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ABSTRACT

Modeling of the dynamic vibration modes of a flexible structure can be achieved either by
using a generalized coordinate for each mode considered In the simulation, or by
dlscretiztng the structure into a sufficiently large number of segments to provide the
necessary modal accuracy. The accuracy and stability considerations in choosing
appropriate numerical integration algorithms are different, depending on which
modeling approach is utilized. In the generalized coordinate approaela the frequency and
shape of each mode Is assumed to be known. The integration method should provide an
accurate match to the modal frequency and damping, and should also exhibit slnusoldal
transfer function errors which are acceptably small, especially for frequencies in the
vicinity of the modal resonance. Since only those modes considered necessary for the
rcqulred simulation fidelity are Included as generalized coordinates, integrator stability
for modes of higher frequency does not become in an Issue.

On the other hand, when the discretized structure approach is used, high frequency modes
not of interest to the simulation will nevertheless be present. In this case it is important
that the integration method not only provide satisfactory characteristic root and transfer
function accuracy for the lower modes of interest, but also provide stable solutions with
satisfactory damping for the higher modes which are not of interest.

_isymptotlc formulas for the characteristic root errors as well as transfer
function gain"and phase errors are presented for a number of traditional integration
methods and for several new integration methods. Normalized stability regions in the
kh plane are compared for the various methods. In particular, it is shown that a modified
form of Euler integration with root matching Is an especially efficient method for
simulating llghtly-damped structural modes. The method has been used successfully for
structural bending modes in the real-time simulation of missiles. Performance of this
algorithm ks compared with other special algorithms, including the state-transltlon
method. A predictor-corrector version of the modified Euler algorithm permits It to be
extended to the simulation of nonlinear models of the type likely to be obtained when
uslng the dlscreti:,,ed structure approach.

Performance of the different integration methods is also compared for integration step
sizes larger than those for which the asymptotic formulas are valid. It is concluded that
many' traditional integration methods, such as RD-4, are not competitive in the
simulation of lightly damped structures.
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ABSTRACT

In this paper a number of integration algorithms, including several new methods, are
considered for the simulation of flexible structures. The effectiveness of the different

algorithms is assessed by considering the characteristic root errors which they produce, the

sinusoidal transfer function gain and phase errors, the stability regions, and the execution times.

The suitability of the various algorithms for simulations with real-time inputs is also noted.

When the structural modes in a simulation are represented by generalized (normal) coordinates,

the selection criteria for integration methods are somewhat different than the criteria when the

structure is discretized into a sufficiently large number of segments to provide the necessary

modal accuracy. In this paper asymptotic formulas for the characteristic root errors as well as

transfer function gain and phase errors are presented for a number of traditional integration

methods and for several new integration methods. Normalized stability regions in the kh plane

are compared for the various methods. In particular, it is shown that a modified form of Euler

integration with root matching is an especially efficient method for simulating structural modes.

The method has been used successfully for structural bending modes in the real-time simulation

of missiles. A predictor version of the modified Euler algorithm permits it to be extended to the
simulation of nonlinear models of the type likely to be obtained when using the discretized

structure approach.

1. Introduction

Modeling of the dynamic vibration modes of a flexible structure can be achieved either

by using a generalized coordinate for each mock: considered in the simulation, or by discretizing

the structure into a sufficiently large number of segments to provide the necessary modal

accuracy. In this latter case the mathematical model for a flexible structure with N degrees of

freedom has the following general form:

M(q)il'+ C(q,q) + K(q) = F(t) (1)

where q is an N-component position state vector, M(q) is the mass matrix, C(q,_/) is the coriolis

and centrifugal acceleration vector, K(q) is the elastic and gravity force vector, and F(t) is the

external force vector. When the vibration modes of the structure are represented by normal

4.97 nu 9'";L...



