NASA TN D-501

NASA TN D-501

711-64 199035 168

TECHNICAL NOTE

D-501

VERY RESTRICTED FOUR-BODY PROBLEM

Su-Shu Huang

Goddard Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

September 1960

(NASA-TN-D-501) VERY RESTRICTED FOUR-BODY PROBLEM (NASA. Goddard Space Flight Center) 16 p

N89-70979

Unclas 00/64 0199035

VERY RESTRICTED FOUR-BODY PROBLEM

C

by

Su-Shu Huang

SUMMARY

First, a state of motion of three finite bodies m_1 , m_2 , m_3 is idealized by an approximation to the law of mechanics such that m_2 and m_3 revolve around each other in circular orbits and that their center of mass revolves around m_1 also in a circular orbit. The motion of a fourth body of an infinitesimal mass is then studied in a similar manner, as in the restricted three-body problem.

CONTENTS

Summary	i
INTRODUCTION	1
AN INTEGRAL OF THE EQUATION OF MOTION FOR THE FOURTH BODY	1
ZERO-VELOCITY SURFACES	4
DOUBLE POINTS OF THE SURFACES	5
DEGENERATION OF THE CRITICAL ZERO-VELOCITY SURFACES	9
DISCUSSION	12

VERY RESTRICTED FOUR-BODY PROBLEM

INTRODUCTION

In another paper* the general behavior of an artificial satellite in the earth-moonsun system was studied in terms of two three-body problems. In the present paper some justification will be provided for that approach by treating dynamically an idealized case of motion of an infinitesimal body of mass m in a system of three bodies m_1 , m_2 , and m_3 so arranged that the center of mass, 0', of m_2 and m_3 is revolving around the center of mass, 0, of the entire system in a circular orbit and m_2 and m_3 themselves are revolving around 0' also in circular orbits. Such a state of motion of the three bodies is obviously possible only in the form of approximation. However, if

$$m_1 >> m_2 + m_3 >> m$$

and if the separation A between m_1 and 0' is very much greater than that separation a between m_2 and m_3 , both of these two conditions being true in the case of an artificial satellite in the earth-moon-sun $(m_2-m_3-m_1)$ system, the approximation will deviate from the actual solution of mechanics very little.

AN INTEGRAL OF THE EQUATION OF MOTION FOR THE FOURTH BODY

Further assume that the three bodies m_1 , m_2 , m_3 always remain in the same plane and let the distances of m_1 and 0' from 0 be A_1 and A_2 , and those of m_2 and m_3 from 0' be a_1 and a_2 . Now choose a rectangular coordinate system with its origin at 0 and its three axes ξ , η , ζ fixed in space, the ζ -axis being perpendicular to the plane of the three finite bodies. Hence the coordinates of the four bodies may be written as $m_1(\xi_1,\eta_1,0)$, $m_2(\xi_1,\eta_2,0)$, $m_3(\xi_3,\eta_3,0)$, and $m(\xi,\eta,\zeta)$. The equations of motion of the infinitesimal body m are given by

$$\frac{d^2\xi}{dt^2} = -Gm_1 \frac{\xi - \xi_1}{r_1^3} - Gm_2 \frac{\xi - \xi_2}{r_2^3} - Gm_3 \frac{\xi - \xi_3}{r_3^3} , \qquad (1)$$

^{*}Huang, S.-S., "Some Dynamical Properties of the Natural and Artificial Satellites," NASA Technical Note D-502.

$$\frac{d^2 \eta}{dt^2} = -Gm_1 \frac{\eta - \eta_1}{r_1^3} - Gm_2 \frac{\eta - \eta_2}{r_2^3} - Gm_3 \frac{\eta - \eta_3}{r_3^3}, \qquad (2)$$

$$\frac{d^2\zeta}{dt^2} = -Gm_1 \frac{\zeta}{r_1^3} - Gm_2 \frac{\zeta}{r_2^3} - Gm_3 \frac{\zeta}{r_3^3}, \qquad (3)$$

where r_1 , r_2 , r_3 represent the distances of the infinitesimal body m from m_1 , m_2 , and m_3 , respectively.

