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PREFACE

During the firstweek of April 1989, a workshop, entitled "Constitutive Relation-
ships and Models in Continuum Theories of Multiphase Flows," was held at NASA's

Marshall Space Flight Center. The purpose of this workshop was to open a dia-

logue on the topic of constitutive relationships for the partial or per phase

stresses,including the concept of solid phase "pressure" and the models used for

the exchange of mass, momentum, and energy between the phases in a multiphase

flow. This volume is the result of the stated objective of the workshop, namely:

to provide a state-of-the-art report on constitutive relationshipsand models in

continuum theories of multiphase flows. This written record is intended to be

something of a "market place" for those engineers and scientistswho are attempt-

ing to implement multiphase flow theories for practical calculations. The focus

on continuum theories was quite intentional,given the high level of engineering

application that the continuum or "two-fluid" theory is seeing. Arguments per-

taining to the applicabilityof the continuum approach versus other multiphase

flow schemes, such as the Lagrangian-Eulerian or "tracking" techniques, are not

broached. However, it is cautioned that even for certain broad categories of

multiphase flows, the applicabilityof one class of theories over another is de-

bated. Caveat emptor!

The authors are from a variety of backgrounds and have, collectively,a knowledge

of the spectrum of typical multiphase flows; i.e.,from the dilute to the concen-

trated in terms of the fraction or concentration of the dispersed phase.

Within the general class of continuum theories, two (perhaps underexplored)

formulations for multiphase flows are presented. These are the drift flux

approach and the potential flow theory. These formulations provide a very useful

and alternative perspective to the problem. However, as with the more familiar

mass, momentum (with dissipation),and energy flux formulations, the drift flux

and potential flow theories suffer from the problems of "closure" modeling re-

quirements and validating the adjustable parameters.

One author wrote in a summary of this workshop: "We are responsible to agree on

the form of the equations, the averaging techniques to be used and the interpreta-

tion of the terms in the averaged equations. Without this,we don't even have a

common language to discuss the problem." The bulk of the presentations and
discussion which resulted during the course of this workshop addressed this ob-

jective.

It is recognized from a physical perspective that the interaction of the dispersed

phase particles (deformable or otherwise), amongst themselves, either via col-

lision,"lubricated" near collisions,intermingling wakes or wake "drafting,"are

important processes. Hence, it would be an oversimplification to consider only

single particle hydrodynamics when formulating constitutive relationships and

momentum/energy exchange models. This requires modeling of paired and multi-

body interactions with probabilitydistributionfunctions (PDFs) and the solution of

various integralsof products of PDFs over specified fieldspaces. This isan area

where "borrowing" from the evolutionary structure of kinetic gas theory has

proven to be useful.

The analysis of dispersed phase stresses,specifically,the concept of solid phase
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"pressure," is maturing. There are at least three mechanisms for normal or

spherical momentum fluxby a rigiddispersed phase: collisionaltransport,momen-
tum transport due to the kinetic or deviation-about-the-mean motion of the

particles,and the transport of hydrodynamic stresses which are present upon the

skin of the particle. The firsttwo mechanisms can be recognized as characteris-
ticsof the dispersed phase "cloud" or more specifically,as continuous, advectable

fieldsof the dispersed phase. Structures, albeitcomplex ones, for the the formu-

lationof these stresses are available and are presented in these proceedings. The

latter mechanism isof unavoidable importance and requires analyzing the hydro-

dynamical stress around a single particle and averaging these to achieve a con-

tinuous field. Generally, the result is a dissipative(nonrecoverable) spherical

stress,ascribed to the dispersed phase, containing, amongst other things,the slip

velocity between the dispersed and continuous phases and the continuous phase

viscosity. It must be cautioned that it is possible to include these same stresses

redundantly in a model for the momentum exchange between the phases.

Within thiscommunity, there isa growing consensus that the spin field,not to be

confused with the vorticity field,of the dispersed phase is of importance. To

date, attempts at modeling higher order interactionsbetween the phases, such as

lift forces, requiring some knowledge of the particle spin, have set that value

equal to one half the local,continuous phase vorticity. This result is from single
particle hydrodynamical analysis in an unbounded, linearshear flow and does not

allow for any independent spin motion of the particles due to wall interactions,

collisions,or "near" collisions.In addition,itcouples the spin inertiaof the par-

ticles directly to the local vorticity field of the continuous field and does not

allow for particle "spin-up" or "spin-down" in the presence of a local shearing
flow.

Finally,a suite of experiments which could be used for testing and validating/re-

jecting various aspects of multiphase flow theory issorely needed. In a manner

similar to the singlephase flow community, with their cavity flows and backward

facing steps, thiscommunity needs to arrive at a consensus for a suite of experi-

ments, so that when we finallyall speak the same language, we can all shoot at

the same target.
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ABSTRACT

The main characteristics and the potential advantages of

generalized drift flux models are recalled. In particular it is

stressed that the issue on the propagation properties and on the

mathematical nature (hyperbolic or not) of the model and the

problem of closure are easier to tackle than in two-fluid models.

The problem of identifying the differential void-drift closure law

inherent to generalized drift flux models is then addressed. Such

a void-drift closure, based on wave properties, is proposed for

bubbly flows. It involves a drift relaxation time which is of the

order of 0.25 s.

It is observed that, although wave properties provide essential

closure validity tests, they do not represent an easily usable

source of quantitative information on the closure laws.



I. INTRODUCTION

Generalized drift flux models were recently shown (Boure, 1988b)

to be attractive alternatives for current I-D two,fluid models.

Drift flux models are characterized by the uses of a single

momentum balance (the mixture balance instead of two phasic

balances) and of a void-drift closure law. In classical drift flux

models the void, drift closure law is expressed through an

algebraic equation, which amounts to ignoring nonequilibrium drift

effects. In generalized drift flux models, the void-drift closure

equation is a partial differential equation.

Generalized drift flux models and two-fluid models are compared in

the next section and in table I. The comparison brings out the

drawbacks of two-fluid models. However, both kinds of model must

be complemented by closure laws. In particular, generalized drift

flux models need a void° drift closure law which remains to be

specified.

Since generalized drift flux models were introduced to account for

the properties of kinematic waves (Bourn, 1988a), it seems

logical to use these properties to identify (i.e. to evaluate the

coefficients of) the void-drift closure equation. The purpose of

the present paper is to discuss the identification problem,

assuming that the void-drift closure equation may be approached by

a quasi linear differential equation of the first order.

II. A REMINDER ON GENERALIZED DRIFT FLUX MODELS AND TWO-FLUID

MODELS

The comparison between generalized drift flux models and two-fluid

models is summarized in table I which, like must of the substance

of this section, is taken from Bour_ (1988b). The mass and energy

balances are parts of both kinds of models, and they are not

discussed further hereafter. It is only noted for completeness

that they require a few closure equations, in particular for the

mass and energy transfers at the walls and at the interfaces.



The momentumbalances contain the two phasic averaged pressures PG

and PL, the subscripts G and L corresponding to the two phases.
For the following discussion, it is convenient to express PGand

PL in terms of the average pressure P and the pressure difference

PLG' with :

P _ _ PG + (I - _) Pt ' PLG _ PG - PL (2.1)

being the void fraction. Now, in the set of balance equations,

the two phasic momentum balances are equivalent to a subset of two

equations, namely the mi×Cure momencum balance and the pressure

difference equation, obtained on eliminating P between the two

phasic balances.

The mixture momentum balance may be written :

aP (a wG

--+ °_ OG /c_z 8t

0 WGI la W L a WLI

--+ w0-g-z)+ (1 + wL-g-z)

aR aT

+ az + _z + MLG (WG WL ) 1° + Fw + pg = 0

(2.2)

the terms of the second line representing respectively :

- a term accounting for fluctuation and transverse distribution

effects

- a term accounting for longitudinal stress variations

- an interfacial mass transfer term

- a surface tension term (interfacial)

- a friction term (walls)

- a gravity term.

t and z are respectively the time and the space variables, PG and

PL are the phase densities, W G and W t are the phase average

velocities, g is the gravity acceleration, and :

p = o_ PG + (I - O0 PL (2.3)
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w being the local instantaneous velocity along Oz and T the local

--k

instantaneous deviatoric stress tensor, indicating the

conditional time or ensemble averaging operator and < > the

space averaging operator, and D being the unit vector of the 0z
Z

axis, R and T are defined as :

G L

R -( p0 (wG-%)z + <I-=) -%)2 > (2.4)

- _ + (i- _) _T • n (2.5)
-G -L -z

Independently of the mass transfer, already present in the mass

balances, eq. 2.2 requires four closure laws for R, T, I_ and Fw

Turbulence effects are present through R.

The pressure difference equation may be written :

I (_ Wr,(i - C_) PG [ 8t

a WG_

--+WG -_z) -
_ WL ($ WLI 8 PLG

+ % -g-=)+ %-;-

+ LR + LT + MLG [(i - 0_) (W G - WGI ) + O_ (W L - WLI)] (2.6

+ L I + LFW + LFI - O_ (i - 0_) IOGL g -- 0

the terms of the second and third lines representing respectively •

- a term accounting for fluctuation and transverse distribution

effects

- a term accounting for longitudinal stress variations

- an interfacial mass transfer term (WGI and WL! are interfacial

averages of the phasic velocities)

- an induced inertia ("added mass") term

o two friction terms (respectively wall and interfaces)

- a gravity term, with

PGL _ PL - PG (2.7)

The above terms are defined in Bour_ (1988b). For instance •
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h R _ (1-(_) _ O_ 11)G (w G W G - O_ _z (1-O_) 10L (w L- W L )2

L_ =_ - (I-_) _z _ T=G" -zn + _ _z (i-_) T:L" Dz "

(2.8)

(2.9)

Equation (2.6) requires seven closure laws for L_, L_, WGI ,

WL], L[, LFW, LFI. Moreover, retaining eq. (2.6) implies, at least

in theory, retaining also the interfacial momentum balance, which

requires one supplementary closure law.

In two-fluid models, eqs (2.2) and (2.6) are both implicitly

written. A crucial point is that eq. (2.6) is stiff. This means

that, due to the relative orders of magnitude of its terms, small

variations on the closure laws (and in particular on the induced

inertia and interfacial friction closure laws) induce large

variations on PLG (when PLG is not merely ignored) and/or W G-

Hence the difficulty to adjust the very badly known closure laws

of eq. (2.6) to avoid unrealistic values of the light phase

velocity.

A second crucial point is that, whenever eq. (2.6) is closed by

algebraic laws only, a non-hyperbolic set results : two

characteristic velocities are complex conjugate, with the

consequence that the model is unconditionally unstable.

In drift flux models, eq. (2.6) is not written, which is

acceptable since the value of PLG does not really matter in

practice. The two foregoing difficulties are not encountered.

Besides the closure laws already mentioned, current two-fluid

models are closed through an assumption on PLG (the set of

6 phasic balance equations involves 7 dependent variables, namely

two pressures, two velocities, two enthalpies and the void

fraction). Such an assumption imposes an artificial constraint on

the pressures and pressure gradients. It disturbs the description

of the corresponding propagation phenomena.



Generalized drift flux models are closed through the direcc

descripcion of the void-drift dynamic dependency. Assuming a

quasi-linear, partial differential relationship of the first

order, and using the convenient variables :

W _ e W G + (I - _) WL, 6 _ _ (I - _) (W G - W L) = _ (W G - W) (2.10)

(center of volume velocity and drift), it may be approached by :

+ W2 + (W + W4 - Z)
8_ 8c_

--+ (ww4 - N) --
8t az

86 86 i

+ St--+ W4 _z --_ (f - 6) (2.11)

Equation (2.11) requires seven closure laws, i.e. the same number

as eq. (2.6) but with simpler physical significances and more

straightforward consequences : f is the fully-developed drift

value, 8 a relaxation time, Z and n are respectively the sum and

product of the two characteristic velocities corresponding to the

kinematic waves, W expresses inertia effects, W 2 and W 4 are

averaged velocities close to W.

It can be concluded that developing a closure set for eq. (2.11)

and using generalized drift flux models appear as less hazardous

and hopefully easier than developing a closure set for eq. (2.6)

and using current two-fluid models.

III. INFLUENCE OF THE VOID-DRIFT CLOSURE ON THE PROPERTIES OF

KINEMATIC WAVES ("Direct problem")

As long as the kinematic wave velocities are small with respect to

the sonic velocity, the properties of small harmonic kinematic

waves of the form



x - x0 ei (cot - kz) (3.1)

where x0 (constant) 0_and k are real or complex quantities, result

from the approximate dispersion equation (Bourn, 1988b)

co- C_ k + i 0 (_ - Z cok+ IIk 2) = 0 (3.2)

where •

Cc__ W + f' (f' ^ _)o,, o_= (3.3)

A first consequence is that the kinematic wave properties, which

do not significantly depend on N, W2, W4, cannot be used to

evaluate these quantities (_ is related to the sonic velocity, W2
and W4 have only weak influences).

In the exploitable experiments (Tournaire, 1987, Bourn, 1988a) co

is imposedand the kinematic wave velocities V and their spatial

amplification coefficients ki result from the data processing.

Eqs. (3.1) and (3.2) must therefore be used with co real and :

k _ k r + i k i (3.4)

from which

- - k i z i (_Ot - krZ )
x -- x 0 e e (3.5)

V = -- (3.6)
k r

kr, which does not depend on the frame of reference, can be used

instead of _, which does, to characterize a wave.

Introducing eqs. (3.4) and (3.6) in the dispersion equation (3.2)

and separating the real and imaginary parts lead to :



k r [V - C_ + @ Y V k i - 2 8 11 k i ] = 0 (3.7)

- C_ ki + @ V2 2 _ 0 Z V 2

Equations (3.7) and (3.8) provide the solutions to the direct

problem, viz. computing the properties of the kinematic waves of

wave number kr when C_, e, Z and R are known. There are two

solutions corresponding to two modes (noted with the subscripts 3

and 4). In the experiments it was found that modes 3 and 4 are

respectively predominant at low void fractions (0 < _ < 0.25) and

at "large" void fractions (_ > 0.30)

In particular for kr = 0, the two solutions are :

ki 0 (C_ - C3) (C_ - C4)

k i = 0 with --= , V = C_ (3.9)

kr2 C_

and

C_ 1 i i I

k i = V = ' with _ + (3.10)
0 II t C_ , C3 C4 C_

C_

C3 and C4 being defined by :

Z -_ C3 + C4 rl _ c3 c4 (3.11)

For k r _ _, the two solutions are :

C_ - C3

V = C3 k i = - (3.12)
0 c3 (c4 - c3)

C4 - C_

V = C4 k i = - (3.13)
O C4 (C4 - C3 )



In equations (3.7) and (3.8) the three quantities 8 kr, k i are

present only through the two products (8 kr) and (B ki). In actual

experimental runs, k r is never zero and the equations may be

written :

V - C a + (C 3 + C4) V (8 k i) - 2 C 3 C 4 (@ ki) = 0 (3.14)

(0 ki )2

- Ca + V 2 - (C 3 + C4) V + C3 C4 - C 3 C 4 - 0 (3.15)

(B k r )2 (0 k r )2

0 k i

Since in the exploitable

significantly depend on k r

convenient to eliminate V

(3.14) yields •

experimental data, V does not

(no r significant dispersion), it is

between eqs. (3.14) and (3.15). Eq.

V --

C a + 2 C3C 4 (O k i)

i + (C 3 + C4) (O k i)

(3.16)

and eq. (3.15) yields :

V --

C3 + C4 (C 4 _ C3 )2

+
4

2
O k i (O k i )

+ Co_ + C3 C4 (3.17)

(0 k r )2 (0 k r )2

The solutions for 8 k i are then the real solutions of the

equation

2 C a- (C 3 + C4) - (C 4 - C3) 2 (O k i)

i + (C 3 + C4 ) O k i

O k i (O k i )2

+ (C 4 _ C3)2 + 4 Cc_ + 4 C3 C 4 (3.18)

(O k r )2 (O k r)2

Computing directly O k i as a function of 0 k r from eq. (3.18) is

not straightforward. It is more convenient to transform eq. (3.18)

to express @ k r as a function of @ k i

I0



[C_ + C3 C4 @ki] [I + (C3 + C4) @ki]

(Co- C3) (C_- C4) - (C 4- C3)20 k i [Co,+ C3C 4 0 ki]

(3.19)

For a given value of ki, eq. (3.19) yields zero or one real

positive value of k r.

IV. IDENTIFICATION OF THE VOID-DRIFT CLOSURE EQUATION FROM

KINEMATIC WAVE PROPERTIES ("Inverse problem")

The problem posed in this paper is the determination of C_, 8, Z

and _, using the experimental data on kinematic waves. It is the

inverse of the problem of section 3.

The principle of the method is to write eqs. (3.7) and (3.8), for

instance, for several sets of experimental conditions for which

kr, V and k i are known and to use the resulting equations to

compute C a, 8, Z and N.

In the exploitable data, as already noted, V does not depend

significantly on k r. Accordingly, when a single mode is

predominant, V may be expected to be close to both C 3 (or C4) and

C_ (or C_). This has two consequences :

I. Whenever a single mode is predominant, the experimental

correlation for V should be a correlation for C_ as well. This is

corroborated by the fact that is satisfies the definition (3.3).

In the experimental conditions of Tournaire (1987) (upward

vertical flow, low pressure), it leads to (Bour6, 1988a, f and

C_ - W in m/s) :

For 0 < _ < 0.2 (mode 3 predominant)

f = 0.22 _ (i - _) [I - 1.25 = (I - =)] I

J
C_ - W = 0.22 (I - 2_) [i - 2.5 _ (i - _)]

(4.1)

II



For 0.3 < _ < 0.41 (mode 4 predominant)

f = 0.22 _ - 0.028 l

fC_ - W = 0.22

(4.2)

For 0.2 < _ < 0.3 (the two modes coexist) the values of f and

C_ - W may be interpolated between (4.1) and (4.2) with, from the

experimental data •

for _ = 0.25

C_ - W _- 0.08 (4.3)

2. When mode 3 (respectively mode 4) is predominant, C_ - C3

(respectively C4 - C_) should be "small".

C_ being known and V eliminated, the problem may now be

reformulated, eqs. (3.7) and (3.8) being replaced by eq. (3.18) or

(3.19) to be solved for 8, C3, C4. Only mode 3 results are

exploitable since mode 4 results for ki are too few in number. In

view of the forms of eqs. (3.18) and (3.19), the foregoing problem

is far from simple. This is confirmed by fig. i in which, as

suggested by eq. (3.19), the experimental results for - k_/k i are

plotted as a function of - ki, and which exhibits an important

scatter (in the representation of fig. i, the points corresponding

to Iki I < 0.i are subject to large errors and therefore

meaningless. They were not plotted in the figure).

In the domain in which mode 3 is predominant, the conditions :

I

C3 < C_ < C_ < C4 (4.4)

may be expected to hold (see Boure, 1988a). They entail

C_ - C3 I C4 - Ca Ca
< < <

8 C3 (C 4 - C3) B (C 3 + C4) B C4 (C 4 -C 3) 0 C3 C4
(4.5)

12



Then,
starts

which

k_/k i

as ki decreases from zero, k_/k i resulting from eq. (3.19)

from the value corresponding to eq. (3.9) with a slope

may be of either sign. However, when Iki I is sufficient,

also decreases. It tends towards - _ for the value

corresponding to eq. (3.12). For the values of k i comprised

between those given by eqs. (3.12) and (3.13), there is no

physical solution (kZr _< 0). Finally, for the values of k i

comprised between those given by eqs. (3.13) and (3.10), there is

a solution again corresponding to mode 4.