(generalized) coordinates, a coordinate x representing the time-varying amplitude of a given
mode with undamped natural frequency oh and damping ratio (obeys the equation

J_ + 2_'¢0n._ + ¢on2x = _20(t ) (2)

Here ¢(t) is the generalized force associated with the coordinate x. When a number of modes

are present, there will in general also be terms in Eq. (2) which couple the mode of amplitude x
with other structural modes.

The accuracy and stability considerations in choosing appropriate numerical integration

algorithms for solving differential equations of the type shown in (1) or (2) will be different. In

the generalized coordinate approach of Eq. (2) the frequency and shape of each mode is

assumed to be known. The integration method should provide an accurate match to the modal

frequency and damping, and should also exhibit sinusoidal transfer function errors which are

acceptably small, especially for frequencies in the vicinity of the modal resonance. Since only

those modes considered necessary for the required simulation fidelity are included as

generalized coordinates, integrator stability for higher frequency modes which are not of interest
does not become an issue.

On the other hand, when the discretized structure approach represented by Eq. (1) is
used, high frequency modes which are unimportant in the simulation will nevertheless be

present. In this case it is important that the integration method not only provide satisfactory

characteristic root and transfer function accuracy for the lower modes of interest, but also

provide stable solutions with satisfactory damping for the higher modes which are not of
interest.

In this paper asymptotic formulas for the characteristic root errors as well as transfer

function gain and phase errors are presented for a number of traditional Integration methods and

for several new integration methods. Normalized stability regions in the Ah plane are compared

for the various methods, where ,t. is an eigenvalue asociated with the linearized perturbation

equations of the structure and h is the integration step size.. In particular, it is shown that a

modified form of Euler integration with root matching is an especially efficient method for

simulating lightly-damped structural modes. The method has been used successfully for
structural bending modes in the real-time simulation of missiles. Predictor versions of the

modified Euler algorithm permit it to be extended to the simulation of nonlinear models of the

type likely to be obtained when structures are represented by means of discretization. The
stability regions in the ;th plane for the modified Euler methods are especially well suited to the

requirements when using the discretized structure approach.

2. Dynamic Error Measures for Integration Algorithms

In comparing different integration methods for the simulation of flexible structures it is

important to utilize meaningful performance measures which permit general conclusions to be

drawn regarding the expected dynamic errors associated with each method. Our dynamic error

analysis will be based on linearized perturbation equations derived from the original nonlinear

differential equations used to model the structure. Thus we will assume that the system



eigenvaluesareknown,aswell as the transfer functions relating specific input-output pairs. We

will further assume that the simulation uses a Fuced integration step size h. This is necessary in
the case of a real-time simulation. It is likely to be true over a large number of steps even when

a variable-step integration method is used in simulating a flexible structure. For linearized

equations and a fixed integration step size we can apply the method of z transforms to anayze

the dynamic errors resulting from specific integration algorithms [1,2]. There are two error

measures which quite useful in predicting overall dynamic accuracy in the simulation. The f'trst

is the fractional error in each characteristic root (eigenvalue) of the digital simulation, defined as

Fraction al error in characteristic root = e z =
,_,*- ,_,

(3)

where _. is the characteristic root of the continuous system being simulated and 2" is the

equivalent characteristic root for the digital simulation. For the case of complex roots (of which
there will be many conjugate pairs in the simulation of a flexible structure) it is more appropriate

to determine the fractional error, e¢o, in root frequency and the damping ratio error, e_. Thus we
define

co_-_
e_o = , e_ = (*- _ (4)

%

Here co_ and cod represent the frequencies of the digital and continuous system roots,
respectively, while _* and _"represent the damping ratios for the digital and continuous system

roots, respectively.

The second dynamic error measure of significance is the fractional error in digital system
transfer function for sinusoidal inputs of frequency co. For any input-output pair let H(s) be the

transfer function of the continuous system and H*(z) be the z transform of the digital system

that results when a particular integration algorithm is used. Then the fractional error in

sinusoidal transfer function is given by [3]

H (j co)
1 = eM + je A (5)

For simulations of any reasonable accuracy the magnitude of this fractional error will be small

compared with unity, in which case it is easily shown that the real part, eM, is equal

approximately to the fractional error in gain and the imaginary pan, eA, is equal to the phase
error of the transfer function [3].

