SIMULATION AND CONTROL PROBLEMS IN ELASTIC ROBOTS

By
S. S. K. Tadikonda and H. Baruh
Rutgers University
New Brunswick, New Jersey

ABSTRACT

Computational issues associated with modeling and control of robots with revolute joints and elastic arms are considered. A manipulator with one arm and pinned at one end is considered to investigate various aspects of the modeling procedure and the model, and the effect of coupling between the rigid-body and the elastic motions.

The rigid-body motion of a manipulator arm is described by means of a reference frame attached to the "shadow beam." and the linear elastic operator denoting flexibility is defined with respect to this reference frame. The small elastic motion assumption coupled with the method of assumed modes is used to model the elasticity in the arm. The complete model couptrig the rigtd-body and the elastic motion ts highly frontmear, and contains terms up to quartic in powers of the amplitudes of the assumedmedee. It is shown that only terms up to quadratic in these model amplitudes need to be retained.

An Important aspect of the coupling between the rigld-body and the elastic motion is the centrifugal stiffening effect. This effect stiffens the elastic structure, as to be expected on physical grounds, gives rise to a time-varying inertia term for the rigidbody motion, and. in general, results in an effective inertia term smaller than the rigidbody inertia term. In fact, this reduction in inertia determines the frintation of the small motion assumption. If the elastic behavior is excited sumiciently so as to cause a vanishing effective rigid-body motion inertia term, one should either modify the manipulator model, or consider the forcing profiles that excite the elastic motion least. The Fourier series expansion of a few such profiles is examined to provide insight in this regard.
Simulation results are presented for an elastic beam pinned at one end and free at the ot her, and rotating in a horizontal plane, and control issues such as the order of the model, number of sensors. and modal extraction are examined within this context. It is shown that the effect of centrifugal stiffening is pronounced on the rigid-body motion during transition, and Ignoring it in the control model leads to gross inaccuracies in response. The effect of including varying amounts of flexibility on the response is studied. INIENTIONALY BLAKE

SIMULATION AND CONTROL PROBLEMS
 IN ELASTIC ROBOTS

S. S. K. Tadikonda*
H. Baruh ${ }^{* *}$

Mechanical \& Aerospace Engineering Dept., Rutgers University, New Brunswick, NJ.

* Graduate Assistant
** Assistant Professor

OBJECTIVE

To investigate modeling, control, and computational issues associated with elastic manipulators

SCOPE

Revolute joints
Actuators at joints only
Shadow beam approach
Small elastic motion, and limit of such an assumption

Nonlinear model
Control issues
Illustrative example

Pinned - free link

Reference frame located at the pin joint; describes rigid-body motion. Elastic motion is defined with respect to this frame

$$
\stackrel{\mathrm{d} \zeta}{\mathrm{~d} \mathrm{\eta} \eta^{2}=\mathrm{d} \zeta^{2}+\left(\mathrm{v}^{\prime} \mathrm{d} \eta\right)^{2}} \mathrm{du}
$$

Notes: x is the position of the point in the undeformed configuration
The beam rotates in a horizontal plane
421

- 4 -
$u(x, t)$ is obtained by integrating

$$
\mathrm{d} \zeta=\left[1-\left(\frac{\partial \mathrm{v}}{\partial \mathrm{x}}\right)^{2}\right]^{1 / 2} \mathrm{~d} \eta
$$

where

$$
\begin{aligned}
& \eta(x, t)=x+s(x, t) \\
& \zeta(x, t)=x-u(x, t)
\end{aligned}
$$

On integration,

$$
\zeta(x, t) \approx \eta-1 / 2 \int_{0}^{\eta}\left[\left(\frac{\partial v}{\partial \sigma}\right)^{2}\right] d \sigma
$$

or

$$
u(x, t) \approx-s(x, t)+1 / 2 \int\left[\left(\frac{\partial v}{\partial \sigma}\right)^{2}\right] d \sigma
$$

$s(x, t)$: axial vibration term
Integral : results in centrifugal stiffening term

