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OPTIMIZATION IN ENGINEERING SYSTEM DESIGN
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ABSTRACT

Computational support of the engineering design
process routinely requires mathematical models of be-

havior to inform designers of the system response to

external stimuli. However, designers also need to know

the effect of the changes in design variable values on the

system behavior. For large engineering systems, the con-

ventional way of evaluating these effects by repetitive

simulation of behavior for perturbed variables is imprac-

tical because of excessive cost and inadequate accuracy.

This paper describes an alternative based on recently

developed system sensitivity analysis that is combined

with extrapolation to form a model of design. This design

model is complementary to the model of behavior and

capable of direct simulation of the effects of design

variable changes.

1. INTRODUCTION

Mathematical models are a well established means for

simulation of the behavior of engineering systems to

support design decisions. These models usually employ

a network of disciplinary behavioral models such as

structural analysis, aerodynamic analysis, propulsion

analysis, etc. and have one common characteristic: they

answer the question "what will be the behavior (response)

of the system to a given external stimulus ?" The answers

these models provide are typically cast in a numerical
form of some behavior variables, for instance, stress and

displacement fields induced by a given load acting on a
structure.

In design, however, engineers must decide how to

change design variables in order to effect a desired change

in behavior. To do so they need answers to "what if'

questions, e.g. "what will be the change in the behavior

if a particular design variable is altered ?" Indeed, one

may assert that the design process is not completed until

all such questions are answered, at least for the major

design variables. The "what if" questions may be

answered by repeated use of behavior models combined

with design variable perturbations to obtain finite-dif-

ference approximations to design derivatives. In large

applications, the computational cost of behavior models

interconnected in a network and the accuracy problems

intrinsic in the f'mite-difference methods render that ap-

proach impractical. As a result, practical applications of

systematic, mathematically based optimization in the

design of complete engineering systems have been lag-

ging [ 1 ], relative to the progress of engineering optimiza-

tion theory noted in recent times.

In contrast, optimization applications in structural en-

gineering have been growing steadily in number, size,

and complexity of successfully solved cases. This growth

may be attributed, at least in part, to the concept of

decoupling the design space search from the full analysis

(the behavior model), and coupling it instead with an

approximate analysis based on derivatives of behavior

with respect to design variables. That concept, introduced

in [2], spurred the development of sensitivity analysis to

the point where it became routine for structures [31. The

approximate analysis concept was also a basis for the

development of a body of efficiem structural optimization

procedures, e.g., [4 ], that have also diversified to applica-

t.ions in other disciplines, e.g., [5] and [61.

The purpose of this paper is to show that the recent

development of algorithms for the sensitivity analysis of

complex, internally coupled systems that comprise

several subsystems and that involve many disciplines

made it possible to use the approach initiated in [2] to

develop a combination of extrapolation and sensitivity

analysis for such systems. That capability will be referred

to as a model of design. The purpose of the model of

design, complementary to the commonly used model of

behavior, is to simulate ef_ciently the effect of design

variable changes on behavior, so it may be used to answer

the "what if' questions quickly and inexpensively in order

to support formal optimization as well as judgmental

decisions in design.

2. PHYSICAL SYSTEM VERSUS SIMULATION

SYSTEM

Engineering design of contemporary aircraft,

spacecraft, and other complex systems is a prolonged and

complicated process that involves human creativity, in-

genuity, and judgment, all supported by massive com-

putations. The computations involve a collection of

computer programs, each representing a physical subsys-

tern of the engineering system at hand or a particular



aspectofthatsystembehavior.By virtueofpassingthe

datatoeach otherthecomputerprogramsinthatcollec-
tionbecome modulesinacoupledsystemthatsimulates

thephysicalone and isitsmathematicalmodel ofbe-

havior,justaseach module by itselfisa mathematical
model ofbehaviorforadisciplineorapartofthephysical

system.
For instance in aircraft design (figure 1) we may distin-

guish the wing and the fuselage as separate subsystems
in the aircraft system. We may also consider the structural
and aerodynamic analyses as separate modules in a sys-
tem of programs that supports the design. This example
points out that, in general, no one-to-one correspondence

exists between the modules and the subsystems. In fact,
the structural finite element model processed in the struc-
tural analysis may reflect the wing and the fuselage as
separate substructures in the airframe, but the
aerodynamic analysis may operate on a single digitized
model of the aerodynamic surface that extends over the
entire wing-fuselage assembly.