For any numerical integration algorithm the integrator transfer function for sinusoidal
inputs of frequency co can be written approximately as [3]

1
H_(e j_)_" = coh << 1 (6)

jail1 + e, (jcoh)k] '



where h is the integration step size. Since 1/(ja>h) is the ideal integrator transfer function, it is

apparent that the term el(jOgh) k represents the integrator error. For Adams-Bashforth predictor

and Adams-Moulton two-pass predictor-corrector algorithms of order 2, 3, and 4, integration

methods that axe candidates for simulation of flexible structures, the error coefficient eI and

algorithm order k are listed in Table 1.

Table 1. Integrator Transfer Function Error Parameters for AB Predictor and

AM Predictor Corrector Algorithms

5
AB-2 1-"2 2

3
AB-3 _- 3

251
Aa-4 72---6 4

I
AM-2 1-_ 2

1
AM-3 N 3

19
AM-4 72---6 4

In terms of e1 and k the following formula for e;t, the fractional error in characteristic root as

defined earlier in Eq. (3), can be derived [3]:

_,* ./1, el(_,h) ke_ - Z ___-- , I_,hl << 1 (7)

It is apparent that e;t is directly proportional to the integrator error coefficient, e1. For complex

characteristic roots equivalent asymptotic formulas for the root frequency and damping errors,

eoj and e_, as defined in Eq, (4), can be derived [3]. As in Eq. (7), the errors axe proportional to
e! IAhlk.

For digital simulation of a first order system with transfer function H(s) = 1/(s-A,) the

fractional error in the transfer function for sinusoidal inputs, as defined in Eq. (5), can also be

derived in terms of the integrator error parameters el and k [3]. From this result the following

asymptotic formulas are obtained for eM, the fractional error in transfer function gain, and eA,

the transfer function phase error:



k+ 1 co_e I k+l 2
For k odd, eM =- (-1) -T- , (wh)k, eA -_ (_1)--_.-- COe l

2 2 ;t-----_(°_h)k' coh<< I (8)co +/],2 co +

k 2 k
-_ co e_ _ coAe t

For k even, e M -- - (-1) 2 (coh)k eA =- (-1) 2 ,,]2 (coh)tc 'co +2 2 ' co+
coh << 1 (9)

Here the errors are proportional to eI (coh) k. Comparable asymptotic formulas for eM and eA

can be derived for digital simulation of a second-order system with transfer function H(s) =

1/(s 2 + 2_'cons + aN 2) [3]. Again, the gain and phase errors are proportional to el(coh)k.

The transfer function H(s) for any order linear system with both real and complex roots

can be represented as the product of first and second-order transfer functions. In this case it can

be shown that the asymptotic formulas for the digital system transfer function gain and phase

errors is simply the sum of the individual first and second-order subsystem gain and phase

errors, respectively, for predictor and predictor-corrector methods of the type shown in Table 1.

If we simulate a flexible structure with a given integration method, this permits us to compute

the linearized system gain and phase errors at the frequency co for any input-output pair as a

function of integration step size h. In view of the reemerging popularity of frequency-domain

methods for designing multiple input/multiple output control systems, this is a quite useful

result. It permits us to estimate ahead of time for a given step size and integration method

whether the simulation errors will be satisfactorily small. Conversely, for a given transfer

function accuracy requirement, it allows us to compute the maximum allowable step size h for
the simulation.

It should be noted that the methodology outlined above for determining characteristic

root and transfer function errors for any order of linearized system from the simple integrator

model given by Eq. (6) does not work in the case of multiple-pass, single step methods such as
Runge-Kutta. This is because the results of individual passes within a single step in such

methods depend on the particular form of the system transfer function. Asymptotic formulas

for the root error parameters ez, e_ and e¢ can, of course, be derived separately for RK-2, RK-
3, RK-4, and variations of these methods [3].