Neglect axial vibration
422

- 5 -

Elastic Displacement

$$
\underline{u}(x, t)=-u(x, t) \underline{b}_{1}+v(x, t) \underline{b}_{2}
$$

Position

$$
\underline{r}=\zeta(x, t) \underline{b}_{1}+v(x, t) \underline{b}_{2}
$$

Velocity

$$
\dot{\underline{i}}=-\frac{\partial u}{\partial t} \underline{b}_{1}+\frac{\partial v}{\partial t} \underline{b}_{2}+\underline{\dot{\theta}} X \underline{r}
$$

Kinetic Energy

$$
\mathrm{K}=1 / 2 \int \dot{\underline{\mathrm{I}}} \cdot \dot{\underline{\underline{I}}} \mathrm{dm}
$$

Potential Energy

$$
\mathrm{V}=1 / 2 \int_{0}^{\mathrm{L}} \mathrm{EI}(\mathrm{x})\left(\mathrm{v}^{\prime \prime}\right)^{2} \mathrm{dx}
$$

Lagrangian

$$
L=K-V
$$

Notes : (') corresponds to partial derivative with respect to time, ()' corresponds to spatial derivative, p is the mass per unit length, and El(x) is the flexural rigidity

$$
\begin{aligned}
& \text { - } 6 \text { - } \\
& L=1 / 2 \int_{0}^{L} \rho\left(\dot{v}^{2}+\dot{\theta}^{2} v^{2}+2 x \dot{v} \dot{\theta}+x^{2} \dot{\theta}^{2}\right) d x \\
& -1 / 2 \int_{0}{ }^{L} E I\left(v^{\prime \prime}\right)^{2} d x \\
& -1 / 2 \dot{\theta}^{2} \int_{0}^{L} \rho \mathrm{x} \int_{0}^{\mathrm{x}}\left(\mathrm{v}^{\prime}\right)^{2} \mathrm{~d} \sigma \mathrm{dx} \\
& +1 / 2 \int_{0}^{L}\left[-1 / 2 \int_{0} \frac{\mathrm{x}}{\mathrm{dt}}\left(\left(\mathrm{v}^{\prime}\right)^{2}\right) \mathrm{d} \sigma\right]^{2} \rho \mathrm{dx} \\
& +1 / 2 \dot{\theta} \int_{0}{ }^{L} \rho v \int_{0} \frac{\mathrm{x}}{\mathrm{~d}} \mathrm{dt}\left(\left(\mathrm{v}^{\prime}\right)^{2}\right) \mathrm{d} \sigma \mathrm{dx} \\
& -1 / 2 \dot{\theta} \int_{0}^{L} \rho \dot{\mathrm{v}} \int_{0}{ }^{\mathrm{x}}\left(\mathrm{v}^{\mathrm{V}}\right)^{2} \mathrm{~d} \sigma \mathrm{dx} \\
& +1 / 2 \dot{\theta}^{2} \int_{0}^{L} \rho / 4\left[\int_{0}{ }^{x}\left(v^{\prime}\right)^{2} d \sigma\right]^{2} d x
\end{aligned}
$$

Assumed Modes

$$
\mathrm{v}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{N}_{1}} \phi_{\mathrm{i}}(\mathrm{x}) \mathrm{a}_{\mathrm{i}}(\mathrm{t})
$$