In reality, the wing and the fuselage interact
aerodynamically and structurally. As shown in figure 2,
they modify each other flow fields through the conduit of
aerodynamics, and through the conduit of structures they
exert forces on each other at the fuselage-wing junction.
The corresponding mathematical model may represent
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theinteractionsbytheforce-deformationcompatibility
conditions at the wing-fuselage junction, and by the
aerodynamic forces and airframe deformations that
couple the aerodynamic and structures analysis modules.
The example shows also that for purposes of mathemati-
cal simulation, the physical system may be decomposed
into smaller parts (the object decomposition) or each
aspect of behavior may be assigned a module in the
simulation (the aspect decomposition). Both types of
decomposition may be used simultaneously, as they are
in this example.

Once the real, physical system has been conceptually
decomposed and the corresponding mathematical
simulation system has been assembled, it is the simula-
tion system that provides computational support for the
design process. Basically, that support has two functions:
Ftrst, to reveal the behavior of the physical system in
response to external stimuli; and second, to f'md out how
that behavior may be modified by changing physical
attributes (design variables) of the system. The f'wst func-
tion calls for a system analysis. The latter answers the
"what if" types of questions which is what design is all
about, and is performed by sensitivity analysis. In the
remainder of this paper, we will examine system analysis
only briefly as a prerequisite to sensitivity analysis which
will be the discussion focus and will show how the

sensitivity analysis can be formalized as a basic in-
gredient in the mathematical model of design that com-
plements the model of behavior.

3. SYSTEM ANALYSIS AS A MODEL OF
BEHAVIOR

Each module in the system may be represented by a
function vector notation. For the i-th module in a system
of NM modules, we have

F t(Z,g t)= 0 (1)

where F is a vector of functions, NF long, Y is a vector
of dependent variables, and Z is a vector of independent
variables. The set of NF simultaneous equations in eq. 1
yield NF elements of Y for a given Z and are the govern-
ing equations for the physical phenomena simulated by
the module. No assumptions are made as to the mathe-
matical nature of eq. 1, they may be nonlinear, transcen-
dental, etc., so that an iterative algorithm may be required
to solve for Y. In practice, a module is an entity compris-
ing eq. l together with its solution algorithm coded as a
computer program, usually including embellishments
such as graphics. Then, Z is the input and Y is the output
of the program which may be treated as a black box.

Structural finite element analysis and aerodynamic
analysis of an aircraft wing are examples of the above. In
structural finite element analysis, eq. 1 is

KY-P= 0 (2)

and represents an equilibrium of internal forces, the KY
term, and the external loads P. Both P and the stiffness

matrix K may be functions of input Z that describes the
overall wing shape, cross-sectional dimensions, and the

loading conditions. These equations and their solution
for Y (the displacements and the resulting stress) are
typically implemented in large computer programs,
yielding tens of thousands of elements of Y and compris-
ing hundreds of thousands of lines of code (e. g., Program
NASTRAN, [71).

Similarly, an example of governing equations for the
aerodynamic analysis is

(j-I U)t+Fx+Gy+Hz-(Gv)y= 0 (3)

where the subscripts indicate differentiation with
respect to time t and the coordinates x, y, and z correspond
to the streamwise, normal, and chordwise directions. In
these equations, the terms are defined in [81, the vector U
corresponds to Y in the generic notation used in this paper
and the other terms contain input corresponding to Z. The
equations yield pressure data for hundred of thousands
points over the wing surface (270,000 points were used
in [81). Due to viscosity and compressibility effects, eq.
3 are distinctly nonlinear. Again, implementation of
these equations and their solution took form of a large
computer code that in an elastic wing system analysis
appears as an aerodynamic module.

