ = 2 + 0.004). 

~ 

Table 7-1 Material Properties of Fiberite T300/976 

Material Property Value Units , 
I 

Longitudinal Young’s modulus, Ez 
Transverse Young’s modulus, E, 

Poisson’s ratio, vzv 

In-plane shear modulus, G,, 

Out-of-plane shear modulus, G,, 

Out-of-plane shear modulus, G,, 
Longitudinal thermal coeff. of expansion, a, 

‘Ikansverse thermal c d .  of expansion, a, 

Critical strain energy release rate, G, [50] 

Foundation modulus, K 

19.536 

1.3236 

0.30 

1.01E6 

1.01E6 

0.50E6 

0.50E-6 

18.OE-6 

0.2 

1.E6 

psi 

psi 

psi 

psi 

psi 

in-OF 
in 

&p * 
q 
an 
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57.3 Circular Delaminations in Unidirectional Laminated Plates 

Test Series 4 investigated the effect of delamination depth on the sublaminate 

behavior in unidirectional laminated plates containing circular delaminations. Tests 

4-1 through 4-4 used delamination depths of 2, 4, 6, and 8 plies, respectively. A 

small hole (0.021” diameter) was drilled through the sublaminate to allow air ingress 

to the Teflon implant to eliminate the effect of a transverse pressure differential. 

During the tests, specimens 4-1 through 4-3 were observed to buckle at increasing 

loads, while specimen 4-4 was loaded to the limit of the testing machine without 

buckling. Figure 7-3 shows the measured strains at the sublaminate center (gauge 

1) from each experiment. The predicted behavior of each experiment is shown 89 

a solid line for comparison. The measured ply thickness (t = 0.00556”) was used 

as specific input for the analyses. Experimental and model results agree quite well. 

The data from the strain gauges surrounding the sublaminate (gauges 5, 6, 7, 8), 

indicating the onset of sublaminate growth, are shown in Figure 7-4. Only specimen 

4-2 showed an onset of sublaminate growth, which occurred at the end of the test. 

97.4 Circular Delaminations in Cross Ply Laminated Plates 

Test Series 5 investigated the effect of delamination depth on sublaminate be- 

havior in c r m  ply ([(02/90~/02/902),H(sym)]) laminated plates containing circular 

delaminations. Tests 5-1 through 5-4 used delamination depths of 3, 4, 5, and 8 

plies, respectively. Specimens 5-1 ([02/90] sublaminate) and 5-3 ([02/902/0] sub- 

laminate) were specifically intended to investigate the residual thermal strain effect, 

since the sublaminate layups were significantly dif€erent from the facesheet layup. 

A small hole (0.021” diameter) was again drilled through the sublaminate to allow 

air ingress to the Teflon implant. During the test, specimens 5-1 through 5-3 were 

observed to buckle at increasingly higher loads, while specimen 5-4 waa loaded to 
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the limit of the testing machine without buckling. Figure 7-5 shows the measured 

strains at the sublaminate center (gauge 1) from each experiment. The predicted 

behavior of each experiment is shown as a solid line for comparison. The lami- 

nate cured ply thickness (t = 0.00609”) was measured and used as specific input 

for the analyses. The buckled region of each specimen in this series appeared not 

to extend over the full Teflon implant area but rather to have a shorter buckling 

dimension in the loading direction. The analyses confirmed that these specimens 

would preferentially buckle in multiple half waves in the loading direction and a 

single half wave in the tranverse direction. The analyses of specimens 5-1 and 5-3 

also indicated a small but noticable effect of the thermally induced load, in this 

case reducing the buckling load. The data from the strain gauges surrounding the 

sublaminate (gauges 5, 6, 7, 8), indicating the onset of sublaminate growth, are 

shown in Figure 7-6. Specimens 5-1 through 5-3 experienced sublaminate growth 

transverse to the applied load aa indicated by peripheral gauges 5 and 7. 
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57.5 Elliptical Delaminations in Cross Ply Laminated Plates 

Test Series 6 investigated the effect of delamination orientation on sublaminate 

behavior for cross ply ( [(02/902/02/902),H(sym)l) laminated plates containing el- 

liptcial delaminations. Tests 6-1 through 6-4 used 2.0” by 1.5” elliptical Teflon 

implants oriented at 0”, 30”, 60°, and 90” to the applied load, respectively. Each 

implant was 4 plies deep in the facesheet. No hole was drilled through the sub- 

laminate so that any effect of transverse pressure might be observed. Buckling 

was observed in each specimen, followed by sublaminate growth. As in Series 5 ,  

the buckled region of each specimen appeared not to extend over the full Teflon 

implant area but rather to have a shorter buckling dimension in the loading direc- 

tion, which was confirmed by analysis. Figure 7-7 shows the measured strains at 
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the sublaminate center (gauge 1) from each experiment. The predicted behavior of 

each experiment is shown as a solid line for comparison. The laminate cured ply 

thickness (t = 0.00609”) was measured and used as specific input for the analy- 

ses. Experiment and model results generally agree quite well. The data from the 

strain gauges surrounding the sublaminate (gauges 5,  6, 7, 8), indicating the onset 

of sublaminate growth, are shown in Figure 7-8. The observed growth direction 

was transverse to the applied load as indicated by peripheral gauges 5 and 7. The 

predicted growth load for specimens 61 and 6-2 was based on a relative growth 

parameter of % = 0, while for specimens 6-3 and 6-4, it was based on 3 = 100. 

57.6 Buckling and Growth Loads 

The measured buckling loads are compared to the buckling loads predicted 

by the nonlinear equilibrium method in Figure 7-9. The measured and predicted 

growth loads are shown in Figure 7-10. The figures include the experimental and 

prediction uncertainties (Appendix J). The error bars shown are plus and minus 

three standard deviations. The dashed line in each figure represents perfect agree- 

ment between experiment and calculation. 

The buckling results show generally good agreement between prediction and 

experiment. The growth results show reasonable agreement. The prediction errors 

for the growth results are large due to large uncertainty in the critical strain energy 

release rate. Considering the uncertainties in the experimental data and the uncer- 

tainties in the analyses, it would appear that the analysis method describes with 

reasonable accuracy the experiment al data. 
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Chapter 8 

Sample Problem and Discussion 

$8.1 Introduction 

The analytical and experimental verifications performed in Chapters 5 through 

7 demonstrated the model performance over a range of input variables and load- 

ing conditions. The uncertainty analysis (Appendix J) determined not only the 

overall uncertainty in the experimental data and code predictions, but the relative 

sensitivity of the model to specific input variables. In general, the input variables 

can be grouped into three types in terms of their influence on the buckling load, 

postbuckling strain, and growth load (Table 8-1): (a) variables which are physically 

well-characterized and for which the results are highly sensitive, (b) variables which 

are physically well-characterized but for which the results show little sensitivity, 

and (c) variables which, for a variety of reasons, are poorly characterized and thus 

may exert a large influence on the results. This chapter discusses the effects of this 

last group of variables in the context of a sample problem. 

58.2 Sample Problem Description 

The sample problem chosen corresponds to Experiment 6-1. The plate is a 
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16 ply symmetric cross ply laminate ( (02/902/02/90,],) fabricated from Fiberite 

T300/976 graphite/epoxy (see Table 7-1 for material properties). A 2.0 in. by 1.5 

in. elliptical delamination lies 4 plies deep in the plate. The ellipse major axis is 

aligned with the load axis. The plate is subjected to uniform compression along the 

major axis of the ellipse as shown in Figure 8-1. A complete list of the nominal input 

variables is shown in Table 8-2. Note that z1,22, and x3 are the coordinates in the 

sublaminate, and in this instance are coincident with the zit, 22t, 23, coordinate 

system of the plate (see Figure 3-1). The strains shown in the examples were 

calculated at the outer surface of the sublaminate plus 0.004 in. to allow for the 

strain gauge thickness (21 = O., 22 = O., 23 = $ + 0.004). 

Table 8-1 Code Input Variable Sensitivities 

Sensitive Insensitive 

Well- Ellipse major semi-axis, Q Long. Young's modulus, E, 

Characterized Ellipse minor semi-axis, b Tran. Young's modulus, E, 

Ellipse orientation, 8 

Ply thickness, t i  

Shear modulus, G,, 

Long. thermal expansion, cyz 

Tran. thermal expansion, a, 

Temperature change, AT 
Poorly 

Characterized Growth direction parameter, $ 
Critical strain energy release, G, 

Foundation modulus, K 

'hasverse pressure load, A P  
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In each example that follows, one variable has been allowed to change over a 

realistic range of possible values to illustrate the effect of that variable while holding 

all other input variables constant. The effects of each variable on the calculated 

response are shown individually in the following sections. Recommendations for 

designers are summarized in the last section. 

- a = 1.00 inch 
b = 0.75 inch 

I 
I 
I 
I 
Id - 4Plies 

* 16Plies 

Figure 8-1 Sample problem description. Input variables are given in Table 8-2. 
Material properties are given in Table 7-1. 

58.3 Geometry Effects 

It is well known from classical buckling theory that the buckling load of the 

sublaminate varies in proportion to the cube of the thickness and inversely with 

the square of the lateral dimensions of the sublaminate. For a designer studying 

the effects of manufacturing-induced disbonds or impact-caused delaminations, the 

thickness and shape of the sublaminate may be the source of major uncertainty. 
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The effect of changing the nominal ply thickness in the sample problem on the 

calculated load-strain history of the sublaminate is illustrated in Figure 8-2. The 

three cases represent successive changes of 0.0002 inch to the ply thickness. The 

buckling and growth loads are shown versus the ply thickness in Figure 8-3. The 

buckling load and growt,h load increase by roughly 100 lbf/in with the total 0.0005 

in. thickness variation. 

Table 8-2 Sample Problem Input Variables 

Variable Value Units 
~ 

Material 

Layup 

Delamination depth 

Ellipse major semi-axis, Q 

Ellipse minor semi-axis, b 

Ellipse orientation, 8 

Ply thickness, t i  

Critical strain energy release rate, G, 
Fhlative growth direction parameter, 9 
Contact law foundation modulus, K 

Normal load in the 1 direction, 71 

Normal load in the 2 direction, 72 

Shear load in the 1-2 plane, 76 

Change from reference temperature state, AT 
Transverse pressure load, AP 

~ ~ ~~ ~ 

T300/976 

(02902 02 %)aH( sYm) 

4 

1.00 

0.75 

0. 

0.00556 

0.20 

0 

1.E6 

1. 

0. 

0. 

-180. 

3. 

plies 

in 

in 

degrees 

in 

q an 

OF 

psi 
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strain.q(lo-6 in/in) 

Figure 8-2 Wect of changing ply thickness on the compressive load-strain re- 
sponse of the sample problem described in Figwe 8-1. Reaults calcu- 
lated by the DELAM code. 

3Ooo 

2000 

1000 

0 

growth 

buckling 

I . . . .  I . . .  . # . . . . I . . .  