By trial and error, 8, C3 and C4 may be adjusted to fit the curve

representing eq. (3.19) to mode 3 data. In view of the absence of

dispersion C3 may be expected to be close to C_.

For 0 < = _ 0.20 • the following set of values is acceptable

\

8 = 0.25 s |

C_ C3 = 0.02 m/s

C4 C_ = 0.08 m/s)

(4.6)

Precise adjustement would need more accurate data for the wave

velocities and especially for the damping/amplification

coefficients. Such data does not exist and cannot be expected to

be obtained soon in view of the available instrumentation. For

> 0.25, no sufficiently accurate data is available.

Equations (4.1) and (4.6) confirm that, even at low pressure, the

relevant velocity differences corresponding to fully developed

conditions are fairly small in bubbly flows. They are negligible

as soon as W is large enough (say 3 m/s). Accordingly the

correlations for C_ - W, C3 - W, C4 - W are probably not crucial.

On the other hand, the drift relaxation time 8 is an essential

parameter of the generalized drift flux model.
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V. CONCLUSIONS

After a reminder on the main characteristics and the potential

advantages of generalized drift flux models, the problem of the

identification of the differential void-drift closure law they

imply has been addressed.

Two advantages of generalized drift flux models versus complete

two-fluid models are :

I. The correct description of the kinematic wave phenomena and the

straightforward control and interpretation of the mathematical

nature (hyperbolic or not) of the model set of partial

differential equations that they enable.

2. The simplification of the closure problem, involving only

closure laws of simple physical significance and easy to assess.

On the other hand, it has been found that the available data on

kinematic wave properties is not quite adequate to enable the

identification of the void-drift closure law. Such an

identification would need a very good accuracy (difficult to reach

in practice) on the wave damping or amplification coefficients.

Accordingly kinematic wave properties seem to be more useful as a

closure validity test than as a source of quantitative information

on the closure laws.

However, a void-drift closure, suitable for bubbly flows, has been

adjusted on the available kinematic wave data. It involves several

velocities which differ only slightly from each other and from the

average fluid velocity but whichare necessary to the description

of the kinematic wave properties. It also involves a drift

relaxation time which is an essential parameter of generalized

drift flux models and which was tentatively found to be of the

order of 0.25 s for the upward flow of air-water mixtures at low

pressure.



Table '1

Simplified comparison of modeling strategies

Drfift flux approach Common features Two-fluid approach

I Void-drift closure eq.

(partial differential eq.)

+

Closure laws:

fully.developed drift f

Drift relaxation time 9

Kinematic wave

properties (C 3, C4)

Dynamic wave prop. (q)

Balance equations :

[ Mlxture momentum

2 Phaslc mass

2 Phasic energy

4,

Closure laws:

Bulk terms

Wall: Momentum, (Mass)

Energy transfers

Interface : Mass and

Energy transfers

Ilonr°z°°rtuxmo°esll(PLG not calculated)

Optionally

I I Pressure difference eq. J+ Closure laws (as above)

I Pressure difference eq.

(Balance eq.)

÷

Closure laws

Bulk terms

Waft terms (friction}

Interfaclal terms, incl.

frlctlon 8, Induced inertia

Problem : Stiff equation

J Assumption on PLGI

!

Jl C°mpl_tpL:WC°al:_iadt_dels il Current(ptLW°a:::dmernd_dels
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NOMENCLATURE

Elements of length, area

Exertia, (ai/_ - 1)

Force per unit volume of a phase

Body force per unit mass

Unit dyadic

Volumetric flux density

Kinetic energy density

Geurst's added mass coefficient

Momentum density

Added mass force

Mean pressure in a phase

Macroscopic pressure

Combined momentum flux and stress tensor

Density ratio pl/P2

Time

Microscopic velocity

Average velocity

Relative velocity vl - v2

Volumetric fraction of a phase

"Resistivity," (1)

Macroscopic potential

Specific momentum, (24), (25)

Density

Macroscopic potential

2O



Subscripts

0

1

2

With particles at rest

Phase 1

Phase 2
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INTRODUCTION

Potential flow theory for a singlefluid hasbeenestablishedfor many years. Although

its limitations for describingreal motions arewell known, it doesprovide a self-consistent

structure for analysisand often providesa reasonablyaccuratedescription of at least part

of the flow field of fluids with low viscosity.

As an exampleof two-phaseflow, one can imagine a suspensionof particles in a fluid

that obeys all the requirements of potential theory at the microscopic level. If the only

forcesacting on the particles are "conservative,"it would appear that their motion might

also reasonablybe expectedto be describablein terms of a suitable potential. Averaging

of thesepotentials would lead to macroscopic potentials, true properties of the mixture,

that should be related in some way to the average motion of the phases. Indeed, previous

attempts to determine the inertial coupling terms in the two-fluid model have implicitly

assumed potential flow at the microscopic level.

A complete two-phase theory of this type will be as idealized as was the classical

theory of single-phase potential flow. However, it should be useful in the same sorts of

ways, both as an approximation in many situations and as a standard that must at some

level be consistent with other approaches, such as those that attempt to define closure

relations for a set of averaged basic equations.

This paper describes some features of two recent approaches along these lines. The first

is based on a set of progressive examples that can be analyzed using common techniques,

such as conservation laws, and taken together appear to lead in the direction of a general

theory, the tactic used in [1]. The second is based on variational methods, a classical

approach to conservative mechanical systems that has a respectable history of application

to single phase flows. The latter approach, exemplified by several recent papers by Geurst
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[2-5], appearsgenerally to be consistentwith the former, at least in those casesfor which

it hasbeenpossibleto obtain comparableresults.

PROGRESSIVE EXAMPLES

The theory developed in [1] starts with a situation where the particles are at rest.

Fluid flows past these particles as though a porous medium. At the microscopic level

the equipotentials are not "smooth" but they do not differ much from the more gross

macroscopic equipotential. Differences between the two levels of equipotential are smeared

out over lengths comparable with the particle size. I do not have a rigorous proof, but I

believe it is valid to treat these two equipotential surfaces as essentially identical for most

purposes. This is not true of the other properties, such as pressure and velocity, that vary

more at the microscopic than the macroscopic scale and must be averaged carefully.

Just as in electrical conduction past a matrix of non-conducting particles, the macro-

scopic fluid flux will be proportional to the macroscopic potential gradient, the "resistivity"

being represented by a factor/? that depends only on the particle geometry and the void

fraction, as long as the arrangement is isotropic. We therefore have

1

jo = (1)

Since/_ is unity for unimpeded flow, it will be greater than one when particles are

present. A crude description of the situation could be to say that some of the fluid is "held

up" or "entrained" by the particles so that only a fraction of the space is available for

direct flow.

The average velocity of the fluid is the relative velocity,

j0 1

w_ _ -:--wr (2)
0_1 O_lfl
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The kinetic energy of the fluid in unit volume confined between two equipotentials is,

from a standard theorem of potential flow.

1 1 a2" 2k0 = -lpl Cu-ds = -_plVq"j0 = -_Pl lPw

The kinetic energy per unit volume of phase 1 is

(3)

to

If we denote the fluid velocity at the microscopic level by ul, (2) and (4) are equivalent

w =< ul > (5)

w2_1_=< u_ > (6)

Invoking the Schwarz Inequality, it is clear from (5) and (6) that alfl is greater than 1, a

proof pointed out to me by my student Chao Luo.

By considering the changes in the fluid kinetic energy resulting from a uniform volume

change for every particle it can be shown [1] that the difference is mean pressure between

the phases is

P2-Pl = _plw el (alfl-1) (7)

The additional "1" in (7) appears to be gratuitous. It is introduced at this stage

because the "exertia," defined [1] as
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E = (al/_ - 1) (8)

turns out to reappear in numerous contexts and to be one version of an added mass

coe._cient.

If we now superimpose a uniform velocity v2 on the above motion, this is equivalent

to superimposing a corresponding potential gradient and we obtain

where the relative velocity is

Vl + Ew = -V_ (9)

w= vl - v2 (10)

The net momentum and kinetic energy densities are then

m = plt_lVl qt_ p20_2v 2 (11)

1 -2 1 1k= _PlalV 1 + p2a2v 2 +-_plalEw 2 (12)

From (11) and (12) we may deduce that the effective equations of motion of a uniform

suspension accelerating under the influence of a uniform macroscopic pressure gradient

and body force fields are
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VP alxw
÷1 + E@ - +g_ + -- (13)

Pl Pl

_'2 plal E_¢ VP a2 ×w-- + g2 + -- (14)
P2a2 P2 P2

al and a2 are arbitrary vectors subject to the constraint

(olla 1 + oL2a2)×w = 0 (15)

It would appear that the assembly must be incompressible if it is to be truly "uniform"

in a pressure gradient. If gl is a conservative force field, comparison between (9) and (13)

would seem to indicate that Vxal ×w is zero and therefore V×a2 xw is as well from (15).

Eq. (14) then suggests that if g2 is conservative, the combination on the left-hand side is

the gradient of another "potential" which we could define in a form somewhat resembling

(9):

Plal
v2 Ew = -Vr] (16)

p2012

A different argument is used to derive the one-dimensional equivalent of (16) in [1]. In each

case, the interpretation of • and rI could be, in the classical view, in terms of impulsive

pressures and body forces necessary to set up the motion. This derivation, made for a

uniform suspension, requires further argument, or a leap of faith, if it is to be applied

more generally to a dispersion in which w and al, and hence fl or E, vary with position.

Eqs. (13) and (14) show that the ezertia plays the classical role of a coe]ficient of

apparent mass, being proportional to various alternative definitions [1] in the literature.
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Someother results derived from mechanistic arguments[1] are:

• The combinedmomentum flux and stresstensor for the suspension:

P = OLl(plVlVl + plI) + _2(p2v2v2 + p2I) + O_lPlEWW (17)

Bernoulli's equation for fluid flowing steadily past a stationary particle matrix:

Pl = Pol - 2PlW2(1 + E)

The force per unit volume on a particle in a stationary lattice:

(18)

f2 ----- VP2 = V (_pl 22vlO/1 d____) (19)

When these results are used to check several hypothesized forms of the equations of

motion in the two-fluid model of two-phase flow, there are found to be discrepancies [7],

except when Geurst's equations are used.

GEURST_S EQUATIONS

In a series of papers [2-6] Geurst has used variational methods to derive a number of

results, starting from the hypothesis that the kinetic energy per unit total volume is

which is the same as (12) with the alternative definition

(20)

m = C_l(al/_- 1) = ale (21)
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Initially Geurst [2,3]developeda one-dimensionaltheory, introducing Lagrangemul-

tipliers that are the same as the potentials • and 7/ in (9) and (16). He went on to

derive equations of motion, momentum, fluxes, pressures,etc. that are compatible with

the results in Section2, where there is a clear equivalence.

In three-dimensionsthe derivation is complicated by the introduction of Clebschpo-

tentials and Lin constraints. Details arenot provided in earlier publications [2-4] but they

do appear in a recentone [6] in which the equivalentsof (9) and (16) are expressedas

71"1 = V¢1 -_- ¢lV_l (22)

a'2 = V¢2 + _b2VX2 +nv¢, (23)
P2

where _'1 and *r2 are generalized specific momenta defined as

m
7r I ----V 1 -- --(V2 -- Vl) (24)

Ol 1

• l"2 : V 2 + DlrY/(v 2 -- v1) (25)

P2a2

which are identical with the left-hand sides of (9) and (16), in view of (21).

The ¢'s and X's are five "potentials" or Lagrange multipliers and n is the bubble

density. The detailed interpretation of these terms is not important in the present context.

Geurst's equations of motion appear in many equivalent forms. The versions selected

in [8] may be written in the present notation as
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AV V" (plOqVl_l'l)= --OllVP2- V _pl(7"f/-_-o¢lmt)w 2

-_-o_lf 1 AV plTl_(V2 -- Vl) • (VV2) T (26)

°(p:_2,_2) + v. (p2.:v_) = -.2vp: + ._f2 - plm(V: - .,). (Vv:) r (27)

which have the form of conservation laws for 71"1 and _r2. m' denotes dm/da2.

The two continuity equations are

_(p, o_,)+ v. (p, o_,v,) = 0 (28)

0

0-_(p_) + v. (p_v_) = 0 (29)

If (7) is accepted and (21) is used, we find that the term involving w 2 on the right-hand

side of (26) may be rewritten as

1

_/91(17Z "-[-O'I/?2')W 2 ----Otl(Pl - P2) (30)

Using (28) through (30)it is straightforward to arrange (26) and (27) into the forms

_'(Trl) Jr V V 1 "
v 2 1 m (v2 v,) 2'_ Vl xVx'n', _Zp, f]"_"1 .... ) + - (3_)2 2 ou ,Ol ,ol

-Vp2 f2
v2xVxzr2 -- + -- (32)

P2 P2
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Eqs. (31) and (32) are versions of the Bernoulli Equations derived in [S] without

identifying 7rl and lr2 with gradients of potentials.

Now, if either pl is constant or _Tpl is parallel to Vpl, and V x (fl/Pl) = 0, we may

take the curl of (31) and obtain

0

- V×vl = 0 (33)

which is a conservation law for the vorticity of lrl. If we consider the rate of change of the

net vorticity of _'1 threading a loop moving with the velocity Vl, we obtain

d-t _'1 .de= _-_ (Vx_',).ds

_]o f
_ (34)

The two terms in (34) represent the sum of in-place changes in the flux through the loop

and contributions picked up by the motion of boundaries. Changing the order of the scalar

triple product in the final term and invoking Stokes' Theorem, we obtain a surface integral

of (33) which is identically zero, in other words,

_-_ 7rl .dg=0 (35)

This result was obtained by Geurst [3]. A similar conclusion follows for (Vx_r2).

Now, if both phases come from a region in which there is no curl to _rl and _'2 (for

example, a stagnation region), conservative body forces act and density gradients (if any)

are parallel to pressure gradients, then throughout the flow, in view of (35), it should be

true that
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Vx_'I = O; Vx_2 = 0 (36)

which implies that both 7rl and 7r2 are gradients of suitable potentials and only the first

term is needed on the right-hand sides of (22) and (23) which reduce to the form of (9) and

(16). This development apparently makes more explicit the conditions for the existence of

two-phase potential flow, requirements which parallel those for the classical single-phase

case.

DISCUSSION

The previous sections of this paper have outlined two approaches to potential two-

phase flow. Each has a justifiable theoretical base and is self-consistent. Moreover, both

approaches appear to give the "right" prediction for several well-defined situations [7] while

some other formulations fail these tests.

In order for these ideas to blossom further there need to be:

a) Further developments, from the same basic set of assumptions, that encompass

more generality.

b) More rigorous derivations that clearly explain the order of approximation involved

in treating the flow of discrete entities as a continuum.

c) Reconciliation with alternative approaches, particularly those involving averag-

ing.

d) More solutions to specific problems that can be thoroughly investigated for con-

sistency.

e) An understanding of outstanding incompatibilities between these approaches and

various other theories, with a clear explanation of what has "gone wrong."
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I hope that someof these items can be discussed at this meeting. At this time I only

wish to briefly address (d) and (e).

Apart from the "tests" described in [1] and [7] and perturbation techniques leading

to the description of wave propagation and stability in bubbly flow [2,3,5], I know of

only two complete solutions to Geurst's equations. The first involves steady flow of two

incompressible fluids from a common stagnation region. The simple conclusion that is

reached is that the void fraction is constant and the velocities of both phases are the

gradients of potentials that are proportional to each other and may be borrowed from an

equivalent single-phase flow. The velocity ratio, or slip ratio is

where

(37)

R = Pa/P2 (38)

In the above derivation use was made of Maxwell's [9] approximate expression for the

exertia,

_2 (39)T

The second solution again uses (39) and leads to a relationship between the velocities

in unsteady incompressible flow [8]

TI) V)(p2-4- 2) (--_-J- -- _pl (_-_1 -4- -_- fl -- f2 : 0 (40)
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This has the same form as a relationship which would be obtained by eliminating the

pressures from equations of motion that ignored inertial coupling, except that the effective

densities are changed. There is opportunity to test (40) by comparison with the one-

dimensional transient response of fluidized beds.

Regarding item (e) I will repeat, in a slightly different form, Geurst's equations of

motion [41 as presented in [8]

O(DIOtlVl) + _;'. (plOt, lVlVl + plmWW) =

(41)

O(p2a2v2) • =+ V (p2_2v2v2) -_2Vp_ - M_ + _f2

with the added mass term expressed as

(42)

[(° )M1a=p_m _+v2"V v2- +

[0+plmv-_ +,. N(p,._) (43)

This set of equations contains several more terms than one would find in most similar

expressions in the literature. By dint of these extra terms, several "tests" are passed that

other formulations fail [7]. Specifically, these tests involve (18) and (19), which reduces

for a dilute dispersion to Taylor's expression [10] for the force on a stationary object in

an accelerating flow. It would be desirable to devise other "tests" that might help to

discriminate further between true and false expressions.
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ABSTRACT

In this study, a self-consistent derivation of the conservation laws is given for flows of
a fluid-solid mixture. A unified analytical framework for obtaining constitutive relations is
provided. This analysis uses a control volume/control surface approach that is widely used
in fluid mechanics. All terms in the governing equations and the constitutive relations are
written in terms of the mass-weighted averages except solid concentration. It is believed
strongly that the mass-weighted average is the natural bridge between micromechanics and
constitutive relations. The derived momentum equations contain terms that differ from all
existing models except that of Prosperetti and Jones (1984). However, their assumptions
are not needed here. Special attention is given to the solid phase pressure. The physical
basis of previously assumed form for this pressure (Givler 1987) becomes clear. A number
of related phenomena are also discussed. These include the anti-diffusion and anisotropic
normal stresses. The energy equations are also different from existing models. But detail
discussion on the energy equations is left to future work.

I. INTRODUCTION

Modeling a flowing fluid-solid mixture starts from writing down a set of governing

equations. These equations describe the conservation of mass, momentum and energy. In

the early stage, the popular approach was to view the mixture as a single phase mate-

riM. Consequently, the following type of equations were used for mass and momentum

conservations (see Zuber 1964, Ishii 1975, 1977).

a(P"_-----A)+ V. (pm)u_ = 0 (1)
&

-_-0(p,_,}u,_ + V. (p,,_)u,_u,,_ = V. T m + (P,r,)g (2)
at

In which, { ) represents the ensemble average, Pm is the mixture density, um is the mixture

velocity, T m is the mixture stress and g is the body force per unit mass.
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Recently, the two-phase flow approach becomes more popular. Using this approach,

the conservation equations are formulated for each individual phase separately. This ap-

proach allows for direct modeling of a fluid-solid mixture when the two phases have dis-

tinetly different dynamics. For mass and momentum, these conservation equations are

generically written in the following way (see Ishii 1975, Drew 1976, 1983, McTigue et al.

1986).