To simulate an elastic wing behavior, the structural and
aerodynamic modules are assembled to make them to
interact with each other, simulating the aerodynamics-
structure coupling illustrated in figure 2. In reality, the
coupling occurs because the aerodynamic forces deform
the elastic wing. In turn, the deformation modifies the
aerodynamic forces. In the simulating system, the cou-
pling is realized by entering the aerodynamic pressure
output Y from the aerodynamic module into the input Z
of the structural module as the load data, and by using the
deformation output Y from the structural module as the
new shape data in the input Z of the aerodynamic module.
In the presence of nonlinearities, the simulating system
operates by iterating between the modules until the
governing equations in each are satisfied to a desired
tolerance.

At this point, it is necess_'y to distinguish three parts in
the input Z of any module. The first part of Z consists of
the physical quantities X that the designers change to
influence the system behavior, the second part includes
the constants Q, and the third part comprises the outputs
Y from the other modules in the simulating system. Of
course, both X and Q remain constant for the duration of
analysis and the X elements are changed between the
consecutive system analyses. The division between X and
Q is not rigid, it is up to the designer to move physical
quantities from Q to X and vice versa.

With the above def'mition of Z, it is now possible to
generalize eq. 1 to a set of governing equations for a
simulating system consisting of NM modules identified
by subscripts:

Fi-'l((Xi-l,ai-t,Y J ),Y/-! ) = 0; j _ i-1

Fi((X i ,Qi ,yj),yi )=(k, j_i j=I...NM

Fi+1,((xi+l,Qi+l,yj),y/+t)= O; j;ei+I

(4)



Since each module represents a set of NF _ equations
solvable for NF i elerr_nts of Y I , it follows that the

number of equations in eq. 4 is equal to the number of
elements in Y concatenated of the Y ' vectors.

In addition to aerodynamic and structural modules dis-

cussed in the wing example, support of a complete aircraft

design would require modules for propulsion, control,
eiectromagnetics, interior environment control, fuel

management, avionics, weaponry, aircraft, performance,
and more, all forming a system represented by eq. 4, and

coupled internally by the Y cross-feed. To simulate the

real system behavior the simulating system has to be

iterated to convergence, assuming that nonlinearities

exist that preclude solution by a linear algebraic elimina-

tion algorithm. The iterations may be nested because

some of the modules may require internal iterations for

their own solutions. Given the computational size of each

module, to converge the solution for one setting of X is a

formidable undertaking, even when using present-day

supercomputers.

In design, the computational expense of producing the

behavior data for one setting of X has to be incurred

repeatedly as the designers change that setting in search

of one that makes the system behave in an acceptable

manner and then again in pursuit of a behavior that is

better than merely acceptable.

Thus, the expense of the behavior model operation

motivates a proposition that another mathematical model,

capable of revealing directly and inexpensively how the

behavior will change if a design variable is altered, should

be added to the designer's tool box to complement the

behavior model already there. That additional model will

tm referred to as the model of design.

4. MODEL OF DESIGN

One way to create a model of design is to use the model

of behavior to obtain the data at several settings of X. each

setting interpreted as a point in a hyperspace defined by

X. The number of points is limited by the budget avail-

able for computational expenses, and their locations are

strategically chosen throughout the intervals of interest

using methods known as experiment design methods,

e.g., [91. Once the behavior data at these points have been
generated, the behavior model is replaced by the hyper-

surface fitted to the points. The model is invoked as an

explicit interpolating functions to obtain data on various

aspects of the behavi_ between the points at essentially

no cost, as needed in the course of design. The literature

notes a number of applications of that type of design

model in support of formal optimization, e.g., [I01.

4.1. Extrapolation

One alternative is to obtain the behavior data from a

behavior model at a single judiciously chosen _ttmg of

X, including among the data their derivatives with respect

to the design variables X. The data is used an extrapola-

tion formula, for instance, a Taylor series

Y(X) = Yo + VY r(X-Xo) + _ (X-Xo) 7"[ V 2y ](X-Xo)

÷ (higher-order terms); (5)

where Y quantifies a particular aspect of the behavior

of interest, e.g., stress in the wing structure, propulsion

thrust, or maximum flight range. Once the expense of

using the behavior model to generate the data needed in

the series above has been paid, the information about the

effect of X on Y is available essentially at no cost, albeit

its accuracy deteriorates as one moves away from the

reference point where the analysis took place. The ad-

vantage of this design model over the one described

previously is that one does not need to saturate the entire

potentially interesting design space with analysis points.