0.0054 0.0055 0.0056 020057 
Ply Thickness, t (in) 

Figure 8-3 Mect of changing ply thickness on the bucklin and growth loads of 
the sample problem described in Figure 8-1. k e d t s  calculated by 
the DELAM code. 
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The effect of a change in the lateral dimension of the sublaminate on the load- 

strain behavior is more dramatic than the effect of a thickness change. The effect 

of 0.05 inch successive changes in the transverse “b” dimension of the delamination 

ellipse on the load-strain behavior of the sample problem sublaminate is shown in 

Figure 8-4. The larger diameter sublaminates are much more compliant than the 

smaller sublaminates. The trends of the buckling and growth loads versus the ellipse 

semi-axis dimension are shown in Figure 8-5. As expected, the loads decrease with 

an increase in the semi-axis. These effects are particularly important because in 

practice, the lateral dimensions of a delamination may only be known to about the 

accuracy shown in this figure. 

58.4 Contact Model Effects 

The contact model represents the physical restraint to deflection of the sub- 

laminate posed by the plate containing the delamination. The key to the model 

is the value of the foundation modulus K (Equation 3.31). No value for K has 

been measured for graphite/epoxy. A rationale for estimating K from the tranverse 

elastic modulus of the foundation E f  and a characteristic length If is discussed in 

Appendix D. For the materials used here, E t  x 1.0 Msi and If = 1.0 inch yielding 

a foundation modulus IC k: 1.210 (see Equation 3.32). Figure 8-6 illustrates 

the &ect on the load strain history of the sublaminate of successive changes in the 

foundation modulus K. The value of K = 0 indicates that the contact model was 

not used. An incease in the foundation modulus corresonds to an increase in the 

stiffness of the response. Varying the value of the foundation modulus has almost no 

effect on the buckling and growth loads of the sublaminate, as shown in Figure 8-7. 

-6 lb  
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Figure 8-4 Effect of changing the semi-minor axis "b" of the ellipee on the corn- 
preaaive load-strsm respome of the sample problem described in Fig- 
ure 8-1. Results calculated by the DELAM code. 
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n 
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f! 
W 

z 

3000 - 

2000 - 
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0 lo00 2Ooo u)oo 

~min,ef  (10-6 in/in) 

Figure 8-6 Meet of changing the contact law foundation modulus K on the com- 
pressive load-strain response of the sample problem described in Fig- 
ure 8-1. Results calculated by the DELAM code. 

4- 

0 

buckling 

Foundation Modulus, K (lbUm3) 
Figure 8-7 Effect of changin the contact law foundation modulus K on the buck- 

ling and growth P d s  of the sample problem described in Figure 8-1. 
Results calculated by the DELAM code. 
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$8.5 Transverse Pressure Effects 

The transverse pressure model describes the effects of subatmospheric pres- 

sure in the cavity formed by the sublaminate as it buckles away from the plate. 

Since there is no method to measure the actual AP across the sublaminate, the 

uncertainty associated with AP may be large. Figure 8-8 illustrates the effect of 

the pressure differential on the load-strain response of the sublaminate. Figure 8-9 

shows the increasing buckling and growth loads with increasing pressure differential. 

58.6 Growth Model Effects 

The growth model requires a parameter, 9, describing the shape of sublami- 

nate growth, and a material property, G,, which is the critical strain energy release 

rate of the material. Neither is well-characterized [50]. The effect of changing values 

of 9 on the calculated growth load of the sample problem is illustrated in Figure 8- 

10. The lowest value is clearly $ = 0, and the growth load increases sharply with 

increasing values of g. Figure 8-11 depicts the dependence of the growth load on 

the critical strain energy release rate. As shown, the growth load increases strongly 

with increasing G,. 
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E - = W - 3000 327 

t t . .  . .  1 . . . . 1 . . . . 1 . . . . 1 1  

0.0 0.5 1 .o 1.5 2.0 
orowth Parameter, Wdb 

Figure 8-10 Effect of changing the growth model parameter 9 on the compressive 
load-strain response of the sample problem described in Figure 8-1. 
Results calculated by the DELAM code. 
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Figure 8-11 Effect of chan 'ng the critical stra in  energy relesee rate G, on the 
growth loads o 7 the sample problem described in Figure 8-1. Results 
calculated by the DELAM code. 
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98.7 Summary and Recommendations 

80 

The sample problem shown has demonstrated the sensitivity of the model to 

certain input variables, in particular the sublaminate geometry, the foundation mod- 

ulus, the transverse pressure differential, and the growth parameter and critical 

strain energy release rate. In summary, none of the variables &ect the prebuckling 

behavior of the sublaminate whereas all of them affect the postbuckling load-strain 

behavior. Of the variables affecting the buckling load and growth load, the s u b  

laminate thickness t and the foundation modulus K were shown to have a minor 

effect. In contrast, the sublaminate lateral dimension “b,” the pressure difference 

AP, and the growth parameter and the critical strain energy release rate G, 

were all shown to sigmficantly affect the buckling and growth loads. Therefore, 

the following choices are recommended to designers for conservative analysis: (a) 

the lateral dimensions should be chosen large, (b) the pressure difference should be 

zero (which is likely since the pressure can equalize through cracks), (c) the growth 

parameter $ should be systematically evaluated to find the lowest growth load, 

and (d) the critical strain energy release rate should be as low as practical. 



Chapter 9 

Concluding Remarks 

A model was developed to describe the behavior of delaminated composite 

plates subjected to compressive in-plane loads. The delaminated region is assumed 

to be elliptical, and may be located between any two plies of the laminate. The axes 

of the ellipse may be arbitrarily oriented with respect to the applied loads. The 

model calculates the displacements, strains, and stresses in the plate containing 

the delamination, and in the sublaminate created by the delamination. The model 

solves the nonlinear equilibrium equations describing the sublaminate up through 

large postbuckling deflections of the sublaminate. Xn particular, the model pre- 

dicts the loads applied to the plate at which first buckling and then growth of the 

sublaminate will occur. 

A computationally efficient computer implementation of the model was devel- 

oped. The code has a user friendly interface, and is intended to be used for design 

calculations. 

A new set of experimental data on the behavior of Fiberite T300/976 graphite/ 

epoxy laminated plates containing simulated delaminations and loaded in compres- 

sion was used to validate the model performance. The sublaminate load-strain 

histories were described at a level of detail not previously available in the literature, 

and will prove useful in future delamination studies. 

81 
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The model currently describes a single delamination, and the behavior of the 

sublaminate is assumed not to affect the behavior of the plate in which it is con- 

tained. The effects of multiple delaminations, and the interaction of the sublaminate 

and plate, are suitable topics for future investigations. 
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Appendix A 

Engineering Constants for Isotropic and Orthotropic Materials 

This appendix identifies the ply plane stress reduced stiffnesses Qij used in 

Chapter 3 in terms of ordinary engineering elastic constants for isotropic and or- 

thotropic materials. In addition, the transformation matrix relating on-axis and 

off-axis stiffnesses is given. 

SA.1 Engineering Constants 

The on-axis lamina constitutive relations for an orthotropic material in plane 

stress are 
Qzz Qzr 0 0 0  

0 0 0  (i) = ('f 4' 0 Q,, 0 Qrr 0 0 )  0 (I) ( A 4  

0 0 0 0 Qaa 

where x and y are the in-plane principal material axes of the lamina, p refers to the 

transverse y-z plane, r to the transverse x-z plane, and s to the in-plane x-y plane. 

In terms of engineering constants, the stiffnesses for an orthotropic material are 

where 
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Et = Longitudinal Young’s modulus 

E, = Transverse Young’s modulus 

vtV = Major Poisson’s ratio 

vyz = Minor Poisson’s ratio 

Gp = Transverse shear modulus in the y-z plane 

Gr = Transverse shear modulus in the x-z plane 

G, = Transverse shear modulus in the x-y plane 

For an isotropic material the relationships are simpler. In terms of engineering 

constants the stiffnesses for an isotropic material are 

where 

E = Young’s modulus 

u = Poisson’s ratio 

G = Shear modulus = ,&j 

5A.2 Transformation Matrix 

The off-axis lrimina constitutive relations for an orthotropic material in plane 

stress are 

where 1 and 2 are the in-plane body axes of the lamina, 4 refers to the transverse 

2-3 plane, 5 to the transverse 1-3 plane, and 6 to the in-plane 1-2 plane. The 

transformation matrix relating the off-axis stiffnesses to the on-axis stXnesses is 
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Q44 

m4 
n4 

m2 n2 
m2n2 
m3n 
mn3 
0 
0 
0 

n4 
m4 

m2 n2 
m2 n2 
--771n3 
-m n 
0 
0 
0 

3 

2m2n2 
2m2n2 

m4 -+ n4 
-2m2n2 

mn3 - m3n 
m3n - mn3 

0 
0 
0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

m2 n 
-mn mn 
n2 m 

4m2n2 
4m2n2 

-4m2n2 
(m2 - n2)2 

2(mn3 - m3n) 
2(m3n - mn3) 

0 
0 
0 

where m = cost), n = sine, and 8 is the angle between the on-axis and off-axis coor- 

dinate systems, defined as positive in the counter-clockwise direction. Equation A.5 

is given for the negative transformation, meaning that the ply on-axis stiffnesses are 

rotated to the body off-axis coordinates. 



Appendix B 

Integration of the Plate Strain Expressions 

This appendix details the integration of the plate strain expressions (Equation 

3.12) given in Chapter 3. The strain field in the plate is constant and uniform over 

the plate. The strains were derived in terms of constants ci describing the plate 

(Equation 3.13), the load N, and the residual thermal strains O<lT (Equation 3.14): 

In terms of the displacements ui the strains are 

Combing Equations B.l and B.2 and integrating the first two expressions yields 

where f and g are arbitrary functions of x2 and 21, respectively. The in-plane shear 

strain '4' can then be expressed as 
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Since the strains in Equation B.l are constant, f ( x 2 )  and g ( x 1 )  can be at most 

linear functions of 2 2  and X I ,  respectively. Assuming that no rigid body rotation of 

the plate occurs, then 1541 

or, combining Equations B.4 and B.5 

d z  Finally, -- and 
Z l  

yield the in-plane displacements in the plate 

are easily integrated and substituted into Equation B.3 to 

1 
"u:' = ( C l N  + " € f T ) X l  + s(""N + " 4 I T ) X 2  



Appendix C 

Basic Assumptions of Nonlinear Plate Theory 

This appendix states the basic assumptions of the nonlinear plate theory used 

in the main text. In particular, the plausibility of some of the assumptions is 

demonstrated via an order of magnitude calculation. The motivation for this chapter 

was derived from the realization that the Kirchhoff-Love assumption (that normals 

to the midsurface remain normal) was an integral assumption in von Karman’s 

nonlinear large deflection plate theory. The appropriate and consistent nonlinear 

strain measures for the shear deformable plate theory are developed subsequently 

[41, 511. 

5C.l Basic Assumptions 

Given: A plate geometry. A body B is defined by two parallel surfaces and an 

edge d a c e  joining them such that characteristic in-plane (SI and 5 2  coordinates) 

lengths (L) are much greater than the through-the-thickness (z3) length (h). 