3. Modified Euler Integration Algorithms

In this section we describe some modifications of simple Euler integration which have

potential advantage s over conventional integration methods such as those listed in Table 1. First

we introduce the concept of state variables defined at both integer and half integer sample times.

Assume that the simulation of a mechanical degree of freedom with position state x, velocity

state y, and acceleration a involves integrating the following simple state equations:

)' = a, k = y (10)
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Next assume that successive data points are defined at integer time samples in representing the

acceleration a and position x, and at half-integer sample times in representing the velocity y.

The following modified Euler algorithms can then be used for integration:

Yn+ta= Yn.ta+ han ' xn÷1= xn + hYn+ta (II)

The basic concept behind this modification of standard Euler integration is very simple; instead

of the using the state variable derivative defined at the beginning of the integration step, the
method uses a state variable derivative defined halfway through the step. For this algorithm it is

easy to show that the integrator error coefficient def'med in Eq. (6) is given by el -- 1/24 and the
order of the method is k - 2. Thus the accuracy of this single-pass algorithm is twice that of the

two-pass AM-2 predictor-corrector. However, the algorithm does require that the velocity

states be defined at half-integer sample times.

Let us apply this modified Euler method to the second-order system represented by Eq.

(2) for the generalized coordinate x. We can replace Eq. (2) by the following two state

equations:

.f = to[¢(t)-x-2_'yl, k = ray (12)

By analogy with Eq. (11) the modified Euler difference equations become:

Yn÷,a = Yn-ta + c°nh(dpn'xn" 2_'Y'n) ' xn÷t= Xn+ t°nhYn÷ta (13)

Since Yn is not explicidy computed, it is necessary to substitute an estimate yh in the damping

term on the right side of the Yn+l/2 equation. There are many ways in which the y_ estimate can

be computed. In Table 2 we list four candidate methods.

Table 2. Methods for Estimating the Velocity Yn in Modified Euler Integration

Method

1. Average of Yn+u2and Yn.u2

2. Extrapolation using Y,_.ta and Yn ._

3. Integration using J'n-_ and J'n-2

4. Estimate based on y,,,.t,,z

Formula for the Estimate, y_

, Yn+t:z+Yn.lcz
Yn= 2

y'_=3y n 1/z'ly
" 2 n.3/2

, 7. 3
Yn = Yn._ + "ffYn.t" "_Yn.2

!

Yn = Yn- tt'z



Theestimatefor Yn in the first method is simply based on averaging Yn+lt2 and Yn-ll2.

This is equivalent to utilizing trapezoidal integration for the damping term. Although this means

that Yn+lt2 now appears on both sides of the difference equation in (13), for the linear system
considered here it is possible to solve explicitly for Yn+l_, as we will see in the next section. In
the second method the estimate for Yn is based on a linear extrapolation from Yn-lt2 and Yn-3t2.

This is equivalent to using trapezoidal integration for the damping term. Since Yn+l/2 now

appears only on the left side of the difference equation in (13), this method can be used in the
simulation of equations where dy/dt is a nonlinear function ofy. This is also true for the third
and fourth methods. The third is based on a second-order predictor integration over the interval

h/2, starting with Yn-ll2 and using dy/dt at the n-I and n-2 intervals. This is equivalent to

estimating Yn with quadratic extrapolation based on Yn-ll2, Yn-3/2 and Yn-512. In the fourth

method we simply use Yn.t/2 as our estimate for Yn. This is equivalent to Euler integration for

the damping term.

4. Modified Euler Integration with Trapezoidal Damping

We have seen in Table 2 that the velocity estimate Yn for the modified Euler difference

equations in (13) can be based on the average of yn+lf2 and Yn.lf2. Thus

, Yn+la+Yn.ta
Yn = 2 (14)

As noted earlier, this is equivalent to utilizing trapezoidal integration for the damping term.

