

N90-10092

A Comparison of Software for the Modeling and Control of Flexible Systems

Lawrence W. Taylor, Jr. NASA Langley Research Center

Computational Aspects Workshop July 12-14, 1988 Williamsburg, VA

Memorandum

To: Whom it may concern

From: 161/Chief Scientist, GCD

Subject: Development of Software for the Control of Flexible Systems

A received prayment

I-propose a cooperative effort among specialists who use or develop software for simulating and analyzing the control of flexible, aerospace systems. A comparison of existing software for modeling control systems and flexible structures, applied to several example problems would be quite valuable. The comparison would indicate computational efficiency and capabilities with respect to handling nonlinearities and graphical output.

Because of the diversity of applications of such software, a believe that the proposed cooperative effort can transcend projects involving specific applications. Comparisons of software capability and efficiency can be made and gaps can be identified. In this way the results of the cooperative effort can provide guidance for individual projects.

Enclosed are several charts which outline the objectives and approach of the proposed cooperative effort. I would appreciate your suggestions and expressions of interest in this matter.

Ares 1

Sincenely, Xaurenue Taylour

Lawrence W. Taylor, Jr. Mail Stop 161 NASA Langley Research Center Hampton, VA 23665 (804)-865-4591

PRECEDING PAGE BLANK NOT FILMED

OBJECTIVE

"To Evaluate Software for the Control, Analysis, Simulation and Design of of Flexible Aerospace Systems....

Which includes:

- Control Law Dynamics
- Actuator/Sensor Dynamics
- Structural Dynamics

And Which is Efficient and Accurate

And Which is Easy to Use."

Example Problems

- Uniform Beam Pinned-Pinned
- SCOLE (L. Taylor-LaRC)
- Translation/Rotation/Flex(Juang-LaRC)
- SAFE(70% Deployment)(L. Taylor-LaRC)
- Pinhole Occulter (Henry Waites-MSFC)

Manned Space Station

- a. Reboost
- b. Solar Dynamic Pointing
- c. MRMS Operation
- d. Docking

Others?

Problem:

- 1. Calculate Time History of u(65,t) 0<t<5.26
- 2. Plot Time History
- 3. Calculate Modal Characteristics 1<k<10
- 4. Express Final Shape in Modal Coordinates

CSI Simulation Software

- NASTRAN •
- DISCOS •
- **TREETOPS(CONTOPS)**
- EAL
- LATDYN •
- DADS •
- Multi-MACS

- ORACLS
- **EISPAC**
- LINPAC
- Matrix_{*}
- CTRL-C
- **SYSPAC**

NAME of SOFTWARE: DISCOS

RESPONSIBLE PERSON: NASA Goddard Space Center Bldg. 11, Rm. S221A Greenbelt, MD 20771

CAPABILITIES:

1. Nonlinear Kinematics?	Yes M No 🛛
2. Finite Element Modeling?	Yes M No 🛛
3. All Rotational and Translational D.O.F.?	Yes 🗹 No 🛛
4 Linked to Distributed Parmeters?	Yes 0, No 0
5 Large Amplitudes?	Yes 🗹 No 🛛
6 Nonlinear Damping?	Yes 🛛 No 💆
7 Control Law Dynamics?	Yes 🛛 No 💆
8 Sensors and Actuator Dynamics?	Yes 🛛 No 💆
9 Nonlinear Joints?	Yes [] No []
10 Distributed Parameter System?	Yes 🛛 No 💆
11 Optimal Control Synthesis?	Yes 🛛 No 💆
12 Sonsitivity Functions for P.F. & Design?	Yes 🛛 No 🗹
12. Densitivity i difetions for 1.2. a boolgin	
DOCUMENTATION: Complete.	

SIZE:	500K
LANGUAGE:	Fortran 77 +
	No
INTERACIIVE:	NO.
GRAPHICS:	Plots
AVAILABILITY:	Free, Nonproprietary

NAME of SOFTWARE: LATDYN

RESPONSIBLE PERSON:

Jerry Housner Mail Stop - 230 NASA Langley Research Center Hampton, VA 23665

CAPABILITIES:

1. Nonlinear Kinematics?	Yes 🗹 No 🛛 2-D.O.F.
2. Finite Element Modeling?	Yes Y No [] 2-D.O.F.
3. All Rotational and Translational D.O.F.?	Yes No 🛛 2-D.O.F.
4. Linked to Distributed Parmeters?	Yes M No 🛛 2-D.O.F.
5. Large Amplitudes?	Yes No [] 2-D.O.F.
6. Nonlinear Damping?	Yes No 🛛 Add Code
7. Control Law Dynamics?	Yes No 🛛 Add Code
8. Sensors and Actuator Dynamics?	Yes M No 🛛 Add Code
9. Nonlinear Joints?	Yes M No 🛛 Add Code
10. Distributed Parameter System?	Yes No 🛛 <u>2-D.O.F.</u>
11. Optimal Control Synthesis?	Yes 🛛 No 🗹
12. Sensitivity Functions for P.E. & Design?	Yes [] No []
DOCUMENTATION: 2-D.O.F. Written, 3-D.	O.F. Under Development