Assumption 1: Tangential displacements u1 and 2 ~ 2  are infinitesimal but the trans- 
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verse displacement u3 is on the order of the plate thickness. 

u1,uz N small 

u3 O(h)  

Assumption 2: Derivatives of displacements are moderate to small. 

du i h h .  
- h )  O(z) or O(I;)~ z,j = 1,2,3 dx j 

Assumption 3: Linear strain parameters e i j  are small, and linear rotation Parame- 

ters w i j  are moderate. 

Assumption 4: In-plane rotations are small. 

5C.2 Order of Magnitude Estimates 

(C.4.a) 

(C.5. b )  

Figure C-1 Order of Magnitude Estimates for Displacements and Derivatives 
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To see why the above assumptions are reasonable, consider a plate with length 

dimensions of L and thickness h,  with a transverse displacement on the order of h 

at one end (Figure C-I.). In the deformed configuration the plate will have been 

stretched, rotated, and thinned by this displacement with respect to the original 

configuration. With respect to a Cartesian coordinate system fixed in the original 

reference configuration (Lagrangian description), the change in tangential in-plane 

displacement with respect to the in-plane coordinate is of the order 

1 h  
2 L  - O(l+ -(-)2 +. . . - 1) 

Similarly, the change in transverse displacement with respect to the in-plane coor- 

dinate is of the order 

The change in the transverse displacement with respect to the transverse coordinate 

due to rotation (the shear effect is smaller) is of the order 

1 d U 3  2 - O(1- -(-) +. . . - 1) 
2 ax, 

h - 
Similar estimates for the remaining derivatives can be made so that, in summary, 
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the derivative order of magnitudes are 

(C.10) 

as stated in (C.3). 

Using the estimates for the magnitudes of derivatives (C.lO), the plausibility 

of Assumption 3 for linear strain and and rotation parameters can be checked. For 

example, 

The linear shear strain parameters and the rotation parameters must be examined 

carefully. In particular, the algebraic values of the derivatives e are opposite in 

sign to the algebraic values of 3 for a rigid body rotation. Thus, the linear shear 

strain parameters are really difference equations and the rotations simply additive. 

Therefore, Assumption 3 actually states that the difFerence in derivatives is small. 

That is, 

1 au, au2 h h h 
e12 = -(- + -) - o ( ~ ) ~  - o ( ~ ) ~  - o ( ~ ) ~  2 ax2 ax, 

1 au, au3 h h h 
e13 = -(- + -) - O(z) - O(z) - o ( ~ ) ~  2 ax3 ax1 

(C.12) 
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5C.3 Rationale and Consequences 

In the above, we implicitly used a Lagrangian description of the system. That 

is, within a fixed Cartesian coordinated system, the deformation of the plate was 

described in terms of the reference undeformed configuration of the plate. The 

appropriate stress measure in the Lagrangian description [52] is the 2nd Piola- 

Kirchhoff stress tensor which, in terms of the Cauchy stresses u s ,  is 

(C.13) 

where po and pc are the mass densities in the reference and current configurations, 

respectively, and x ;  and x: particle locations in the reference and current codgu- 

rations. The appropriate strain measure [52) for the Lagrangian description is the 

Green-Lagrange strain tensor 

(C.14) 

The 2nd Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor 

are energy conjugate to one another [53]. That is, the strain energy of the system 

calculated by these two measures in the reference coordinates is equal to the strain 

energy calculated in the current coordinates using Cauchy stresses and infinitesimal 

strains. Thus, we have defined a plate theory involving large transverse ddec- 

tions, moderate rotations, and small strains. For nonlinear analysis, the following 

observations can be made. 

C.3.1 Stresses 

The Cauchy stresses, expressed terms of the 2nd Piola-Kirchhoff stresses and 

the derivatives of displacement already discussed, are 
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where 6i j  is the Kronecker delta and ui and xi are with respect to the reference 

configuration. Given the magnitudes of the displacement derivatives (C.lO), the 

consequence of these assumptions is that, to first order, the Cauchy stresses and 

2nd Piola-Kirchhoff stresses are equal. Therefore, the stress and moment resultants 

defined elsewhere in this thesis will also be approximately equal. There is no further 

need to distinguish reference and current configurations when discussing stress. 

C.3.2 Strains 

The components of the Green-Lagrange strain tensor (C.14) and the order of 

magnitude of the various displacement derivatives are: 

(C.16) 

(C.17) 

I 

(C.18) 

I 

(C. 19) 
I 

I 

((7.20) I 
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Neglecting terms of ( i)3 and higher, and recalling the arguments for the magnitudes 

of the linear portions of the strains (C.12), it is apparent that 

1.) Only the in-plane strains retain nonlinear terms, and 

2.) With the exception of € 3 3 ,  these terms are derivatives of the transverse dis- 

placement u 3 .  

In this regard €33 deserves a special note. Recalling the estimate of the magni- 

tude of 2 due to rotation (C.9), it is apparent that 2 and 2 are algebraically 

opposite (similar to the linear shear strain terms). This makes sense in that a strict 

rigid body rotation should produce no strain. For moderate rotation deformation 

the rigid body portion of that motion should vanish. The difference between these 

terms will be due to any effect of shear on €33 (arguably of order (i)3) and the 

term % will be due to Poisson thinning. (These are obviously beam-like simplifi- 

cations.) Thus, a reasonable summation of appropriate nonlinear strain measures 

for the above assumptions in a compact form is 

(C.22) 

That is, the strain-displacement relations von Karman assumed are entirely appro- 

priate in the context of moderate rotation, small strain shear deformation theory. 

For large strains, particidarly large shear strains, appropriate nonlinear terms will 

have to include the effects of the assumed shear deformation mode in the nonlin- 

earities. 



Appendix D 

Contact Model Foundation Modulus 

The contact model requires the foundation modulus K of the plate as a material 

property input. For graphite/epoxy composite materials no measured value of K 

is available. The purpose of this appendix is to describe a method for estimating 

this property. The vertical displacement v of a semi-infinite plate subjected to a 

uniform pressure load q acting on a portion of the plate, as shown in Figure D-1, is 

[541 

v = -- 2q 2a log a 
?rE 

where the displacement is evaluated at the origin, E is Young's modulus, and 2u is 

the width over which the pressure acts. RRarranging Equation D.l gives 

V 
TE 

4a log a 
q = -  

The contact model is stated as 

= { 2; - Kuj' uj' 2 0 
u;' < 0 

where f is the contact force per unit area and u" is the displacement of the sub- 

laminate. Identifying q with f and v with us', the foundation modulus K may be 
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estimated from 

102 

TE 
4a log a 

K =  

More simply, the foundation modulus is estimated by 

K % -  Ef 
If 

where Ef is the elastic modulus of the foundation and If a characteristic length. 

ll 
-a 

v X. 
I a 

Figure D-1 Uniform pressure load acting on a semi-infinite plate. 



Appendix E 

Parallel Axes Theorem for Unsymmetric Laminates 

This appendix describes the calculation of laminate stiffnesses for generally 

unsymmetric laminates. Ai j , Bi j, Di j , Ei j , Fi j , Hi j are laminate stiffnesses defined 

in Equation 3.34 as 

For a laminate composed of plies of varying thicknesses or an odd number of plies 

the laminate midsurface may fall within a given ply. It is computationally simple 

to calculate the laminate stiffnesses in a coordinate system originating on the lam- 

inate outer surface, and then to use the parallel axis theorem [23] to determine the 

stiffnesses in a coordinate system located at the laminate midsurface. 

For a primed coordinate system located a distance d from the laminate mid- 

surface as shown in Figure E-1, the laminate stiffnesses are calculated from 
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d+ 

( A ! .  B! .  D!. E'. F!. G'.. H'.) = Q i j ( l , x 3 , x i , x ~ , x ~ , x ~ , x ~ ) d x ~  i , j  = 1,2,6 1 
1 

I ) ,  I ) ,  I f ?  $ 1 7  I f ?  I f '  11 

d- h$ 

d+ 

Q i j ( l , x i , t $ ) d x k  i , j  = 4,s (A! I f '  . D! I]? . F!.) If = 

d- 

( E 4  
Notice that the stiffness Gij is required. The laminate stiffnesses in the unprimed 

plate midsurface coordinate system are then determined using the parallel axis 

theorem as 

Aij = A:j 

Bij = B:j - dAij 

Dij = Di, - 2dBij - &Aij 

Eij = E:, - 3dDij - 3 8  Bij - d3 Aij 

Fij = F,!j - 4dEij - 6&Dij - 4d3Bij - $Aij 

Gij = G:, - 5dFij -- lOdlEij - 10d3Dij - 5d4Bij - dsAij 

Hij  = Hi, - 6dGij - 1MFij - 20d3Eij - 15&Dij - 6d'Bij - deAij 

Each equation requires the result of the previous equation to complete the cdcula- 

tion. The distance d is, in general, arbitrary. However, in the particular case here, 

d is equal to half the sublaminate thickness $. 
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x3= w 

J= 0 

X = - W  
3 

- 

X' = d+h/2 
3 

t 
d 

Figure E-1 Laminate thickness direction coordinate systems located at the plate 
midsurface ( 2 3 )  and an arbitrary distance d from the plate midsurface 
(4 1- 



Appendix F 

Strain Energy Release of an Elliptical Sublaminate 

This appendix details the derivation of the strain energy release of an elliptical 

sublaminate (Equations 3.41 and 3.43). The total potential energy II and area A 

of an elliptical plate are functions of the semi-major and semi-minor axes a and b, 

respectively, of the ellipse. 

II = n(a ,  b , .  . .) A = Tab (F.1) 

Taking differentials of both yields 

an an 
aa a b  

dII = -da + -db dA  = ?r(bda + ada)  

Combining the differentials gives the strain energy release per unit area 

dII g d a + g d b  
dA n(bda+adu)  
-=  

or 
all do 

(F-4) - =  dlI x i a s+% 
dA r ( b $ + a )  

In the particular instance of a sublaminate in a composite plate, the calculation is 

made for each system, n p '  and ndr. 
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DELAf l  SAf lPLE INPUT/OUTPUT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
T H I S  I S  PROGRAfl DELAfl.  

COPYRIGHT 1989 BY SCOTT OUEN PECK 

STRUCTURES AND COflPOSlTES LABORATORY 
DEPARTflENT OF AERONAUTICS AND ASTRONAUTICS 
STANFORD UNIUERSITY,  STANFORD, C A L I F O R N I A  
( 4 1 5 )  723-4135 

GIUEN A L A f l l N A T E D  COtlPOSlTE PLATE CONTAINING AN 
E L L I P T I C A L L Y  SHAPED DELAf l lNATION,  DELAt l  WILL 
CALCULATE THE FOLLQUING: 

( 1 )  THE C R I T I C A L  LOAD APPLIED TO THE PLATE NECESSARY 
TO CAUSE BUCKLING OF THE SUBLAfl lNATE CREATED BY 

THE DELAfl INATION, 

(2 )  THE NONLINEAR LOAD-STRAIN HISTORY OF THE 
SUBLAfl lNATE, AND 

( 3 )  THE C R I T I C A L  LOAD APPLIED TO THE PLATE NECESSARY 
TO CAUSE THE ONSET OF DELAf l lNATION GROUTH. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DELAf l  I S  BASED ON A NONLINEAR PLATE THEORY 
INCLUDING THE EFFECTS OF LARGE TRANSUERSE DEFLECTIONS 
OF THE SUBLAf l lNATE AND TRANSUERSE SHEAR DEFORflATlON. 
THE ASSUflPTIONS ABOUT THE PLATE AND SUBLAf l lNATE ARE: 

( 1 )  THE PLATE CONTAINING THE DELAf l lNATION I S  
SYf l f lETRlCALLY LAf l INRTED. 