Although this means that Yn+l_ now appears on both sides of the difference equation, for the

linear system considered here it is possible to solve explicitly for Yn+l_. In this way we obtain

the following equations:

where

yn+u2= ClYn.uz+ C2(dPn-xn) , Xn,,t=Xn+ o)hyn.uz (15)

1- _¢onh co h
C1 = , C2 = n (16)

1 + _'¢onh 1 + _¢0nh

From the method of z transforms applied to Eqs. (15) and (16) we obtain the following

asymptotic formulas for the frequency and damping ratio errors of the digital simulation [4]:

o9_- c0a 1+4_-8_ o92h2 _*- _ (4_- 1) mh<<l (17)
e= = , e¢= (-----_ , n

_o c0a 24(1- () n

The transfer function gain and phase errors axe given approximately by



 _ctio u *l --
gainerror - L_ 1 -- eM _ 2 2 (wh), toh << 1 (18)

+L J

2_ ,22

J
Phase n
error = eA = 2 2 (toh), (.oh << 1 (19)

1- +

The characteristic root errors in Eq. (17) and the transfer function gain and phase errors in Eqs.

(18) and (19) are comparable with those for AM-2 integration for the same step size h [3]. Yet

AM-2 is a two-pass method whereas the modified Euler with trapezoidal damping, as used here,

is a single-pass method. Thus it will take only half as long to execute as AM-2 while producing

comparable accuracy. Its accuracy is approximately 5 times better than the accuracy of AB-2
integration when applied to the same second-order system.

The accuracy of modified Euler integration when applied to a linear second-order system

can be further improved by the technique of root matching, which was originally employed by

Fowler to improve the performance of conventional Euler integration [5]. By taking the z

transform of Eqs. (15) and (16) we can obtain exact analytic formulas for the undamped natural
frequency ton* and damping ratio _'* in terms of 60n and (. From these formulas we can solve

for ton and (in terms of ton* and (*. If in these formulas we then replace ton and ( by ton' and

_'; respectively, and ton* and _'* by ton and _', respectively, we obtain the following [41:

1 _ 2cos(tonh41- _.2 )ton' = _" 2- cosh((toh) (201

tanh (_'tonh)

ton'h (21/

If ton' and (' from these formulas are used instead of ton and ( in Eqs. (15) and (16), the

resulting digital simulation will exhibit COn*and _'* values which exactly match the ton and (of
the continuous system being simulated. For a given step size h the ton', _', CI and C2 can be

precomputed, so that each integration step in simulating the second-order system only requires 3
multiplies and 2 adds, as before. Now the charcteristic roots of the digital simulation will be

exactly equal to those of the continuous system, regardless of the integration step size h. The

approximate formulas for the transfer function gain and phase errors are given by [4]:



eM --"_4(e°h)2 eA = -_COn (conh)2, coh << I (22)
' 6co

Note that the fractional error in gain, eM, is completely independent of the damping ratio _, and

the phase error eA approaches zero as _"approaches zero. Thus our modified Euler algorithm

with root matching will be especially effective in simulating lightly-damped second-order

systems, as will be the case in structural modes. This is illustrated in Figure 1, where gain and
phase versus frequency for a second-order system with _ = 0.01 are plotted. Because of the

sharp resonant peak in gain and the extremely rapid change in phase as copasses through con, it

is very critical that both the natural frequency and damping ratio of the digital simulation match

that of the continuous system. The table at the bottom of the figure shows the transfer function
errors for input frequencies in the vicinity of con for the specific case of conh = 0.5, which

corresponds to only 2 integration steps per radian or 12.57 steps per cycle. Shown in the table

are the gain and phase errors based on both an exact calculation from the system z transform,
H*(ejc_h), as well as the approximate formulas of Eq. (31). Note how closely the approximate

caculations agree with the exact, even for the example here for which cob ,* 0.5.