<u>SIZE:</u>	400K
LANGUAGE:	Fortran 77
INTERACTIVE:	Yes
GRAPHICS:	Time Histories, Line Drawing, PSD, Movies
AVAILABILITY:	Free, Nonproprietary

NAME: Multibody Analysis & Control Synthesis (MACS)

RESPONSIBLE PERSON: Lawrence W. Taylor NASA Langley Research Center Hampton, VA 23665 (804)-865-4591

CAPABILITIES:

- 1. Nonlinear Kinematics?
- 2. Finite Element Modeling?
- 3. All Rotational and Translational D.O.F.?
- 4. Linked to Distributed Parmeters?
- 5. Large Amplitudes?
- 6. Nonlinear Damping?
- 7. Control Law Dynamics?
- 8. Sensors and Actuator Dynamics?
- 9. Nonlinear Joints?
- 10. Distributed Parameter System?
- 11. Optimal Control Synthesis?

DOCUMENTATION:

Incomplete

<u>SIZE:</u>	25K Core Memory
LANGUAGE:	FORTRAN 77
INTERACTIVE:	Νο
<u>GRAPHICS:</u>	None
AVAILABILITY:	No Charge

Yes 🖌 No 🛛
Yes M No 🛛
Yes M No []
Yes D No Not Yet
Yes N No []
Yes M No 🛛
Yes I No N Not Yet
Yes 🛛 No 💆
Voc II No N

275

NAME of SOFTWARE: TREETOPS (CONTOPS)

RESPONSIBLE PERSON:

Ramen Singh

Dynacs Engineering Company 2280 U.S. 19 No., Suite 111 Clearwater, FL 34623

CAPABILITIES:

1. Nonlinear Kinemat	lics?	Yes 🗹 No 🛛	
2. Finite Element Mo	deling?	Yes No 🛛	
3. All Rotational and	Translational D.O.F.?	Yes No 🛛	
4. Linked to Distribut	ted Parmeters?	Yes Y No 🛛	
5. Large Amplitudes	?	Yes No 🛛	
6. Nonlinear Damping	g?	Yes M No 🛛	
7. Control Law Dynar	nics?	Yes 🖌 No 🛛	
8. Sensors and Actua	ator Dynamics?	Yes No 🛛	
9. Nonlinear Joints?		Yes M No 🛛	
10. Distributed Param	eter System?	Yes No D	<u> </u>
11. Optimal Control Sy	nthesis?	Yes D No M	
12. Sensitivity Functi	ons for P.E. & Design?	Yes 🛛 No 🕅	
DOCUMENTATION:	Complete. Course Av	ailable.	
<u>SIZE:</u>	600K		
LANGUAGE:	Fortran 77 +		

INTERACTIVE: Yes. Sun, MicroVAX, Masscomp

GRAPHICS: Plots, Windows, Movies

AVAILABILITY: Free, Nonpropriety

NAME of SOFTWARE:	
RESPONSIBLE PERSON:	
CAPABILITIES	
1 Nonlinear Kinematics?	Yes 🛛 No 🖓
2 Finite Flement Modeling?	Yes [] No []
3 All Rotational and Translational D.O.F.?	Yes [] No []
4 Linked to Distributed Parmeters?	Yes 🛛 No 🗍
5. Large Amplitudes?	Yes [] No []
6. Nonlinear Damping?	Yes [] No []
7. Control Law Dynamics?	Yes 🛛 No 🖓
8. Sensors and Actuator Dynamics?	Yes [] No []
9. Nonlinear Joints?	Yes [] No []
10. Distributed Parameter System?	Yes [] No []
11. Optimal Control Synthesis?	Yes 🛛 No 🗍
12. Sensitivity Functions for P.E. & Design?	Yes [] No []
DOCUMENTATION:	
<u>SIZE:</u>	
LANGUAGE:	
INTERACTIVE:	
GRAPHICS:	
AVAILABILITY:	

Solution Characteristics

- Time Required CPU Sec.
- Accuracy
 - a. Modal Characteristics
 - b. Time Histories (PSD)
- Memory Required
- Input
- Output

PANEL DISCUSSION

1. Should <u>We</u> Compare Software for

Control/Modeling?

- 2. Should <u>We</u> Establish Example Problems?
- 3. Should This Workshop be Repeated?

.....Changed?

.....Merged?

SESSION III - COMPUTATIONS EFFICIENCY AND CAPABILITY

PRECEDING PAGE BLANK NOT FILMED

281