( 2 )  THE DELARIMATION RAY OCCUR BETUEEM AMY TU0 
P L I E S ,  RND THEREFORE THE SUBLRfl lNATE f lAY 
B E  UNSYf l f lETRlCALLY LAHINATED. 

( 3 )  THE E L L I P T I C A L  SUBLAfl lNATE f l A Y  BE A R B I T R A R I L Y  
ORIENTED U l T H  RESPECT TO THE APPLIED LOADS. 

( i )  THE PLATE FORflS A DETACHED E L A S T I C  FOUNDATION 
FOR THE SUBLAfl lNATE, UHICH flODELS POSSIBLE 

CONTACT BETUEEN THE TUO. 

( 5 )  A TRANSUERSE PRESSURE D I F F E R E N T I A L  f l A Y  ACT 
ACROSS THE SUBLAfl lNATE THICKNESS DUE TO 
SUBATflOSPHERIC PRESSURES I N  THE CAUITY FORflED 

BETUEEN THE SUBLAHINATE AND PLATE. 

( 6 )  GROUTH OF THE SUBLAfl lNATE U l L L  OCCUR 
UHEN THE TOTAL POTENTIAL ENERGY RELEASED BY 

C R I T I C A L  UALUE FOR THE PARTICULflR I l A T E R I A L ,  
SUBLAHINATE - PLATE SYSTEfl EXCEEDS THE 
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DELAH OPERATES I N  ONE OF TU0 HODES: PROHPTED 
AND DATA F I L E .  I N  THE PROHPTED HODE YOU U l L L  BE QUERIED 
FOR EACH INPUT PARAtlETER. I N  THE DATA F I L E  I’IODE, THE 
INPUT DATA I S  ASSUHED TO BE I N  A USER DATA F I L E ,  
AND YOU U l L L  BE ASKED ONLY FOR THE NAHE OF THE F I L E .  
AT THE END OF THE INPUT PROCESS I N  PROHPTED HODE, 
YOU U l L L  BE ASKED UHETHER YOU UOULD L I K E  THE INPUT 
TO BE SAUED I N  AN INPUT F I L E  FOR FUTURE ANALYSES. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
UOULD YOU L I K E  THE NORIIAL PRINTOUT (01, 
HORE PRINTOUT ( l ) ,  OR LOTS OF PRINTOUT ( 2 )  ? 

UOULD YOU PREFER PROHPTED INPUT ( P I  
OR TO READ YOUR INPUT FROH A DATA F I L E  ( D ) ?  

0 

P 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE FOLLOUING INPUT DESCRIBES THE GEOtlETRY AN0 
HATERIALS OF THE E L L I P T I C A L  DELAHINATION.  

SYSTEH THE USER DESIRES.  
THE INPUT U N I T S  ARE I N  ANY SELF-CONSISTENT 

E L L I P S E  SEHl-HAJOR A X I S ?  
1 . o  

E L L I P S E  SEHl -H INOR ( lX lS7  
0 . 7 5  

ROTATION OF THE E L L I P S E  U.R.T .  THE PLATE? 
0 .  

NUHBER 
1 6  

NUtlBER 
4 

THE P L  
SHOULD 

Y 

PLY TH 
, 0 0 5 5 6  

THE OR 
TO THE 

OF P L I E S  I N  THE UHOLE PLATE? 

OF P L I E S  I N  THE SUBLAHINATE? 

ES ARE NUHBEREO FROH THE TOP SUR CE 
EaCH PLY HAUE THE SAtlE THICKNESS? ( Y / N )  

CKNESS - 
ENTATION OF EACH 
PLY A X I S ,  

PLY NUHBER 1 ORIENTAT 
0 .  

PLY NUHBER 2 ORIENTAT 
0 .  

TH OH U CE, 

PLY I S  P O S l T l U E  FROH THE PLATE COORDINATE AXIS 

on - 
ON - 



PLY NUflBER 
90 I 

P L Y  NUHBER 
90 I 

PLY NUHBER 
0 ,  

PLY NUHBER 
0 .  

PLY NUHBER 
90 I 

PLY NUHBER 
90. 

P L Y  NUHBER 
90 I 

P L Y  NUHBER 
90. 

P L Y  NUHBER 
0 .  

P L Y  NUHBER 
0 .  

P L Y  NUHBER 
90. 

P L Y  NUHBER 
9 0 .  

P L Y  NUHBER 
0 .  

PLY NUHBER 
0 .  

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

15 

16 

O R  

OR 

OR 

ENTATION = 

ENTATION - 
ENTATION - 

ORIENTATION - 
ORIENTATION - 
OR I ENTAT I ON - 
OR I ENTAT I ON - 
ORIENTATION - 
OR I ENTAT I ON - 
ORIENTATIOM - 
ORIENTATION - 
ORIENTATION - 
ORIENTATION - 
ORIENTATION - 
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SHOULD EACH P L Y  HAUE THE SAHE SET OF ENGINEERING CONSTANTS? (Y/N)  
Y 

L O H G I I U D I H R L  YOUNGS HODULUS EX - 
19.5E6 

TRANSUERSE YOUNGS HOOULUS EY - 
1.32E6 

LONGITUDINAL TO TRAMSUERSE POISSON R f l T l O  NUXY - 
a30 

SHEAR HOOULUS GXY - 
1 .O1E6 

SHEAR HODULUS GXZ - 
1 .OlE6 



SHEAR HODULUS G Y Z  - 
0 I 5 0 E 6  

LONG. THERHAL (HYGRO) COEFF. OF EXP. ALPX(1 )  = 
0 . 5 0 E - 6  

TRAN. THERHAL (HYGRO) COEFF. OF EXP. A L P V ( I )  = 
1 8 . E - 6  

THE FOLLOUING INPUT DESCRIBES THE LOADING 
CONDITIONS ON THE PLATE: 

TEHPERRTURE (HYGRO) DIFFERENCE FROH REF. DELTA T - 
- 1 8 0 ,  

TRANSUERSE PRESSURE LOADING DELTA P = 
3 .  

USE CONTRCT LAU? (Y /N)  
Y 

CONTACT LAU COEFF CON17 
1 . E 6  

C R I T I C A L  STRAIN ENERGY RELEASE PER U N I T  AREA = 
0 . 2  

RELATIUE GROUTH DIRECTION DA/DB = 
0 .  

THE RELATIUE LOAD HAGNITUDES I N  THE PLATE 

(FOR EXAHPLE, BN1 - 1, BN2 = 0, BN6 = 0 

D I R E C T I O N . )  

COORD I NATE SVSTEH ( 1 -PR I HE, 2-PR I H E ) .  

I S  A S INGLE LOAD APPLIED I N  THE 1-PRlHE 

BNt = 
1 . o  

BN2 = 
0 .  

BN6 = 
0 .  

110 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

AT HOU HANY LOCATIONS I N  THE DELAHINATION 00 YOU 
UlSH STRESS/STRAIN CALCULATIONS? 
H L I S T  = 

1 

INPUT 1 PAIRS OF COORDINATES: 

L I S T X (  1 )  = 
0 .  

L I S T Y (  1 )  = 
0 .  

UOULD YOU L I K E  THE STRESSES/STRAINS TO BE CALCULATED 
AT THE TOP ( T I ,  HIDOLE ( H I ,  OR BOTTOH (6) OF EACH PLY? 

PLY OF THE SUBLAHINATE AND PROCEEDS U N T I L  THE LAST PLY OF THE 
PLATE. THUS, THE BOTTOH OF THE F I R S T  PLY I S  THE SUBLAHINATE 
OUTER SURFACE, AND SO ON, 

THE THROUGH-THICKNESS COORDINATE ORIGINATES U l T H  THE F I R S T  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THE FOLLOUING INPUT PRESCRIBES UHICH CODE 
ANALYSIS  OPTIONS UlLL BE RUN: 

NONL I HERR LOAD-STRA I N H I  STORY? ( Y / N )  
Y 

OUTPUT S T R A I N  F I L E  HARE? 
S A H P L E . S T R A I N  

OUTPUT STRESS F I L E  NRHE? 
S A H P L E . S T R E S S  

HAXIHUH LOAD FOR POSTBUCKLING PLOT? 
- 3 0 0 0 .  

NUHBER OF LOAD INCREHENTS FOR PLOT? 
5 

CALCULATE POSTBUCKLING GROWTH LOAD? ( Y / N )  
Y 

CALCULATE L I N E A R  BUCKLING LOAD? ( Y / N )  
Y 

SHOULD THE INPUT DATA BE URITTEN TO A F I L E  FOR FUTURE USE? (Y/N)  
v 

OUTPUT F I L E  NAHE? 
S A H P L E . l N P U T  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I N I T I  AL 2 COORD I NATES 

PLY 2 

1 o.ooo+oo 
2 0,560-02 
3 0.110-01 
4 0.170-01 
5 0.220-01 
6 0.280-01 
7 0.330-01 
8 0.390-01 
9 0.440-01 

10 0.500-01 
1 1  0.560-01 
12 0.610-01 
13 0.670-01 
14 0.720-01 
15 0.780-01 
16 0.830-01 
17 0.890-01 

PLANE STRESS REOUCED STIFFNESSES FOR EACH PLY 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 

0.201+08 0.130+07 
0.200+08 0.130+07 
0.200+08 0.130+07 
0.200+08 0.130+07 
0.200+08 0.130+07 
0.200+08 0.13e+07 
0.200+08 0.130+07 
0.200+08 0.13e+07 
0.200+08 0.130+07 
0.200+06 0.130+07 
0.200+08 0.130+07 
0.200+08 0.130+07 
0.20e+01 0.130+07 
0.200+08 0,13e*07 
0.200+08 OI13a+O7 
0.200*08 0.13e+07 

0.400+06 
O140e+06 
0.400+06 
0.100+06 
0.400+06 
0.400+06 
0.400+06 
0.400+06 
0.400+06 
0 .  $00+06 
0.400+06 
0,40e+06 
0.400+06 
0,40e+06 
OI40e*06 
0,40e+06 

0.100+07 
0.1 O0+07 
0.1 Oe+O7 
0.100+07 
0.100+07 
0.100+07 
0.1 Oe+O7 
0.1 Oe+O7 
0.1 Ow07 
0.100+07 
0.100+07 
0.100+07 
OI10o+07 
0.1 Oe+07 
0.1 O0+07 
0.1 Oe+O7 