Let Ω_1 be the angular velocity with which the m_2 - m_3 system revolves around 0, and Ω_2 that with which m_3 revolves around 0. It can be easily seen that

$$\xi_1 = -A_1 \cos \Omega_1 t$$
, $\eta_1 = -A_1 \sin \Omega_1 t$; (4)

$$\xi_2 = A_2 \cos \Omega_1 t - a_1 \cos \Omega_2 t$$
,

$$\eta_2 = A_2 \sin \Omega_1 t - a_1 \sin \Omega_2 t; \qquad (5)$$

and

$$\tilde{\xi}_3 = A_2 \cos \Omega_1 t + a_2 \cos \Omega_2 t$$
,

$$\eta_3 = A_2 \sin \Omega_1 t + a_2 \sin \Omega_2 t. \qquad (6)$$

To the approximation involved in the assumption of circular motions of the three finite bodies, we have, from the result of the two-body problem,

$$\Omega_1 = \left[\frac{G(m_1 + m_2 + m_3)}{A^3} \right]^{\frac{1}{2}}, \tag{7}$$

and

$$\Omega_2 = \left[\frac{G(m_2 + m_3)}{a^3} \right]^{\frac{1}{2}} . \tag{8}$$

Obviously,

$$A = A_1 + A_2$$
, and $a = a_1 + a_2$. (9)

Next, choose a new rectangular coordinate system xyz centered at 0' with the x-axis revolving with m_2 and m_3 and with the z-axis parallel to the ζ -axis. The equations of transformation from the old one to the new one can easily be found to be

$$\xi = A_2 \cos \Omega_1 t + x \cos \Omega_2 t - y \sin \Omega_2 t, \qquad (10)$$

$$\eta = A_2 \sin \Omega_1 t + x \sin \Omega_2 t + y \cos \Omega_2 t, \qquad (11)$$

$$\zeta = z. (12)$$

The coordinates of m_1 , m_2 , and m_3 in the new system are given by

$$x_1 = -A \cos(\Omega_2 - \Omega_1) t$$
, $y_1 = A \sin(\Omega_2 - \Omega_1) t$, $z_1 = 0$; (13)

$$x_2 = -a_1$$
, $y_2 = 0$, $z_2 = 0$; (14)

and

$$x_3 = a_2$$
, $y_3 = 0$, $z_3 = 0$. (15)

Substituting Equations 4 through 6 and 10 through 12 in Equations 1 to 3, and utilizing Equations 9 and 13 through 15 give the following result:

$$\frac{d^2x}{dt^2} - 2\Omega_2 \frac{dy}{dt} = \Omega_2^2 \left(x - \frac{A_2}{A} \frac{\Omega_1^2}{\Omega_2^2} x_1 \right) - Gm_1 \frac{x - x_1}{r_1^3} - Gm_2 \frac{x + a_1}{r_2^3} - Gm_3 \frac{x - a_2}{r_3^3} , \quad (16)$$

$$\frac{d^2y}{dt^2} + 2\Omega_2 \frac{dx}{dt} = \Omega_2^2 \left(y - \frac{A_2}{A} \frac{\Omega_1^2}{\Omega_2^2} y_1 \right) - Gm_1 \frac{y - y_1}{r_1^3} - Gm_2 \frac{y}{r_2^3} - Gm_3 \frac{y}{r_3^3} , \qquad (17)$$

$$\frac{d^2z}{dt^2} = -Gm_1 \frac{z}{r_1^3} - Gm_2 \frac{z}{r_2^3} - Gm_3 \frac{z}{r_3^3} , \qquad (18)$$

where

$$r_{1}^{2} = (x - x_{1})^{2} + (y - y_{1})^{2} + z^{2},$$

$$r_{2}^{2} = (x + a_{1})^{2} + y^{2} + z^{2},$$

$$r_{3}^{2} = (x - a_{2})^{2} + y^{2} + z^{2}.$$
(19)

If a function U is defined as

$$U(x,y,z) = \Omega_2^2 \left[\frac{1}{2} (x^2 + y^2) - \frac{A_2}{A} \frac{\Omega_1^2}{\Omega_2^2} (x_1 x + y_1 y) \right] + \frac{Gm_1}{r_1} + \frac{Gm_2}{r_2} + \frac{Gm_3}{r_3}, \quad (20)$$

then Equations 16 through 18 assume the simplified form

$$\frac{d^2x}{dt^2} - 2\Omega_2 \frac{dy}{dt} = \frac{\partial U}{\partial x} , \qquad (21)$$

$$\frac{d^2y}{dt^2} + 2\Omega_2 \frac{dx}{dt} = \frac{\partial U}{\partial y} , \qquad (22)$$

$$\frac{\mathrm{d}^2 z}{\mathrm{dt}^2} = \frac{\partial U}{\partial z}, \qquad (23)$$

which can be integrated to give, for each epoch of an infinitesimal time-interval,

$$V^2 = 2U + constant. (24)$$

where v is the magnitude of velocity in the v_{yz} system of reference. Equation 24 plays a role in the present problem, just as Jacobi's integral in the restricted three-body problem.