$\phi_{i}(\mathrm{x})$: Admissible functions

424

Define

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{ij}}=\int_{0}^{\mathrm{L}} \rho \phi_{\mathrm{i}}(\mathrm{x}) \phi_{\mathrm{j}}(\mathrm{x}) \mathrm{dx} \\
& \mathrm{k}_{\mathrm{ij}}=\int_{0}^{\mathrm{L}} \mathrm{EI}(\mathrm{x}) \phi_{\mathrm{i}}^{\prime \prime}(\mathrm{x}) \phi_{\mathrm{j}}^{\prime \prime}(\mathrm{x}) \mathrm{dx} \\
& \mathrm{~s}_{\mathrm{ij}}(\mathrm{x})=\int_{0}^{\mathrm{x}} \phi_{\mathrm{i}}^{\prime}(\mathrm{x}) \phi_{\mathrm{j}}^{\prime}(\mathrm{x}) \mathrm{dx} \\
& \mathrm{p}_{\mathrm{ij}}=\int_{0}^{\mathrm{L}} \rho \mathrm{xs}_{\mathrm{ij}}(\mathrm{x}) \mathrm{dx} \\
& \mathrm{~s}_{\mathrm{ijk} \mathrm{l}}=\int_{0}^{\mathrm{L}} \mathrm{~s}_{\mathrm{ij}}(\mathrm{x}) \mathrm{s}_{\mathrm{kl}}(\mathrm{x}) \mathrm{dx} \\
& \mathrm{q}_{\mathrm{ijk}}=\int_{0}^{\mathrm{L}} \rho \phi_{\mathrm{k}}(\mathrm{x}) \mathrm{s}_{\mathrm{ij}}(\mathrm{x}) \mathrm{dx} \\
& \mathrm{r}_{\mathrm{i}}=\int_{0}^{\mathrm{L}} \rho \mathrm{x} \phi_{\mathrm{i}}(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \int_{0}^{x}\left(v^{\prime}\right)^{2} d x=s_{i j}(x) a_{i} a_{j} \\
& \int_{0}^{L} \rho x\left[\int_{0}^{x}\left(v^{\prime}\right)^{2} d \sigma\right] d x=p_{i j} a_{i} a_{j} \\
& \int_{0}^{L}\left[\int_{0}^{x} \frac{d}{d t}\left(\left(v^{\prime}\right)^{2}\right) d \sigma\right]^{2} \rho d x=4 s_{i j k l} a_{i} \dot{a}_{j} a_{k} \dot{a}_{l} \\
& \int_{0}^{L} \rho v\left[\int_{0}^{x} \frac{d}{d t}\left(\left(v^{\prime}\right)^{2}\right) d \sigma\right] d x=2 q_{i j k} a_{i} \dot{a}_{j} a_{k} \\
& 425
\end{aligned}
$$

$$
\text { - } 8-
$$

Substituting in the Lagrangian,

$$
\begin{aligned}
L= & 1 / 2 I_{o} \dot{\theta}^{2}+1 / 2 m_{i j} \dot{a}_{i} \dot{a}_{j}+\dot{\theta} r_{i} \dot{a}_{i} \\
& -1 / 2\left[k_{i j}+\left(p_{i j}-m_{i j}\right) \dot{\theta}^{2}\right] a_{i} a_{j} \\
& +1 / 2 s_{i j k l} a_{i} \dot{a}_{j} a_{k} \dot{a}_{l}+\dot{\theta}^{2} / 8 s_{i j k l} a_{i} a_{j} a_{k} a_{l} \\
& +\dot{\theta} q_{i j k} a_{i} \dot{a}_{j} a_{k}-\dot{\theta} / 2 q_{i j k} a_{i} a_{j} \dot{a}_{k}
\end{aligned}
$$

Example :

Beam parameters

$$
\begin{aligned}
& \text { Cross-section: } 6 \text { in } \times 3 / 8 \text { in } \\
& \text { Length }=3.6576 \mathrm{~m}(12 \mathrm{ft}) \\
& \rho=4.015 \mathrm{~kg} / \mathrm{m} \\
& \mathrm{EI}=756.65 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Admissible functions : Normalized eigenfunctions of a pinned-free beam

$$
\mathrm{m}_{\mathrm{ij}}=\delta_{\mathrm{ij}} ; \quad \mathrm{k}_{\mathrm{ij}}=\omega_{\mathrm{i}}^{2} \delta_{\mathrm{ij}}
$$

where δ_{ij} is the Kronecker delta Notes : The summation convention, $\sum \sum m_{i j} a_{i} a_{j}=m_{i j} a_{i} a_{j}$, etc., will be employed for conciseness - i.e., repeated indices in an expression indicate summation over appropriate range.

