N90-10095

EPFICIENCY AND CAPABILITIBS OP MULTI-BODY SIMULATIONS

R.J. VanderVoort
DYNACS Engineering Co., Inc.
Clearwater, Fl

ABSTRACT

Simulation efficiency and capability go hand in hand. The more capability you have the lower the efficiency will be. Seetion 1 of this papor-disousees thefficiency and sootion-2-deats-rith capabilities. The lesson w-hrve learned about generic simulation is: Don't rule out any capabilities at the beginning but keep each one on a switch so it can be bypassed when warranted by a specific application.

1. BPPICIENCY

Efficiency means different things to different people. For the person running simulations interactively on a terminal quick turn around time is efficiency. For the person making 10,000 Monte-Carlo runs low cost is efficiency. For the person running real time simulations minimum CPU time is efficiency.

Three aspects of a simulation should be considered when dealing with efficiency; hardware, software and modeling.

Hardyare A fast processor will reduce CPU time for a given simulation but this doesn't necessarily equate to improved efficiency. For example, the Monte-Carlo simulation may take 10 minutes on a super computer and 2 weeks on a PC but if time is free on the PC then that may be an efficient solution. We will not discuss hardware related issues except for two points. 1.) Fast hardware is of primary importance to the real time simulation because it means higher fidelity models can be incorporated 2.) Vector processors and parallel processors should use custom algorithms that take full advantage of the special machine architecture.

Software A fast algorithm will also reduce CPU time but again this doesn't necessarily equate to improved efficiency. For example, it is generally accepted that an ad-hoc simulation is much faster than a generic simulation. The cost of developing and testing the ad-hoc simulation may exceed the run time saving thereby reducing overall efficiency.

Recent work in the area of symbolic programing has shown that significant savings can be achieved by symbolically forming the equation of motion and numerically solving them. Other algorithms have been proposed that promise similar savings. There is one point that software developers should keep in mind. With generic simulations the user must have complete flexibility in retaining or deleting different parts of his model. This is because generic simulations are often used for model development and validation. In that environment an analyst will add or delete certain features to determine the effect on performance and whether or not the feature should be retained in the model.

More on this subject in section 2.
Modeling This is the domain of the simulation user and the area in which many improvements in efficiency can be made. For example, deleting a high order mode in a flexible body model has a compound effect. It reduces the model complexity and at the same time allows a bigger integration step size both of which reduce run time. Often times the reduced fidelity is justified by the savings in run time.

The point to be made is that the analyst is the end authority on the "correct" model for a given application. The more flexibility he has in changing his model the easier it is for hin to select the best model for the job.

2. CAPABILITIES

Capability in our context is synonymous with flexibility and not with complexity. A simulation may be very detailed and complex but if it cant be changed then it's only useful in a narrow range of applications and has limited capability.

In our experience with TREETOPS and DCAP we have found that it is much easier to generate a model and obtain a response than it is to predict the correct response. In other words, when we don't get the expected response the simulation is usually correct and our expectation is wrong. This is not entirely unexpected because it is very difficult, even for an expert, to solve the equations of anything but the simplest dynamical systems. The solution to this dilemma is flexibility. Start with simple models that have know analytic solutions. Then add complexity one step at a time vile gaining confidence in your model and insist into the behavior of your system.

For multibody systems with flexible bodies the same arguments apply but the complexity of the model increases more rapidly than for rigid bodies. The person doing software development makes assumptions that simplify the resulting equations of motion. If this is done carelessly then terms are dropped that may prove essential in specific applications. On the other hand, if simplifications are not made then the computation burden becomes too great.

The lesson ve learned is that you must retain as many terms as possible in the kinematics but they must have associated switches so you can easily add or delete them from a specific application. This is done for two reasons. 1.) to give you insight into the effect of various model elements on system response and 2.) to allow the selection of the most efficient model for a given application.

SPEED-UP OPTIONS

	$\begin{gathered} \text { COORDINATE } \\ \text { TRANSFORMATIONS } \end{gathered}$	MASS MATRIX formulation (M)	NON-LINEAR TERMS $(\underline{\omega} \times \underline{\underline{I}} \cdot \underline{\omega})$	$\begin{aligned} & \hline \text { CONSTAAINT } \\ & \text { FobMLation } \end{aligned}$ (A)
PERFORM ALL computations				
COMPUTE ONLY ON FIRST PASS OF R-K integration				
COMPUTE ONLY ON FIRST PASS OF NTH R-K STEP				
$\begin{gathered} \text { BYPASS } \\ \text { COMPUTATIONS } \end{gathered}$				

353
$+A^{\top} \lambda$
4∞
" "
:물 문
SIMULATION CAPABILITY-MENUS

SWITCHES FOR MODAL DATA
HIGH LEVEL

TERM

LOW LEVEL

\cdots
$f_{k}+f_{k}^{*}=0 ;$
$\sum_{j=1}^{B}\left\{\int_{j} \underline{V}_{k}^{j} \cdot \underline{d f^{j}}\right\}$
$\left\{\sum_{0=1}^{N N N_{j}} \int_{j_{0}} \underline{V}_{k}^{j} \cdot \ddot{R}^{j} d m\right\}$

$+$
A

\rightarrow
00..
1
Equa TIONS OF MOTION

358

Sy
${ }_{\text {"1" }}^{10}$

363
Dynacs
RATE OF CHANGE OF BOOY i ANGULAR MOMENTUM
(CONSOLDATED EXPRESSION FOR \dot{H}^{j})