O<p,c)/Ot+ V. <pseu)= 0 (3)

O(ps,(1- c))/O_+ V. (pl(1 - c)v) = 0 (4)

0<p,cu)/& + V. (p,cuu) = <p.cg)+ <m)+ v. (cT.) (_)

O(p/(1-c)v)/OtWV.(pl(1-c)vv)=(p/(1-c)g)-(m)+V.((1-c)Tf ) (6)

where ps and P! are densities of the solid and fluid phases, u and v are the velocities of

the solid and fluid phases, m is the interaction force per unit volume of the mixture, c is

the local solid concentration (equals to 1 at a solid point and 0 at a fluid point), T, and

Tf are the solid and fluid stress respectively. The above equations do not consider the

phase changes at the interface. The energy conservation equations have not been studied

as extensively as the mass and momentum conservation equations.

Because the two phases are separated, available information on a single particle's mo-

tion and the particle-particle interactions in a fluid environment are incorporated directly.

In a mixture model, these informations will first be utilized to obtain the drift flux term in

T m of Eq. (2). Preference of the two approaches apparently depends on the application.

However, since the mixture model can be derived from adding together the two-phase

equations, the two-phase approach is considered more fundamental.

Many mathematical models have been derived based on Eqs. (3)-(6). There are two

issues in modeling terms appeared in those conservation equations. First, what kind of

averaging is used in defining the macro quantities, such as concentration, velocity, velocity

divergence, strain-rate, etc. Second, how to obtain the required constitutive relations for
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averaged terms like stress, pressure, phase interaction, etc. Neither of these two issues is

settled at the moment.

We will refer to the mechanics that governs particle's motion as the "micromechanics".

Such micromechanics includes particle-particle and particle-fluid interactions. In order to

explicitly formulate constitutive relations, knowledge of micromechanics is essential.

It is understood that the formulation of constitutive relation is extremely compli-

cated, because the micromechanics of fluid-solid interaction is itself not well understood.

Another reason for this difficulty is less obvious but more significant. That is, up to the

moment, there has not been a set of governing equations in which all terms are interpreted

with a consistent averaging method, without such governing equations, and a consistent

bookkeeping to account for the micromechanics. It is impossible to correctly formulate the

constitutive relations. The authors believe that this is the source of the recent argument

about the "solid phase pressure" and related phenomena. A survey of the recent literature

shows that different interpretations have been given to the solid phase pressure. It has

been suggested to be equal to the (i) fluid phase pressure (Drew 1976), (ii) averaged fluid

pressure around the surface of a particle (Givler 1987), or (iii) a more sophisticated version

of (ii) with additional consideration of Brownian forces and bulk viscosity (McTigue et al.

1986). All of which are intended to apply to an arbitrary flow of a fluid-solid mixture.

Similarly, the phase interaction (m) in Eqs. (5) and (6) has also been modeled in many

different ways. Essentially, in all the more recent works this term has been modeled as

(m) = nh + (7)

where n is the averaged number of particles per unit volume of the mixture, h is the

averaged hydrodynamic force per particle. The term ]5 is a source of confusion again. It

has been equated to the (i) averaged fluid pressure over the fluid-solid interface (Drew

1983), (ii) fluid phase pressure (McTigue et al. 1986) or (iii) hydrostatic fluid pressure

(Ahmadi 1987). Again, all the above are suggested for general flow condition.
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Although the existing two-phase flow models appear to be inconsistent, development

of the above models has provided a great deal of insights. These insights are essential to

the work presented here.

In the following, we will give a step by step derivation of the two-phase flow governing

equations based on the mass-weighted average defined as

(ck >
{¢}- (8)

where ck equals to c for the solid phase and 1 - c for the fluid phase. This averaging

method has been exploited in the theory of compressible turbulence (Van Driest 1951),

and applied to granular flow (Ahmadi and Shahinpoor 1983).

The mass-weighted average of any given quantity is the quantity averaged within that

phase only. For instance, mass-weighted solid velocity at a point is the average velocity of

all observed particles passing that point. This average is the easiest one to measure in most

real flows. Moreover, through using this average, a direct bridge between micromechanics

and the constitutive relations may be established. Applying this average to the solid phase

stress, terms such as the solid phase pressure will have a clear meaning. Thus a unique

definition for these quantities in terms of micromechanics is possible. In addition, a number

of interesting phenomena that seem to defy the well accepted property of fluids are observed

when a fluid-solid mixture is viewed as a composition of two separate continuums.

In the present study, we concentrate on the derivation of governing equations, in-

terpretation of the averaged terms and the development of constitutive relations from

micromechanics. Derivation of the actual constitutive relations for various flow conditions

is beyond our scope and present ability. A few exceptionally simple cases will however be

studied. In order to complete the mathematical modeling, boundary conditions must be

derived. Due to the existence of the discrete solid phase, derivation of boundary conditions

is equally difficult as constitutive relations. This is also left to future development.
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II. GOVERNING EQUATIONS

Consider an arbitrary control volume V as shown in Fig. 1. Its surface S is the

control surface. For visual reason thiscontrol volume is drawn large compared with the

solid particle'ssize. The derivation is not restrictedto this size. The particlesare not

necessarilyspherical or uniform either. However, in order to simplify the notations, we

willdiscussthe case ofuniform sphericalparticles.The essence of the analysis iscaptured in

thissimplifiedcase. There has been previous work deriving conservation equations for this

type of control volume for a fluid-solidmixture (Soo 1981). Nevertheless, such equations

have not been derived in terms of the mass-weighted average nor the interpretation in

terms of micromechanics given.

S control _lume V

--") "".',

_qlD WlD _ _ . _ 4q

control _:_ $

Fig. 1 A control volume V with control surface S - S, + S! and

internal interfaceSi.

In general, the flow situationis such that the condition in any given control volume
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from different observations is a random phenomenon. Only an average behavior may be

described by a deterministic mathematical model. To allow for cases where flow conditions

may vary over a length scale comparable with the particle size, the ensemble average over

many realizations of a control volume smaller than the "representative volume" commonly

used in fluid mechanics may be necessary.

For one realization, the rate of increase of solid mass in the control volume is

-_ poc dV + p, cu. rids = 0 (9)

where fi is the unit outward normal. After ensemble averaging, the resulting integrands

are smooth functions. Applying Green's theorem to the second term and removing the

integrals, the mass conservation of the solid phase in this control volume is obtained as

o(p')
Ot

+ v. (p°)(.} = 0 (10)

In the above, (poc) is replaced by (p') and (p, cu) is replaced by (p'){u} where { } is the

mass-weighted average defined in Eq. (8). Similarly, for the fluid phase,

o(/)
&

-- + v.(/){v}= o. (11)

The momentum conservation equations require representation of the forcing terms

which include the surface and body forces. This conservation for the solid and fluid phases

in one realization axe, respectively,

-_ p,cu dV + p,cuu • fi dS = cT. . fi dS + pocg dV + m dV (12)

0

-_ /vPl(1-c)vdV + /s pf(1 - c)vv. fads = fs(1 - c)Tr. fads

+ fvP,(1-c)gdV- fvmdV

4O

(13)



Again the ensemble average is first applied to smooth the above integrands. The

Green's theorem may then be used to change the surface integral to volume integral. After

removing the integral sign, the above equations become

_-(p.cu) + (pocuu) = (cT.) + (p.cg) + (m) (14)V. V-

_(pf(1-c)v)+V.(pf(1-c)vv)=V.((1-c)Tt)+(pf(1-c)g)-(m) (15)

Substituting u by {u} + u" and v by {v} +v" and making use of the mass conservation

equations, we obtain the following equations with the Reynolds stresses for both phases.

In these equations mass-weighted velocities and stresses appear.

(p_'>(8{u}/cTt+{u}.V{u})--V.(c}{T.}-V.(p'){u"u"}+(pS)g+(m) (16)

(pf>(O{v}/Ot + {v}. V{v})----- V. <1 -c>{Tf} - V.(pf>{v"v "} + (pl>g_ <m) (17)

The Reynolds stress in the solid phase is also called the kinetic stress in the granular flow

terminology.

In a realization over a period of time, particles cut by the control surface may in-

teract with neighboring particles through collisions. The rate of momentum transfer to

the interior of the control volume resulted from these collisions is part of the surface force

'rs. Moreover, the hydrodynamic forces acting on particles cut by the control surface also

produce surface forces that contribute to Ts. We denote these two stresses as T c and T p

respectively.

Concept for modeling the mass-weighted average of T c has been described in the

granular flow literature (e.g. Bagnold 1954, Jenkins and Savage 1983, an excellent survey

to appear by Campbell 1990). Although most of the work deals with negligible fluid

effect, the route to extend to fluid-solid mixture is, though complicated, quite clear (e.g.

Ackermann and Shen 1982, Shen et al. 1988). On the other hand, the explanation of

the hydrodynamic stress on the solid phase is not readily available. Intuitively, one would
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quite comfortably accept that the fluid only acts on each particle in the control volume

through the drag, added mass, etc. Hence, it should contribute to the body force only.

Consequently the effect of fluid-solid interaction is the hydrodynamic force per particle

multiply the number of particles per unit mixture volume. This concept is proved doubtful

as demonstrated by the existing various models discussed in Eq. (7). In the following we

will rigorously formulate the fluid effect in a two-phase flow.

Consider a surface particle P in Fig. 2. Part of this particle, pi, is inside the control

volume, part of it, po is outside of it. The hydrodynamic force acting on P produces a

pair of internal forces, 4- t, on the intersection of the particle and the control surface S,.

The total hydrodynamic force acting on this particle, h, can similarly be decomposed into

that on the outside of P, d °, and that on the inside of P, di.

exterior

control surface

interior

O

fi

t

Fig. 2 Decomposing the hydrodynamic force on a surface particle P.

The total hydrodynamic force is h - d i + d °.

In budgeting the total force acting on the solid portion of V, the interface force t

acting on So most naturally belongs to the solid phase stress. In fact it may equally well

be classified as part of the body force since after all it acts on pi which is inside of V.

As long as the budgeting of all forces is done in a consistent way, the resulting equation

of motion should not depend on the detail of the bookkeeping. Most of the existing
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two-phase models appear to fail in using a consistent bookkeeping. That is, force acting

on the control surface and that acting on the internal interface are not always carefully

distinguished. We choose to call t the surface force for V and d i the body force for V due

to fluid-solid interaction.

The internal force t is the difference between d ° and the total surface force acting on

po. The first may be determined if the hydrodynamic force distribution on a particle's

surface and the particle's location relative to the control surface are both given.

The second is determined using Newton's second law. That is, the total surface force

acting on the partial particle po equals to its inertia subtract the body force acting on

it. Ensemble average of the inertia and the body force on po may also be obtained if

the particle's relative position with respect to the control surface is given. For a control

volume reasonably away from the boundary of the flow field, the position of particles on

the control surface So may be assumed to uniformly distribute inside or outside the control

volume. Using these arguments it has been shown in Hwang and Shen (1989a) that the

ensemble average of the sum of t in a unit area produces the following stress,

{T p}=_ {_}.firdA- (V.{IE})rdV , (18)
a

where Ao and Vo are the surface area and volume of particle P respectively, ]E is the local

fluid stress on the particle's surface, and r is the position vector. The very same equation

has been obtained by Batchelor (1970) with a quite different derivation. This term has

been named the "particle-presence stress" in Hwang and Shen (1989a), and it contains the

"interaction stress" in McTigue et al. (1986). The second term inside the parenthesis in

Eq. (18) is related to the particle's rotational inertia (Hwang and Shen 1989a).

Next we discuss the interaction term m in the solid momentum equation. The most

natural way consistent with the above bookkeeping is to define it as the total force acting

on the interface of the two phases inside the control volume V. This interface is denoted

by Si in Fig. 1, which consists of the surfaces of whole particles if they are entirely in V,
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otherwise only the part of particle's surface that is inside V belongs to Si. Total force

acting on Si is the sum of M1 h, the hydrodynamic force on a whole particle, and all d |,

the portion of the hydrodynamic force on P inside of V. As shown in Hwang and Shen

(1988), the ensemble average of the total interaction force m is

(m) = (C){h} + (c)V. {T f} - V. c{W p) (19)
Vo

In the above, {T f} = {Tf} - pl{v"v"} is used to indicate the total fluid stress. Substi-

tuting Eq. (19) and T, = T ¢ + TP into Eq. (16), the solid momentum equation becomes

(p'>(O{u}/Ot+{u}.V{u}) -- V.((c){Wc})-V.(pS){u"u"}+(p')g+-_){h}+(c)V.{T f}

(20)

This equation is identical to that derived in Prosperetti and Jones (1984). In that work,

a couple of assumptions were made to arrive at Eq. (20). It is shown here that those

assumptions are not necessary. Similarly, the fluid momentum equation may be derived as

/0t +{v}.V{v}) = (l-2(c))V. {Tf}-{Tf}.v (c)+(pf)g-_o {h} + V. ((c){T p})</)(o{v}

(21)

As it shows in above equations, the effect of particle-presence stress {T p } appears only in

the fluid momentum equation.

Derivation of the energy equations follows the same spirit as the above. Hwang and

Shen (1989c) gave the following equations in indicia/form for the turbulence energy in the

solid and fluid phases respectively,

s C9 U ° • 11° U It• U _I

(P)(_{ 2 } + {u}. V{ _ }) = (c){TC} :V{u} + (c){TP} :V{u}

- (/>{u"."}:V{u}+ v.((_){Tc•u"})+ V. ((_>{T_.u"})
U tlU"

- V. ((p'){ 2 •u"}) + (m. u") - (c){7°} (22)

V tt. V tt V tt.V tt

(/)(_{ _ )+{_}.v{ _ })=-(1-_){p_}v.{_}-(/>{v"v"}:v{_)
VII • V" fll Vii . V o

-v.(</){( 2 +_/)¢'})+_v_(<1-_){ _ })

- _<1- c){vv" : Vv"} - {m. v") (23)
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where 7_ is the sink of solid turbulence energy from particle-particle interaction (e.g.

eollisional dissipation), pI is the fluid pressure, pl,, = p! _ {pf}, and /_ is the dynamic

viscosity of the fluid.

The interaction force m does unequal amount of work to the turbulence energy in the

fluid and solid phases. This difference, as given in Hwang and Shen (1989c), comes from

the slip velocity between the two phases.

The combination of mass, momentum and energy conservation equations given by the

six equations: Eqs. (10), (11), (20), (21), (22) and (23) governs the six unknowns c, u, v,

{u". u"/2}, {v". v"/2} and {p/}. To form a closed system, a large number of constitutive

relations must be obtained. Most of these constitutive relations require knowledge beyond

the current understanding of fluid mechanics around a particle. One example is the term

{m. u"} appeared in Eq. (22). As shown in Eq. (19), m contains the hydrodynamic force

h acting on a particle. If one considers the drag force part of h, which is in general in

terms of u" - v", the term {m. u"} will produce {v" • u"}. Namely, the correlation of

the fluid and solid turbulence must be formulated as part of the constitutive relations. A

number of analyses have indicated that this correlation depends greatly on the particle's

size and density (Chao 1964, Xie 1987, Abou-Arab and Roco 1988). Quantitative study

of such correlation is far from complete.

Despite the complexity and the lack of necessary knowledge in fluid mechanics, a

number of results may be obtained for the constitutive relations appeared in the governing

equations. In the next section, we will derive a term associated with the fluid-solid in-

teractions. Namely, the particle-presence stress T p including a detailed discussion on the

solid phase pressure. A number of interesting observations will be given at the end of the

derivation.
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III. CONSTITUTIVE MODELING

To simplify the notation, we remove all the average symbols (() and { }) and adopt

indicial notation from this section on.

In this section, we will discuss the particle-presence stress T/_. Detail of this term is

given in Eq. (18). The term in Eq. (18) related to the particle's rotational inertia cancels

with the rotational contribution in the particle's Reynolds stress in Eq. (16) (Babih 1989).

Hence the net particle-presence stress is only the first term on the right side of Eq. (18).

This term may be quantified if the distribution of the hydrodynamic stress IE is known.

Before quantifying this stress for special cases, we will provide an interpretation of the

solid phase pressure first.

As defined in Continuum Mechanics, pressure means the negative average of the nor-

real stresses. Therefore, in addition to the contributions from the collisional and Reynolds

stress, the particle-presence stress will also produce the following solid phase pressure,

192 = -- 3--_0 2ik n k ni sin ¢ de dO

= (-p/6 k - + 2/_eik)n,ni sin ¢ de dO

= _ p/sin ¢ de dO (24)47r

where ¢ and 0 are the polar and azimuthal angles respectively. In the above, a Newtonian

fluid is assumed such that

2

Eik= --pY _ik -- "_/leu6ik + 2/Jeik (25)

where eik is the component of local strain-rate. Moreover, for Eq. (24) to be valid, the

fluid flow near the particle must be incompressible and the strain-rate must possess certain

symmetry property. Thus the viscous contribution vanishes from Eq. (24). Under these

special conditions, it is seen that the solid phase pressure is the numerical average of the
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fluid pressure around the particles. This very result has been postulated by Givler (1987)

and derived by Prosperetti and Jones (1984) using a couple of assumptions.

We now derive the particle-presence stress in two extreme cases for a very dilute

mixture. The two extreme cases are: Stokes regime and inviscid regime. In both cases we

assume the fluid is Newtonian and the flow is incompressible.

In case of a shear flow in the Stokes regime, the local strain-rate around a spherical

particle in an infinite flow field is (Batchelor 1967)

rkrl rirj 16ij) (25R 3 35R 5

where ri is the/th component of a position vector r, r =[ r [, Eij is the component the

undisturbed strain-rate and R is the particle's radius.

The fluid pressure around a spherical particle in a uniform incoming flow Uoo is

(Chester and Breach 1969)

p = pS +/_Uoo [_3(1 +
3 27

_ne)cos¢ + _--_n, cos 2 ¢+o(n2elogne)], (27)

where pS is the undisturbed fluid pressure; Uoo is equivalent to the relative velocity of the

particle to the fluid flow, or Uoo = vr where Vr =1 v - u ]; Re is the particle Reynolds

number defined as 2pfRv_/l_; and ¢ is the polar angle of a point on the surface of the

particle measured from the direction of Uoo.

Substituting Eqs. (25) and (26) into Eq. (18), the viscous contribution of the particle-

presence stress is obtained as

T_S, 5= (2s)

As discussed in Batchelor (1970), this stress together with the viscous stress in the fluid

phase reproduces Einstein's formula for the effective viscosity (1956). The solid phase

pressure is shown below after substituting Eq. (27) into Eq. (24),

9 2
F = + (29)
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In the above, we used p_ to indicate the fact that only particle-presence stress T ° is

included in the total solid stress. Neither collisional nor Reynolds pressure is considered.

The above is not the whole story about the particle-presence stress. If one by-passes

the solid phase pressure and investigate the normal stresses directly, the following is found.

Tlplp = _pf 81160PI v_

T2P2P= T;:

= _pf 27
160PLY2, - (30)

The total particle-presence stress is the sum of Eqs. (28) and (30). It is apparent that

Eq. (29) can be reproduced by taking the negative average of T_, T2P2p and T_'3p.

Eq. (30) shows that on top of the viscous effect the isotropic fluid pressure induces

anisotropic normal stress in the solid phase stress. This anisotropy of the normal stress is

the product of the distinctly different dynamics of the two phases involved. If both phases

move with exactly same velocity, this phenomenon will disappear.