Until now we have only analyzed the dynamic performance of the modified Euler method

in the frequency domain. This has been accomplished by examining the gain and phase errors

of the transfer function for sinusoidal inputs.We now consider the errors in computed response

of the second-order system to a unit-step input. Figure 2 shows the errors which result when

using RK-2 integration (Heun's method); modified Euler with trapezoidal integration for the
damping term, i.e., Eqs. (15) and (I6); and modified Euler with root matching, i.e., COn'and _'

from Eqs. (20) and (21) substituted for COnand _'in Eqs. (15) and (16). For the example in the

figure the damping ratio _"- 0.707 and the integration step size is given by conh = 0.5. The

results show that the RK-2 errors are 4 to 10 times larger than the modified Euler errors. It

should also be noted that RK-2 is a two-pass method, that is, it requires two evaluations of the

state-variable derivatives per integration step. It follows that RK-2 will take approximately

twice as long to execute per integration step as the single-pass modified Euler methods. To

provide the same output integration frame rate in real time the RK-2 method will therefore

require twice the mathematical step size h in comparison with the modified Euler methods

considered here. This will further increase by a factor of 4 the RK-2 errors relative to the

modified Euler errors in Figure 2.

The modified Euler results shown in Figure 2 were obtained using an initial step of h/2

in integrating dydt to obtain y. After one integration step this provides the calculation ofyl/2

starting with the initial condition Y0. The step size is taken as h for all subsequent dy/dt

integration steps. This results in successive velocity values representing y at half-integer step
times, consistant with the concept introduced in the beginning of this section.
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Figure 1. Frequency response of lightly-damped second-order system using modified Euler
integration with root matching, ohh = 0.5.
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Figure 2. Unit step response errors in simulating a second-order system with damping ratio

_'= 0.707, integration step size given by ohth = 0.5.

5. Performance of Other Versions of Modified Euler Integration

In this section we present the asymptotic formulas for characteristic root and transfer

function errors when modified Euler integration is used to simulate a second-order system with

methods 2, 3, or 4 in Table 2 utilized to calculate the velocity estimate yh in Eq. (13). For

method 2, which is equivalent to AB-2 integration for the damping term, the following results

axe obtained for e_ the fractional error in root frequency, and eq, the damping ratio error [6]:

1 - 32 _2 + 40((a_nh)2 11(- 20f (to'h) 2 tonh<<l
era-= "_4 (i-_) , e¢= 24 '

(23)

These errors are significantly less than the errors when AB-2 is used for all integrations. For

method 3 in Table 2, which uses a second-order predictor integration algorithm to compute Yh,

the following asymptotic formulas are obtained for the root frequency and damping errors:

(1-_._4_2) to e, _i_ (3(_nh) 2 = _(nh) 2to 09 h << 1 (24)eo_

The transfer function gain and phase errors are given by



2 1- 2( 2- ¢°nJ (tOnh)2 %J (tOnh)2

eM =-- , eA =- 02//>>12 24 2 24

co + 2_ "t° 1- + 2(
1- t°2n (25)

In both Eqs. (24) and (25) the errors are a factor of two smaller than the corresponding errors

when AM-2 is used for all integrations. In addition, the AM-2 algorithm is a two-pass method

which will therefore take twice as long to execute on a given computer. For method 4 in Table

2, which is equivalent to using Euler integration for the damping term, the following formulas
are obtained for the characteristic root and transfer function errors [4]:

1 53

1 2o)nhe = _ conh e_ __=_- _" co h << 1 (26)

eta ---- 2 2 (toh) , eA -_- 2 2 (toh) , toh >> 1 (26)

Note that the errors are all proportional to the first power of the step size h. This is because of
the first-order Euler algorithm used for integration of the damping term. For _' = 0, however,

the first-order errors in Eqs. 25) and (26) vanish, meaning that the errors become second-order
in h. This is to be expected, since the conventional Euler integration plays no role when _ = 0.