Instead, one starts at a single point and lets the extrapola-

tion formula guide the search for the next point where the

behavior data and the derivatives need to be refreshed by

new analysis. Structural optimization applications with

nearly 100 design variables have been reported, e.g, [ 11 ],

where good results required only 10 to 20 repetitions of

analysis that included calculation of derivatives.

The usefulness of this extrapolation-based design

model critically depends on the computational cost of
derivatives. Finite differencing as a means to obtain the

derivatives may be prohibitively expensive since it adds

another outer loop around the iterative analysis loops

required for the solution of eq. 4, some of which may be

nested already. Moreover, the finite differencing of itera-

tively obtained solutions may be meaningless for a small

difference due to computational noise, while for a larger

difference errors due to nonlinearities set in. Therefore,

one may assert that the extrapolation-based, design model

is incomplete for the purposes of large-scale applications
if it does not include a means for efficient and accurate

computation of derivatives.

To this end, [t21 introduced a direct system sensitivity

analysis that bypasses the finite differencing of the sys-

tem analysis.

4.2. System Sensitivity Analysis

As shown in [12], the derivatives of behavior with

respect to a design variable may be obtained from a set

of simultaneous linear algebraic equations generated by

application of the implicit function theorem to eq. 4.

These equations are rewritten to show the Y's as implicit
functions of X

y,-t = fi-t(X_-l Q,-l,y j); j # i-I (6)

yi = fi (X' ,Qi ,yi ); j_:i j=I...NM

r,+L =/+t,(x,+t,Q,+_,rj); j _ i+t

The derivatives of Y with respect to a particular design

variable X k appear as unknowns in a set of equations

Ia){ or/oxi = !RHS}, ; _,= 1...xx ¢7)

where:

4



I .... ]• I . .Aij

yr = [ y lr,y 2T.... y ff .... y NM T];

[a ij ] = [a fi/_ y q

RHS r k = [ { g g axk}r,{ af g aXt} r, ... { a f'/aXkl' ,r,

...{afN /ax }r 1
The vectors and matrices in the above have the follow-

ing dimensions

{Y'}, NFi×I; [AiJ], NFix NFJ; [A], NA × NA;

NM (8)

NA=ENP4; {RHS}, NA x 1; {X}, NX x 1;

i=l

By virtue of the implicit function theorem, eq. 7 are

"always linear, therefore they may be efficiently solved for

many different vectors Y by factoring the A matrix once

and storing it. The stored matrix may then be back-

substituted over by the RI-/S vectors, each corresponding

to one p.articular Xk.

The A u is a Jacobian matrix of the partial derivatives

of the output from the i-th module with respect to the

output from the j-th module that is received as input in

the i-th module. The submatrices on the diagonal of A are

identity matrices, and the element of the RHSk are partial

derivatives of the output from the modules with respect

toa particular Xk. By definition the partial derivatives in

A 1"1 and in RHSk may be computed for each i-th module

independently of each other. This enables one to use

specialized methods for sensitivity analysis that have

been developed for many engineering disciplines, e.g..

[3], and [13], or even use finite differencing but on one

module at a time, thus avoiding the cost of repetitive

solution of the system equations, eq. 4. On the other

hand, the computational cost of generating and solving

eq. 7 grows superlinearly with the volume of the coupling

dat a passed from one module to another as measured by

NF 1 in eq. 8. Indeed, in the limiting case of all Aij being

null matrices there is no coupling and the trivial solution

of eq, 7 is Y = RItS because A = I. A later will show how

one may keep NF J from growing inordinately by using

physical insight in selecting a minimal number of the

pieces of data to be transmitted among the modules.

Numerical conditioning of A w as examined in [ 121 which

concluded that singularity is not a danger if eq. a represent

a well-posed problem.

Once the system sensitivity analysis has been reduced

to solving the linear equations (eq. 7) it is possible to

calculate the higher-order derivatives of Y with respect
to X as derivatives of the first derivatives obtained from

these equations. This approach was implemented in [ 141

by applying the same implicit function theorem to eq. 7

that was used to derive eq. 7 from eq. 4. Repetitive use of

that theorem generates a recursive chain of formulas for

the higher-order derivatives shown below in a compact
notation which is defined first

( )'u,,, .... a_( )/_xkOx_3x,,,...