In case of an inviscid flow, only the fluid pressure contributes to the particle-presence

stress. This pressure around the spherical particle is (Lamb 1932),

1 2 1 9
p = p_ + _plvr(- _ + _ cos 2¢). (31)

Substituting Eq. (31) into Eq. (25) and neglecting the viscous part, Eq. (18) becomes

1 2

= -p." - Nplv,-

= -/+ (32)
5

and the solid phase pressure _om the hydrodynamic effect alone is the negative average

of the above,

1 2
t_=p ! - _pfvr (33)
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The anisotropy of the normal stressesis again observed. Theoretical speaking, without

consideringReynolds stress,one may observethe shearforce in a two-phasemixture even

though the fluid is inviscid.

Comparing the coefficientof the solid phasepressurein the abovetwo extreme cases,

one would expect that as the particle Reynolds number increasesfrom nearly zero to

nearly infinity, the coefficient in front of the solid phasepressureshould vary gradually

from 9 to -{. Explicit determination of this coefficientdependson the knowledgeof the

hydrodynamic stress distribution around the particle. Unfortunately this information is

not available for the entire range of the particle Reynolds number. However, for particle

Reynoldsnumber greater than 3000,experimentaldata showsthat the viscouscontribution

is negligible. In this case,sufficient information exists to empirically determine the pressure

distribution, and accordingly the solid phasepressure(Hwang and Shen1989b).

IV. SOME INTRIGUING POINTS

In deriving the governing equations, a few points have struck the authors as being

quite non-trivial. Some of those may have significant implications that is unclear at the

moment.

First, the governing equations are for the mass-weighted quantities. All constitutive

relations must eventually be written in these quantities to produce a closed system. The

kinematic quantities appeared in these governing equations are the mass-weighted veloci-

ties. On the other hand, in constitutive relations, we look for mathematical description of

the stresses. The average stresses, at least for the viscous component of the fluid stress,

is however a function of the average local fluid strain-rate instead of the gradient of the

mass-weighted velocity. Namely, this stress is in terms of the mass-weighted strain-rate in

stead of the gradient of the mass-weighted velocity. For a fluid-solid mixture with rigid
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particles, this relation hasbeen derivedas (Hwang and Shen1989c)

<__ _>{_} (34)

where {_j} is the spin tensor (or particle rotation) of the solid phase. In addition to

the above two possible definitions for the phase strain-rate, a third strain-rate is also

important. This is called the bulk (or mixture) strain-rate defined by

E0 = (I- c){e/_j}+ <c){e°O}

= (I-_>{J_i} (35)

where e.fij and e°ij are the local strain-rate for the fluid and solid phase respectively. In

case of rigid particles, e_j=O. In representing the effective viscous stress in a fluid-solid

mixture, the above bulk strain-rate must be used.

In a pure fluid flow, such distinction shown in Eq. (34) or Eq. (35) does not exist. In

a two-phase flow, this point becomes essential in many places. In fact, if one interprets

the bulk viscous stress using O{vj}/c3xi instead of {Ovj/Oz,}, the coefficient of effective

viscosity in Eq. (28), i.e. _, will become _ or _ depends on different interpretations of the

mixture strain-rate.

Second, in Givler (1987), a phenomenon called anti-diffusion in the solid phase was

mentioned. This term is believed to come from an inconsistent bookkeeping system of the

surface and interaction forces in the control volume V. The equation given there for the

solid phase was

Oui. c O_ .t_ Oc
/(0u,/0_ + ,,,-g_=) = p"g, + gh, - _-g-_,- (_ - p )-g_, (361

When the potential flow is considered, the Oc/c3xi term has a positive coefficient.

This presents a force that moves the solid phase from a low concentration towards high

concentration, which is a puzzling phenomenon. However, in the present derivation, it

is shown that in the solid momentum equation such Oc/c3x, term does not exist. The
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associated diffusive or anti-diffusive forces are thus absent. But, investigating the fluid

momentum equation, we do observe such Oc/OZi term. Through the mass conservation,

any diffusion in the fluid phase results an effective anti-diffusion in the solid phase and vice

versa. At this point, we have observed a totally opposite trend between Givler (1987) and

the present model. Namely, Givler's model would predict a diffusion phenomenon for solid

particles in the Stokes regime and anti-diffusion phenomenon in inviscid flow regime. The

present model however predicts exactly the opposite. Further verification with detailed

experimental data is desirable.

On top of the above, the anisotropy of the solid phase normal stress produced by fluid

pressure is a new observation. This may produce interesting thermodynamic properties

that are peculiar to a two-phase flow only.

It is natural to ask whether such a great care in deriving governing equations shown

here is of importance. In order to see this, two models have been applied to a vertical pipe

flow of a fluid-solid mixture (Hwang and Shen 1988). The two models are identical except

the phase interaction term mi. For ease (A), mi is modeled as shown in Eq. (7) with # = pP

and case (B) is the present model given by Eq. (19). The resulting non-dimensional slip

velocity u* - v* verses the non-dimensional fluid pressure gradient (aa--_)* is reproduced in

Fig. 3 for three different density ratios p* = _-. Qualitatively different results are obtained
P!

from these two models. From the behavior of the neutrally buoyant particles, it is believed

that the present model is more reasonable.

V. CONCLUSION

For a two-phase flow, the interpretation of terms in the governing equations is the first

step towards deriving constitutive relations using micromechanics. Therefore it has been

surprising to us that the work presented here has not been available in the vast amount of

two-phase flow literature. On the other hand, this may be explained by the fact that only
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recently researchers have started to derive the constitutive relations from micromechanics.

Hence the need for such derivation of governing equations is also very recent.

p.:= 0.2 m)- \
0.004T "__ P, = 1.O (B)

o.,.e,p_........ _ ,;-1.8 (B) -_-_
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Fig. 3 Effects of p," and (dpldx)" on slip velocity from

model A and model B.

It is shown in this work that the derivation of governing equations for flows of a fluid-

solid mixture is not as straightforward as any single phase continuum. This derivation

is done with a careful and almost tedious method to account for all transfer quantities

between each phase. The resulting equations in terms of mass-weighted average quantities

differ from the existing models.

These governing equations provide a foundation to incorporate micromechanics in

deriving the constitutive relations. A number of previously well accepted facts about fluid-

solid flows emerge naturally from this analysis. In addition, interesting phenomena such

as: non-equality of average strain-rate and gradient of the average velocity, anti-diffusion,

and anisotropic normal stress have been observed in these equations. Interpretation and
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implications of these phenomena is of great interest.
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STRESS IN DILUTE SUSPENSIONS

STEPHEN L. PASSMAN*

Abstract. Generally, two types of theory are used to describe the field equations for suspensions. The

so-called "postulated" equations are based on the kinetic theory of mixtures, which logically ought to give

reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though

it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a

system of equations which is underdetermined, in a sense that can be made precise. On the other hand,

the so-called "averaging" theory starts with a determined system, but the very process of averaging renders

the resulting system underdetermined. I suggest yet a third type of theory. Here, the kinetic theory of

gases is used to motivate continuum equations for the suspended particles. This entails an interpretation

of the stress in the particles that is different from the usual one. Classical theory is used to describe the

motion of the suspending medium. The result is a determined system for a dilute suspension. Extension

of the theory to more concentrated systems is discussed.

1. Introduction. In theories of multiphase flows, it is natural to postulate or to

derive equations of balance similar to those occurring in the theory of dilute mixtures

of gases [1,2]. The usual process of doing so, along with reasonable assumptions for the

constitutive properties of the materials composing the flow, always leads to a system with

more unknowns than equations. Though there is no definitive reason that this is a bad

situation, intuition abetted with proved theorems for special types of systems indicates

that the normal desirable situation is the same number of equations as unknowns. The

resulting quandary for multiphase flows is known as the "closure problem", and methods

for "solving" or "closing" it, that is, finding "sufficient" additional equations, has been

the focus of considerable research in multiphase flows. Here, we try to shed some light on

such problems. Essential to doing so is stating the problems unequivocally. In order to do

that, we choose a special but interesting physical situation, then give typical equations of

balance and constitutive equations for that physical situation, according to a continuum

theory and an averaging theory. The closure problem occurs in both types of theories,

though its form is different. However, it is possible to formulate theories in which the

closure problem does not occur, and therefore need not be solved. A physical basis for

such a system is presented, and a putative set of field equations is suggested.

2. Determined, Underdetermined, and Overdetermined Systems of Equa-

tions. Assume we have a system of equations of the form

fi(yj,Dkyj) =0,

with i = 1,...,n; j = 1,...,m; and k = 1,...,p. The fi are n functions of the m

variables YJ and their derivatives up to order p. The system is called determined if n = m,

*Pittsburgh Energy Technology Center, Pittsburgh PA 15236, on temporary assignment from Sandia

National Laboratories, Albuquerque NM 87185.

5_RECEDING PAGE BLANK NOT FILMED



overdetermined if n > m, and underdetermined if n < rn. By our definition, all systems

of equations are of one of these three types. Ideally, of course, it would be convenient if

determined systems always had solutions and they were unique, if overdetermined systems

never had solutions, and if underdetermined systems always had families of solutions. That

this is not the case can be shown by examples. To begin, consider the underdetermined

system

(1) x] + x] = 0.

Naturally, specifying a system of equations is meaningless without specifying their domain,

but since this paper is informal, I follow the convention of doing so tacitly, that is, all

functions are mappings of all real variables for which they can be defined reasonably into

a range defined by the function. Here, the underdetermined algebraic system (1) has the

single unique solution

X 1 = O, X 2 = O.

Now consider the determined system

Xl A-x2 -=- 1,

(2) 2Xl q- 2x2 = 2.

This system does not have a unique solution, rather it has an infinite one-parameter family

of solutions. Finally, consider the overdetermined system

(3)

X 1 -_ X 2 = 1,

2Xl -4-2x2 = 2,

2Xl -4-4x2 = 4.

This system has a unique solution. All of the examples cited involve algebraic equations,

not differential equations, but of course examples of the same type can be constructed with

differential systems.

It is easy to object to the arguments above because the systems cited are "special" or

"pathological". Indeed, I agree with that type of objection, and in a sense that is just the

point of this discussion, for to make such arguments, one must use very special properties

of the systems. Furthermore, for each system, it would have been possible to rearrange the

system using simple manipulations, obtaining very complicated new systems with exactly

the same properties. Proofs of existence or non-existence, uniqueness or non-uniqueness,

then would be much more elaborate exercises, perhaps depending on sophisticated math-

ematics or luck for ultimate outcome.

A different line of argument is possible. Most often, the equations governing multi-

phase flow are systems of partial differential equations, so complicated that they are not
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easily amenableto existenceor uniquenesstheorems. Suchequations may be relevant to
important problems in technology, so important that they must be solved, in no matter
in how vague a sense,immediately. More often than not, that means the use of large
computer codes. Despite the aboveexamples,we find that an intrinsic part of building
suchcodesis the desireof the numerical analyst for determined systems,that is, systems

determined in exactly the sense defined here. The idea that the equations obtained by

specialists in multiphase flow are "independent" is supported in some vague sense by the

fact that they have different physical meanings. For example, some are balance equations

for the constituents, some are constitutive equations, and some are constraints.

3. Continuum Theories of Multiphase Flows. Here, we consider a standard type

of theory for multiphase flows, as derived from continuum considerations. 1 Intrinsic to such

considerations is the assertion that each constituent fills all of a region of space. This is the

basic assumption of theories of interpenetrating continua or "solutions" [4]. The theory

then is made to model a multiphase medium by the inclusion of volume fractions Ca as

basic variables. A typical set of field equations for such a continuum having n constituents

is

Ea=lCa = 1,

(4) ¢" + ¢_ divv= = 0,

pal,,, = p_b_ + m_ + divTa,

n

ga=l ma = 0,

{Ta,ma} = g(vb, Cb, and their derivatives).

Here for simplicity we consider only pure mechanics, and the symbols have the obvious

meanings. The first equation expresses the fact that the material is saturated; the second

and third axe balances of mass and momentum for each of the constituents. Each con-

stituent is assumed to be incompressible, and the Pa are the reactions to those constraints.

The fourth equation is conservation of mass for the mixture, and the last equations express

constitutive properties of the constituents, in particular the dependence of the stress on the

deformation rate and other properties for each constituent, and appropriate expressions

for interactions of the two materials. We note that these last expressions can be somewhat

problematical, and in fact debate about their forms has generated a considerable litera-

ture. They are not discussed here. Rather, we assume they are known for applications of

particular interest. 2 Our intuitive feeling from considering the physics of this situation is

that such a system of equations is "complete", but in fact that is not the case. Here and

henceforth, for the purpose of counting equations, we assume the multiphase flow consists

of two constituents. Though such is not always the case, for the purpose of our argu-

ments here, that case is general. The result is a system of 9 equations in the 10 unknowns

1 Discussion of the basis of such theories, as well as references to the standard works, are given in [3].

2See [5] and [6] for a discussion of these equations.
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{p,,,¢., va}, that is, the system is underdetermined. The usual physical motivation for this

apparent quandary is plausible: Though Equations (4) express the exchange of momentum

between constituents, that is not the only way the constituents interact, for in addition,

there should be a force balance between the constituents. The most primitive visualization

of this is sufficient for arguments here. That is, the solid phase is considered to consist of

spherical particles of one size, surrounded by the fluid phase. Then a radial force balance

on a single particle gives

(5) P_ = PI"

This obvious and elegant closure argument gives a system of equations which is notori-

ously ill-behaved [7,8], so much so that it must be rejected. More sophisticated arguments

are possible, and they sometimes appear to suffice to render the system of equations thus

obtained to be at least well-behaved enough to be handled by standard computational

techniques. Usually, the arguments adduced are generalizations of those leading to Equa-

tion (5) in that they consider a particle in a flow field of a known type at infinity, then

use techniques of hydrodynamics to solve or partially solve for the flow field around the

spherical particle. Surface tension may be considered also. Of course the resulting pressure

on the particle is a function of position on its surface relative to the flow field at infinity,

so some sort of integration is required. The result is

(6) p_ = py + f(II,o'),

where II denotes properties of the flow field, and a denotes properties sufficient to charac-

terize surface tension. I note that since f depends upon the flow field at infinity, adducing

it as a constitutive relation valid for all flows has the potential for leading to inaccurate

results?

In addition to the mathematical argument against using Equation (5) as a closure

relation, there is a physical argument against it, which also is inherited by Equation (6).

In doing the arguments leading to these equations, the assumption is that Ps and Pl are

pressures "in" the respective materials, and that it is appropriate to write an expression

for one in terms of the other. The need for the closure relation comes from arguments

about the system (4). In this system, the pressures are derived as reactions to constraints.

Therefore [10], they are dependent variables of the system of equations, totally independent

of one another. In treating the complete system of equations and boundary conditions. 4

the quantities ps and pf thus cannot be related a priori. Another way to see this is that in

fact Equations (4) are field equations for the whole continuum, while the closure relation

3A similar difficulty arises in rheology, where it is commonly known [9] that no constitutive equation
giving an accurate representation of the physics of shearing flows also represents stretching flows adequately.

4Boundary conditions in themselves constitute a difficult problem for multiphase flows. They are not
discussed in this paper.
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(6) is not. Rather, it is derived from a "micromechanieal" argument, then scaledup in a
way the nature of which never is made clear, so that the symbolsPs and p$ in Equations

(6) are assumed to have the same meaning as the same symbols in the closure relation,

without proof or explanation. 5

4. Averaging Theory. The basic ideas behind averaging theories are diametrically

opposite from that of the continuum theories, though the objective--finding differential

equations for fields, valid throughout a body--is exactly the same. It is perhaps fortuitous,

or perhaps a sign that the equations actually represent some sort of physical "truth", that

the forms of the equations resulting from the two approaches are so similar. For averaging

theories, the region of space occupied by the material is thought of as being occupied by

two different types of body, the suspended particles and the suspending medium. Each of

the types of body is considered to be distinct in the sense that the join [11] of the bodies

constitutes all of the space occupied by the composite body, while the meet is empty. Then

each of the types of body is an ordinary continuum, and satisfies exactly the balance and

constitutive laws expected of an ordinary continuum, that is,

(7)

divva = 0,

pasta = pab_ + divTa,

{Ta} = g(vb, and their derivatives).

Here, of course, the bodies still are capable of momentum interaction, but unlike the previ-

ous situation, the micromechanical model for momentum interaction has a clear meaning.

This is eight equations in eight unknowns, and thus is a determined system. Moreover,

conditions for the difference of pressure such as Equation (6) now have a correct theoretical

status, for now they are not field equations, rather, they are boundary conditions. Thus a

determined system is obtained, and it is mathematically correct and physically plausible.

The difficulty, of course, is that to formulate a boundary-value problem, a reasonable set

of boundary and initial values for every particle in the system is needed. Such information

normally is not available for any physical problem. Even if it were, finding a solution, with

or without a computer as an intermediary, would be a nearly hopeless task. Moreover,

even if such a solution were found, most of the information it contained would be of little

use, because it would be too detailed. A plausible way to digest such data would be to

average it in some sense. The usual approach in averaging theory is, not to go to the

considerable trouble of averaging the solutions to (7), but rather to average (7) and then

solve the averaged equations. Such an approach is highly appealing intellectually, but is

fraught with mathematical difficulty. This paper is not the place to discuss such difficulties

in detail. One, of course, is that the term "average" which has been used in a very vague

Of course, the same argument can be made for the expressions in (4) for ma. There, however, the status

of the equations is clear, because the appropriate micromechanical arguments can be used as motivation

for the continuum theory, which then gives exact relations having the same status as field equations.
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way here,must begiven a precisemeaning. It is fortuitous that, for most of the averaging
methods tried so far, the resulting equations have almost the form of the Equations (4)

derived from the continuum theory. Unfortunately, for every method of averaging I have

seen, though a determined system is averaged, the result of the averaging process is an un-

derdetermined system, that is, the averaging process makes the closure problem reappear.

Most readers will be familiar with why this happens without going through the details,

for the averaging process always is similar to that used in turbulence theory and some of

the extra terms are of the same form as Reynolds stresses. In a broad sense, then, though

the continuum theory and the averaging theory start from different places and proceed by

different methods, they end in approximately the same place: underdetermined systems of

approximately the same form.

5. Sketch of a Theory for Dilute Suspensions. Previously in this paper, much

has been made of the fact that most of the equations in the continuum theory have been

"postulated". It is possible to interpret that terminology as meaning that they have been

made up with no mathematical or physical basis. In fact, that is far from true. The

kinetic theory of dilute monatomic gases for identical gas molecules is well-known and

is commonly taught in courses for graduate students in science and engineering [1,2,12].

Much less well known is the fact that there is a similar theory for gases where there are

a finite number of different types of molecules; in other words, a solution of several gases

[13,14]. The resulting balance equations are exactly identical to those for the postulated

theory of mixtures.