In fact it can be shown that when (= 0, the digital solution will have zero damping regardless

of the step size h.

When method 2,3, or 4 in Table 1 (or any other explicit method) is used to provide the

estimate Yh for the velocity state, the modified Euler method can be used as the algorithm for

integrating the nonlinear state equations represented by (1). The vector difference equations
become the following:

_in.la = qn-la + h{Fn" [M(qn)l'lC(qn'q'n ) - K(qn)} ' qn+* = qn+hqn.m (28)

We now turn to a consideration of integration algorithm stability.



6. Stability of Integration Methods

It has already been pointed out that the stability of numerical integration algorithms

becomes an importantconsiderationwhen theflexiblestructureismodeled by discretization.

This is because the discretized model will contain high frequency modes which are unimportant
in the simulation but can cause numerical instabilities for reasonable integration step sizes. For

a given integration method the stability boundary in the 2h plane can be obtained by considering
a simulation of the linear system with transfer function H(s) = 1/(s-_.). From the difference

equation the z transform, H*(z), is obtained. The stability boundary is defined by the gh values

for which the denominator of H*(z) vanishes when Izl -- 1. These gh values can be obtained by

letting z = e,/0 in the denominator of H*(z) and solving for Zh for 0 values ranging between 0

and x. When this is done for the AB predictor methods, the stability regions plotted in Figure 3

are obtained. The regions are symmetric with respect to the real axis so that only the upper half
plane is shown. For any values of/_h lying outside the boundaries the digital simulation will be

unstable. In the case of both AB-3 and AB-4 the boundary crosses over into the right half

plane. This means that a continuous system with roots on the imaginary axis which correspond

to undamped transients can exhibit stable transients in the digital solution. Put another way, it

means that AB-3 and AB-4 solutions will exhibit more damping than the continuous system

being simulated. This is actually desirable in the case of the high frequency modes which art

not of interest in a given simulation. On the other hand the AB predictor methods do not have

particularly large stability regions and therefore do not permit very large integration step sizes h

compared with the reciprocal magnitude, I/I_, of the largest eigenvalues in the simulation.

.........i.........i....."":i.........i.........l"Jl"°'i
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-1.0 -.el -,8 -.4 -.2 0 .2

Figure 3. Stability boundaries for AB predictor integration.

In Figure 4 the stability boundaries are shown for the the two-pass AM predictor-corrector

methods. Although the boundaries are considerably larger than those for the AB methods, it

must be remembered that the AM algorithms will take twice as long to execute. Thus the

boundaries should be reduced by a factor of two for a valid comparison with AB-2. When this



is done, the AM-2 and 3 boundaries actually fall inside the AB-2 and 3 boundaries, although the

AM-4 boundary still lies outside the AB-4 boundary. In all cases the higher-order algorithms

exhibit less stability and are therefore unlikely to be candidates for simulating flexible structures.
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Figure 4. Stability boundaries for two-pass AM predictor-corrector integration.

For comparison purposes the stability boundaries for RK-2, 3 and 4 arc shown in Figure 5.

We recall that these algorithms require 2, 3 and 4 passes, respectively, through the state

equations per integration step. Thus for proper comparison with single-pass methods the
boundaries shown should be reduced by factors of 2, 3 and 4, respectively. When this is done,

the RK-2 boundary roughly matches the AB-2 boundary, while the RK-3 and RK-4 boundaries
still faU outside the AB-3 and 4 boundaries, respectively.
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Figure 5. Stability boundaries for Runge-Kutta integration methods.
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Finally, in Figure 6 are shown the stability boundaries for various modified Euler

methods, u describedin Sections4 and 5. The trapezoidaldamping case correspondsto

method I in Tablz 2, the Euler damping case to method 4, the AB-2 damping case to method 2,

and the Inedic_ damping case to method 3. Also shown for comparison purposes in Figure 6
are the stability boundaries for AB-2, AM-2 and RK-2, as presented earlier in Figures 3, 4 and

5, respectively. The AM-2 and RK-2 stability boundaries have been reduced by a factor of two
to reflect the two passes per integration step required in the implementation of these methods.