Z°=yl k

ZIt=y2kl

Z 2 t,,,= Y 3 t/,,, (9)

ZNlra... = yN+! Idm ...

where any subscript may be repeated as required to form

a mixed derivative with respect to any combination of
variables X.

In the above
derivatives are

AZIt =

A Z2 bn =

A Z 3 tmn

notation, the second- and higher-order

R t t _ A 1 tZO; (113)

1721,,- a t ,nzl l - Dt ,,,(A l l Z°);

= R3tma - AInz2I,n-DI,dAI,,tZIt)

- 192 ,,m(A I t Z°);

= R4knnp -AlpZ31nm-Dle(AtnZ21m )

- D 2 ,tp(A l rnZ l l) - D 3 m_v(A 1 t Z°);

etc

where D ¢ l,u( ) is a shorthand for the q-th mixed deriva-

tive of the product of the pair of functions in the paren-

theses, obtained by the usual rules of product
differentiation. Once the derivatives of Z are obtained,

the derivatives of Y are available from eq. 9. The above

regular pattern can extended easily beyond the first four
derivatives shown above.

It is apparent from eq. 7 and 10, that the computational

cost may be reduced by factoring A only once, since A is

the matrix of coefficients in equations for derivatives of

every order. On the other hand, that cost escalates super-

linearly with the derivative order because of the increase

of the number of the derivatives to be computed and the

accumulation of the prerequisite data required by the

recursivity ofeq. 10. By weighing that computational cost

against the accuracy improvement attained by the use of

the higher-order derivatives in the extrapolation (eq. 5)

one decides to which order the sensitivity analysis should

be extended. The current practice tends to include only

the first, and occasionally, the second derivatives in large

scale applications, but these practical limits are likely to

go up as the progress in computer technology continues

to lower the computational cost.

The extrapolation in eq. 5 together with the sensitivity

analysis defined by eq. 7 through 10 define a model of

design complementary to the model of behavior repre-

sented by eq. 4. Once the derivatives have been calcu-

lated and substituted in eq. 5, one may compute the effect

of any X k on the behavior practically instantaneously

and at relatively negligible cost, provided that the incre-

ment of X i is kept within extrapolation bounds (move



limits)consistentwiththeprobtemnonlinearity and the

order of extrapolation.

4.3. Enhancing the Design Model by

Replacement Variables

The extrapolation bounds (move limits) may be

widened by introducing artificially a degree of non-

linearity into the design model by a judicious replacement

of the design variables. One such replacement is

described in [ 151. The Y i ._ behavior variable is tested for

the sign of its first derivative with respect to Xk. If that

derivative is positive, the extrapolation of Y' j continues

to be done with respect to Xk, but for a negative derivative

the extrapolation is done with respect to a replacement
variable Rk = l/X k •

Y
2

3

Xk

Figure 3 Replacement variables in extrapolation.

Justification for such selective reptacemertt may

explained graphically as shown in figure 3. A positive

derivative characterizes the function as ascending. An

ascending function in a physical system is likely to obey

the law of diminishing returns, hence it should look like

curve 1. Extrapolation with respect to Xk by means of

tangent 2 is likely to overestimate, and thus be a conser-

vative approximation- a desirable feature in engineering

design. Conversely, a negative derivative identifies a

descending function portrayed by curve 3. Again, the law

of diminishing returns is likely to render that curve

asymptotic to the X-axis, so that tangent 4 would be an

undesirable nonconservative approximation that under-

predicts the value of the function. To reduce the error, one

may extrapolate with respect to the reciprocal Xk, in

effect following curve 5, and thus preserving the

asymptotic nature of the true function 3 and at least some

of its nonlinearity.

5. EXAMPLES

The first system optimization using a design model of

the type described above was reported in [16]. It was a

simple test case of a cantilever beam (structural analysis

module) whose dynamic response to a ramp-shaped load

impulse was controlled by exerting forces on the beam

with actuators commanded by a control system (control

module). Successful optimization for the minimum

weight of the entire system, including the weights of the

beam and of the actuators, employed a linear design
model.