ZERO-VELOCITY SURFACES

It follows from Equations 20 and 24 that the zero-velocity surface can be defined by

$$\frac{\Omega_2^2}{2} (x^2 + y^2) - \frac{A_2}{A} \Omega_1^2 (x_1 x + y_1 y) + \frac{Gm_1}{r_1} + \frac{Gm_2}{r_2} + \frac{Gm_3}{r_3} = constant.$$
 (25)

Since $z_1 = 0$,

$$x_1x + y_1y = rA\cos\Theta, \qquad (26)$$

where Θ is the angle between 0'm and 0'm₁. In the case of the earth-moon-sun system, it is the angle subtended by the artificial satellite and the sun at 0'. Thus, the zero-velocity surfaces are not fixed even in the rotating coordinate system; rather, they change with the position of m_1 . However, an instantaneous (or osculating) zero-velocity surface can be defined for each position of m_1 . It is in this sense that zero-velocity surfaces will be discussed. Indeed, the general behavior of the motion in the very restricted four-body problem can be understood by these osculating zero-velocity surfaces just as that of the motion in the restricted three-body problem by the zero-velocity surfaces themselves.

With the aid of Equations 7, 8, and 26, Equation 25 becomes

$$\frac{1}{2} \frac{(m_2 + m_3)(x^2 + y^2)}{a^3} - \frac{m_1 r}{A^2} \cos \Theta + \frac{m_1}{r_1} + \frac{m_2}{r_2} + \frac{m_3}{r_3} = \text{constant}.$$
 (27)

Since the motion of m is of interest only when r << A, the term $1/r_1$ in Equation 27 can be expanded in terms of spherical harmonics, $P_n(\cos \Theta)$; that is,

$$\frac{1}{r_1} = \frac{1}{A} \sum_{n=0}^{\infty} \left(\frac{r}{A}\right)^n P_n(\cos \Theta) . \tag{28}$$

Taking only the first three terms in the right side of Equation 28 and substituting them in the place of $1/r_1$ in Equation 27, we obtain

$$\frac{(m_2 + m_3)(x^2 + y^2)}{a^3} + \frac{m_1 r^2}{A^3} (3 \cos \Theta - 1) + \frac{2m_2}{r_2} + \frac{2m_3}{r_3} = \text{constant},$$
 (29)

where the term $2m_1/A$ has been absorbed in the constant term.

If a is now taken as the unit of length and $m_2 + m_3$ as the unit of mass, Equation 29 reduces to

$$x^2 + y^2 + \frac{m_1 r^2}{A^3} (3 \cos^2 \Theta - 1) + \frac{2(1-\mu)}{r_2} + \frac{2\mu}{r_3} = C,$$
 (30)

where

$$\mu = \frac{m_3}{m_2 + m_3} \tag{31}$$

and C is a constant of integration. This differs from the zero-velocity surfaces of the restricted three-body problem only by the addition of a small perturbing term that contains the factor m_1/A^3 .

DOUBLE POINTS OF THE SURFACES

Consider the change in position of the three double points L_1 , L_2 , L_3 which are located on the x-axis when the perturbing term vanishes. Since this is now limited to the xy plane,

$$\Theta = \theta - \theta_0 , \qquad (32)$$

where θ and θ_0 are the respective angles that the positive x-axis makes with the vectors 0'm and 0'm₁. In the case of the earth-moon-sun system, θ_0 changes from 0 to 2π in a period of the lunar month. Therefore, in a time-scale of a few hours θ_0 may be regarded as constant.