0,l Oe+O7 
0.1 Oe+07 
0.100+07 
0.100+07 
0.1 Oe+O7 
0.1 Oe+O7 
0,l Oe+O7 
0.100+07 
0.100+07 
0.100+07 
0.1 Oe+O7 
0.100+07 
0.100+07 
0.100+07 
0.1 Oe+O7 
0.100+07 

0,50e+06 
0.500+06 
0.500+06 
0.500+06 
0.500+06 
0.500+06 
0.500+06 
0,500+06 
0.500+06 
0.500+06 
0,50e+06 
0.500+06 
0,50e+06 
0,50e+06 
0.50e+06 
0,50e+06 
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PLY 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 

PLY 

1 
2 
3 
4 
5 
6 
7 
d 
9 

10 
1 1  
12 
13 
14 
15 
16 

0.200+08 0.130+07 
0.20e+08 0 .13e+07  
0.130+07 0.200+08 
0.13e+07 0.200+08 
0.200+08 0.13e+07 
0.200+08 0.13e+07 
0,13e+07 0.200*08 
OIl3e+07 0,20e+08 
0.130+07 0.200+08 
0.130+07 0.200+08 
0.200+08 0.130+07 
0.200+08 0.130+07 
0.130+07 0.200+08 
0.130+07 0.200+08 
0.20e+08 0.130+07 
0,20e+00 0.130+07 

0 .  40e+06 
0 I tOe+O6 
0 .  SOe+O6 
0 .  SOe+O6 
0 .  SOe+06 
0 .  tOe+O6 
0 ,  SOe+06 
0 .  SOe+O6 
0 .  iOe+O6 
O140e+06 
0 .  $Oe+O6 
0 .400+06 
0 .  $Oe+O6 
0 ,40e+06 
0 .  SOe+O6 
0 .  SOe+O6 

OI5Oe+06 
0 .500+06 
0.1 Oe+07 
0.100+07 
OI5Oe+06 
0.500+06 
0.1 Oe+07 
OI1Oe+07 
0.1 Oe+07 
OI1Oe+07 
0,5Oe*06 
O150e+06 
0.1 Oe+07 
0,l Oe+O7 
OI5Oe+06 
0 .50e+06  

0 .  ooe+oo 
0 .  ooe+oo 
0.00e+00 
0 I ooe+oo 
0.  ooe+oo 
0 a ooe+oo 
0. ooe+oo 
0 a ooe+oo 
0 .  ooe+oo 
0 I ooe+oo 
0 .  ooe+oo 
0 I ooe+oo 
0 I ooe+oo 
0 * ooe+oo 
0 .  ooe+oo 
0 .  ooe+oo 

0.100+07 
0.100+07 
0.500+06 
0.500+06 
0.100+07 
0.100+07 
O150e+06 
0.500+06 
0.500+06 
0.500+06 
O110e+07 
0.10e+07 
0.500+06 
OI5Oe+06 
0.1 Oe+O7 
0.100+07 

0.1 Oe+07 
0 . 1  Oe+07 
0.1 Oe+07 
0.1 Oe+07 
0.100+07 
0.100+07 
0 I 1 Oe+07 
0.1 Oe+07 
O,lOe+07 
0.1 Oe+O7 
O110e+07 
0.100+07 
0.1 Oe+07 
0.1 Oe+O7 
0.100+07 
OI1Oe+07 

0 * 00e+00 
O I O O e + O O  
O I O O e + O O  
0.00e+00 
0 .  ooe+oo 
0.00e+00 
0,00e+00 
0.00e+00 
0 I ooe+oo 
OW00e+00 
0 * 00e+00 
O.OOe+OO 
0 I ooe+oo 
0.00e+00 
0 .  ooe+oo 
0 * 00e+00 

O , O O e + O O  
0.00e+00 
0 IoOe+Oo 
0 .  ooe+oo 
0.00e+00 
0 * ooe+oo 
0 I00e+00 
O I O O e + O O  
0 I ooe+oo 
0 * aae+00 
0 I ooe+oo 
0 I ooe+oo 
0 .  ooe+oo 
0 .  oae+oo 
0 .  ooe+oo 
0 I ooe+oo 

OFF-AXIS REDUCED STIFFWESSES I N  THE SUBLAHINATE COORDIHATES 

1 0.20e+08 0.130+07 0,40e+06 0.10e+07 O.OOe+OO O.OOe+OO 
2 0.2Oe+Od 0.130+07 O.SOe+Ob 0.100+07 0.00e+00 0.00e+00 
3 0.13a+07 0.200+08 0 .400+06 0.100+07 O.OOe+OO O.OOe+OO 
4 0.130+07 0.200+08 0.400+06 0.100+07 0.000+00 O.OOe+OO 

PLY 044 045 055 

1 0.500+06 O.OOe+OO 0.100+07 
2 0 .500+06 O.OOe+OO 0.10e+07 
3 0.10e+07 0.00e+00 0,50e+06 
4 0,100+07 O.OOe+OO 0.500+06 



L A R I N R T E  S T I F F N E S S E S  F O R  T H E  P L R T E  

A 1  1 A22 A 1  2 A66 

0 .930+06  0 .93e+06  0.35e+05 0.90e+05 

A44 A45 A55 

0.670+05 0.00e+00 0.67e+05 

81 1 822 81 2 866 

A16 

I000+00 

816 

0.73e-11 O,OOo+OO - .680-12 0.45e-12 O.OOo+OO 

044 045 055 

0 .390+02  O.OOo+OO 0.500+02 

F l l  F22 F12 F66 F16 

0.110+01 0.360+00 0.280-01 0.700-01 0.00e+00 

F44 F45 F55 

0.420-01 0.000+00 0.630-01 

H 1 1  H22 . H12 H66 H16 

0.170-02 0.360-03 0.390-04 0,990-04 0.000+00 

LAHINATE STIFFNESSES FOR THE SUBLAlllNATE 

A 1  1 A22 A12 A66 A16 

0 .230+06  0 .230*06  0.890+04 0.221+05 0 .  OOo+OO 

n44 A45 A55 

0.170*05 O.OOo+OO 0.170+05 

Et1 1 022 Et12 866 816 

- . l l 0 * 0 4  O . l l 0 + 0 4  - .110-12 - .280 -12  O.OOO+OO 
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A26 

0 .OOe+OO 

826 

0 I ooo+oo 

F26 

O.OOe+OO 

H26 

0 .  ooo+oo 

A26 

0 * OO0+00 

826 

0 I ooo+oo 

044 045 055 

0 .690+00  O.OOo+OO 0.690+00 



F11 F 22 F12 F66 F16 F26 

0.710-03 0 ,710-03 0.270-04 0,690-04 0,000+00 0.000+00 
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F44 F45 F55 

0 . 5 1  0-04 0.00e+00 0 * 51 0-04 

H I  1 H22 H12 H66 H I6  H26 

0.630-07 0.630-07 0.240-08 0.610-06 0.000+00 0.000+00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LINEAR BUCKLING LOAD CALCULATION: 

THE L INEAR BUCKLING LOAD I S  -0.677920+03 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GROUTH LOAD CALCULATION: 

UARN I NG : 

UARN I NG : 

UARN I NG : 

UARN I NG : 

UARN I NG : 

UARN I HG : 

UARH I HG : 

CONTACT BETUEEN SUBLAMINATE AND PLATE 

CONTACT BETUEEH SUBLAtllNATE AND PLATE 

CONTACT BETUEEN SUBLAMINATE AND PLATE 

COHTACT BETUEEH SUBLAfllHATE AND PLATE 

CONTACT BETUEEN SUBLAfllNATE AND PLATE 

CONTACT BETUEEN SUBLAfllNAfE AND PLATE 

CONTACT BETUEEN SUBLAMINATE AND PLATE 

THE GROUTH LORD I S  -0.176660+04 ITER = 5 



STRESSES A N 0  S T R A I N S  A T  ( % , V I  = ( 0 . 0 0 0 e + 0 0 ,  0 . 0 0 0 e + 0 0 )  116 
FOR LOAD N -0.176660+04 

OFF-AXIS STRESSES IN THE SUBLAfllNATE FRAHE 

PLY SI s2 s3 S4 s5 S6 

1 -.170+05 0.730+04 0.000+00 0.000+00 0.000+00 0.000+00 
2 - .3ae+os 0.570+04 o.ooe+oo o.ooe+oo O,OOO+OO o.ooe+oo 
3 0 .460+03  o.iao+os O.OOO+OO O.OOO+OO O.OOO+OO o.ooo+oo 
4 - .130+04  0.220+03 0.000+00 0.000+00 O.000+00 0.000+00 

OFF-AXIS STRRINS I N  THE SUBLARINATE FRAtlE 

PLY E t  E2 E 3  E4  E5 E6 

I - .100-02 0.5a0-02 o.ooo+oo O.OOO+OO o.ooo+oo o.ooo+oo 
2 -.200-02 0.490-02 0.000+00 0,000+00 0.000+00 0.000+00 
3 0.760-04 0.900-,03 0.000+00 0,000+00 0.000+00 0.000+00 
4 - .960-03 0.310-04 0.000+00 0.000+00 0.000+00 0.000+00 

ON-AXIS STRESSES I N  THE PLY FRAHE 

PLY SI s2 s3 S4 s5 S6 

1 - .170+05 0.730+04 0.000+00 O . o o ~ + O O  0.00e+00 0.000+00 
2 - .3ae+o5 0.570+04 o.ooe+oo o.ooo+oo o.ooe+oo o.oo~+oo 
3 o.iao+os o . m + 0 3  o.ooo+oo o.ooo+oo O.OOO+OO o.ooo+oo 
4 0.220+03 - .130+04 0.000+00 O.OOo+OO 0.000+00 0.000+00 

ON-AX I S 

PLY E l  

1 -. 