Four examples described in this section were selected

to represent information accumulated since the above

case was completed. Each of these examples illustrates

different aspects of the foregoing discussion. The first

example shows the role of physical insight in setting up

the system sensitivity analysis. The second example

demonstrates how greatly the system derivatives, with

respect to design variables, may differ from the partial

derivatives. The third example addresses the issue of the

ply thicknesses
and orientations

Figure 4 A transport aircraft wing.

accuracy of the extrapolation. Finally, the last example

shows the effect of including the second derivatives in

the model of design used in a formal optimization.

5.1. Elastic, Slender, Composite Wing

As the first example, consider a slender wing structure



of a transport aircraft (figure 4) with skin made of a
composite material. Suppose that optimization of the
composite skin involves 30 design variables comprising
the ply thicknesses and orientation angles. The behavior
model of the wing comprises the aerodynamic and struc-
tural modules that exchange the aerodynarmc force and
structural deformation data. The aerodynamic module
uses a nonlinear method of analysis for a transonic flow
and outputs an aerodynamic pressure value for each of
1000 discrete points over the wing surface. The structural
analysis employs a f'mite-element method and outputs
1500 discrete displacement values for the finite-element

derivatives have to be refreshed so loop 4 has to be
traversed several times until overall convergence. Es-
timating that loop 4 would have to be repeated 15 times,
one gets 4 x 155 = 620 executions of each module, if
optimization is coupled directly to the model of behavior.
The aggregate cost of these executions accounts for near-
ly the total cost of the entire optimization because the cost
of executing loop 3 is trivial.

Introduction of a model of design that comprises the
system sensitivity analysis by eq. 7 and the extrapolation
by eq. 5 enables one to change the optimization organiza-
tion from the one illustrated in figure 5 to the one shown

4

1
Opumization

Aerodynamics: Nonlinear transonic

1
Structures: Finite Element Method, Linear

Extrapolation _

selection

Finite Differencing

2

Figure 5 Optimization with dervatives obtained by finite differencing of the behavior model.

model grid. A gradient-guided optimization program uses
derivatives of aerodynamic pressure and structural dis-
placement to guide the search for a constrained optimum
in the design space.

If the derivatives needed in optimization were to be
obtained by rmite differencing performed on the model
of behavior, the optimization would be organized as
shown by the flowchart in figure 5. First, for a trial setting
of X, one would iterate the aerodynamics and structures,
loop 1, until convergence of the aerodynamic loads and
structural deformations is obtained to a satisfactory
tolerance. This iteration constitutes the system analysis
for this case.

Next, the finite differencing would proceed in loop 2.
Under the simplest finite-difference, one-step-forward
scheme, each pass through loop 2 involves reanalysis of
the system for the design variables perturbed one at a
time. In that reanalysis, the aerodynamics-strucan'e itera-
tion in loop I must be reconverged. Assuming 5 passes
to converge in loop 1, the total number of executions of
each of the modules to carry out the system analysis once
to obtain the reference sotution and once for each design
variable to obtain the solution first derivatives would be,
assuming 30 design variables: 5 x (l + 30) = 155. The
solution and its derivatives are used in the extrapolation
employing eq. 5 curtailed to the linear part of the series.
The extrapolation is coupled to the optimization program
in loop 3. The optimization yields a new, presumably
improved, design for which the system solution and its

_ Aerodynamic Analysis I

1

_4

Structural Analysis J

Aerodynamic }__
Sensitivity

Analysis

System

Sensitivity

Eq. 7

Structural

Sensitivity

Analysis

Extrapolation I

Figure 6 Optimization based on derivatives obtained

by system sensitivity analysis.



in figure 6. Loop 1 is the same as in figure 5, but the finite

differencing that engages the system analysis, loop 2 in

figure 5, is replaced by two disciplinary sensitivity

analyses, one for aerodynamics and one for structures,

that are executed independently of each other (an oppor-

tumty for parallel processing). As mentioned before, al-

gorithms for disciplinary sensitivity analyses become

routine in structures [3], begin to be available in

aerodynamic analysis [ 17], and are generally much less

computationally costly than finite differencing.