Substituting Equation 32 into Equation 30, we obtain after reduction

$$F(x,y) = (1 + \beta)(x^2 + y^2) + 3\beta \left[(x^2 - y^2) \cos 2\theta_0 + 2xy \sin 2\theta_0 \right] + \frac{2(1 - \mu)}{r_2} + \frac{2\mu}{r_3} - C = 0 ,$$
 (33)

where

$$\beta = \frac{1}{2} \frac{m_1}{A^3} . \tag{34}$$

The conditions for double points are

$$\frac{1}{2} \frac{\partial F}{\partial x} = \left[1 + (1 + 3 \cos 2\theta_0) \beta \right] x + 3(\beta \sin 2\theta_0) y$$

$$- \frac{(1 - \mu)(x - x_2)}{r_2^3} - \frac{\mu(x - x_3)}{r_3^3} = 0$$
(35)

and

$$\frac{1}{2} \frac{\partial F}{\partial y} = \left[1 + (1 - 3\cos 2\theta_0) \beta \right] y + 3(\beta \sin 2\theta_0) x$$

$$- \frac{(1 - \mu) y}{r_2^3} - \frac{\mu y}{r_3^3} = 0 , \qquad (36)$$

from which all five double points can be determined on the xy plane. Double points are no longer the particular solution of the problem because they change with θ_0 and also because the problem is being treated only approximately (by taking only the first few terms in the series expansion of $1/r_1$, etc.).

Since β is small, its second and higher orders can be neglected. It appears from Equation 36 that the three double points which approach the x-axis when β = 0 have their y-coordinates of the order of $\beta \sin 2\theta_0$ when $\beta \ddagger 0$. Thus, the term $3(\beta \sin 2\theta_0)$ y in Equation 35 is of the order of $(\beta \sin 2\theta_0)^2$ and can be neglected. Hence, Equation 35 is reduced to

$$\left[1 + (1 + 3\cos 2\theta_0)\beta\right] x - \frac{(1 - \mu)(x - x_2)}{r_2^3} - \frac{\mu(x - x_3)}{r_3^3} = 0,$$
 (37)

which differs from its counterpart in the restricted three-body problem only by the factor $(1 + 3 \cos 2\theta_0) \beta$.

Once the x-coordinates of the three double points are derived from the solution of Equation 37, their y-coordinates can be obtained by

$$\left(\frac{\mathrm{dy}}{\mathrm{d}\beta}\right)_{\beta=0} = \mathbf{F_i} \sin 2\theta_0 , \qquad (38)$$

where

$$F_{i} = \begin{bmatrix} \frac{3x}{\frac{1-\mu}{r_{2}^{3}} + \frac{\mu}{r_{3}^{3}} - 1} \end{bmatrix}_{L_{i}},$$

which follows directly from Equation 36 except that now the values of x, r_2 , and r_3 are taken at one of the three double points $L_i(i=1,2,3)$ for the case $\beta = 0$.

The change in position of the three double points with β and θ_0 can be most conveniently seen by first taking the derivatives of their coordinates with respect to β and

setting $\beta = 0$. Consider the three points separately: (1) L_2 between $+\infty$ and \times_3 , (2) L_1 between \times_3 and \times_2 , and (3) L_3 between \times_2 and $-\infty$.

(1) Let the distance from m_3 in the x-direction to the double point L_2 be represented by ρ . Then Equation 35 becomes, by neglecting the second and higher orders of $\beta \sin 2\theta_0$,

$$\left[1 + (1 + 3\cos 2\theta_0)\beta\right](1 - \mu + \rho) - \frac{1-\mu}{(1+\rho)^2} - \frac{\mu}{\rho^2} = 0.$$
 (39)

Differentiating Equation 39 with respect to β and setting $\beta = 0$ give

$$\left(\frac{\mathrm{d}\rho}{\mathrm{d}\beta}\right)_{\beta=0} = \mathrm{E}_2(1+3\cos 2\theta_0), \qquad (40)$$

where

$$E_2 = -\frac{(1 - \mu + \rho_0)(1 + \rho_0)\rho_0^3}{3\rho_0^3(1 + \rho_0) + 2\mu(1 - \rho_0^3)}.$$
 (41)

The symbol ρ_0 at the right side of Equation 41 is the solution of ρ for Equation 39 with $\beta=0$. Similarly the change in value of C which corresponds to the variation in position of L_2 can be computed. Differentiating Equation 33 with respect to β and setting $\beta=0$ afterwards give

$$\left(\frac{\mathrm{dC}}{\mathrm{d}\beta}\right)_{\beta=0} = \left(1 - \mu + \rho_0\right)^2 \left(1 + 3\cos 2\theta_0\right), \tag{42}$$

 ρ_0 in Equation 42 having the same meaning as that in Equation 41.