Here, I use the motivation of the kinetic theory of gases to support a mixture the-

ory in an entirely different way. Most important for the discussion here is the fact that

there is an exact definition of the pressure, and it is not the pressure "in" the particles,

rather it is a momentum flux -- an entirely different concept. 6 Moreover, it is possible to

force agreement of the theory with that of a viscous compressible gas, with the viscosity

determined in terms of molecular parameters. I consider a dilute solution of particles in

an inviscid fluid. Consider only the particles. They are an agglomeration of molecules,

exactly like those in the theory of a monatomic gas, except that the scale of the molecules

is somewhat larger than in a gas. Thus, precisely the same arguments can be used to

motivate a continuum theory for the particle phase of the multiphase flow as is used for

a gas. All of the expressions are the same, and e.g., one can accept the viscosity of the

particle phase as a phenomenological coefficient, or one can consider it to be determined

from molecular quantities, according to one's taste. In either case, unlike in the theories

discussed in the previous two sections of this paper, it does have meaning. The equations

6In another paper in this volume, O. Walton uses the same definition in his computer molecular dy-
namics simulations.
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for the particle phase then are

(8)

P8 + P8 div v_ = 0,

p,i% = psb_ + m + div Ts,

T0 = Ts(sym gradvs).

This is a system of 5 equations in 15unknowns, that is, a determined system. Now let the

molecules be submerged in an incompressible fluid. Naturally, there will be an interaction

between the particles and the fluid, and this interaction can be expressed as a constitutive

equation for m, which can be thought of as a part of the body force by. Of course, the

equations for the fluid phase are the expected ones,

(9)

div vf = 0,

pf_/f -_ pfbf - m + div Tf

TI = "i_/(sym grad v f ).

again, a determined system. Thus, for a theory of this type, no closure problem exists. 7

Generally in a theory of this type, one expects to see volume fractions appear intrin-

sically. Since the ideas here are for a very dilute, saturated suspension, the concept is not

very important, except, perhaps, in the constitutive equation for m and in formulas for

the "effective viscosity" [5,12]. Of course the idea can be introduced formally by setting

ps = vsCs,

with 71 a constant, and

¢1 + ¢, = I.

These substitutions introduce the same number of equations as unknowns.
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ABSTRACT

The vaporization of a droplet, interacting with its neighbors in a non-

dilute spray environment is examined as well as a vaporization scaling law

established on the basis of a recently developed theory of renormalized

droplet. I The interacting droplet consists of a centrally located droplet and

its vapor bubble which is surrounded by a cloud of droplets. The distribution

of the droplets and the size of cloud are characterized by a pair-distribution

function. The vaporization of a droplet is retarded by the collective thermal

quenching, vapor concentration accumulated in outer sphere, and by the limited

percolative passages for mass, momentum and energy fluxes. The retardation is

scaled by the local collective interaction parameters; group combustion number

of renormalized droplet, droplet spacing, renormalization number and the local

ambient conditions. The numerical results of a selected case study reveal

that the vaporization correction factor falls from unity monotonically as the

group combustion number increases, and saturation is likely to occur when the

group combustion number reaches 35-40 with interdroplet spacing of 7.5

diameters and the environment temperature of 500 K. The scaling law suggests

that dense sprays can be classified into: (I) a "Diffusively Dense" cloud

characterized by uniform thermal quenching in the cloud, (2) a "Stratified

Dense" cloud characterized by a radial stratification in temperature by the
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differential thermal quenching of the cloud, or (3) a "Sharply Dense" cloud

marked by fine structure in the quasi-droplet cloud and the corresponding

variation in the correction factor due to the variation in the topological

structure of the cloud characterized by pair-distribution function of quasi-

droplets.

NOMENCLATURE

D Massdiffusion coefficient

g Pair - distribution function

G Groupcombustion number
L Latent Heat of vaporization

Vaporization rate

n Numberdensity

q Heat of combustion
r Radial coordinate

R Radius

s Droplet separation

T Temperature

u Velocity

W Molecular weight

a Schvab-Zeldovich Variable

8 Renormalization number _ts/_co

_F h/q
-I

eF -(WF_ F)

8 r£ (n)Ir£ (o)

Stoichiometric coefficient

r/r£

0 Density
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Subscript

c

co

F

T

ts

Canonical bubble

Canonical bubble of test droplet

Fuel

Temperature

Liquid drop surface

Transition sphere surface
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I. Introduction

Increasing theoretical findings 1-13 and experimental evidence 14-18

attest the widely held belief that the short-range collective interaction 2-6
11-13

amongthe neighboring droplets and the long-range interaction 1, 7, 9,
I0

with the droplets at distance, on a hydrodynamic scale, have profound

impact on the state of a droplet, i.e. the states of saturation, vaporization,

ignition, combustion and extinction, as well as the droplet interracial

process rates in non-dilute cloud or spray environments. These collective

interactions, p_oduced by local hydrodynamic and transport processes in a

complex topological environment, serve to control the percolative passage for

dispersing mass, momentumenergy fluxes and the effective interfacial area for

the property exchange processes. These interactions result in the collective

thermal quenching, the accumulation of vaporizing species and the tendency for

stagnating the microscale local Stefan flow and mean flow through dynamic

equilibration between the two phases.

Review of the current theories of collective interactions including:

Group Vaporization and Combustion 1, 7, i0 (GVC), Discrete Droplet Model (DDM)

2, 3, 5 and Droplet In Bubble (DIB) 4, 8 reveals two major theoretical

deficiencies in the theory of short-range interaction and droplet rate

processes at this juncture. These are: (I) the lack of the fundamental

concepts and the mechanisms interlinking small scale discrete droplet

processes with a large scale quasi-continuum flow of a non-dilute cloud or a

spray, and (2) the incomplete understanding of complex interfacial processes,

finite rate reaction, turbulence and transport processes that occur in the

vicinity of each droplet. The first issue compels the current research of

non-dilute sprays to proceed with two rival approaches; GVC, that primarily
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deals with the long-range interaction, thus neglecting small scale resolution,

and DDM,which focuses attention on the detailed behavior of discrete droplets

in well-ordered droplet assemblies, thereby requiring a laborious compu-

ational procedure involving a large number of droplets encountered in

practical sprays.

The alternative approach, adopting a continuous spray model supplemented

by realistic droplet laws, appears the compromisedmean of the prediction of

non-dilute spray. A recent study of Tishkoff 4 on the numerically correlated

vaporization correction factor derived from the DIB model demonstrates the

viability of such combined approach to complement modern non-dilute spray

calculations formulated on either Eulerian-Eulerian or Eulerian-Lagrangian

framework. It must be mentioned, however, that an attempt to deduce an

improved droplet vaporization law from the results of existing DDMmet with

difficulties due to the geniune lack of a self-consistent criterion of

"droplet environment" whereuponthe gas properties such as the temperature and

concentration of vapor species, are inserted in the droplet law for the

determination of the vaporization rates. A universal theory of short-range

interaction and a set of comprehensive laws of droplet rate processes remain

as the major unsolved issues in the contemporary theory of non-dilute sprays

which has been the central theme of research 12, 13 conducted. The objectives

of this paper are to present the basic concepts, theoretical approaches and

the results of Renormalized Droplet (RND) theory to establish vaporization

laws for droplets in a stationary non-dilute cloud environment.

The paper begins with the descriptions of droplet models and theories, in

section 2, to clarify basic concepts and definitions of "droplet," adopted in

modern spray theory. The structure, model and mathematical analysis of RND
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are described in Section 3. The results of numerically predicted RND

structure, vaporization correction factor and their dependenceon collective

interactive parameters are presented in Section 4.

2. Droplet Models: Topological Properties and Modeling

2.1 Elemental Model

Three fundamental topological properties that play basic roles in

interaction phenomena between the droplet under investigation, termed the

"test droplet", and its neighbors, i.e. "field droplets," are; (i)

"graininess" or "discreteness" of a droplet, (2) "covolume" or "evacuated

volume" of a droplet, and (3) "localization" of a droplet relative to a

reference point. Basic droplet models which attempt to capture properties of

the droplet to a desired level of accuracy, are classified into three types

according to the level of sophistication in the characterization of the

topological features, as summarized in Table i. First, the "natural droplet

model" which characterizes a droplet by its true geometrical shape, size and

location, simulates all the topological properties described above.
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Table 1

Droplet Models

Droplet

Properties

Graininess

Covolume

Localization

Natural

Drop Model

Sharp

.......... Quasi-Drgplet Model

Non-Uniformly I Uniformly IPoint Source

Smeared Drop iSheared Drop ] Mp_e_ .....Diffuse** No S_l_r_
No No _No . _.

Diffuse l___No_____._i_n__ar

*Sharp properties caused by phase discontinuity

**Diffuse properties featured by the absence of phase discontinuity

The natural droplet model provides a sharp droplet configuration required

for the predictions of microscale flow structure, and results from a

combination of convective and Stefan flows, and interracial process rates of

the test droplet. The solution is given by solving Dirichelt boundary value

problems associated with conservation equations and a well defined set of

physical boundaries formed by the interface of droplets.

The second type of model, i.e. "quasi-smeared droplet," describes a

droplet by a medium spreading through the space. The droplet thus coexists

with the host medium without apparent phase discontinuity. The models in this

category are further divided into "uniformly" and "non-uniformly" smeared

droplets, Fig. I. In the latter model, the location and spatial extension of

droplets are depicted by a joint probability distribution function. The

"graininess" and "localization" of droplets are therefore partially

characterized by the joint probability function rather than the phase

discontinuities as in the case of the natural drop model.

"The uniformly smeared droplet model" which has been adopted in the

majority of two-phase flow and spray theories is a special case with a uniform

distribution of the joint probability with its numerical value equals to unity

throughout the space. In this model, "graininess" and "localization," are
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absent. Becauseof the lack of the basic topological properties, these quasi-

droplet models are unable to be used for the determination of the droplet

bound flow field and droplet laws. However, whenappropriate droplet laws are

provided to describe the interfacial processes rates, the flow structure of a

farfield can be predicted with an acceptable accuracy by a quasi-two phase

approach that is simpler than the Dirichelt boundary value problems.

The third model is a "point source model" which uses a mathematical

singularity to characterize the "location" and a "singular graininess" of a

droplet in a dilute spray with a large spacing, i.e., the ratio of spacing to

the droplet size is much greater than unity. Like a "quasi-droplet model",

the "point source model" fails to provide a satisfactory near-field structure

required for the prediction of the rates of interracial processes, but the

model offers a simple mathematical theory for the prediction of far field

solutions.

2.1.2 CompositeModel

Although a specific elemental model has been frequently used in the

analysis of single droplet, or many-droplet problems (e.g. natural droplet

model in DDM and DIB, uniformly smeared droplet in GVC), the potential

advantages of the simultaneous use of two or more than two elemental models

has not been fully exploited.

A composite modeling technique permits a strategic selection of a desired

elemental model in a certain selected region and an alternative model in

another region to enhance the modeling flexibility and the simplicity in

analysis. The choice of an elemental model is determined by the type of the

flow field data and accuracy required in each region. For example in RND
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theory, the test droplet is modeled by a "natural droplet model" to facilitate

the determination of the near flow field, which depends on the detailed

geometry of the test droplet, and the flow disturbance created by the

neighboring field droplets. On the other hand, "field droplets" are modeled

by "non-uniformly smeared droplet" which are distributed in the neighborhood

of the test droplet. The distribution of these quasi-droplets is described by

a joint probability function to simulate localization and graininess of the

quasi-droplets. This composite model provides a simple, self-consistent and

useful analytical method of treating the interracial phenomenaof a test

droplet interacting with its neighbors. The details of the application of

composite model in RNDis described in the remaining part of this section and

the next section.

2.2 Theories of Droplet: Canonical and Renormalized Representation of a

Droplet Under Short Range Interaction.

"The Theory of Droplet" concerns itself with interfacial phenomena and

tlle process rates of a test droplet in isolation or under the influence of the

collective interaction of field droplets. A representative analytical

approach for the former is the single droplet theory, and for the latter case,

the approaches are DIB and RND models. Since the latter problem concerns

collective interaction between a test droplet and field droplets, the nature

of the problems and the theoretical procedures are, in general, similar to

that of "many droplet problems". However, an important distinction between

the two theories is that the "droplet theory" aims to establish the rate of an

interfacial process of a test droplet on the framework of "the minimum-sized

many-droplet system" that includes the smallest number, Nmin, of droplets
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i.e., a test droplet and Nmin-I field droplets confined in, "the minimum sized

region", i.e. _in region. The requirements of "the minimum number of

droplets" in "the minimum region" are imposed in RND theory so that the

droplet laws, deduced from such a minimum droplet system, can be explicitly

formulated in terms of the self-consistently defined "local properties" of a

spray flow field. This basic feature of "local representation," is essential

in modern spray calculations that use local droplet laws. In contrast to the

theory of renormalized droplet, the "cluster" model 8,11 treats a droplet

system with an arbitrary number of droplets in a finite region. Thus, the

model is appropriate for dealing with a partial or complete domain of a spray

by an approach that is different from the conventional spray theory.

2.2.1 Canonical Droplet Theory4: CDT

The DIB 4 which consists of a natural droplet and its Wigner-Seitz bubble,

has two fundamental properties. Firstly, a high degree of symmetry preserved

in the DIB's periodical droplet assembly inhibits the transports of mass,

momentum and energy transports among the neighbor droplets. Thus, DIB

portrays a thermo-chemically closed adiabatic system with respect to neighbor

droplets. Secondly, the strength of the interaction between the droplet and

its bubble is determined by the size of the bubble which has the radius equals

to half of the droplet spacing. When the droplet separation becomes

infinitely large, the predicted vaporization rate approaches to that of an

isolated droplet, as expected.

Because of these two unique features of the DIB which may be regarded as

a reference model of a short-range interaction, the theory will be termed

"canonical droplet theory" (CDT). The theory provides a basis of RND model

described in the following subsection.
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2.2.2 Renormallzed Droplet Theory

Since the canonical theory treats the interfacial processes of a droplet

in a hypothetical, well ordered droplet lattice, the validity of the canonical

droplet law is questionable _len applied to practical sprays with disordered

droplet distributions. Needless to say, the adiabaticity and closure of the

test droplet relative to its neighbor also break down in practical sprays.

Another theoretical deficiency of DIB is the lack of the geometrical

compatibility of the "environment" with that of droplet environment in spray

theory. In CDT, the edge of a bubble has been adopted as the environment,

though such choice is not necessarily the unique alternative, and the gas

temperature or species concentration is used for the determination of the

vaporization rate and droplet transient heating rate. However, in a spray

calculation, the local average gas phase temperature of multi-phase flow is

used for the determination of droplet process rates. Clearly, the environment

of a canonical droplet does not coincide with that of a spray. Such

incompatibility prohibits the encoding of the droplet law, derived by DIB,

into a spray calculation unless an explicit link between two environmental

properties, i.e., DIB vs smeared droplet model adopted in a conventional

multi-phase continuum spray is provided.

The RND theory provides a rigorous theoretical procedure that removes the

major shortcomings of the canonical theory and provides encodable droplet laws

by the applications of (i) composite droplet modeling technique and (2) the

minimum sized many-droplet system, as described in the following section.
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3. Renormalized Droplet (RBD)

3.1 Structure of Model

The theory of renormalization 12 portrays a test droplet interacting with

its neighboring field droplets by a composite "dressed or clothed" droplet

model shown in Fig. 2. Two principal structural elements of RND are (i) a

Droplet-In-Bubble (DIB) and (2) a cloud of non-uniformly smeared droplets

which functions as an external clothing for the DIB. The distribution of the

quasi-droplet is described by the pair-distribution function representing the

joint probabiltiy of finding a test droplet and its neighbor at a separation

s. The pair-distribution function vanishes in the immediate vincinity of the

bubble, representing the evacuated volume effect of droplets, and then

increases rather rapidly to a value greater than unity at the radial distance

comparable to a mean droplet spacing. This first high droplet density region

populated by the nearest neighbor droplets is termed the "first coordination

shell." The population peaks of the "second and higher order coordination

shells" lose their sharpness as they merge with one another and are ultimately

lost in a continuous environment where the pair distribution function

approaches to unity. The size of the transition sphere, Rts, defined as the

radial location where the pair distribution function is 0.99, depends on the

droplet size, spacing and arrangement. The ratio of the size of the

transition sphere, Rts , to the characteristic hydrodynamic scale, L, is

typically much smaller than unity, and thus the sphere degenerates into a

point in the limit when Rts/L vanishes. Accordingly, the average properties

of the gas over the transition sphere approach to the local properties of the

continuum flow as the limit Rts/L goes to zero. This "correspondence

hypothesis" and the interlinking transition sphere constitute the two key
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factors for the determination of the droplet process rate by the local gas

properties of the continuum flow field. In the present analysis, RND is

assumed to be spherically symmetric, and non-reacting. Transport properties

are constant and the Lewis number is unity.

The criterion of a quasi-steady state is a much more complex issue than

that of a single droplet because of the multi-scale and multi-time phenomena

linked with mass and energy transport in typical RND. In general, the quasi-

steady state assumption is valid when (i) the largest characteristic diffusion

and conduction times associated with the transition sphere is much smaller

than the life time of any droplet in the cloud, (2) no droplet in the

transition sphere is in the state of transient heating, and (3) no gas phase

region is experiencing an initial or a terminal transient process. The

effects of transient processes, and the validity or the limitation of the

quasi-steady theory in a practical spray are discussed in Section 5. Detailed

time-dependent analysis of transient processes in RND, which will be presented

as Part II in the future, reveal that RND is found in some dense sprays to

exhibit only a brief or finite period of quasi-equilibrium state.

Additionally, RND exhibits dynamic saturation in time scales comparable to the

characteristic diffusion time in the canonical bubble when the local group

combustion number exceeds a critical value.

3.2 Mathematical Analysis

Non-dimensional equations governing RND are formulated separately for the

inner DIB region and an external quasi-droplet cloud, respectively, as

follows.

(n 2u_i) = 0 I< n < nco
l d

--_ d--n- d_ _ _ (i)
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and
^

1 d d_i ^

2 d'n (2 5- ) = GsgHB i

w[th

<hinco -- _ts
(2)

Cm = _u (3)

= @m a T - _ _ a T
(4)

where n = r/r (0), 0 and v are non-dimensionalized by the gas density, and

velocity on the droplet surface, respectively, Gs = 4_nrgJo, g is a pair

distribution function, H is the vaporization shape factor defined by (12),

4 are the fluxes of various properties; mass for i = m, fuel vapor for i=F
i

and thermal energy for i=T, and ^ refers to the properties pertaining to an

outer region. The definitions of properties _i and constants B i are

summarized in Table 2.