STRAINS I N  THE PLY FRAflE 

E 2  E 3  E4 E5 E 6  

00-02 0.580-02 o.ooo+oo o.ooo+oo o.ooa+oo o,ooo+oo 
2 - .200-02 0.490-02 0.000+00 0.000+00 0.000+00 0.000+00 
3 0.900-03 0.760-04 0.000+00 0.000+00 0.000+00 0.000+00 
4 0.310-04 - .960-03 O.OOe+OO 0.000+00 0.000+00 0.000+00 

OFF-AXIS STRESSES I N  THE PLATE FRAflE 

PLY SI s2 s3 s4 s5 S6  

1 -.170+05 0.730+04 0.000+00 0.000+00 0.000+00 0.000+00 
2 -.3ae+o5 0.570+04 o.ooo+oo o,ooo+oo o.ooo+oo o.ooo+oo 
3 0.460+03 o . iae+os  o.ooo+oo o,ooo+oo o.ooe+oo o.ooo+oo 
4 -.130+04 0.220+03 0.000+00 0.000+00 0.000+00 0.000+00 



OFF-RXIS I E C H R N I C A L  S T R R I N S  I N  THE P L R T E  FRRflE 117 

PLY E l  E2 E3 E4 E5  E 6  

1 - .750-03 0.290-02 0 . 0 0 e + 0 0  0 .00e+00  0.00e+00 0.000+00 

3 - . 288 -02  0.118-02 0 , 0 0 e + 0 0  O.OOe+OO 0.008+00 0.008+00 
2 - . i 8 0 - 0 2  0.208-02 o.ooe+oo o.ooe+oo o,ooe+oo O.OOS+OO 
4 - .390 -02  0.280-03 0 .000+00  0,000+00 0.000+00 0.000+00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NONLINEAR LOAD-STRAIN HISTORY CALCULATION: 

STRESSES AND STRAINS AT ( X , V )  - ( O.OOOo+OO, O.OOOo+OO) 
FOR LOAD N - 0.000000+00 

OFF-AXIS STRESSES I N  THE SUBLAtllNATE FRAtlE 

PLY s1 s2 s3 S4 s5 56 

1 -.37e+O4 0.380+04 O.OOo+OO 0.00a+00 O.OOo+OO O.OOe+OO 
2 - * 3 8 0 + 0 4  0.380+04 0.000+00 0.000+00 0.000+00 0.000+00 
3 0.380+04 - .370+04 O.OOe+OO 0.000+00 0.000+00 0,000+00 
4 0.380+04 - .380+04 0.000+00 0.000+00 0,000+00 0.000+00 

OFF-AXIS STRAINS I N  THE SUELAtllNATE FRAHE 

PLY E l  E2 E3 E4  E 5  E 6  

1 - ,250-03 0.290-02 0.000+00 0.000+00 0.000+00 0.000+00 
2 - .250 -03  0.290-,02 O,OOe+OO 0.000+00 0.000+00 0.000+00 

4 0.290-02 - .250-03 0.000+00 0.000+00 0.000+00 0.000+00 
3 0.290-02 - .25e-03 0.000+00 O.OOo+OO O.OOo+OO O.OOo+OO 

ON-AXIS STRESSES I N  THE PLY FRAnE 

PLY s1 s2 s3 S4 s5 56 

t - .370*04 0.380+04 0.000+00 O.OOo+OO O.OOe+OO O.OOo+OO 
2 -.380*04 0.380+04 0,000+00 0.000+00 0.000+00 0.000+00 
3 -.370+04 0.360+04 O.OOo+OO O.OOe+OO 0.00e+00 O.OOe+OO 
4 - .380+04 0.380+04 0,000+00 0.000+00 0,000+00 0.000+00 

ON-AXIS STRAINS I N  THE PLY FRAtlE 

PLY E t  E 2  E3 E4 E5 E6 

1 - .250-03 0.290-02 0,000+00 0.000+00 0.000+00 0.000+00 
2 - .250-03 0.290-02 O.OOo+OO 0.000+00 0.00e+00 0 ~ 0 0 0 + 0 0  
3 - ,250 -03  0,290-02 0.000+00 0,000+00 0.000+00 0.000+00 
4 - .250 -03  0.290-02 0.00e+00 0.008+00 O.OOo+OO O.OOo+OO 



OFF-AXIS STRESSES I N  THE PLATE FRAIIE 118 

PLY SI s2 s3 s4 S5 S6 

1 -.37e+O4 0.38e+04 0 . 0 0 ~ + 0 0  0 .00e+00  0 .00e+00  0.00e+00 
2 - . 3 8 ~ + 0 4  0.38e+04 0.00e+00 0.00e+00 O.OOe+OO 0 ,00e+00  
3 0.38e+O4 - .37e+04 0.00e+00 0.00e+00 O.OOe+OO O.OOe+OO 
4 0.38e+04 -.38e+04 0.00e+00 O.OOe+OO 0.00e+00 0 . 0 0 ~ + 0 0  

OFF-AXIS HECHANICAL STRAINS IN THE PLATE FRAHE 

PLY E l  E2 E3 E4 E5  E6 

1 O.1le-06 0.80e-06 0.00e+00 O.OOe+OO 0,00e+00 O.OOe+OO 
2 - .80e-07 0,47e-06 0.00e+00 O.OOe+OO 0.00e+00 O.OOe+OO 
3 - .27e-06 0.13e-06 0.00e+00 0.00e+00 O.OOe+OO O.OOe+OO 
4 -.47e-06 -.21e-O6 O,OOe+OO 0.00e+00 0.00e+00 0.00e+00 

STRESSES AND STRAINS AT ( X , V )  = ( O.OOOe+OO, O.OOOo+OO) 
FOR LORD W = -0.60000e+03 

OFF-AXIS  STRESSES I N  THE SUBLAHINATE FRAHE 

PLY s1 s2 s3 s4 S5 S6 

1 - .16e+05 0.35e+04 O.OOe+OO O.OOe+OO 0.00e+00 O.OOe+OO 
2 - .160+05 0,35e+04 O.OOe+OO O.OOe+OO O,OOe+OO 0.00e+00 
3 0.290+04 - ,35e+04  O.OOe+OO O.OOe+OO O.OOe+OO O.OOe+OO 
4 0.290+04 - .35e+04 O.OOe+OO 0.00e+00 O.OOo+OO O.OOe+OO 

OFF-AXIS STRRINS I N  THE SUBLAHINATE FRAHE 

PLY El E 2  E3 E4  E 5  E 6  

1 - .89e-03 0.290-02 O.OOe*OO O.OOe+OO 0.00e+00 O.OOe+OO 

3 0.23e-02 -.230-03 O.OOe+OO O.OOe+OO O.OOe+OO O.OOe+OO 
4 0.230-02 -.23e-03 O.OOe+OO O.OOe+OO O.OOe+OO O.OOe+OO 

2 - .goo-03 0.290-02 0 .000+00  0 . 0 0 0 + 0 0  0 . 0 0 0 + 0 0  0 .000+00  

OW-RXIS STRESSES IW THE PLY FRAHE 

PLY s1 s2 53 S 4  S5 S6 

1 - . 1 6 0 + 0 5  0,350+04 0.00e+00 0.00e+00 O.OOe+OO O.OOo+OO 
2 - . 1 6 0 * 0 5  0.35r+CM O,OOe+OO O.OOe+OO O.OOe+OO O.OOe+OO 
3 - ,35e+04  0.29e+fl4 O,OOe+OO 0.00e+00 0.00e+00 O,OOe+OO 
4 - .35c+04 0.29e+04 O.OOe+OO 0 . 0 0 e + 0 0  0.00e+00 0.00e+00 



O N - A X I S  S T R A I N S  I N  THE PLY F R A n E  119 

PLY E l  E2 E3 E4 E5 E6 

1 -.890-03 0,290-02 O.OOO+OO 0,000+00 O.OOO+OO O.OOO+OO 
2 -.goo-03 0.290-02 O.OOo+OO O.OOs+OO 0.00e+00 0.00e+00 
3 -.230-03 0.230-02 O.OOe+OO 0.000+00 0.000+OO O.OOO+OO 
4 -.230-03 0.230-02 O.OOO+OO 0.000+00 O.OOO+OO O.OOO+OO 

OFF-AXIS STRESSES I N  THE PLATE FRARE 

PLY SI s2 s3 S4 s5 56 

1 -,160+05 0.350+04 0.000+00 0.000+00 0.000+00 0.000+00 
2 -.160+05 0.350+04 0.000+00 O.O00*00 O.O00+00 0.000+00 
3 0.290+04 - .350+04 0.000+00 0.000+00 O.OOo*OO 0.000+00 
4 0.290+04 - .350+04 0.000*00 0.000+00 0.000+00 0.000+00 

OFF-AXIS RECHAHICAL S T R A I M S  I H  THE PLATE FRAnE 

PLY E l  E2 E3 E t  E5 E6 

1 -,640-03 0.250-04 O.OOO+OO 0.000+00 0.000*00 0.000+00 . 
2 -.640-03 0.250-04 0,000*00 0,000+00 0.000+00 0.000+00 
3 -.650-03 0.250-04 0.000*00 0.000+00 0.000+00 0.000+00 
4 -.650-03 0,240-04 0.000*00 0.000+00 0.000+00 0.000+00 

STRESSES AND S T R A I H S  A T  ( X , V )  = ( 0.0000+00, O.OOOo+OO) 
FOR LOAD ti -0.120000+04 

OFF-AXIS STRESSES I H  THE SUBLARIMATE FRFlRE 

PLY SI s2 s3 S4 s5 h6 

1 -.290+05 0.330+04 0.000+00 0.000*00 0.000*00 0.000+00 
2 -.290+05 0.330*04 0.000+00 0.000+00 0.000*00 0.000+00 
3 0.210+04 -.330*04 0.000+00 0.000+00 O . O O ~ + O O  O . O O ~ + o o  
4 0.210+04 - ,330+04 0.000+00 0.000+00 0.000+00 0.000+00 

OFF-AXIS S T R A I H S  I H  THE SUBLARIMATE FRRflE 

PLY E l  E2 E3 E4  E5 E6 

1 -.150-02 0.290-02 0.000+00 0.000+00 0.000+00 0.000+00 
2 -.150-02 0,290-02 0.000+00 O.OOa+OO 0.000*00 0.000+00 
3 0.160-02 -.200-03 0.000+00 0.000+00 0.000+00 0.000+60 
4 0.160-02 -.200-03 0.000+00 O.O00+00 O.O08+OO O.OOO+OO 



ON-RXIS S T R E S S E S  IN THE PLY FRRnE 

PLY s1 s2 s3 S4 s5 56 

1 -.290+05 0.330+04 0.000+00 0.000+00 0.000+00 0.000+00 
2 -.29~+05 0.33~+04 0 . 0 0 ~ + 0 0  0 . 0 0 ~ + 0 0  0 . 0 0 ~ + 0 0  0 .000+00  
3 -.33~+04 0.210+04 0.000+00 0 . 0 0 ~ + 0 0  0.000+00 0.000+00 
t -.33~+04 0.21~+04 0.000+00 0 . 0 0 ~ + 0 0  O.OOG+OO 0.000+00 

ON-AXIS STRAINS I N  THE PLY FRAME 

PLY El E2 E 3  E4  E 5  E6 

1 -.150-02 0.290-02 0,000+00 0,000+00 0.000+00 0.000+00 
2 -.150-02 0.290-02 0.000+00 0,000+00 0,000+00 0.000+00 
3 -.200-03 0.160-02 O.OOO+OO O.OOO+OO O.OOO+OO O.000+00 
4 -.200-03 0.160-02 0.000+00 0.000+00 0.000+00 0.000+00 

OFF-AXIS STRESSES IN THE PLATE FRAllE 

PLY s1 S2 s3 S4 ss 56 

1 -.290+05 0.330+04 0.000+00 0.000+00 0.000+00 0,000+00 
2 -.290+0S 0.330+04 0.000+00 0,000+00 0.000+00 0.000+00 
3 0.210+04 - . 330+04  O.OOO+OO 0.000+00 0.000+00 0.000+00 
4 O.210+04 -.330+04 0.000+00 o . o o ~ + O o  o . o o ~ + oO o.oo~+oo 