(2) Let the distance in the x-direction from m_3 to the double point L_1 be represented by ρ . Then by a similar approximation, as before, Equation 35 reduces to

$$\left[1 + (1 + 3\cos 2\theta_0)\beta\right](1 - \mu - \rho) - \frac{1 - \mu}{(1 - \rho)^2} + \frac{\mu}{\rho^2} = 0.$$
 (43)

By exactly the same procedure as before, we obtain

$$\left(\frac{\mathrm{d}\rho}{\mathrm{d}\beta}\right)_{\beta=0} = \mathrm{E}_{1}(1+3\cos 2\theta_{0}), \qquad (44)$$

where

$$E_1 = \frac{(1 - \mu - \rho_0) \rho_0^3}{3\rho_0^3 + 2\mu(1 + \rho_0 + \rho_0^2)}, \qquad (45)$$

$$\left(\frac{\mathrm{dC}}{\mathrm{d\beta}}\right)_{\beta=0} = (1 - \rho_0 - \mu)^2 (1 + 3 \cos 2\theta_0) , \qquad (46)$$

and ρ_0 is the solution of Equation 43 with $\beta = 0$.

(3) Let the distance in the x-direction from m_2 to the double point L_3 be represented by $1 - \rho$. Then Equation 35 reduces by approximation to

$$\left[1 + (1 + 3\cos 2\theta_0)\beta\right](1 + \mu - \rho) - \frac{1-\mu}{(1-\rho)^2} - \frac{\mu}{(2-\rho)^2} = 0.$$
 (47)

From this is derived

$$\left(\frac{\mathrm{d}\rho}{\mathrm{d}\beta}\right)_{\beta=0} = \mathrm{E}_3(1+3\cos 2\theta_0) , \qquad (48)$$

where

$$E_3 = \frac{(1 + \mu - \rho_0)(2 - \rho_0)^3}{3(2 - \rho_0)^3 + 2\mu[(2 - \rho_0)^2 + (2 - \rho_0) + 1]};$$
 (49)

and

$$\left(\frac{dC}{d\beta}\right)_{\beta=0} = (1 - \rho_0 + \mu)^2 (1 + 3 \cos 2\theta_0),$$
 (50)

where ρ_0 is the solution of Equation 47 with β = 0.

Now if the positions and their corresponding values of C of the three double points on the x-axis are known for the case $\beta = 0$, their positions and the corresponding values of C for the case of small β may be derived by

$$\rho = \rho_0 + \beta \left(\frac{\mathrm{d}\rho}{\mathrm{d}\beta} \right)_{\beta=0} , \tag{51}$$

and

$$C = C_0 + \beta \left(\frac{dC}{d\beta}\right)_{\beta=0} . ag{52}$$

The change in the ordinates of these points is given by Equation 38.

For the earth-moon system, $\mu = 0.01216$. The values for the relevant quantities in this case are listed in Table 1. The derivative of the coordinates of these three points

Table 1

Values of ρ , C, E_i, and F_i for the changes in position of L₁, L₂, L₃ with $\beta = 0$ [$\mu = 0.01216$]

	$L_1(i = 1)$	L ₂ (i = 2)	$L_3(i = 3)$
ρ	0.1510	0.1679	0.00709
С	3.18843	3.17223	3.01216
E i	0.0741	-0.1566	0.3326
F _i	0.6053	1.5831	-0.3820

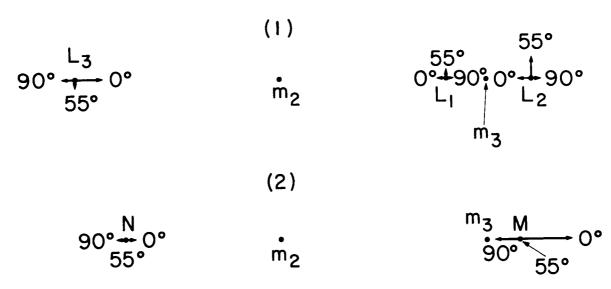


Figure 1 - Changes in position with β at β = 0 of (1) the three double points, L_1 , L_2 , L_3 , and of (2) the intersecting points M and N with the x-axis of the zero-velocity surface passing through L_1 . Notice the opposite directions of the changes in position of L_2 and M.

with respect to β at their normal positions (β = 0) are furthermore illustrated in Figure 1 for three positions of the sun (θ_0 = 0, $\pi/4$, $\pi/2$). The directions and magnitudes of the arrows in the figure indicate the derivatives of the coordinates of these points with respect to β for three values of $\theta_0(0, \pi/4, \pi/2)$.