The volume of data to be exchanged between the

modules governs the computational cost of the discipli-

nary sensitivity analyses. As assumed in this example,

there are 1000 pressure data output from the aerodynamic

module and 1500 displacement data output from the

structures module. Labeling the aerodynamic and struc-

tures modules as I and 2 respectively, the Jacobian

matrices in eq. 7 would have the dimensions 1000 x 1500
for A 12 and 1500 x 1000 for A 21 . In other words, one

would have to take the partial derivatives of each pressure

datum with respect to each displacement datum and vice

versa. Despite the efficiency of disciplinary sensitivity

analysis, computation of that many partial derivatives

would still be economically prohibitive. However, the

number of derivatives needed may be radically reduced

by physical insight.

Since the wing is slender (high aspect ratio), its

chordwise, plate-like bending is negligible relative to the

spanwise, beam-like bending. Furthermore, the wing

aerodynamic forces are affected by the changes of the

streamwise airfoil angle of attack caused by the structural

twist (and also bending in the case of a swept wing. Since

the wing twist angle and bending deflections are known

to be distributed quite smoothly spanwise, it is a

reasonable assumption to transmit only, say, 5 values of

the angle-of-attack changes at 5 spanwise wing locations

as a description of structural deformations. Conversely,

the 1000 aerodynamic pressure data may be collected into

a vector of, say, 10 concentrated forces at I0 spanwise

wing locations.

This condensation may easily be implemented as

postprocessing so it becomes a part of each module. Then,

the dimensions of the Jacobians in eq. 7 reduce to 10 x 5

and 5 x 10 for A t2 and A 21 , respectively. By the same

token, RHS for this example would be reduced to only 15

elements. In this RHS, all elements are null except the

bottom partition of 5 elements that contains the partial

derivatives of displacement with respect to the a struc-

tural design variable.

Once the partial derivatives from the two disciplinary

sensitivity analyses are obtained, the system derivatives

are calculated from eq. 7 and optinfization using eq. 5

executes in loop 3 followed by loop 4, the same ;ks in

figure 5.

In summary, the use of a ntodel of design that embeds

a system sensitivity analysis has reduced the number of

executions of each modules m this example from 620 to

merely 5 x 15 = 75 (l_p 1 uestcd in l_p 4_, at the price

t)[ adding the cost of the disciplinary sensitivity analyses

and the cost of solving eq. 7 (nested in loop 4 hence

incurred 15 times under the assumptions used in the

example). Even with that added cost, the overall op-

timization cost reduction is likely to be more than an order

of magnitude. An additional potential benefit is time

saved due to the parallel processing of the independently

executed disciplinary sensitivity analyses.

t00 _--
W_cuta_ons

---o-- Rigid/Reanalyses

Rigid/Extrapolations

8.5 _ --o-- Elastic_Reanalyses

Elastic/Extrapolations

7.0 =__

5.5 __ , .O.--._ .... D'''&-

J .O"

4 of'"| l 1 I

-40 -30 -20 -t0 0

Quarter-chorcl sweeo angle, cleg

Figure 7 Trimmed angle of attack as a function of

sweep angle.

5.2. Forward-Swept, Elastic Wing

A result reported for a forward-swept, elastic wing in

(18], is an example of a drastic difference between the

values of the system derivative and the partial derivative

of a behavior variable with respect to a design variable,

The system again comprises the aerodynamics and struc-

tures modules, the behavior variable is the trimmed angle

of attack (the angle of attack at the reference chord

required to maintain a prescribed lift), and the design

variable is the sweep angle.

The sweep angle is the horizontal coordinate in figure 7

(negative degrees indicate forward sweep) and the

trimmed angle of attack is the vertical coordinate. The

trimmed angle of attack as a function of the sweep angle

is shown for the rigid and flexible wing. The slopes of the

tangents represent the derivatives at an arbitrarily chosen

sweep angle of 20 degrees. The partial derivative cor-

responds to the tangent slope of the rigid wing curve

because it was obtained from the aerodynamics alone.

The system derivative is represented by the tangent slope

of the flexible wing curve since it reflects the interaction

of two modules in the wing system. It is apparent that the

interaction was so strong in this case that the derivative

and the partial derivative have opposite signs.

The lesson from this example is that a trend predicted

on the basis of only one module in a coupled system may

completely misguide the design decisions.
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Figure 8 Flutter speed as a function of wing aspect

ratio.