- 9 -

Natural frequencies and Centrifugal stiffening coefficients

i	ω_{i}	p_{ij}		
		$\mathrm{j}=1$	$\mathrm{j}=2$	$\mathrm{j}=3$
1	15.82	6.397	1.861	-0.366
2	51.282	1.861	17.905	6.195
3	106.983	-0.366	6.195	35.999

Coriolis terms, $\mathrm{q}_{\mathrm{ijk}}$

\mathbf{i}	j	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$
1	1	-0.152	0.143	0.008
1	2	0.415	-0.144	0.169
1	3	0.077	0.347	-0.143
2	1	0.415	-0.144	0.169
2	2	-0.175	0.152	-0.117
2	3	0.883	-0.196	0.145
3	1	0.077	0.347	-0.143
3	2	0.883	-0.196	0.145
3	3	-0.178	0.171	-0.152

Other coupling terms $\mathrm{s}_{\mathrm{ijk}}$
Note: $\mathrm{s}_{\mathrm{ijk} \mathrm{l}}=\mathrm{s}_{\mathrm{jikl}}=\mathrm{s}_{\mathrm{ijlk}}=\mathrm{s}_{\mathrm{jilk}}$

i	j	k	$\mathrm{l}=1$	$\mathrm{l}=2$	$\mathrm{l}=3$
1	1	1	0.669	0.099	0.001
1	1	2	0.099	1.800	0.444
1	1	3	0.001	0.444	3.570

427

$-10-$						
1 2 1 0.099 0.275 -0.050 1 2 2 0.275 0.397 0.594 1 2 3 -0.050 0.594 0.901 1 1 3 1 0.001 -0.050 0.183 1 3 3 -0.050 -0.005 -0.074 2 1 0.183 -0.074 -0.113 2 1 2 0.099 0.275 -0.005 2 1 3 0.275 0.397 0.594 2 2 1 1.800 0.397 -0.005 2 2 2 0.397 5.010 0.147 2 2 3 -0.005 0.147 9.94 2 3 1 0.444 0.594 -0.074 2 3 2 0.594 1.470 1.500 2 3 3 -0.074 1.500 3.160 3 1 1 0.001 -0.050 .183 3 1 2 -0.050 -0.005 -0.074 3 1 3 0.183 -0.074 -0.113 3 2 1 0.444 0.594 -0.074 3 2 2 0.594 1.470 1.500 3 2 3 -0.074 1.500 3.160 3 3 1 3.57 0.901 -0.113 3 3 2 0.901 9.94 3.160 3 3 3 -0.113 3.160 20.000						

Notes: The magnitudes of the terms $q_{i j k}$ and $s_{i j k j}$ are sma!l. In addition, they are multiplied by the cubic and quartic powers of modal amplitudes. Hence they will be dropped from further development.

Retaining terms only up to quadratic in modal amplitudes,

$$
\begin{gathered}
L=1 / 2\left[I_{o}-\left(p_{i j}-m_{i j}\right) a_{i} a_{j}\right] \dot{\theta}^{2}+1 / 2 m_{i j} \dot{a}_{\mathrm{i}} \dot{a}_{\mathrm{j}} \\
-1 / 2 \mathrm{k}_{\mathrm{ij}} a_{\mathrm{i}} a_{\mathrm{j}}
\end{gathered}
$$

The equation for rigid-body motion is

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\left(\mathrm{I}_{\mathrm{o}}-\left(\mathrm{p}_{\mathrm{ij}}-\mathrm{m}_{\mathrm{ij}}\right) \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}\right) \dot{\theta}\right]=\mathrm{T}
$$

And the elastic motion is described by

$$
\begin{array}{r}
m_{i j} \ddot{a}_{j}+\left[k_{i j}+\left(p_{i j}-m_{i j}\right) \dot{\theta}^{2}\right] a_{j}=T \phi_{i}^{\prime}(0), \\
i=1,2, \ldots . ., N_{1}
\end{array}
$$