OFF-AXIS nECHANlCAL STRAINS I N  THE PLATE FRAME 

PLY El E2 E3 E4 E5  E6 

UARNING: CONTACT BETUEEN SUBLAMINATE AND PLATE 

STRESSES AND STRAINS AT ( X , Y )  = ( O.OOOo+OO, O.OOOo+OO) 
FOR LORD W = -0.180000*04 

OFF-AXIS  STRESSES IN THE SUBLAlllNATE FRAME 

PLY s1 s2 s3 s4 ss 56 

120 

1 -.170+05 0.740+04 0.000+00 0.000+00 0.000+00 0.000+00 
2 -.380+05 0.580+04 0.000+00 0.000+00 0.000+00 o . o O ~ + o o  
3 0.410+03 0.180+05 O.OOo+OO 0.000+00 O.OOo+OO 0.000+00 
4 -,i3e+o4 0.67o+n3 o.ooo+oo o,ooe+oo o.ooe+oo O.OOO+OO 
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PLY El E2 E 3  E4 E5 E 6  

1 -.10e-02 0.58e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 
2 -.21e-02 0.5Oe-02 0 .00e+00  0.00e+00 O.OOe+OO 0.00e+00 
3 0.300-04 0.930-03 0.00e+00 O.OOe+OO 0.00e+00 O.OOe+OO 
4 -.IOe-02 0.550-04 0.00e+00 O.OOe+OO O.OOe+OO O.OOe+OO 

ON-AXIS STRESSES I N  THE PLY FRAHE 

PLY st  s2 s3 s4 s5 S6 

1 -.170+05 0.740+04 O.OOe+OO 0.000+00 0,000+00 0.000*00 
2 -.38e+05 0.580+04 0.000+00 0.00e*00 0.00e+00 0,00e+00 
3 O.l80*05 0.41e+03 0.00e+00 0.00e+00 O.OOo*OO O.OOo+OO 
4 0.670*03 -.13e*04 0.00e*00 0.00e*00 0.000*00 O.OOe+OO 

ON-AXIS STRAINS I N  THE PLY FRAHE 

PLY E l  E2 E 3  E4 E5 E6 

1 -.100-02 0,580-02 0.000+00 0.000+00 0.000+00 O.OOe*OO 
2 -.210-02 0.500-02 O.OOe+OO 0.000*00 0.000*00 O.OOe+OO 
3 0.93.-03 0.300-04 O.OOe+OO O.OOo+OO O.OOo+OO O.OOo*OO 
4 0.550-04 -.1'00-02 O.OOe+OO 0.00e*00 O.OOe*OO O,OOe+OO 

OFF-AXIS STRESSES I N  THE PLATE FRAtlE 

PLY s1 s2 s3 S4 s5 S6 

1 -.170+05 0.740+04 O.OOe+OO 0.000+00 O.OOe*OO O.OOe+OO 
2 -.380*05 0.580*04 O.OOe+OO 0.00e*00 O.OOe+OO O.OOe*OO 
3 0,41e*03 O.l8e+05 O.OOo*OO 0.00e+00 0.00e+00 O.OOe*OO 
4 -.130+04 0.670*03 O.OOe+OO 0.00e*00 0.000+00 O.OOe+OO 

OFF-AXIS MECHANICAL STRAINS I N  THE PLATE FRAME 

PLY El E 2  E 3  E4 E 5  E6 

1 -,750-03 0,290-02 0,000+00 0.000+00 0.000+00 O.OOe+OO 
2 -.180-02 0.210-02 0.000+00 O.OOe+OO 0.000+00 0.000+00 
3 -,290-02 0.120-02 O.OOe+OO O.OOe+OO 0.00e+00 O.OOe+OO 
4 -.390-02 0.310-03 O.OOo+OO 0.00e+00 O,OOo*OO O.OOe*OO 

UARNING: CONTACT BE:TUEEN SUBLAHINATE AND PLATE 



STRESSES AND S T R A I N S  A T  ( % , V I  = ( O . O O O e + O O J  0.000e+00) 
FOR LOAD H -0.2S0000+0S 

OFF-AXIS STRESSES I N  THE SUBLAHINATE FRAHE 

PLY s1 s2 s3 SS s5 S6 

1 -.19e+05 0.85e+OS 0.000+00 0,00e+00 0.00e+00 0.000+00 
2 -.470+05 0.660+0$ 0.000+00 0.000+00 0.00~+OO O.OOO+OO 
3 -.380+03 0.300+05 0.000+00 O.000+00 O.OOO+OO O.OOO+OO 
S -.270+04 0.920+0$ 0.000+00 0,000+00 O.OOO+OO O.OOO+OO 

OFF-AXIS S T R A I N S  I N  THE SUBLAHINATE FRAHE 

PLY E l  E2 E3 ES E5 E6 

1 -.110-02 0.670-02 0.000+00 0,000+00 0.000+00 0.000+00 
2 -.250-02 0.570-02 O.OOO+OO O.OOO+OO 0 ~ 0 0 0 + 0 0  O.OOO+OO 
3 -.740-03 0.150-02 0.000+00 O.OOO+OO O.OOO+OO O,OOO+OO 
4 -.220-02 0.510-03 0.000+00 0.000+00 0.000+00 0.000+00 

O N - A X I S  STRESSES I N  THE PLY FRAflE 

PLY s1 s2 s3 SS ss S6 

1 -.190+05 o.a9o+oi o.ooo+oo 0.000+00 o.ooo+oo o.ooo+oo 
2 - ,S70+05 0,660+04 0.000+00 O,OOO+OO O.OOO+OO O.OOO+OO 
3 0.300+05 -.380+O3 O.OOO+OO O.OOO+OO O.OOO+OO O.OOO+OO 
4 0.920+04 -.270+0S 0.000+00 0.000+00 O.OOO+OO O.OOO+OO 

ON-AX 

PLY 

1 

S STRAINS I N  THE PLY FRAHE 

E l  E2 E3 E4 E5 E6 

-.110-02 0.670-02 0.000+00 0.000+00 0.000+00 0.000+00 
2 -.250-02 0.570-02 0.000+00 O.000+00 0.000+00 0.000+00 
3 0.150-02 -.740-03 O.OOe+OO 0 .000+00  0 .000+00  0 . 0 0 0 + 0 0  
S 0.510-03 -.220-02 0.000+00 0.000+00 0.000+00 0.000+00 

OFF-AXIS STRESSES I H  THE PLATE FRAHE 

PLY s1 s2 s3 SS s5 S6 
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1 -.19o+os o.a50+04 o.ooe+oo o.ooo+oo o.ooo+oo o.ooo+oo 
2 -.470+05 0.660+04 0.000+00 0.000+00 0.000+00 0,000+00 
3 -.3110+03 0.300+05 0.000+00 0.000+00 0.000+00 0.000+00 
4 -.270+04 0.920+04 0.000+00 0.000+00 0.000+00 0.000+00 



OFF-RXIS  NECHRNICRL STRRINS I N  THE PLATE FRRNE 

PLY El E2 E3 E4 E5 E 6  

1 -.810-03 0.38e-02 0 .00e+00  0.00e+00 O.OOo+OO 0.000+00 
2 -.22e-02 0.28e-02 0.00e+00 0.00e+00 0 . 0 0 e + 0 0  0 .000+00  
3 -.360-02 0.180-02 O.OOo+OO 0.00e+00 0.000+00 0.000+00 
4 -.510-02 0 .760-03  0.000+00 0.000+00 0.000+00 0.000+00 

UARNING: CONTACT BETUEEN SUBLAMINATE AND PLATE 

STRESSES AND STRAINS AT ( X , Y )  - ( 0,0000+00, 0.0000+00) 
FOR LOAD N - -0.30000e+04 

OFF-AXIS  STRESSES I N  THE SUBLAHINATE FRAME 

PLY s1 s2 s3 S4 s5 $6 

OFF-AXIS  STRII INS I N  THE SUBLAHINATE FRARE 

PLY El E2 E 3  E4 E 5  E 6  

1 -.120-02 0,740-02 O.O00+00 0.000+00 0.000+00 0.000+00 
2 -.290-02 0.630-02 0.000+00 0.000+00 0.000+00 0.000+00 
3 -.150-02 0,210-02 0.000+00 0.000+00 0.000+00 0.000+00 
4 -.320-02 0.990-03 0.000+00 0,000+00 0.000+00 0,000+00 

ON-RXIS STRESSES I N  THE PLY FRAHE 

PLY s1 s2 s3 S 1  s5 $6 

1 -.210+05 0.930+04 0.000+00 0.000+00 0.000+00 0.000+00 
2 -.550+05 0.720+04 0.000+00 0.000+00 0.000+00 O.O00+00 
3 0.400*05 -.110+04 0.000+00 O.OOe+OO O.OOo+OO 0.000+00 
4 o.ia.+os  OS o.ooo+oo o.ooo+oo O.OOO+OO O.OOO+OO 

ON-RXIS STRII INS I N  THE PLY FRRRE 

PLY E l  E2 E 3  E4 E5  E 6  
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1 -.120-02 0.740-02 0.000+00 0.000+00 0.000+00 0.000+00 
2 -.290-02 0.630-02 0.000+00 0 .00e+00  0.000+00 0,000+00 
3 0.210-02 -.ise-n2 o.ooe+oo o.ooo+oo o.ooe+oo o.ooe+oo 
4 0.990-03 -.320-02 0,000+00 0.000+00 0 .000+00  O.O08+OO 



OFF-AXIS STRESSES I N  THE PLATE FRARE 124 

PLY s1 s2 s3 s4 s5 S6 

1 -.21e+05 0.93e+01 O.OOe+OO 0,00e+00 0.00e+00 0.00e+00 
2 -.55e+05 0.72e+04 0.00e+00 0,00e+00 O.OOe+OO 0.00e+00 
3 - . l l e + O 4  0.40e+05 0.00e+00 O.OOe+OO O.OOe+OO 0.00e+00 
4 -.38e+04 0.18e+05 0.00e+00 0,00e+00 0.00e+00 0.00e+00 

OFF-AXIS nECHRNlCRL S T R R I N S  I N  THE PLRTE FRRnE 

PLY E l  E2 E3 E4 ES E6 

1 -.96e-03 0.45e-02 O.OOe+OO O.OOe+OO O.OOe+OO O.OOe+OO 
2 -.270-02 0.340-02 0.000+00 0.00e+00 O.OOe+OO O.OOe+OO 
3 -.44e-02 0.230-02 0 . 0 0 ~ + 0 0  O.OOe+OO 0.000+00 O.OOe+OO 
4 -.610-02 0.120-02 O.OOe+OO O,OOe+OO 0.000+00 0.000+00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE LINERR BUCKLING LORD OF THE DELRHlNRTlOH I S  -0.677920+03 

THE GROUTH LORD OF THE DELRtlINRTION I S  -0.176660+04 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Appendix H 

