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7.2 SMALL-SCALE STRUCTURE AND TURBULENCE OBSERVED IN MAP/WINE
T. A. Blix

Norwegian Defence Research Establishment
P. O. Box 25
N-2007 Kjeller, Norway

During MAP/WINE small-scale structure and turbulence in the mesosphere and lower
thermosphere was studied in situ by rocket-borne instruments as well as from the ground by
remote sensing techniques. The eight salvoes launched during the campaign resulted in a
wealth of information on the dynamical structure of these regions. The paper reviews the
experimental results and discusses their interpretation in terms of gravity waves and
turbulence. It is shown that eddy diffusion coefficients and turbulent energy dissipation rates
may be derived from the in situ measurements in a consistent manner. The observations are
also shown to be consistent with the hypothesis that turbulence can be created by a process of
gravity wave saturation.
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(A) CONSERVATION OF ENERGY {THRANE ET AL, 1985)

(B) STRUCTURE FUNCTION {HOCKING, 1985: TATARSKII, 18631, 1971)

THE STRUCTURE FUNCTION CONSTANT C 2 IS GIVEN BY:

E
2 2 2
cE2 =a¥ne '3 AND N = Ke {-:—:] . {Z—j . {:—j =K B MEZ
WHERE :
aE
Mg < Bz

FROM THE EQUATIONS ABOVE ONE CAN OBTAIN (HOCKING, 1985: BLIX, 1988):

-3/2 3/2
€ = [azn'Ria] [C'E vy H’E

CRITICAL QUESTIONS:
(1) WHAT IS THE RICHARDSON NUMBER ?
HOCKING (1985): R, = R (crit.) = 0.25
WEINSTOCK (1978): R, = 0.8
(2) IS THERE ANY RELATION BETWEEN VARIATIONS IN THE VERTICAL AND
HORI20NTAL DIRECTION ?
HOCKING (1985): QE/3x = 3E/dy = 0

BLIX (1888): JE/dx = BE/dy = BE/d2

Figure 1. Procedure for deriving turbulence parameters. Good agreement between the two
models (A and B) is obtained using R; = 0.8 instead of 0.25, and aa;= aa?= %inswad of

d_d
g:ay: 0.
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Figure 2. € and K derived from the PIP and BUGATTI flights. Energy dissipation rates €
(left panel) and eddy diffusion coefficients K (right panel) derived from the positive ion probe
(PIP) and the BUGATTI mass spectrometer flown during MAP/WINE. Note the minimum in
turbulence activity gt or below the mesopause region (vertical bars in the figure).
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Figure 3. Upper panel: Comparison of spectra at neutral density fluctuations observed with
the positive ion probe and the BUGATTI mass spectrometer during flight M-T5 31 Jan 84 at
95 km height. Note break in spectrum from —5/3 to —7 at a scale of about 30 m. Lower panel:
Spectrum of ion density fluctuations observed with the positive ion probe during flight M-T5
31 Jan 1984 at 77 km height. Note break in spectrum from —5/3 to —7 at a scale of about 20 m.
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TYPICAL SCALES OF THE OBSERVED TURBULENCE

A MoTE 31)aN 1982
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Figure 4. Transition scale L, (break in spectral slope from 5/3 to —7) and buoyancy length
scale Lp (derived from the formula shown) versus height from the M-T5 flight 31 Jan 1984.
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Figure 5. Typical wind corner observed with the foil cloud (chaff) M-C15 on Feb 10 1984.
Wind corner at 73 km height is characterized by a minimum in wind speed associated with a
sharp change in wind direction with height.
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Figure 6. An example showing the correlation between ion density fluctuations (solid curve),
wind comers (light arrows) and PRE echoes (heavy arrows). The heavy sloping line is the
minimum intensity of ion density fluctuations that can be observed by PRE for normal noise
intensity.
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Figure 7. Coincidence rates (in %) between the occurrence rate of PRE echoes, ion density
fluctuations and wind corners obtained after a statistical analysis of the salvo launchings during
MAP/WINE. One can see that, for example, 80% of the wind corners are associated with PRE
echoes, while 33% of the ion density fluctuations are associated with wind corners.
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GRAVITY WAVES

. GRAVITY WAVES CREATE CONVECTIVE INSTABILITIES IN PREFERENCE TO DYNAMIC
INSTABILITIE FOR HIGH FREQUENCY WAVE MOTIONS

@ LINEAR THEORY AND MONOCHROMATIC WAVES

@ THE CRITERIUM FOR CONVECTIVE INSTABILITY 1S:

87/8z + M € 0 OR u' > e-U

WHERE

' IS THE ADIABATIC LAPSE RATE

v’ IS THE HORIZONTAL PERTURBATION SPEED

c 1S THE HORIZONTAL PHASE SPEED OF THE WAVE
UD IS THE MEAN WIND

THE INTRINSIC PHASE VELOCITY C-Uo CAN BE FOUND FROM:

t:-Uu = (u)alzm)\z

WHERE )\Z IS THE VERTICAL WAVELENGTH

Figure 8. Simple outline of the saturation mechanics for gravity waves.
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Figure 9. Comparison of Richardson numbers R; derived from the active falling sphere M-M1
and ion density fluctuations AN;/N; (%) derived from the ion probe onboard M-T5 (31 Jan
1984). Good correlation between regions of convective instabilities and significant ion density
fluctuations can be seen.
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Figure 11. Results of a statistical investigation of the gravity wave saturation criteria (d = (¢ -
ug) — u’ = 0) and turbulence. (a) Histogram showing number of cases as a function of d in
intervals of 5 m/s. (b) Mean intensity of ion density fluctuations as a function of d.

CONCLUSIONS

o Previous disagreement between € and K calculated using two different models have been
explained.

 There is a minimum in turbulence at or below the mesopause region.

o There is a close relation between the extent of the intertial subrange, as determined by Ly and
1,, and the measured turbulence intensities.

¢ The wind and temperature fields derived from the meteorological rocket measurements have
demonstrated that gravity waves are a dominant feature of the mesosphere in winter.

o Turbulent layers are associated with regions of convective and dynamic instabilities.

o The criterion for gravity wave saturation is often fulfilled in the high latitude winter
mesosphere.

o There is a positive correspondence between strong turbulence and regions of radar echoes.

¢ Wind corners are predominantly associated with radar reflections (not with turbulence).