5.3. Wing Flutter

Usefulness of the design model as a predictor of the

effects of the design variable changes depends on the

degree of nonlinearity of these effects. Results that she, d

light on that issue were reported in [18] and [19], The

previous example showed good accuracy of the linear

extrapolation over a broad numerical range of the design

variable for a static type of the behavior. Reference [19]

included results for a dynamic type of aeroelastic be-

havior. An example of such a result is given in figure 8

that shows the flutter speed as a function of the wing

aspect ratio (slenderness).

The function exhibits a low degree of nonlinearity for

1 2

Figure 9 A fight wing configuration with control

urfac es.

the aspect ratio greater than 6.5 which makes the linear

extrapolation in that range a very good predictor of the

aspect ratio influence on the flutter speed, as illustrated

by the dotted line tangent. On the other hand, the function

is strongly nonlinear for the aspect ratio smaller than 6.5,

and the linear extrapolation in that interval would have to

be subject to fairly narrow move limits to be reliable.

Slope discontinuities in the function caused by the flutter

mode switching are also detrimental to the extrapolation

accuracy. This example indicates that care is needed in

setting the extrapolation move limits and that the use of

higher derivatives in the model of design should be

considered as means to avoid excessively narrow move

limits.

control deflections

V
Aerodynamic ]Analysis

Structural

Analysis

loads V

Control
System
Analysis

Figure 10 A simulation system for the fighter wing.

5.4. Optimization Using a Quadratic
Design Model

An example of the use of the second-order derivatives

in the extrapolation coupled with an optimization pro-

gram was given in [201. The object of the study was a

wing shown in figure 9, that was equipped with two

control surfaces on the leading edge and two on the

trailing edge. A control system was programmed to

deflect these surfaces to reduce the wing-root bending

moment while maintaining a constant lift. The model of

behavior included the modules representing

aerodynamic, structural, and control analyses coupled as

depicted in figure 10. Optimization used the wing-root

bending moment as the objective function to be mini-

mized by manipulating the control surface deflection as

design variables under the constraint of the constant lift.
The volume of data communicated between the

aerodynamics and structures modules was judiciously

limited by physical insight in a manner similar to that

discussed in the first example. For instance, the airfoil lift

coefficients were computed at only four spanwise loca-
tions.
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Optimization results obtained with the use of a model

of design based on the first derivatives, the diagonal terms
of the second derivative matrix, and the full second

derivative matrix are illustrated in figure 11. They show

that in this particular case a meaningful reduction of the

minimum objective function was brought about by in-
cluding a full set of the second derivatives.

6. CONCLUDING REMARKS

Mathematical simulation of complex engineering sys-

tems is commonly used in the design of these systems to

obtain information about the system response to external

stimuli, in effect it is used as a mathematical model of

behavior. This paper shows that means exist for such

stmulation to be extended to answering the "what it"

questions concerning effects of the design variables on

behavior - the questions that must be answered in the

quest for an optimal design. System sensitivity analysis

quantifies answers to such questions by computing

derivatives of behavior with respect to design variables

without the costly finite differencing of system analysis.

The algorithm for system analysis offers accuracy and an

opportunity for parallel processing. The algorithm also

allows the use of specialty methods for partial-sensitivity

analysis in the disciplines involved in the system at hand.

Sensitivity analysis yields derivatives of the first- and

higher-orders that may be coupled with an extrapolation

based on these derivatives to form a model of design. That

model is capable of answenng the designer's queries

about the effect of design variables practically instan-

taneously, and at a negligible cost comparing to the use

of finite differencing on the model of behavior.

Complementing the model of behavior with the model

of design extends the array of tools that assist an engineer

in the design of a physical system. As shown in figure 12,

that array affords the designer the option of getting

answers to three basic questions that occur in the design

process. The "what now" question about the system

response will be answered by the model of behavior. The

"what iF' question about the effects of a design variable

will be answered by the model of design. Finally, the

question "what is the best" in search for an optimal setting

of many design variables, under complex and possibly

competing considerations, may be answered by a formal

optimization that calls on both models.

J= [

Physical System ! [_

Figure 12 Array of tools for system design.

Model o! Behavior

Model of Design

Optimization

what when ?

what if ?

what is the best ?
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