Table 2

Schvab-Zeldovichs Variables and Constants

i I a.
1

M I -(yf/WF_ F)

T I _fSbCpdT/q

^

a.
1

fTbCpTdT/q

^

B i

eF = - (WFVF)-I

YF = L/q

The system of Eqs. (I)-(4) is integrated by a repeated quadrature. The

constants of integration are determined from the conditions of the

78



impermeability of the gaseous species on the droplet surface and the balance

of the heat conducted to the droplet with the latent heat of the

vaporization. The integration gives the following vaporization laws

_n (i + _Tco )

4_pDr_ (o) YF
_(0) : (5)

1 - _co

or

r_pDr_(o) _n (i +

&(o) = -'-
1 - _co

where

(6)

-I

co co

These laws, which agree with those obtained by Tishkoff 4, are valid for

any value of _co' provided the bubble contains no droplet other than the test

droplet. This standard law will be termed "canonical vaporization law," the

spherical bubble surface will be identified by "canonical environment" and the

bubble temperature by "canonical temperature." In contrast to what is

described above, an alternative law in which the vaporization rate is

determined by the gas temperature on the surface of the transition sphere (see

Fig. 2) will be called "renormalized vaporization law," the surface of

transition sphere is "renormalized environment" and temperature on the surface

is the "renormalized temperature" which is numerically equal to the local gas

temperature of the continuum flow field.
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Renormallzed Droplet Law

Since the continuum theory of sprays predicts the local gas temperature

but not the canonical temperature, the canonical vaporization laws (5) and (6)

cannot be used in spray calculation as previously described. The alternative

proposed in this paper is to use a renormalized vaporization law. The

renormalized law is described in this subsection. By adopting a mathematical

procedure iavolvlng appropriate linear combinations of Eq. (2) governing

_m' _F and _T' one obtains two homogeneous equations governing

^ ^

_T + 7F and _F - CF" These two equations are integrated and joined with the

inner solutions on the surface of the canonical bubble. The resulting

solutions are given by

^ ^

_T + YF °F - _F
^

_Tt + "(F _Fts CF

nts E2

_ i/ I
= e×p { _ _-_ (I + Gsf g_E2d_)dn '}

n n
co

(7)

In order to obtain the renormalization laws, one first determines

^ ^

aTc ° and _Fco by replacing the _ appearing in the lower limit of the

integration of Eq. (7) by nco . Subsequently, by substituting the resulting

^ ^

expressions of _Tco and _Fco in Eq. (5) and (6) one arrives at the following

renormalized vaporization laws:

• _Tts)
re(o) = 4_pDrC(o)C v in(l +-_-f-

_(o) = 4_pDr£(o)C v in (I +

^

_Fts- _FE)

_F£ - eF

(8)

(9)
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where C is the vaporization correction factor calculated as follows
V

c :[ I- +G
v _ts s

Ints I _)_ (K)dKdrl]
-1 (IO)

in which

-2
K(nl_) = n _2g(F.)

(Ii)

_n(n)

_(o) 6(0) [I-_c (n)]

(12)

where _F£ is given by

^ ^

_Fts + _Tts + eF (13)

C_F£ = ^

_Tts + YF

The vaporization laws (8) and (9) remain incomplete until the distribution of

is provided. The determination of H requires the knowledge of the

^

canonical temperature _Tc(n) of a quasi-droplet located at n, see Eq. (12). A

theoretical procedure of the determination of eTc(n) in terms of the local gas

phase temperature, _T(n), is described in the following.

Mean Canonical Bubble Temperature

of a Field Droplet

In the analytical estimate of a mean canonical temperature one assumes

that each field droplet in the transition sphere of RND has a canonical

structure, i.e., the temperature and concentration profiles are those given by
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canonical model. Consider a canonical field droplet located at the field

point, _ , measuredfrom the center of the test droplet. Let y be the radial

location of an arbitrary point within the bubble of the field droplet measured

from the center of the field droplet. Then, according to the result of the

DIB model, the temperature distribution in the bubble of the canonical field

droplet is given by

I
_T(n'y) : YF {exp[_l (I - _)-i]}

°(n)
(14)

where

Additionally, the canonical temperature, _Tc(n) is obtained by replacing

y in Eq. (14) by Yc; i.e., the radius of the bubble. The result is

^ i L)
_Tc(n) = _T (n'yc) = YF {exp [o--_ (I - ] - i}Yc

(15)

Since the local gas temperature _T(B) equals to the volume averaged mean gas

temperature in the bubble of a field droplet, one writes

yi
fl c aT(_,y)y dy_T (n) - V-

c (16)

where Vc is the non-dimensional volume of the bubble given by
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v 1 ( 3-t)
c---3 Yc

^ ^

In order to express aTc(_) in terms of aT(n), one

correlation function % as

inroduces the

%(q,yc ) = aTc(n,yc)/_T(n) (17)

By comparing Eqs. (16) and (17), one identifies %(n,y c) as follows

_(n,y c) =

{exp[--_-[(l l-J--)-l]-l} (y3 -I)Y

t ±)
3 fYC{exp [--_ (I- ] -I } ymdyY (18)

Thus, the non-dimensional vaporization rate, _, of a field droplet is given by

_(q) 4_pDr_ In(l+ _/_;]_]

_(o) _(o) t-_c(n)

(19)

where _c(n)=_coO(n)g(n)

By substituting (19)

equation.

113

into Eq. (2), for ,i=_T , one obtains the

(20)

following

d__ + ! d_! _ G
dD 2 q dD s

_n [1-_+_e _ ]

eg --0
I-_ c

(21)

where
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m  T(n)
- dq - £n (1+ ) (22)

7F

In the ensuing analysis, _ will be assumed to be unity. This corresponds

to droplet vaporization with a high transfer number. The general case,

_#I, can be solved by an iterative analysis with a guessed value of o(n) to

calculate approximate 4 from Eq. (21). The iteration will continue until the

vaporization rate prediced from the iteratlve solution converages to the

guessed value of o. It is expected that the temperature rise in the radial

direction is faster when X>I. Details of the general case will be reported in

the future.

The last step required for determining _ which appears in the scaling law

is to determine _ as a function of n. With _=I, one can show that the

expression for _ which satisfies 4=_co at _ = neo and @=_ts at n=_ts is given

by a linear combination of two homogeneous solutions W I and W2, that satisfy

dw I dW 2

the canonical boundary conditions; Wl(qco)=l , d--_--(nco)=0 and _-_--n(Dco) = i,

#(n) = @co{Wl(n) + [_ts W2(n)- }
_co Wl(nts) ] W2(nts)

(23)

where _co' the characteristic value, is determined in terms of _ts as

follows.

By equating the vaporization rate in the canonical form (5) and

renormalized form (3) and by using the definition of _ given by Eq. (22), one

obtains

4npDr£ (o) 4_pDr£ (o) _ts
(24)

_(o) - ¢co = nts n
i-_c° + G fn K(_ I_)_(_)d_dn

l-_ts s _
co co
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where H(_) = 0(_)
1-Cco *(_)

1-_cn _c-o"-
(25)

and

e($) = r£(_)/r o (26)

On substituting the expression of _(n) given by Eq. (23) into RHS of Eq.

(25) and by inserting the resulting expression in the u-term appears in the

denominator of the Eq. (24), one obtains

_co _co

..... A(G s ,qts )
_ts _qts 'nc°

(27)

where

a

l-_ts-Gs it s D l-_co W2(E)
co _coK(rll_)O(_)l-_(_) W2(nts ) d_dn

_ts n 1-_co W i(nt-s-)

1-_ts+Gs . j" K(n[E)O(_)1_¢(¢) [WI(_) W2(nts) W2(_)ld_dn
n n
CO CO

(28)

Finally, the scaling factor Eq. (10) can be expressed in terms of

W I and W 2 as follows

nt s I_c ° l-_c°= z - + G f K(nl_)8(_) I--'-T
Cv _ts s _co " [Wl(_) + BW2(_)]d_d n }-1
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where

i
B = [ _ - WI(Dts)]/W2(_ts)

4 Numerical Results

A numerical analysis will examine the structure and scaling laws of RND

and their dependence on the principal collective interaction parameters of a

stationary cloud of n-octane droplets with the following fuel properties;

P_=707 Kg/m 3 Tb = 398.7 k, L = 71.7 Kcal/Kg, and WF= 114.14 Kg/kg-mole.

(I) Pair-Distribution Function and Canonical Bubble

In the absence of experimental data, a pair-distribution function is

constructed on the basis of the geometrical distribution of molecules in a

dense liquid. The following two parameter function is adopted for the

numerical calculation.

g(n) = 1 + a exp(-bn) cos (2_nco) , 2nco < n _< _ts (29)

where a and b are constants to be determined from the experimental data. In

the present analysis a = 1.8, b = 0.65 are chosen. The resulting distribution

patterns are shown in Fig. 3. The corresponding signatures of the inverse of

the radius of canonical bubbles with nco = 5, i0, and 15 are shown in Fig.

4.

(2) Vaporization Shape Factor

A pronounced increase of _ in the radial direction is observed for a

smaller value of droplet spacing, i.e. n = 7.5 in Fig. 5. The ratio of the
co

vaporization rate of the droplet located at the first coordination shell, for
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the case of _co = 7.5, is approximately 5%of the corresponding value of RND

with nco 15. This trend of a higher increasing rate of _ at smaller

canonical bubble radii, or droplet spacing, is a commonfeature for small

droplet spacing. This is confirmed for the cases characterized by pair-

distribution functions with different values of a and b. The results suggest

that "_ -stratification" is a unique feature of RNDin non-dilute clouds or

spray.

(3) Temperature Distribution

High _- stratification at smaller droplet spacing, as illustrated in Fig.

5 is due to the steep radial temperature gradients in the transition sphere,

shown in Fig. (6). Indeed, the comparison of "_- T stratifications" suggest

that (i) the rapid vaporization in outer layer of the cloud collectively

quench the environment and thereby reduce the vaporization of the test droplet

and (2) the increase in _ts at a fixed droplet spacing tends to reduce the

inward heat transfer rate and thus suppresses the vaporization of the test

droplet.

(4) Vaporization Rate - Correction Factor

The correction factors of RNDsfor three selected values of _co' Fig. 7,

are found to decrease monotonically as the group combustion numberof RND

GRN=30~40 = 7.5.increases. Saturation is projected to occur when with nco

While the group combustion number is a primary factor controlling the

magnitude of Cv, Fig. 7 shows a small variation in the correction factor for

two RND's which have the same group combustion number but different

renormalization number, B = nts/_co •
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4 Discussion

Scaling Law with Linear Stratification Model

In order to facilitate the practical application of the scaling law, the cor-

rection factor is integrated by adopting the following functional form of g

m

gp = g_Kln

where K 1 is a stratification coefficient, and gp is the mean value of the

weighted vaporization shape factor. The correction factor predicted by the

linear stratification model described above, is given by

c = { [(1- 1 1
v I-_ts+GRN _)(1+ 8 2 1 _ -- + 82 85 )]} (30)82 ) +_ Klnts(1- )(1+ fll 1 1

where GRN = _ Gsn_sg_.

SPRAY CLASSIFICATION

Numerical assessment of the scaling law suggests the following structural

classification of non-dilute sprays.

I. Diffusively Dense Cloud

In a moderately dense cloud, RND is expected to have a large transition

sphere that has no U- stratification.

attributed to uniform thermal quenching.

described by the group combustion alone:

The reduction in the vaporization is

The correction factor given below is

Cv = (i + GRN)
-I

(31)



2. Densely Stratified Cloud

This cloud is featured with a strong stratification in a transition

sphere that causes an intense collective quenching and a reduction in the

vaporization rate of the test droplet. The renormalization number nts/_co is

larger than unity so that the correction factor is given by

C = [1 + GRN( 1 + 1v - _ts _ Klnts)]

-i
(32)

3. Sharply Dense Cloud - Fine Structure

When the coordination shells contain the largest possible number of the

droplet so that the renormalization number is not excessively large compared

with unity, the correction factor depends on all the collective parameters:

GRN , _ts/ncoand nts. Two sharply dense clouds with the same group combustion

number will exhibit structural variation when the renormalization number is

different.

5 Conclusion

The present theory portrays a droplet interacting with its neighbors by a

minimum sized "dressed" droplet structured with a centrally located droplet

and its bubble, e.g. Droplet-in-Bubble, surrounded by a quasi-droplet cloud

spreading through a transition sphere. The distribution of quasi-droplets and

the size of the cloud are described by a pair distribution function. The

introduction of the transition sphere and the correspondence hypothesis

postulating the equivalence between the average gas properties on the

transition sphere with the gas properties of the continuum flow field, as the

limit Rts /L goes to zero, constitutes the fundamental link between the

discrete droplet dominated region with that of the surrounding continuum
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flow. This feature provides the basis of the theory of short-range

interaction and droplet rate processes.

The vaporization scaling law reveals that the droplet vaporization is

retarded primarily by the collective thermal quenching and the formation of

high vapor concentration in the transition sphere. The retardation is scaled

by combined topological-thermochemical parameters: the group combustion

number, renormalization number and droplet spacing. The scaling laws suggest

that non-dilute clouds or sprays can be classified into: (i) "Diffusively

Dense" clouds in which the vaporization reduction is attributed to the effects

of uniform thermal quenching that can be scaled by the group combustion number

alone; (2) "Densely Stratified" clouds, with marked radial stratification due

to the large temperature gradient which exists in the transition sphere; and

(3) "Sharply Dense" clouds, with a relatively large canonical bubble, and

radial stratification so that the scaling law depends on GRN , _ts and 8.

Selected case studies show that the correction factor falls monotonically as

the group combustion number increases and the saturation is expected to occur

when the GRN is of the order of 30 ~ 40, with the droplet spacing of

approximately 7.5 times of the droplet size and environment temperature of

500 K.

Finally, the validity of quasl-steady (Q-S) approximation is examined by

comparing the relative magnitude of the characteristic time, tdiff., of

difusion through the transition sphere and the life time, tlife, of RND. By

adopting the renormalized vaporization laws, Eqs. (8) and (I0), and a standard

diffusion time for the transition sphere of RND, one concludes that the Q-S

approximation is valid when the following inequality is satisfied
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tdif.
t life = 2Cvn_s_ _n(I + B)

(33)

where B = C (T-Tb)/L.P

With O~103kg/m3, 0~I kg/n 3, T-Tb~IOOOKL_102Kcal/kg,
tdiff 10-4.C ~0.5 Kcal/Kg-K the numerical values of _-- is 5 x

P tlif_
Alternatively, by using the asymptotic form of C for high G deducedv RN'

from Eq. (30), i.e., Cv~G = (_6Gsntsg_)' one transforms Eq. (33) into the

following form

g_G > > G (34)s s

* 0where G =12- in (i + B)
s p_

3
Recalling that Gs =4_nr£o is equal to a third of the void fraction, and

g_~O(1), one concludes that the Q-S approximation is valid in high G-sprays

when the void fraction exceeds a third of the values of G . For typical values
s

of 0 R p,T-Tb, C and L given above, Eq. (34) reduces to' p

3

nr_o > > 4xlO -4 (35)

For example, with SMD=I00_ , the Q-S approximation is valid when n is greater

than 3200 drops/cc, whereas for SMD=200_, the corresponding number density is

400 drops/cc.

The criterion (33) or its alternative form can be encoded in a spray

numerical code to test the validity of Q-S assumption at each point of a spray
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flow field. When the approximation is invalid, an alternative transient

droplet laws should be used to determine the interfacial processes. Note that

such droplet transient processes should be able to predict the change in the

nature of interfacial processes. For example, a vaporizing droplet may reach

the state of saturation when the droplet spacing falls below the critical

value or when the thermal shielding retards the heat flux to the droplet.
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Effect of Particle Velocity Fluctuations

on the Inertia Coupling in Two-Phase Flow

by

Donald A. Drew

Department of Mathematical Sciences

Rensselaer Polytechnic Institute

Troy, NY 12180-3590

Introduction

Tile fluid dynamics of flows of dispersed materials in a fluid is fllndamental to SUSl)_n-

sions, bubbly liquids, droplet flows, pneumatic transport, fluidiza.tion and erosi(m. Equa-

tions of motion to describe these materials must deal with the interactions between them as

well as the deformation of the carrier fluid. Models that treat assemblages of solid partich,s

have been proposed and studied (Jenkins and Savage, 1983) that result in the parti('h-s

behaving like a gas, with a pressure due to the fluctuations in the velocities that is ;_t-

tributed to collisional motions of the indivual particles. Models for fluid-part.ich- mixtm'_,s

(Drew 1983) do not include this effect (Passman 1989) The purpose of the present i-mp(,r

is to derive constitutive equations to supplement the equations of motion that include th(-

effects of the particle velocity fluctuations. The particle motions are assumed to be at a

sufficiently high Reynolds number that the fluid motion is inviscid, but viscous effects such

as boundary layer separation are neglected.

Equations of Motion

The appropriate general average is the ensemble average. The ensemble average is

the appropriate generalization of adding the values of the variable for each realization, and

dividing by the number of observations. We shall refer to a. "process" as the set of possible

flows that could occur, given that the initial and boundary conditions are those appropriate

to the physical situation that we wish to describe. We refer to a "realization" of the flow

as a possible motion that could have happened. Generally, we expect an infinite numt)('r

of realizations of the flow, consisting of variations of position, attitude, and velo('iti(_s <_f

the discrete units and the fluid between them.

If f is some field (i.e., a function of position x and time t) for some particular rc_d-
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ization, p, of the process, then the average of f is

(1) f(x, t) = f(x,t;#)dm(#)

where din(#) is the measure (probability) of observing process # and M is the set of all

processes. We refer to M as the ensemble. The ensemble average is the fundamental

average that allows the interpretation of the phenomena in terms of the repeatability of

exI)eriments. Any one exact experiment or realization will not be repeatable; however, any

repetition of the experiment will lead to another member of the ensemble.

In order to apply the averaging procedure to the equations of motion, wc shall need

some results about the averaging procedure. W% shall also give these results for time- and

vohune averaging.

In order to average to the exact equations, we need expressions for Of�Or and Vf. If

f is "well behaved", then it is clear from the definition of the ensemble average that

(2) Of _ O-f
Ot Ot

_/ll(l

(3) Vf = Vf

Functions are generally discontinuous at the interface in most multiphase flow. They

are well behaved within each phase, however. Thus, consider XkVf, where Xk is the phase

indicator function for phase k:

1, if x E k;(4) Xk = 0, otherwise.

In the averaging process we will require the result

(5) --0Xk + vi • VXk = O.
Ot

This relation has a reasonable physical explanation. Note that it is the "material" deriva-

tire of Xk following the interface. If we look at a point that is not on the interface, then

either Xk = 1 or Xk = 0. In either case, the partial derivatives are both zero, and hence
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the expression (5) is zero. If we consider a point on the interface, if we move with the

interface, we see tile function Xk as a constant jump. Thus, its material derivative is zero.

The averaged equations are

Mass

OXkp

(G) 0--7-+ v. Xkpv = p(v - v_). vx_

Momentum

(7)
cgXk pv

cgt
+ V. Xkpvv = V. XkT + xkpg+ (pv(v - vi) - T) • VXk.

Next, we define the appropriate average variables describing multiphase mechanics.

First, the geometry of the exact, or microscopic situation is defined in terms of t h(:,

phase function Xk. The average of Xk is the average fraction of the occurrences of phase

at point x at time t.

(8) ak = Xk

The quantity OXk/cgn is the delta function defining the interface, its average is the inter-

facial area density.

OXk
(9) ai- On

All the remaining variables are defined in terms of weighted averages. The main, or

"phasic" variables are either phasic weighted variables (weighted with the phase flmction

Xk) or mass-weighted (or Favr6) averaged (weighted by Xkp).

The "conserved" variables are the density

(lO1 -_ = Xk,l_k,

and the velocity

(11) --xp - --x
V k = Xkpv/ctkp k
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(12)

Tile averaged stress is defined by

• = XkW/ k

The average body force is

(13)

As discussed above, several terms appear representing the actions of the convective

and molecular fluxes at the interface. The convective flux terms are tile mass generation

rate

(14) Fk = p(v - vi)-VXk

and the interfacial momentum flux

(15) Vk'_r'k = pV(V -- Vi)" VXk

The interfacial momentum source is defined by

(16) Mk = -T.VXk

The motion of the interfaces gives rise to velocities that are not "laminar" in general.