In order to examine the change in position of the double points L_4 and L_5 , which make two equilateral triangles with m_2 and m_3 when $\beta = 0$, we must resort to the original Equations 35 and 36. Differentiate them with respect to β , and set in the resulting equations:

$$\beta = 0$$
, $r_2 = r_3 = 1$, $x = \frac{1}{2} - \mu$, $y = \pm \frac{\sqrt{3}}{2}$.

The required quantities $(dx/d\beta)_{\beta=0}$ and $(dy/d\beta)_{\beta=0}$ are derived by solving the equations simultaneously.

DEGENERATION OF THE CRITICAL ZERO-VELOCITY SURFACES

When $\beta=0$, which corresponds to the restricted three-body problem, the zero-velocity surface that passes through L_1 is frequently known as the inner contact surface and that which passes through L_2 , the outermost contact surface. The former intersects the x-axis at two more points besides L_1 . Call the intersecting point on the positive x-axis M and that on the negative x-axis N. From the change in position of M and N with β , the general behavior of the system of zero-velocity surfaces can be inferred.

(1) Point M: Let its distance from m_3 be σ . Thus, from Equation 33,

$$C = (1 - \mu + \sigma)^{2} \left[1 + (1 + 3 \cos 2\theta_{0}) \beta \right] + \frac{2(1 - \mu)}{1 + \sigma} + \frac{2\mu}{\sigma}.$$
 (53)

Differentiating Equation 53 with respect to β and utilizing the relation given by Equation 46 give

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\beta}\right)_{\beta=0} = \mathrm{E}_{\mathrm{m}}(1+3\cos 2\theta_0), \qquad (54)$$

where

$$E_{m} = -\frac{(\rho_{0} + \sigma_{0})(2 - 2\mu + \sigma_{0} - \rho_{0})}{2\left[1 - \mu + \sigma_{0} - \frac{1 - \mu}{(1 + \sigma_{0})^{2}} - \frac{\mu}{\sigma_{0}^{2}}\right]},$$
 (55)

in which σ_0 is the solution of Equation 53 with $\beta=0$ and $C=C_0$, corresponding to the inner contact surface of the restricted three-body problem.

(2) Point N: Let its distance from m_2 be σ . Following the same procedure as before, we derive

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\beta}\right)_{\beta=0} = \mathrm{E}_{\mathrm{n}}(1+3\cos 2\theta_0), \qquad (56)$$

where

$$E_{n} = \frac{(1 - 2\mu - \rho_{0} - \sigma_{0})(1 + \rho_{0} + \sigma_{0})}{2\left[\mu + \sigma_{0} - \frac{1 - \mu}{\sigma_{0}^{2}} - \frac{\mu}{(1 + \sigma_{0})^{2}}\right]},$$
(57)

where σ_0 is σ of N when $\beta = 0$. In both Equations 55 and 57, ρ_0 is the solution of Equation 43 with $\beta = 0$.

For $\mu = 0.01216$,

$$E_m = 0.6217$$
, and $E_n = 0.0589$. (58)

The changes in position of M and N are illustrated in Figure 1, from which it is seen that M moves out while L_2 moves in as $\beta(1+3\cos 2\theta_0)$ increases. In other words, the inner contact surface will eventually meet the outermost contact surface at a certain value of $\beta(1+3\cos 2\theta_0)$. When this happens, the two surfaces degenerate into one surface. It is evident from Equations 40, 54, 58 and Table 1 that the smallest value of β for which the critical surfaces become degenerated occurs at $\theta_0=0$. This threshold value of β (denoted by β_c hereafter) can be determined in the following way: First calculate the two points L_1 and L_2 by Equation 35 with $\theta_0=0$. Denote the distances of L_1 and L_2 from m_3 by ρ_1 and ρ_2 , from which the corresponding values of C (denoted by C_1 and C_2 , respectively) can be obtained from Equation 33. The degenerated case is given by the condition

$$C_1 = C_2, \qquad (59)$$

which gives the required value β_c . In Table 2 there is computed for the case μ = 0.01216 three sets of values from which we obtain

