3.2 AN OVERVIEW OF MAP/GLOBUS NO_x

J. P. Pommereau

Service d'Aeronomie, CNRS, BP 3 91371 Verrieres-le-Buisson, France

GLOBUS NO_x is a combined observation of nitrogen compounds by more than 20 experiments, from satellites, remote and in situ instruments on board balloons and ground observatories, within a short time period. Held in September 1985 above Southern France, the field campaign has been a technical success. Most of the observations have been achieved as anticipated. NO, NO₂ and relevant species and physical parameters involved in their photochemistry, were measured between 5 km and 40 km at several periods of the day. A first step of data interpretation which consists of instrumental intercomparisons, is now achieved. Several systematic biases between data of various origins which have appeared in the past, are now understood and reduced. A second step which deals with atmospheric photochemistry issues like diurnal cycles and budget, is now on its way. It will be the object of a close exchange between experimenters involved in the campaign and modelers.

	Balloon	Satellite	Ground	Total
NO _x	11	3	6	20
Other	11	3	5	19
Total	22	6	11	39

TABLE 1. Measurements Achieved During GLOBUS NO_x

Comparison of NO Measurements -Ground-based ZMR, FT spectrometer -Balloon-borne IR interferometer -SBUV -In situ chemiluminescence.

Figure 1. Intercomparison of NO column measurements during MAP/GLOBUS 1985, R. L. McKenzie, W. A. Matthews, Y. Kondo, R. Zander, P. Demoulin, P. Fabian, D. G. Murcray, F. J. Murcray, O. Lado-Bordowsky, C. Camy-Peyret, H. K. Roscoe, J. A. Pyle, R. D. McPeters, submitted to *J. Atmos. Chem.*, 1988.

NO₂ Remote Sensing Comparison: Solar Visible Occultation from Balloon

- -Three instruments on a common balloon gondola (Tokyo, IASB, CNRS)
- -Method overestimates NO₂ concentration because of temperature dependence of the absorption cross sections of the gas. Correcting factor between 12% and 18% in the stratosphere
- -Total uncertainty: 15% in the stratosphere, 30% in the troposphere

Figure 2. Balloon observations of nitrogen dioxide by visible occultation during GLOBUS NO_x, J. P. Pommereau, F. Goutail, N. Iwagami, K. Shibasaki, P. C. Simon, W. Peetermans, J. P. Naudet, P. Rigaud, D. Huguenin, submitted to J. Atmos. Chem., 1988.

Figure 3. Nitrogen dioxide data comparison with infrared and visible balloon remote sensing measurements during GLOBUS NO_x, J. Lenoble, W. P. Chu, D. G. Murcray, O. Lado-Bordowski, C. Camy-Perret, A. Perring, J. P. Pommereau, F. Goutail, K. Shibasaki, N. Iwagami, and P. C. Simon, submitted to Quad. Ozone Symp., 1988.

Figure 4. Measurements of column abundances of nitrogen dioxide, NO_2 , from the ground during the GLOBUS NO_x campaign, R. Zander, P. Demoulin, G. Roland, W. A. Matthews, P. V. Johnston, J. P. Pommereau, N. Iwagami, K. Shibasaki, submitted to Quad Ozone Symp., 1988.

Figure 5. Comparison of stratospheric and mesospheric ozone profiles obtained by groundbased and satellite observations, J. de La Noe, M. Koike, T. Ogawa, P. Marché, submitted to Quad Ozone Symp., 1988.

-In situ UV Photometer: 3% Total Uncertainty

- -Remote Visible Occultation: 5-10%
- -SAGE II: 10%

-In situ Gas Phase Chemiluminescence: 10%

- -Umkehr: Layers 4 and 5, 10%; Layer 6, 15%
- -SBUV: 10% Average, Peak Systematically Lower
- -EXOS-C BUV: 10-15%
- -Brewer-Mast Sondes: 5-10% between 18 and 25 km, 15-20% above
- -Solar UV Occultation: Systematic Underestimation by 30-35%

Figure 6. Measurements of stratospheric ozone during the MAP/GLOBUS NO_x campaign, D. Robbins, P. Aimedieu, J. Pelon, J. P.Pommereau, F. Goutail, N.Iwagami, K. Shibasaki, T. Ogawa, M. Koike, P.Marché, J. P. Naudet, P. Rigaud, D. Huguenin, J. Lenoble, G. Maddrea Jr., submitted to J. Geophys. Res., 1988.

NO Vertical Profiles by In situ Chemiluminescence

NO Diurnal Variation

-Variation observed in situ from sunrise until sunset around 32 km with two balloon flights -From rate of increase of NO during morning: [N₂O₅] at the end of the night = 3.9 ± 1.5 ppbv -NO decrease at the end of afternoon at SZA > 80°, requires decrease of J_{NO2}

Figure 8. Diurnal variation of nitric oxide at 32 km: measurements and interpretation, Y. Kondo, W. A. Matthews, P. Aimedieu, D. E. Robbins, J. Geophys. Res., in press, 1988.

-Agreement between NO₂ Predicted and Measured (Night, Morning, Evening) -Much More NO than Predicted, Partitioning between NO and NO₂ differs from that

Observed, Difference Increases at High Altitude -NO decay in the Afternoon at SZA > 80°. JNO₂ Reduced by Multiple Scattering?

Figure 9. Diurnal variation of stratospheric NO and NO₂ from MAP/GLOBUS 1985, J. P. Naudet, M. Pirre, R. Ramaroson, P. Rigaud, P. Fabian, M. Helten, N. Iwagami, K. Shibasaki, T. Ogawa, Y. Kondo, W. A. Matthews, J. P. Pommereau, F. Goutain, P. C. Simon, W. Peetermans, submitted to Quad. Ozone Symp., 1988.

A NO_x Source in the Upper Troposphere?

-NO_x Observed Larger than Predicted by Factor 3 to 10

-Models Include Mean Transport from Stratosphere

-Local Transport from 20 km at Least, Would Have Left Signature on Potential Temperature and Ozone

-Transport from Surface Level Would Require Much More than NO_x Lifetime [Kley et al., 1981]

Conclusion: Source present in Upper Troposphere

Figure 10. Observed and predicted NO_x below 20 km [Logan et al., 1981; Kley et al., 1981]. A NO_x source in the upper troposphere?, J. P. Pommereau, F. Goutail, Y. Kondo, W. A. Matthews, M. Helten, submitted to Quad. Ozone Symp., 1988.

CONCLUSIONS

Experimental

- Better evaluation of NO, NO₂, O₃ experimental uncertainties
 Instruments improvements: Result of previous campaigns
- Systematic errors found and reduced
- Consistency of all NO data after correction of chemiluminescence data?
- Further comparison between IR and visible ground-based NO2 instruments still required
- Interpretation of NO_x measurements by chemiluminescence and converter still to come

NO_x Photochemistry

- Excess of NO compared to NO₂ in the stratosphere. Significant? Mechanism? NO decrease in the afternoon after SZA 80°. J_{NO_2} decrease? Effect of multiple scattering?
- Source of NO_x in the upper troposphere. Aircraft emission? Lightning
- Interpretation will follow on. Data base (NOx constituents, related species and atmospheric parameters) available for further studies