Note thatallfouroftheModifiedEulermethods inFigure6 have stabilityregionswhich permit
valuesof I;_hlup to2 forlightlydamped transients,e.g.,eigenvaluesneartheimaginaryaxis.

In thisregardthemethods areconsiderablysuperiortotheAB-2, AM-2 and RK-2 algorithms

and shouldperformespeciallywellinthesimulationofflexiblestructmes.

Itshouldalsobe notedthatthemodifiedEulermethods areideallysuitedforreal-time

simulationinthattheydo notrequireinputspriortotheiroccurenceinrealtime. For example,

fiFO) inEq. (1)isa realtimeinput,thenthesingle-passmodifiedELderalgorithmofF.q.(28)

only requiresFa at the beginning of the nth integrationstep. On the otherhand, the AM

predictor-correctoralgorithmsrequireFn+1 atthestartof thesecondpassforthenthintegration

step,and Fn+l isnot yet availableinrealtime. There is,however, a modified versionof the

AM-2 predictormethod which iscompatible with real-timeinputs[6]. The AB predicto¢

methods are alsocompatiblewith realtimeinputs,and thereareversionsof RK-2 and RK-3

which permit real-timeinputs[3]. RK-4 isnot compatible with real-timeinputs,sinceit

requiresFn+i/zatthebeginningof thesecond passand Fn+l atthe startof thefourthpass,in

both cases prior to their availability in real time.
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Figure 6. Stability boundaries for modified Euler integration methods.



7. Conclusions

In this paper we have considered the dynamic performance of integration methods in the

context of simulating flexible structures. In terms of both characteristic root errors and transfer

function errors, both important in such simulations, we have compared the performance of

traditional integration methods with various versions of modified Euler integration. We have

shown that modified Euler integration is especially effective in simulating lightly-damped
structural modes. We have also shown that the modified Euler methods have very favorable

stabilty boundaries in the 2h plane with respect to requirements in the simulation of lightly-

damped modes. This is especially significant when a flexible structure is modeled by
discrctization as opposed to normal coordinates, since it will allow larger integration step sizes

before the solution goes unstable due to the presence of higher modes which are unimportant to
the simulation.

References

1. Gilbert, E.G., "Dynamic Error Analysis of Digital and Combined Digital-Analog
Systems," Simulation, vol. 6, no. 4, April 1966, pp 241-257.

2. Benyon, P.K., "A Review of Numerical Methods for Digital Simulation," Simulation, vol.
11, no. 4, Nov. 1968.

, Howe, R.M., "Transfer Function and Characteristic Root Errors for Fixed-Step Integration
Algorithms," Transactions of the Society for Computer Simulation, vol. 2, no. 4, Dec.
1985, pp 293-320.

4. Howe, R.M., "Simulation of Linear Systems Using Modified Euler Integration Methods,"
to appear in Transactions of the Society for Computer Simulation.

5. Fowler, M.E., "A New Numerical Method for Simulation," Simulation, vol. 4, no. 5, May
1965, pp 324-330.

. Howe, R.M., "The Role of Modified Euler Integration in Real-Time Simulation,"
Proceedings of the Conference on Aerospace Simulation H, San Diego, 1986; pp 263-275.
The Society for Computer Simulation, P.O. Box 17900, San Diego, CA 92117.



THIS PAGE INTENTIONALLY LEFT BLANK



U')

0
U_
Z
i.kl

WO I.-

XM
o-,

Z ULr)

r.)Z U U') , U')

_0

Ld o
C.3_
0
_Z
n- o

C.)
ii

C.)
I-4

.J
Z Id
o<

<(J

0
Z n__

0

0

0