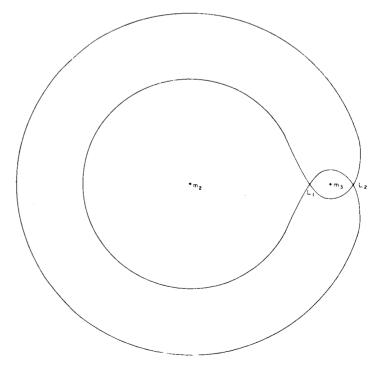
$$\beta_{\rm c} = 0.0064 \tag{60}$$

by graphical interpolation. The corresponding values for ρ_1 , $\rho_2 = \sigma_M$, and $C_1 = C_2$ are given in the last row of the table. Figure 2 illustrates the degenerated zero-velocity surface that passes through both L_1 and L_2 .

Table 2
Determination of β_c [$\mu = 0.01216$]

β	$ ho_{1}$	C ₁	ρ2	C ₂	σ_{M}
0.0	0.15097	3.18843	0.16788	3.17223	0.12580
0.0025	0.15171	3.19542	0.16672	3.18557	0.13306
0.005	0.15246	3.20241	0.16482	3.19888	0.14442
0.0075	0.15321	3.20938	0.16334	3.21214	(No solution)
$\beta_{c} =$	$\beta_{c} =$	$\beta_{c} =$	$\beta_{\mathbf{c}} =$	$\beta_{\mathbf{c}} =$	$\beta_{c} =$
0.0064	0.15288	3.20632	0.16398	3.20632	0.16398

Figure 2 - Degenerate zerovelocity surface passing through both L_1 and L_2 ; plotted for the case μ = 0.01216 corresponding to the earth-moon system



Further increase in β causes a fundamental change in shape of the critical zero-velocity surfaces. The surface that passes through L_1 opens up at M as can be seen from Equation 53, which does not yield any significant solution when $\beta > \beta_c$. The general behavior of the critical zero-velocity surfaces for the cases $\beta > \beta_c$ is illustrated in Figure 3. In general the zero-velocity surfaces in the very restricted four-body problem are not symmetric even with respect to the x-axis. However, when θ_0 = 0, they become symmetrical as is shown in both Figures 2 and 3.

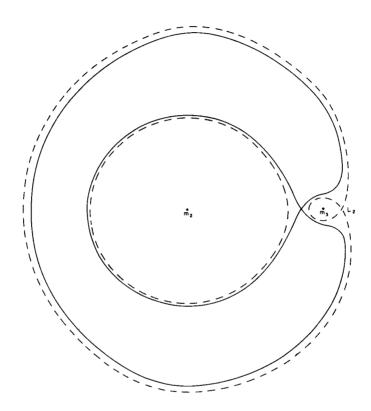


Figure 3 - Zero-velocity surfaces passing through L_1 and L_2 , respectively, when $\beta > \beta_c$; plotted for the case μ = 0.01216, β = 0.025, and θ_0 = 0 (figure is symmetric with respect to the x-axis only because θ_0 = 0)

DISCUSSION

For the earth-moon-sun system, from Equation 34,

$$\beta = 0.0028, \qquad (61)$$

which is smaller than the threshold value for degeneracy as given by Equation 60. Thus, the critical surfaces will never become degenerated for any value of θ_0 . In other words, the inner and outermost contact surfaces for the earth-moon system can still be defined in spite of the presence of the sun, justifying the treatment in the previous paper of satellites in the earth-moon-sun system as restricted three-body problems.

For $\beta < \beta_c$, the inner and outermost contact surfaces may be regarded as oscillating when θ_0 varies periodically. It follows from Equation 46 that a positive value of $\beta(1+3\cos 2\theta_0)$ makes a satellite escape easier than does a negative value. For example, a satellite with $C \ge 3.18843$ will not escape from the neighborhood of the earth (or of the moon) in the framework of the restricted three-body problem (i.e., $\beta=0$). By the introduction of the fourth body (m₁), a satellite will be retained inside the inner contact surface permanently only if $C \ge 3.19625$. Similarly, the limiting value of C for retaining a satellite inside the outermost contact surface is now 3.18714, against 3.17223 in the restricted three-body problem.

Although the present method of approach does not give the perturbation of orbital elements of artificial satellites, it gives a general idea of where they could or could not go under given initial conditions when they are no longer very near to the earth.

 \mathbf{C}