The velocity fluctuations may be due to turbulence or to the motion in the phases due

to the motion of the interfaces. The effect of these velocity fluctuations, whatever their

source, on a variable is accounted for by introducing its fluctuating field (denoted by the

prime superscript), which is the difference between the complete field and the appropriate

mean field. For example,

I --x p
V k = V -- V k

Then,

(17)

X pvv vi )(v %)=-'_kptv k + +

"v- --xp--xp
=-_kpv k v k + Xkpv'kv' k

O: _-x _-x p_-x p rlDI_c
: 'kPk k k -- O_ka-k "
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The Reynoldsstressis definedby

(18) Tff _ = --Xkpv'kv'k/ak,

The averaged interracial pressure pki and shear stress rki are introduced to separate

mean field effects from local effects in tile interracial force. The interracial pressure is

defined by

(19) Pki = pOXl_/Ortk/ai

and the interfacial shear stress is

(20) rki = rkcgxk/Onk/oi

Thus,

(21)

M k = - T- VXk

=pVXk - r • VXk

=pki_Xk -- rki • VXk - T'ki • VXk

=PkiVoek -- rkiVek + M'k,

where we define the interfacial extra momentum source

(22) M' = Mk + pkiVctk -- rki • Vakk

and introduce

T_.i = t ,--pki I + "rki = --(p -- pki)I + ('r -- Tki).

The averaged equations governing each phase are

Mass

Oak_+V _kPk k(23) Ot "- =_V _' = rk

Momentum

Oq =xVxp
O_k la k k

cgt
-=x v-gxp_x p+ V • c_kpkvk k(24) : V.ak (T: + Tff _) + akPkg + Mk + v[!}l-'k
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The equation of conservation of mass for phase k (23) can be used in the momentmn

equation (24) to yield the Lagrangian form of the momentum equation:

DkV_p -_0 )akpk Dt -- akpk \ Ot + vk "VV_°

= V-ak(T_ + Tf _) + ak_.g + M_

(95) -t-PkiVCtk -- "rki . _Tak + (Vkim _ --XOVk)Fk.

The jump conditions are derived by multiplying the exact jump condition by nl • V-\'I

and averaging. This process yields the following conditions:

;lass

(26) F 1 + F 2 = 0

_I()nlel it uIn

(27) M1 -t'-Mz + " mVliF 1 -]-v2iF 2 = 111

Constitutive Equations

The exact equations of motion can be solved for the flow of an inviscid, incompressibl(_

irrotational fluid around an isolated sphere. We shall use this solution to derive infornmti(m

about constitutive equations for the force on the dispersed phase, the average stress, the

Reynolds stress, and the interracial pressure when the particle phase is allowed to have a

random velocity.

The fluid velocity at x for the irrotational flow of an incompressible inviscid fluid is

expressed in terms of the velocity potential by

(2s) v(x) = re(x)

The continuity equation becomes

(28) 0 = V.v = V. V¢ = V20.

The pressure at any point x is given in terms of the velocity by Bernoulli's equation.

o¢ livelY) =No = constant.(30) P- P(57+
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Consider a sphere located at a point z in a flow field, moving with velocity vp. The

boundary condition at the surface of the sphere is

(31) n.vp=n.v=n. VCat Ix-zl=a,

where a is the radius of the sphere, n is the normal to tile surface of the sphere and vp is

the velocity of the sphere. The boundary condition far from the sphere is

(32)

where

1

= v0(t) •x + .el-x

is the velocity potential that would exist in the fluid if the sphere were not present. Here

v0(t) is the (unsteady) velocity of the fluid at the origin, and ef is the rate of strain tcnsor

for the fluid. Wc shall assume that ei is constant.

A convenient form for the solution of this problem is given by Voinov (1973), and is

1

¢ = v0(t)" x + _x.e/-,,

1 (a a )d- _ (Vp - v0(t) - z-e/). (x - z) 7

1 (a 5 )(33) + g(x - (x - z) ;x

If there are many spheres in the flow field, the solution given above (33) will still bc

a good approximation if the spheres are sufficiently far apart that the flow disturbances

due to the individual spheres do not interact. That is, the flow must be sufficiently dilute.

Thus, we can think of each sphere as "isolated" in the sense that it only interacts with its

neighbors through the averaged fields. We assume that each sphere lies in a "cell," and

inside that cell, the velocity is given by eq. (33). We shall approximate the cell to be a

sphere of radius R. We choose R so that

-Tt-a 3 _-R 3
_ O/.
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Averaging

\Ve now introduce a means of evaluating the averagingprocess. The first aspect of

the ensenfl)leaverageis that the spherevelocity is random, with a distribution function

.f(l/(vp, x,t). The secondaspect is that the sphereand the surrounding cell can lie with

the spherecenteranywherewithin radius R of the space point x. The average is performed

by first integrating over the distribution of the velocities that the sphere can have, followed

by an integration over the possible positions that the sphere center can have. Note that if

Ix - z I < a, the material making up the sphere occupies the field point x and if Ix - z I > a

the fluid occupies the field point x.

The average of a quantity g(x,t; z, vv) is performed in two parts, that is first, we

iwrform a conditional average of g for given sphere position z, integrating over the velocity

space vp, followed by the average over the spatial positions the sphere can have. \Ve

assume that the distribution of positions is such that

dl/" [1 - x' VOd(x,t)•

is the probability of finding the sphere in a volume dV surrotmding the point z, where

x t = x - z. Thus, for the average over the fluid of a. quantity g, we have

(34) _(x, tlz) = _g(x,t;Z, Vp)f(1)(v,,,z,t)dVvp.

Here the notation _(x, tlz ) is intended to suggest the conditional average assuming the

si)here is located at z. The average of g over the fluid phase is then given by

-_ y( x, t lz )dftd,. '(35) g (x,t) = _

where _(r) is the sphere of radius r centered at x, and the integration is over the z variable.

It will be convenient to introduce the average particle velocity and the fluctuation

l)article velocity as

(36) Vp(X, t) = J,'_favl'f(1)(VP' x, t) dV,,,

!

(37) vp(x,t) = Vp - Vp(X,t)

ll0



Note that

'=0(3S) vp

The particle kinetic energy per unit particle mass is

(39) uy_(x't) = 2 3 [v_12f(_)(v_"x't) dV,,p

and tile Reynolds stress for the particles is defined by

(40) TRY(x,t)= --p.£ v;v'.f(')(v.,x,t) dVvp

In order to evaluate the integrals appearing in the averaging process, we must express

the z dependence of the velocities in terms of x and x' = x - z. We have

a,n(l

vs(z) = vs(x) - x"_s

%(_) = %(x)- x'.e,

where ep is tile velocity gradient tensor for the average particle motion. We shall assum(_

that this tensor is constant and symmetric.

We have

v(_,t;_,v.) = V_(x,t; _,.,,)

1 ,x, (.')= vs(x) + _(vs(x) - %(x) - v. (_s- %)) y

(-')3 ' - x' x' x'
2("s(x) - %(x) -- . • (_s - _.))

()- .(-)_x' _ _x' es x' x'
+3 "et _ 3 7-_

(41)

Note that vs(x ) is the fluid velocity that would exist at x if the sphere were not present,

and vf(z ) - vp is the relative velocity between the sphere and the fluid evaluated at the

sphere center. It is convenient to have expressions for the integrals of powers of x _ ovc_r

f_(r). For these integrals, we note that

(42a) [ x'... x'df_ = 0
Jn (r)
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if tile factor x' appearson odd number of times, and

(42b) f_ dft = 47rr 2
(r)

[ x'x'd_ = -47rr4I(42c)
J_(,.) 3

f xtxtxtxtd_ = LTi-r6_](42(t)
A_(,.) 15

where E is a fourth order isotropic tensor defined in Cartesian coordinates by

Eijkl = 6ij6kl + (_ikSjl -_ 5ilSjk.

We filrther note that if v is a vector, and e is a symmetric second order tensor with c,i = 0,

then

EijklVjekl = 2Ujeji.

Derivation of Averaged Quantities

In order to average eq. (41), we note that the average over the velocity fluctuations

gives no contribution, by eq. (38). Then averaging over z gives

(43) v;"(x, t) = vi(x, t).

Similarly, to obtain the interfacial averaged velocity of tile fluid, again the integration

ow'r the velocity fluctuations gives no contribution, and we have

V_i(x, t) -- 1 ,f_ V(x, tlz)dft.
4ra 2 (_)

Substituting and performing the integrations lead to the result

(44) %,(x, t) = vAx, _).

This result is a little surprising at first. The fluid at the surface of the sphere satisfies the

condition n. v = n. Vp, but is allowed to slip in the tangential direction. After the passage
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of the sphere,the fluid that wasmomentarily in contact with the surfaceof the sphere is

againmoving with the fluid. The result saysthat evenduring the time that it is in contact

with the surfaceof the sphere,its averagevelocity is still equal to tile averagevelocity of

the fluid, and not of the sphere.

Now let us compute averagedpressuresusing this formalism. The exact press:trecan

be computed by Bernoulli's equation (30). In order to evaluate the derivatives in eq. (30),

' Also.we note that x is constant during t derivatives, but Oz/Ot = vp = Vp(z, t) + vp.

when evaluating V¢, both t and z are held constant. The pressure is given by

_OVo l[0v0 OV,(x, t)(481) p(x, t; z,,,p) = po - pc \ at x + _ at at

](.')• X !+ (%(x,_) + v;) •es - (v.(x,t) +-;) •_.

(.')- _(_s(x) - (v_(_,,t) + %) - x' •(¢: - _.)) •(v,,(_,t) + %)

3 (a 3)-_(.'S(X) - (%(z, 0 + v;) - :¢ •(_S- e.)) •x' x'_- •(%(_.,t)+.'.)

, (.) (') :-5(v.(_,_) + v;). _s. x' • .x'x'._- + _x' es (v,,(z,t) + v',,) _- + ;"s -s

(')+_lvs(x) - (V.(z,_)+";) - x' •(e± - _.)l_ y

: (°.)+_.'s.(-s(x)-(V.(x,t)+.';)-x'-(_s-ep)) _-

+g (("s(x) - (v.(x,O + v;) - x' "(es - e.)) "x') _

. (.) _- (.)+_(v;,(x,_)+v;)._s.x' y - 5(..(x,_)+ v,,').x'×'._s.x' y

: ( a_)_(..s(x) - (%(x,t) + %)). _s.x'

5 (a_)6(.,s(x) - (v_(x,0 +.,;)) •x'x' •es •x' ;-_

_,v,_x__,:.,x,,,_.,.,,x,.,e,..'('))
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2 and ere v.where we have ignored terms of order e}, ev,

fluctuations gives

Averaging over the velocity

(Ov0 1 6%0
p(x, tlz) = p0 - p__\ 0t .x + 5 at

8%(x,t)
oqt

+v_(x,t). e,- Vp(x,t).e_J,x' (,3,_

- [_(Vs(',)-V,,(,'_,_)-x''(es-e,,))'V,,(z,t)-*,]_(z,t)] (_)

- (v,(x -vp(_,t)-x'.(e,-ep)).x'x'-%(_,t)+_ p,, \,,._/

-_Vv(z,t)-ey.x' \7]+3-x'.e I .Vp(z,t) _ _7 + 7)vf'vI

+ glvi(x)-V,,(z,¢)-x'.(e,.-_,,)l+_,_ (_,t) 7g

+_,:. (v:(x)- v,,(x,t)- x'.(e: - e,,)) 7

[9 -(x,,)-x'. - "' ]+ _((vs(x)-v,, (es e,)).x'/ 9,,'.T_'z,t)-x' (_,_8 pe \7 '1° )

+a %(x't)eI'x' 7 - _v,,(x,-t).x'x'.e I.x'

1
_(v,(,,)- v,(,,,t)), e_.x' ("_\,*J

-_(v,(,,) - %(x, t)) •x'x' •es •x' (,-_0)

x,x,x,(,))+ _(v,(x) - %(x_ t)). .e, 7_

The sI>atial integration is tedious, but results in

Ovy(46) _c_ = z,0- pc--aT .x - _vAx ) •vI(x)

where we ignore terms of order a/R in addition to those ignored previously. Wc also obtain

1 uR _(47) p_(x,t) =tS_ -- pclVc(X,t)--Vd(x,t)l _ + ._Pc d •
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(48) Md(x,t) -- 4 1 3 /Ft-57rR (a)

This can be computed by substituting eq.

The interfacial force density Md is given by Md = pVXd. Thus,

np(x, tlz ) 1 dft.
O_d

(45) for the pressure, and recognizing that

,1 = x'/a. We must also expand the terms UdR_(z,t) = udR_(x,t)- X'. Vu_¢_(x,t) and

T/_e(z, t) = TRe_Xd_ , t) -- X I • V'TRe(x, t) The result is that

(49) Md(x, t) = _Va'd

Ova (x,t)
-_ v d ix, t) _-x/,,• - • vv a (x,t)

7(v,p(x,t ) -_p -_p )- vd (x,t)). (vVF(x,_)- v_, d (x,t))

-_ (2_(v_(x,t) -_ -_+pc 5 - _d (x,t)).(v_ (x,_) _-Xp,v_tx, t ) )Vcht
%

- _e (x, t)(v_O(x,t) --_°

Note that no drag force is present in eq. (49). This is the result of D'Alembert's 1)ara(l(,x,

that is, there is no net force on a body moving at a constant velocity through an invis('id

fluid at rest.

If a distribution of stresses is applied to the surface of an elastic body, there resuhs a

distribution of stresses inside the body• These induced stresses are important in computing

constitutive equations for solid-fluid mixtures. The average stress inside the sphere is gi\ea

by

--* 1 fo_/_ T(x, tlz)df_Td(X , t) - ._Tra3 (_)

where

T(x, tlz) = [ T(x,t;z,v_)f(1)(v,_,z,_)
dR 3

Here T(x, t; z, vp) is the stress at point x inside a sphere having its center a.t z at time t.

We shall assume that the spheres are linearly elastic solids, but we shall assume tha.t the
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deformation is sufficiently small that the fluid motion is unaffectedby the deformation of

the spheres.Then the stress-strainrelation is given by

(5O) T = #_[Vu + (Vu)t"] + A_V. uI

This can be written as

(51) T = a + 0I

where

(2)O= _+g_ V-u

a=p_ [Vu+(Vu) t']-_V.uI

The spherical part of the stress satisfies (Love, 1932)

(52a) V2®(x, t; z, vv) = 0

(52b) O(x, t;z, v_) = -p(x, t; z, ,,;) on Ix - zl =

Averaging over Vp gives

(53a) w20(x, tlz) = 0

(53b) O(x, tlz) = -p(x, tlz) oil Ix - zl =

(54)

Solving and performing the integration over z gives

_(x,t) = -_c_(X,t).

The solution for a is also given in Love (1932) and can be averaged in vv and then

integrated in z to give

_(x,t) Pc (V_O(x,t) V_O(x,t))(V_O(x,t) -x0 ___:-x - - -v_ (x,t)) _

(55) + _ (IVF(x, t) - VT(x,t)l _+ 2_ _)I .
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We next turn to computations of the Reynolds stressusing the velocity fluctuations

due to the inviscid flow around a sphere. Using the expressionfor the velocity (41) and

the averagefluid velocity (43), we seethat

v'_(x,t;.,,..)= -_(v:(z)- .,.)-G

3 (")2(,::(,.)-._)•x' x'

(:) ,x, (:)_ t X I(56) +_x'.e: y 3 e:.x y

Averaging over the particle velocity fluctuations yields

T_ _(x, tlz) = -pcV_(X,ttz)_(x, tlz)

.(°°)+/'" : pd 4 _ [x'(x'.--

9 WdR_ x')]+ ,,
The integration over z can be performed, yielding

TdR_ T_'
) + (x'. )x']

Pd Pd

(57)

TRWx t)- 2oO,_p_ (vF - vT)(vF - vT)- p--j-

+3 ((?c _" - V_'). (V_' -v.-")+ 2u_ ') I].

The fuid fluctuation kinetic energy is u R_ l"--'-'-'-'-'-'-'-_-_"_x= _v .v , and can be computed by taking

the trace of eq. (57") for T R_. The result is

l°!a'v_"Ic =x,,2 1 R.(ss) URc e = --Vdl +- 20'dUd •

Conservation of Fluctuation Kinetic Energy

In analogy with statistical mechanics for assemblages of molecules, the theory of av-

eraging as applied to multiphase flows allows the computation of averaged equations for

higher moments of velocity and pressure correlations.

We start with the derivation of averaged equations for the fluctuation kinetic energy

for each phase. The exact momentum equation is

(50) 0pv
0---t--+ V " pvv = V • T + pg
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We shall derive an equation for the evolution of the kinetic energy.

t\_rmof the momentuin equation is

(60) p +v. Vv = V-T+pg

If we take the dot product of v with eq. (60), we have

(61) P\ Ot +v-V v 2

Wc note that

v-(V- T) = V. (T-v) - T: Vv

If we also return to the Eulerian form, we have

0 ½p v2 lpv, %(s2) o--T- + v. = V. (T.v) -T: Vv+pv .g

If we apply tile ensemble average to eq. (62), we have

(63)

1
OXkot½pv2 +V. Xk _pv2v = V • XkT. v - XkT : Vv

1

+ Xkpv .g --[p_v2(v -- vi) + T. v). VXk]

We define the fluctuation velocity of phase h by

t --x p
(64) v k = v - v k

Then

I . I --xp )2(65) _,_= (vk)2+'_,,k. vk + (5_

so that, noting that Xkpv_ = Xkpv -- Xkpv2 p = O, we have

_" l _ O{ --x Re --x

Furthermore,

9 I 2 I I 2--xp --xp--xp t --xp I --xp 2 t --" -- "_,-v= (vk)vk+ 0'k)vk + 2vi--,.kvk + 2vk-vkvk+ (vk)vk+ (v;")2v;'

The Lagrangian

118



so that

1 X 1
x_p_v_v =_ ,,p_(v_,)_,,_

--x Re_xp --xp .=akq_k c + akPkltk k -- OZkVk

Also, note that

Note flu'ther that

Then we lmve

[li1(t

1 , 2_xp -xp r i ! I xp 2=:.rp

+XkP_(vk) vk + vk "Xkpvkvk +-\%P_(_k ) vk

_, 1/_xp_2vx p
Tff e +akpk-qt k _ k

!

T • v = T. VkP+ = T. v k.

T:Vv=T'Vv_ +T'Vv k

-xp , T x -xo 7"XkT • v = XkT • v k + XkT. v k = c_k k " Vk -- (_kqk

--X v"w--_: i )

XkT'Vv=XkT:VV_f+XkT'Vv_.=(_kT k" \'v k +Dk,

where qT = qPk+qk" and Dk = XkT • Vv_..

