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Abstract

The Jelinski-Moranda and Geometric models for sofltware reliability failed the consistency test
which we proposed. We challenged thesc models to take data which comes from a process which they
have correctly modeled and to make predictions about the rcliability of that process. We found that
cither model, given data precisely from a process it correctly models, will usually fail to make good
predictions.  We attribute these problems to randomness in the data used as input to the models and
indicate a remedy for lh/is lack of robustness, namely replication of data.

Additional Key Words and Phrascs: Growth Models, Softwarc Reliability, Simulation, and Replication

0. Introduction

The Jelinski-Moranda 1] and the Geometric {2] are famous and widely-used models in the ficld
of soltware reliability. Thesc models assume the software being modeled is a Poisson Process with
constant failure rate between two consccutive failures. Both models use the scquence of interfailure
times from the debugging process to make maximum likelihood estimates of parameters associated with
the models. These estimated parameter valucs are then used o calculate estimates of reliability meas-
urcs such as MTTF of the dcbugged product. That is, they predict the future performance of the
softwarc based on the dawa from the debugging process. The Jelinski-Moranda model is oftcn criticized
for requiring an identical failure rate for all bugs but the Geometric model is not subject to this crili-
cism. We will show that cven if we assume cither modcl correctly modcels reliability for a picce of
software, we still cannot expect good predictions from that. model. Also, we will demonstrate the
benefits of replicated debugging as a remedy for this problem. It should also be noted that all soltware
reliability modcls potentially suffcer from the same problem and thosc that have this problem should
benefit from replication,

Both modcls arc intended to be used as prediction systems as described in Aldel-Ghaly, Chan
and Litdewood [3). This paper characterizes a prediction systen as consisting of three stages, namely a
probabilistic modcl, a statistical infcrence procedure for cstimating model parameters and a prediction
procedure for predicting future interfailure times. All three components are seen as critical 1o the pred-
iction system. The problem we address is in the sccond stage of the prediction process.

This rescarch was in pant supported by NASA Grant 1-750.
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1.  Maximum Likelihood Equations

The Jelinski-Moranda model assumes that there are N initial bugs in the software, that cach bug
has the common failure ratc of ¢, and that the failure rate of the program is the numbcer of bugs present
multiplicd by ¢. Thus, if i - 1 bugs have been removed, the failure rate is A;= (N-i+1) * ¢. If n
errors have been removed then interfailure times £4,2,, + -+ ,f, have been gencrated and these may be
inscrted into the following likelihood equation which corresponds 1o this model.

L(tpta, - - otV =[O (V=i +1)xe 4]

i=1

This likelihood cquation may be maximized by letting N = N and ¢ = &) where N and (f) form the
solution of the following cquations. N and ¢ are cstimators of Nand ¢ .
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The Geometric model assumcs that the failure ratc after removing i-1 bugs is A; =0’ 1. Again
the data of n interfailure times is inscrted into the corresponding likelihood cquation.
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This likelihood may be maximized by letting o = & and 3 = § where & and 3 form the solution (o
the following equations and arc uscd as cstimators.
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We show in following scctions that neither of these models is robust. That is if you were (o
debug the same program twice, generating two scquences of interfailure times, then cach model may
give two very different cstimates for its paramelters.



- 3 —
2. Simulation of Interfailure Times

Since these models each describe a Poisson Prociss with constant failure rate A;, the probability
that the next interfailure time is less than t is 1—e %, Thus we may obtain an interfailur time by
generating an uniformly distributed random number r between 0 and 1 and solving r=l-e¢ ™"
(4].

i for ti

3. Testing the Models
A.  Jelinski-Moranda Model tests

We assumed a piece of software which has its reliability correctly modeled by Jelinski-Moranda,
with parameters N and ¢ fixed. Thus A;=N* ¢ and we used the simulation process to generate I,
decreased A; by ¢ to get A, and simulated to get f,. After iterating n times we had data representing
n interfailure times from one debugging run.

The simulated interfailure fimes were used as input to the model and N and ¢ were calculated.
The predicted values of N and ¢ usually differed greatly from the seeded values and there were large
variations among the predictions from different simulations for the same seeded values. Each of the
following histograms was constructed by generating 128 sets of interfailure times for each value of n
with N fixed at 100 and ¢ fixed at 0.001. The number 128 was chosen arbitrarily and appears to be
large enough for our purposes. Each graph is a plot of the probability of N versus V.

Figure 1.b shows that for N = 100, ¢ =.001 , and n = 30, N falls between 95 and 105 less
than 5% of the time. For the same graph, N falls between 85 and 115 approximately 10% of the
time. The other graphs tell a similar discouraging story. As expected, the best estimates are given by
the case where n = 70, but even then only about 55% of the estimates are within 15 of 100. We also
point out that since 70 errors have been removed, we are actually only trying to estimate the remaining
30; thus our estimates are off by 50% or more 45% of the time.