Measurements at $\mathbf{x}=0$

$$
\begin{aligned}
& \theta_{1}=\theta+v^{\prime}(0, t) \\
& \dot{\theta}_{1}=\dot{\theta}+\dot{v}^{\prime}(0, t)
\end{aligned}
$$

429

$$
-12-
$$

Choices for the control model

1. Ignore elastic effects completely

Control model : $\mathrm{I}_{\mathrm{o}} \ddot{\theta}=\mathrm{T}$

$$
\theta=\theta_{1}
$$

$$
\dot{\theta}=\dot{\theta}_{1}
$$

2. Rigid-body model, with the shadow frame angle properly extracted

Control model: $\mathrm{I}_{\mathrm{o}} \ddot{\theta}=\mathrm{T}$

$$
\begin{aligned}
& \theta=\theta_{1}-v^{\prime}(0, t) \\
& \dot{\theta}=\dot{\theta}_{1}-\dot{v}^{\prime}(0, t)
\end{aligned}
$$

3. A few elastic modes are included, and the modal coordinates are approximated

Control model:

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{dt}}\left[\left(\mathrm{I}_{\mathrm{o}}-\left(\mathrm{p}_{\mathrm{ij}}-\mathrm{m}_{\mathrm{ij}}\right) \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}\right) \dot{\theta}\right]=\mathrm{T} \\
\mathrm{i}, \mathrm{j} \leq \mathrm{N}_{2}, \quad \mathrm{~N}_{2}<\mathrm{N}_{1}
\end{gathered}
$$

Notes : N_{1} is the number of modeled modes. N_{2} is the number of modes used for controller design. $\mathrm{N}_{1}=3$ for the following simulation results.

430

$$
-13-
$$

4. Appropriate number of sensors used to obtain accurate modal coordinates.

$$
\mathrm{N}_{2}=\mathrm{N}_{1}
$$

Control synthesis

Computed torque method
Pointwise-optimal control method

Open-loop Maneuver

Fig. 1 : Torque Profile for Open-Loop Maneuver

Fig. 2 : Position Response of the Beam for the Torque Above

- 15 -

Feedback Control

Fig. 3 : Rigid Model, Velocity response

Fig. 4 : One Flexible Mode Included in the Model 433

- 16 -

Feedback Control, contd.

Fig. 5 : Three Flexible Modes Included in the Model

Fig. 6 : Comparison of Open- and Closed-Loop Torques

$$
434
$$

$$
-17-
$$

Effects of centrifugal stiffening

1. Provides a strong coupling between the rigid-body and elastic motion
2. Increases the stiffness of the structure
3. Reduces the effective rigid-body inertia term. Can cause it to vanish if the elastic motion is large. May have to modify the model, or vary the torque profiles.

Torque profiles and their Fourier coefficients

Coefficients of

$\int_{0}^{T} \int_{0}^{T}$ Torque. $d t$ is the same for all cases 436

$$
\omega_{0}=\frac{2 \pi}{T}
$$

Computational Issues for Control of

 multi-link flexible robot arm1. The dynamic model can be arrived at by modeling each link independently and imposing constraints at the joints
2. The link geometry may not be simple
3. $\mathrm{s}_{\mathrm{ijk}}, \mathrm{q}_{\mathrm{ijk}}$, may not be negligible, and the control model may include all the terms
4. The choice of admissible functions for each of the links may be different
5. Sampling rates - should not excite elastic motion
6. Control input computation may pose formidable burden.

- 20 -

The above issues can be adequately addressed by selecting pointwiseoptimal control law for control input computations, where, the inputs can be computed at least one time step ahead.

- 21 -

Conclusions

1. A complete model for control of a flexible link is developed
2. Modeling issues are examined within the context of an example
3. Several control issues are investigated
4. It is shown that centrifugal stiffening effect on rigid-body motion is significant
5. There is a strong coupling between rigid-body and elastic motions; ignoring this coupling results in gross inaccuracies in response.