Total Potential Energy Change of an Isotropic Plate 

The change in the total potential energy G of an isotropic, circular plate sub- 

jected to a transverse pressure qo with respect to a change in the area A = aa2 of 

the plate is 

where the total potential energy II is calculated from 

The plate thickness is h, the radius a, and ( r ,  8, z )  are cylindrical coordinates. The 

transverse displacement of the plate is w .  The radial and circumferential stresses, 

respectively, are calculated ELS 

z d2w 1dw 
h h3 dr2 r dr or=- -  Nr 12D-(- +I/--) 

Nt z d2w 1dw 
h h3 dr2 r dr 

bt = - - 12D-(v- + --) 
125 



Appendix H: Total Potential Energy Change of an  Isotropic Plate 

where Nr and Nt are the radial and circumferential stress resultants and the bending 

stiffness D of the plate is 

136 

E h3 D =  
12(1 - v2) 

E is Young's modulus, and v is Poisson's ratio. The radial and circumferential 

strains, respectively, are 

dw dLW + 0.5(;i~.)' - Z- 
dur 
dr dr2 

Er = - 

ut. z d w  
e:= - - - -  r r dr 

where ur is the radial displacement of the plate. The circumferential stress resultant 

Nt is related to the radial stress resultant by 

d 
dr N: = - ( rNr )  

and the radial displacement ur is related to the radial stress resultant by 

ur = - ( r -  dNr + (1 - v)N,)  E h  dr 

A perturbation solution is developed by Chia [41] by expanding the transverse 

displacement w ,  the pressure qo, and the radial stress resultant Nr in terms of the 

displacement at the center of the plate wo. The transverse displacement is expanded 

as 

(H.lO) 



Appendix H: Total Potential Energy Change of an Isotropic Plate 

where 

13-7 

w1 = t 2  (H.ll) 

and 

(H.12) 

(H. 13) 

The radial stress resultant is expanded in terms of the center displacement as 

where 

and 

+ t + c2 + t3) 1 2  
6 1-nu  

32 = -(- 

(H.14) 

(H.15) 

(t + c2 + t3 )  (1 - v2) 160 - 1 0 4 ~  80 - 5 2 ~  

(H.16) 
1 - u  + 

7560 ( 1 - v 2  
34 = 

- 501 - 249y<4 - 123<5 - 39e6 - 9F7) 
1 - u  

The transverse pressure load is expanded in terms of the center displacement 

as 

16Eh4 wo 1 200 3 (- + -( 1 + v)( 173 - 73v)( h) ) 3(1- v2)a4 h 360 Qo = (H.17) 

For a Poisson’s ratio v = 0.3, the change in the total potential energy (Eq. H.l) 

was evaluated as a function of the normalized center displacement as 

Ga4 wo 2 wo 4 wO 6 Wo a wo 10 - = 2.930( F) +1.586(T) +0.1279( x) +0.003048( F) +8.00643-5( x) E h5 
(H.18) 
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Similarly, the transverse pressure (Eq. H.17) was evaluated as 

W O  200 3 -- q0a4 - 5.860( h) + 3.657( x) 
Eh4 (H.19) 

These equations were t8hen parametrically evaluated to determine the relationship 

between the applied transverse pressure and the change in total potential energy. 



Appendix I 

Ultrasonic Nondestructive Examination 

Every specimen in the experimental portion of this dissertation waa ultrason- 

ically examined before and after compression testing. The ultrasonic scanning, 

commonly known as C-scanning, was performed in the Structures and Composites 

Laboratory on equipment built and programmed by the author. The C-scans pro- 

vided a planar map of each specimen showing the lateral extent of delamination and, 

in particular, the depth in number of plies of the delamination at every point. The 

data were used before testing to precisely locate the teflon implants to apply strain 

gauges to the specimen surface, and to map the extent of delamination growth after 

testing. 

The C-scan equipment consists of: (a) an ultrasonic flaw detector (Kraut- 

kramer Branson USL 48), (b) an immersion tank and specimen positioning fix- 

tures, (c) a bridge with stepper motors to drive the ultrasonic transducers back 

and forth over the specimen (Trienco Model 705), and (d) a computer to perform 

data acquisition and control functions as well as to display the color output (IBM 
PC/AT with IBM data acquisition card). The C-scan waa operated by a FOR- 

TRAN computer program that controlled the movement of the transducer bridge, 

collected the data, and converted the data into a graphical display. 

The C-scan operation is based on generating a pulse of ultrasonic sound by a 

129 



Appendix I: Ultrasonic Nondestructive Examination 

transducer. The pulse travels through a coupling medium (water) to the specimen. 

At every interface between two dissimilar media, part of the signal will be reflected 

and part transmitted. Thus, there will be reflected signals from the top and bottom 

surfaces of the specimen as well as from any delaminated surfaces in between. In 

the pulse/echo method, the first signal returning from the top surface is used as 

a trigger and the time for subsequent signals to arrive is measured. Knowing the 

speed of sound in the material, the time of flight measurements are converted to 

thicknesses. The thicknesses are finally displayed as depths to the delamination at 

that point or, if there is no delamination, as the overall thickness of the specimen. 

130 



Appendix J 

Uncertainty Analysis 

SJ.1 Experimental Uncertainty 

Uncertainty in the experimental data occurs due to variations in specimen fab- 

rication, preparation, strain gauging, testing, data acquisition, and data reduction. 

The purpose of this analysis is to estimate the uncertainty in a measured load 

associated with a given value of strain. Each experiment had four strain gauges 

mounted away from the delamination whose purpose was to measure the far  field 

strain (gauges 2, 3, 4, and 9, Figure 6-2, Chapter 6). The response of these gauges 

should nominally be the same for a given experiment series, and thus may serve as 

replicate strain readings. For example, Figure J-1 shows the measured load versus 

strain from gauge 3 for each of the four experiments in Series 5. 

The method used to calculate the experimental uncertainty is to first fit a linear 

least squares regression line to the data, and then to estimate the experimental 

uncertainty from the differences, or residuals, between the regression line and each 

data point [55, 561. The estimate of the data experimental uncertainty, od, is 

calculated from 

131 



Appendix J: Uncertainty Analysis 132 

where ud is one standard deviation, Ni is the applied load per unit specimen width 

corresponding to a single data point, e, the associated strain, and n the number of 

data points (repeated subscripts imply summation). The estimated experimental 

uncertainties for gauges 2, 3, and 4 from each test series are summarized in Table J- 

1. Gauge 9 was not included because it was transversely oriented, and therefore 

substantively different from gauge 1, the gauge of primary interest in the delamina- 

tion studies. The estimated uncertainty for Test Series 4 gauge 3 is very large. One 

gauge from this series was clearly different from the others, indicating a systematic 

and not random variation. 

z 

f 
2000 

0 

-3000 -2000 - 1000 0 

Figure J-1 Load versus strain from each gauge 3 of Experiment Series 5. 
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Table J-1 Estimated Standard Deviation bd in the Data 

Gauge 2 Gauge 3 Gauge 4 

Test Series 4 43.7 604. 52.5 

Test Series 5 57.6 63.8 68.5 

Test Series 6 150. 126. 142. 

3.2 Prediction Uncertainty 

Random uncertainty in the model predictions is due to errors in the input data 

propagating through the code. The response surface method may be used to es- 

timate this uncertainty [57, 58, 591. The model predictions N are evaluated for 

different combinations of perturbations to the input data zi, termed the experi- 

mental design, where the perturbations are plus or minus one standard deviation 

oi of the input variable about its nominal mean value pi. The model responses so 

generated are used to fit a truncated Taylor’s series expansion in the input vari- 

ables, which is then used to estimate the prediction uncertainty. The Taylor’s series 

expansion of the model is 

The model prediction uncertainty ON for a calculated load N is estimated to first 

order from 

where the bi are one standard deviations of the input variables. 

The uncertainty in the model prediction was estimated for the particular case 

of Experiment 6-2. Table J-2 lists the means and standard deviations for fourteen 
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input variables considered in the analysis. The experimental design was a 2l4-lo 

fractional factorial design, meaning that 214 cases would have to be run to include 

every possible combination of plus and minus factors, but that only a 2'O fraction of 

the full design was run (16 cases). In this case only the linear terms of the Taylor's 

series expansion could be estimated. 

The model prediction uncertainties were estimated for four different loads: (a) 

the linear buckling load, (b) the nonlinear buckling load, (c) the growth load, and 

(d) the load at 1000 microstrain (postbuckling regime). The mean values of the 

model predictions and the associated one standard deviations are listed in Table J- 

3. The transverse pressure waa specifically not included in the uncertainty analysis 

even though the model is known to be sensitive to it since there was no way of 

estimating the uncertainty in it. For a graphical sense of the model prediction 

uncertainty, Figure J-2 shows the load versus strain responses corresponding to the 

sixteen Merent cases run in the uncertainty analysis. 

The uncertainty in the growth load is dominated by the uncertainty in the 

critical strain energy release rate which, as discussed in Chapter 7, is not well char- 

acterized for the material used in these experiments. By contrast, the estimated 

prediction uncertainty in the growth load without a contribution from the critical 

strain energy release rate is 54.9 lbf/in. Similarly, the uncertainty in the postbuck- 

ling load is dominated by the strain gauge thickness uncertainty. Without this 

contribution the uncertainty in the load at lo00 microstrain is 177. lbf/in. 
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Table 5-2 Input Variable Uncertainties in Experiment 6-2 
~ 

I Units Variable Cr U 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Contact law, K 

Sublaminate major semi-axis, u 

Sublaminate minor semi-axis, b 

Sublaminate angle with respect to loads, 8 

Ply thickness, t 

Longitudinal Young’s modulus, E, 

Transverse Young’s modulus, E, 

Poisson’s ratio, v,, 

In-plane shear modulus, G,, 

Longitudinal thermal cod .  of expansion, a, 

Transverse thermal c o d .  of expansion, a, 

Temperature change, AT 
Critical strain energy release rate, G, 

Gauge thickness, t ,  

1.E6 

1 .ooo 
0.750 

30 

5.563-3 

19.536 

1.3236 

0.30 

1.01E6 

0.50E-6 

18.OE6 

-180 

0.3 

0.003 

0.5E6 

0.033 

0.033 

2 

0.0933-3 

0.6536 

0.04E6 

0.01 

0.03E6 

0.017E-6 

0.6E6 

20 

0.05 

0.001 

q 
in 

in 

in 

degrees 

in 

psi 

psi 

- 
psi 

in-OF 

in-OF 

O F  

in 

in 

?3 
in 

~~ 

Table J-3 Prediction Uncertainty Analysis 

/AN bN Units I 

I 

, Linear buckling load, N i  619. 58.1 lbf/in 

Nonlinear buckling load, Nb 1012. 58.6 Ibf/in 

Growth Load, Ng 1763. 162. lbf/in 

Load at 1000 microstrain, NIooo 1541. 245. lbf/in 

I 

I 



Appendix J: Uncertainty Analysis 136 

Figure 5-2 Uncertirinty analyeis of Experiment 6-2 d c t i o n .  Load versus strain 
for the sixteen Merent combinations ag input variables. 