These results duplicate those of a simulation done by Joe and Reid [5]. We conclude that the
modcl is very sensitive to random variations in the input data even when the data is precisely what the
model says it should be. Thus, the Jelinski-Moranda model should not be used to make predictions
about sofiware based on a single sequence of interfailure times generated by one debugging run,

B. Geometric Model tests

The failure rate for the Geometric model is given by A;=c* B¢~1, for cach i. We assigned o =
0.1 in order to have the same initial failure rate as that used in the Jelinski-Moranda tests. We chose [
= 0.8 as a compromise betwéeen the 0.95 which Moranda (2] found for a set of real data and the 0.2 to
0.3 values which appear to be representative of the Nagel [6,7] and Dunham (8,9] data. Data was simu-
lated using the changing A; values and the model was used to predict A, +1» the failure rate of the pro-
duct after n bugs have been removed. Once again the results of 128 repetitions for each value of n are
represented by histograms. In these graphs the y-axis represent the probability of a prediction having a
certain percentage of error relative to the correct value of A, ;. The values of n where chosen to be
large enough to illustrate our point but small enough to avoid precision problems in the calculations.,

In these histograms the 0% bar represents the proportion of the estimates which fall within plus
or minus 10% of 7»,,+1. For n = 10, only (approximately) 12% of the estimates come within 10% of
the desired value. Also for n = 20, only (approximately) 46% of the estimates come within plus or
minus 30% of the correct value. This indicates that the Geometric Model also has trouble handling
the variations in the data from one debugging to the next.
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4.  Replicated testing

Replicated debugging was introduccd in Nagel [6,7] and was used with increased automation in
Dunham (8,9]. Rather than attempt to summarize these papers here, we refer the interested reader to the
originals. We do notc that thesc papers used multipic programs writien to satisly a common
specification in order to producc high quality replicated data which can be used to argue against the
uniform failure rates of the Jelinski-Moranda modecl but appear to support the exponential decline in the
failurc rates associated with the Geometric model. We believe that replication is itsclf a very powerful
and possibly necessary tool which has not yct been {ully appreciated in the field of software reliability.

By replicated debugging we mcan the process of repeatcdly debugging the same picce of software
or more precisely the following. Given a picce of soltwarc, make r copics and dcbug cach of them
independently (cxcept for shared fixcs), removing the bugs {rom cach replicate as they are discovered.
For simulation purposes we chosc to stop cach replicate after gencrating an interfailure times sequence
of length n, thus r replicates generated r scquences of interfailare times of the form ¢ jobajok3jeeiknj
for 1<= j <=r. Both Nagel and Dunham uscd random inputs from a known input distribution to gen-
crale test cases and counted test cascs between failures as the interfailure time. They did not however,
remove a fixed number of bugs (rom cach replicate but rather terminated cach replicate after a fixed
number of test cases or in some cascs, for cconomic reasons, when a rare bug was encountercd. Our
simulation also represents situations where interfailure times arc measurcd in clock time or in calendar
time.

In order to get simulated data rcpresenting replicated debugging of a particular model, we
assigned values to the necessary paramcter and repcatedly simulated scquences of n interfailure times
for that model until we had r such sequences. For casc of calculation we reduced this r X n matrix of
data to a singlet sequence of average interfailure times by letting

r ..
L = —5 for lI<=i<=n,
j=t 7

When we repeated the tests for both modcls using interfailure data which was the average of r
replications instead of from a singlc debugging, we observed that the modcls performed monotonically
better as r incrcased. Each of the histograms in figures 3 and 4 was constructed by generating 128 scts
of averaged interfailure times. These histograms when considered with those in the previous section
indicate that the models require more than the normal debugging daw in order o give good predictions
and that they also show that replication offers a remedy. In particular, figure 3.d.1 indicates that with
30 replicates the Jelinski-Moranda model with n = 70 gives cstimates between 95 and 105 about
80% of the time and almost always gives cstimates between 85 and 115,
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5.  Confidence Intervals in Predictions

If we wish to quantily our confidence in the predictions of the modcls, then we can ook at
confidence intervals. If we wish to be 90% certain that the cstimate is within 10% of the value of the
paramcter we are rying o predict, then we can achieve this by increasing r or n.

The following graph shows the (n,r) pairs which combinc to give cstimates within 10% ol the
valuc of N-n for the Jelinski-Moranda modcl with N = 100 and ¢ = 001, Tt is based on 2,500 repeti-
tions for cach (n,r) pair displaycd. This graph shows that good predictions arc possible for simulated
data with replication and it also indicatcs that without replication onc should not expect good predic-
tions,
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Fig. 5 Confidence Interval Graph

A similar graph could be constructed for the Geometric Model. 1t too would support the need lor
replication and show that by increasing cither n or r onc can obtain better estimates. The Nagel cxperi-
mental design gencrates replicated daia cfficiently by cxploiting failure information and fixes discovered
during the normal debugging process. This process was automated by Dunham in order to gather repli-
cated data cven more clficiently. Further, this could run in the background or in parallel with the
debugging cffort, and thus it will be less expensive in both time and moncy to increase r rather than
n.




6.  Summary

Neither the Jelinski-Moranda model nor the Geometric model should be used to make predictions
without replication. This does not guarantee that either model with replication will give good estimalcs,
since the goodness of fit problem has not been addressed here and previous cfforts to validate these
models have not used replicated data and hence are suspect. It is clear from this work that random
chance is likely to dominate if onc uses only the data from a single debugging run. It is also claimed
that the field of software reliability has been hindered by the random nature of the data and that replica-
tion offers a solution to this problem by removing the randomness from the data.
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