Next, in the interfacial terms, we have

,_(v - v,) vx_ (_F)2r_ +-*p• _ V k •

all(1

(60)

Vki_k + p (v[.)2(v - v,:) •VXk

(T-v) • VXk (T'-XP - -zp= v k )'VXk+(T'v_)'VXk =Mk'v k +I1'%

The equation for the conservation of fluctuation kinetic energy then becomes

--x --2: p -- x--x p
-V.ak(q[:'+qT)+v.a_.Tt..vz, +c,,.px.v t, .g

--x 1 xp 2 --xp m

--akT k'VV_f-Dk+._(vk ) Fk+v k "vkiFk

1 i
+ p_(,,k)_(v - _,). vxk + Mk. vF + W_
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The equation for the average kinetic energy is

O Ol k -fi_ _ _ v kl,"-- z p , 2) 1__
ot + v.  kp v; =

--xo -- Tffe --xpv_ .V.ak(Tk+ )+Mk'v k

--x p --x p m(67) + akpkg" v k + v k " vkirk.

Subtracting this from eq. (66), we have

OCt, --x Re
kPkUk

O_ --x Re--.r p Re --z p K+V. kPkUk v k =akT k :Vv k --V.ak(qk +qT)0t

1 ,
l(_f)2r, - pS(vk)2(v- vi). VXk + Wk -- Dk(6s) + 5

This equation has some interesting interpretations. First, note that the dissipation

due to the Reynolds stress akTff e : _TV_ ° acts as a source of fluctuation kinetic energy,

while its counterpart for the molecular dissipation akTk : VVk v does not appear in this

equation. Dissipation oil the macroscopic scale, then, winds up as different things on the

microscopic scale. Also, the dissipation due to microscopic velocity fluctuations Dk implies

a loss of fluctuation kinetic energy. Thus, loss mechanisms, such as inelastic collisions or

viscous dissipation in the velocity fulctuations, cause a loss of fluctuation kinetic energy

to heat. Finally, the working of the fluctuations at the interface, Wk appears as a som'ce

of fluctuation kinetic energy.

Since this equation is unnecessary for the fluid phase, we shall ignore it for k = c.

For k = d, we note that Dd = 0 is consistent with the linear elasticity assumption and the

assumption that the particle radius a does not change. Furthermore, if assume no phase

change (Fk = 0), and we ignore triple correlations in the particle velocity fluctuations

v' v' v' = 0), we have
P P P

0udn_
(69) ad-fi_---_+ad-fi}. VuyCV_ , = adT Re" VV; p + Wd

Discussion of the Force on a Sphere

The equations of motion for the mixture are

70) Oad
-- " O:dV d _ 0Ot +V -_P
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(71)
00¢ c

O--Y+ V. a_v_P= 0

__ (Ov_ p __p
(72) adPd \ Ot + v d 1-x Re 1 x•vv: '_ = -a,_v(p_ + _pcu,_ - _cjv:,_ _ =_,,,2,,,,__+v •o_Wy_

+v. o_d{_, [-_o(V_(x,t)- v_(x,t))(v_(x, t)- vd(x,t))

+ _lVc (x,t)-v_°(x,t)12I

_x(_[oVT(x,t) arT(x, _) ]+'_;_ [ _-i at + VF(x,t). vvy'(x,t)- v_"(x,t), vv,7(x,t)

- Vvd (x, _)]20 [VF(x,O vT(x,t)].[vvF(x,t)- -_p

-_ - - v5 (x, t))v_.+Pc _(V_P(x, t) Vd'(X,t))'(V_P(x,t) --*P

9

v d (x,t))(V_"(x,t)- V_P(x,t)) • Vaa)
+ =(VT(x,t)--_pzu

(73) (avF )_pc \ at +vT vvF = -_cV_

+V. -_a_p_ (v_p -_P -*p --- E_

]'1

-v d )'(V_"-v d )+ )I
]J

+ _clvF(x,t) --+ _',_(x,t)l _ + du R_ v,_,_

(_ [ovF(x,O-ad_ at

--xpav_ (x, t)
Ot

]
+ vF(x,t) vvF(x,t) -_'_ /- v d (x, t)- -"'_• Vv_ (x, t)

d

7 )- Vv_ (x, t)]20 [v:'_(x't) vT(x,t)]. [vvF(x,t) - -"

-pc (_(VF(x,t) --_ - v_ (x,t))w_-_ "d (×,t)).(VF(x,t) -_P
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+ vT(x,t))(vT(x,t)- vT(x,t))wd)

_7 _ 9

+_c .-_ V(o_d'UdR_) + _- _--_V • ((_dTd R_ )

It is also possible to calculate the force on a sphere at z by computing

fp(z,t) = n p0 - p_ [V¢] 2 + _- d_,
(_)

whvre the integration is over the variable x _, with x = z + x _. This results in

._ (0vf 1 [0vf 0vp ])(74) F_,(z)= _'a3p_ \ 0t +vf'ef+:_ Ot Ot +vfef .

Now that this force agrees with Taylor's (1928) calculation of the force necessary to hohl

0
a sphere at rest in an accelerating stream, obtained by setting _ = 0 and v 1, = 0. The

force is

(75) _ _r.? _v]. Vvf

If we first take the gradients involved in eq. (72), using V.V d' = (1/ad)(Oa'_t/Ot +--_'_'vd •

--.rp U_cVc_,t)andVTv.vc-_:" =--(1/a,)(Oad/Ot+V_ p'vad),thensetv d =0, =0,(,a =const.,

and T_ _ = 0; and assume one-dimensional, steady flow, then eq. (72) reduces to eq. (75)

in the limit as aj ---+0. Moreover, it is clear that it should. Consider the one-dimcnsionul

situation pictured in Fig. 1. The continuum model for the particles between x and x + Ax

gives the rate of change of the momentum of the particles and parts of particle._ between

:r and :r + A:r, denoted by Pd('r, x + Ax), as the stress force transnfitted to the particl('s

1)y the particle parts outside of the interval, denoted by (c_ai - T}) Ix+ (aa(-i). T,_) l_+.x_.,

1)lus the force transmitted to the particles through their interface, denoted 1)y MdA._ '.

Thus,

(76) Pal(X, Z + Az) = (agi" T/l)I_ + (_d(--i)" T_)I_+_ + MdAx

The stun of the forces on all particles with their centers in the interval from x to

.r ÷ A:r is equal to the sum of the pressure forces on all the particles involved. Thi.q is
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denoted by E fpndS. This is equal to the rate of change of the momentum of all the

particles, denoted by 15v. Thus,

(7r) *'v= /v. s

We note that eqs. (76) and (77) differ in the way they treat the particles being cut by tile

surfaces at x and x + Ax. The relation is that tile

(7S)

Here

Pa(x,x + Ax) = Pp + (c_di. T}) I_ + (c_a(-i) • T_) I_+A _

-Ec.t,in/pndSl_ + v /pndSlZacut,out x

-- _cut,in//)ll(/_]x+A.-_'_cut,out /pll(-/_]x+&a,

Ecut,in / pndS].

is the sum of the pressure forces on the surfaces of the cut particles at x whose centers are

inside the interval from x to. + Aa',

Ecu t,out / pndSI
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is tile sum of the pressureforceson the surfacesof the cut particles at z whose centers are

outside the interval from z to z + Az. A similar interpretation is valid for the cut particles

at x + Ax.

The terms on the right hand side of eq. (78) represent the resultants of forces on cut

i)articles. If the approximate equation of motion inside the cut particle is V • T = 0, then

the pressure force over the curved side, plus the stress resultant force over the flat side

must add up to 0. (Note that if the particles are accelerating, then the forces add up to

be the volume of the part of the cut particle, times the acceleration of its center of mass.

Presumably, this force is small.)

Conclusion

Consistent forms for the interfacial force, the interfacial pressm'e, the Reynolds stresses

and the particle stress have been derived for the inviscid, irrotational incompressible flow

of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity

distribution, giving rise to an effective pressure and stress in the particle phase. The

velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress

field inside the spheres. The relation of these constitutive equations to the force on an

individual sphere is discussed.
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ABSTRACT

A model of dilute gas-solid flow in vertical risers is developed in which the particle

phase is treated as a granular material, the balance equations for rapid granular flow are

modified to incorporate the drag force from the gas, and boundary conditions, based on

collisional exchanges of momentum and energy at the wall, are employed. In this model, it

is assumed that the particle fluctuations are determined by inter-particle collisions only and

that the turbulence of the gas is unaffected by the presence of the particles. The model is

developed in the context of, but not limited to, steady, fully developed flow. A numerical

solution of the resulting governing equations provides concentration profiles generally ob-

served in dilute pneumatic flow, velocity profiles in good agreement with the measurements

of Tsuji, et al. (1984), and an explanation for the enhancement of turbulence that they ob-

served.

INTRODUCTION

Gas-solid flows satisfy the principles of mass and momentum conservation. While

the Navier-Stokes equations govern the motion of the gas phase, there is not yet unani-

mous agreement upon the form of the equations for the particle phase. Treating this phase

as a continuum provides a framework in which techniques such as volume averaging may

be used. This two-fluid approach results in the derivation of partial differential equations of

motion. Depending on the situation, the stress tensor for the particle phase can then be

modeled in order to close the system.

For small particles, dilute in a turbulent gas, momentum transfer in the particle

phase is due to turbulent diffusion of the particles. In this regime, Elghobashi & Abou-

Arab (1983) have rigorously derived a two-fluid k--e model that relates the Reynolds stress

of the particles to gradients of the mean particle velocity using an eddy viscosity that is a

PRECFID_qG FAGE BLANK NOT FILMED
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fraction of the eddy viscosity of the gas. This model predicts the reduction of turbulent en-

ergy observed in the presence of small particles (e.g., Modaress, et al., 1984). Other mod-

els for this regime include the works of Pourahmadi & Humphrey (1983), Chen& Wood

(1985) and Berker & Tulig (1986). However, these models do not apply to gas-solid flows

with large and heavy particles.

For large particles, the experiments of Soo, et al. (1960) have shown that the in-

tensity of particle velocity fluctuations may exceed that of the fluid, an observation that

cannot be explained by treating the particle response to turbulence. Min (1967) attributed

this high particle "turbulence" to particle-wall collisions. In this context, Lourenco, et al.

(1983) have successfully modeled the air flow in a 10cm wide horizontal duct loaded with

5001.tm glass particles. By analogy with molecular dynamics, these authors treat particle

collisions using a particle velocity distribution function that satisfies the Boltzmann trans-

port equation. They assume that the distribution is determined by particle collisions rather

than by the gas turbulence. In other words, the gas affects the mean velocity of the particles

but not their random motion. This assumption is justified in Lourenco's model, because the

ratio of particle relaxation time to a typical large eddy turbulent timescale is large (Hinze,

1972). Clearly, the success of Lourenco, etal. encourages further studies of the regime

dominated by particle collisions.

Another shortcoming of the two-fluid approach is the lack of attention given to the

formulation of correct boundary conditions for the particle phase. Unlike the fluid phase,

particles can slip at a boundary. For dilute suspensions of small particles, Soo (1969) sug-

gested, without derivation, a set of boundary conditions by analogy with rarefied-gas dy-

namics. Clearly, for regimes where collisions dominate momentum transfer among the

particles, the boundary conditions of the particle phase should be carefully considered.

In this study, a two-fluid model of the vertical flow in a gas-solid riser is proposed.

For simplicity, the model assumes that the flow is fully-developed and steady. Particles are

assumed to be sufficiently large or heavy so that momentum transfer in the particle phase is

due to particle collisions alone. The granular theory used to describe the particles is related

to the kinetic theory of gases, but it is not limited to dilute situations or to elastic particles

(e.g., Jenkins, 1987). The conservation laws for mass and momentum in the particle phase

have familiar forms. An additional balance law governs the measure w = X/<v'2>/3 of the

velocity fluctuations v'. The quantity w is the analog of the molecular temperature. For the

particle phase, constitutive relations for the stress tensor and the flux of fluctuation energy

are those supplied by the kinetic theory (Chapman & Cowling, 1970) and an existing form
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for the collisional dissipation of fluctuation energy is employed (Jenkins & Savage, 1983).

Finally, boundary conditions for the mean particle velocity and the granular temperature at a

solid surface follow from a detailed description of the particle collision dynamics at the

surface (Jenkins, 1988). Such rigorous derivation of the constitutive relations and bound-

ary conditions are a major advantage of the granular flow theory against ad hoc continuum

models for the particle phase.

In this paper, the granular flow equations given, for example, in Jenkins (1987) are

modified to include contributions from the gas. In particular, a drag term is added to the

momentum equation and viscous dissipation of the particle rms fluctuating velocity is

introduced. The resulting equations, constitutive relations and boundary conditions are

presented for a dilute, steady, fully developed, upward flow in a vertical pipe with a circu-

lar cross-section. A numerical solution of these equations is obtained and compared with

the experimental data of Tsuji, etal. (1984).

THE TWO-FLUID MODEL

Balance .Laws

The equations of motion for a steady, fully developed, axi-symmetric upward flow

of a dilute gas-solid suspension are:

Gas momentum

ld dp
7-_(r x) - e dz - epg- F = 0, (1)

where e is the volume fraction of the gas, r and z are radial and vertical coordinates, x is the

mean gas shear stress, p is the gas pressure, and F is the force per unit volume exerted by

the gas on the particles;

Particle momentum

T_(r S) - (1-e)psg - (l-e) + F = 0 (2)

and

dN
-_-= 0, (3)

where S is the particle shear stress, Ps is the density of the particle, g is the gravitational

acceleration, and N is the particle pressure;

129



Particle fluctuation energy

1 d dv
- r_ (r q) + S _-- - D- D' = 0, (4)

where q is the flux of fluctuation energy, v is the mean particle velocity, and D and D' are,

respectively, the rates of collisional and viscous dissipation per unit volume.

Constitutive Relations

1) Volume supplies

Equation (1) is the vertical component of the momentum equation for an incom-

pressible gas exerting drag F on the particle phase. The mean drag is equal to the drag force

on a single sphere based on the mean velocities, multiplied by the number of particles per

unit volume:

F = Cd [ U-V I (U-V) _-_ (l-e) fie), (5)

where u is the mean interstitial gas velocity, d is the particle diameter, and the drag coeffi-

cient Cd is given in terms of the particle Reynolds number, Rep, by

Cd=R_p [l+0.15Re0p'687], (6)

lu-vlpd (7)
Rep = gt '

with

in which p and gt are, respectively, the density and viscosity of the gas. The drag coeffi-

cient Cd is taken from Boothroyd (1971) and it is valid for 0 < Rep < 1000. The function

f(e) is an empirical correction to the drag force on a single particle that allows for the pres-

ence of other particles. According to Foscolo and Gibilaro (1984), for the same velocity

difference, the drag force per particle increases in the presence of other particles according

to

fie) ---e2 e -3.8, (8)

where the E2 term accounts for the ratio of superficial to interstitial velocities.

Equations (2) and (3) are the vertical and radial components of the balance of parti-

cle momentum in this simple flow. The shear stress and particle pressure result from trans-

port of momentum between collisions exactly as in a dilute gas. The vertical balance in-

cludes forces due to gravity, gas pressure gradient, and drag.
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The fh'st term of equation (4) is the diffusion of particle fluctuation energy. The

second term is the energy produced by mean shear, the third is the rate of energy dissipa-

tion per unit volume due to inelastic collisions. In the dilute limit of granular flow, the third

term is given by

D 24(1-e)ps w3(l_e)2 ' (9)
4-£d

where e is the coefficient of restitution for a particle-particle collision; e= 1 for elastic parti-

cles. This is obtained by considering the kinetic energy lost in each collision, then averag-

ing over all possible collisions (Jenkins & Savage, 1983).

The fourth term, D', is the rate of energy dissipation per unit volume arising from

the drag force on the fluctuating particles. To calculate it, we first write the rate at which

energy is gained by a particle as the scalar product of its total velocity and the particle drag

force. Ignoring the velocity fluctuations in the gas, this is

3P
Cd[ u- v- C t_--d'(1-e ) (u- v- C)'(_v+C), (10)

where (2 is the velocity fluctuation of the particle. Then, upon evaluating the second term in

the brackets in equation (6) at the mean velocity difference and averaging over all possible

(2, we find that the rate of energy loss per unit volume from the fluctuating motion is

9p
D' = _- Cd I u-v I (l-e) w 2 . (11 )

2) Fluxes

In most situations of practical interest, the flow Reynolds number is high enough

for the gas to be turbulent. For simplicity, the mean gas shear stress is modeled using an

eddy viscosity _t,

du
'c = e (It + l-t0 _". (12)

In this work, gt is approximated using a polynomial fit to the experimental results for tur-

bulent gas flow in a pipe (Hinze, 1975, Sec. 7-13). Thus, we assume that the gas

Reynolds stress is unaffected by the presence of particles. We note, however, that several

experimental observations have shown that large particles enhance the turbulence, even for

conditions as dilute as (l-e) = 0.1% (e.g., Tsuji, eta_____!.,1984 and Lee & Durst, 1982). Our

view is that any treatment of the gas turbulence should not ignore the details of the parti-

cles' motion. In particular, the "pure" turbulent fluctuations in the gas must be distin-
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guished from the randomness induced by particle fluctuations and the resulting change of

the structure of turbulence must be quantified. Here, for simplicity, we ignore the influence

of these induced fluctuations on the eddy viscosity. For a discussion of these effects, see

the experiments of Boothroyd (1967), Nouri, etal. (1987), Tsuji, et al. (1984), and

Modaress, et al. (1984), and the theoretical discussions of Owen (1969), Elghobashi &

Abou-Arab (1983) and Genchev & Karpuzov (1980).

The constitutive relations for the particle shear stress S, the particle pressure N, and

the flux of fluctuation energy q for dilute flows of smooth, nearly elastic spheres, are iden-

tical to those provided by Chapman & Cowling (1970, Secs. 7.4, 7.41, and 10.21):

dvS = psd w -_-, (13)

N = (l-e) Ps w2, (14)

and

q= _- psd w 2 . (15)

The shear stress is Newtonian and the particle viscosity is proportional to the rms fluctuat-

ing velocity and the particle diameter. The energy flux is proportional to the gradient of

3w2/2, the fluctuation energy per unit mass, and the corresponding coefficient depends lin-

early upon d and w. In equations (13) through (15), we assume that the particles do not re-

spond to the turbulent fluctuations, so that the particle velocity distribution function is

unaffected by the gas fluctuations. From Hinze (1972), this is true if

 /uA0:"h-- <<
V

(16)

where A is the integral lengthscale of turbulence, u' the rms turbulent gas velocity and v the

kinematic viscosity of the gas.

Boundary_ Conditions

Jenkins (1988) has recently derived boundary conditions for flows of nearly elastic

but frictional spheres that interact through collisions with a flat frictional wall. Considera-

tion of the balance of linear momentum, angular momentum, and energy in a single colli-

sion and some simple averaging provide the rate per unit area at which momentum and en-

ergy are being supplied to the flow by the wall. Boundary conditions are obtained when

these are related to the shear stress and energy flux in the flow, evaluated at the wall. When
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themeanspinof theparticlesis assumedto behalf thevorticityof themeanparticleveloc-

ity andfluctuationsin thespinareignored,theseconditionsare,in thelimit of largefric-
tion,

and

S = - (2/g)I/2 (N/7w) [v + (d/4) (dv/dr)] (17)

q =- (2/re)1/2N { (1/14w)[v + (d/4) (dv/dr)]2- (1-ew+l/7)w } , (18)

whereewis thecoefficientof restitutionof theparticle-wallcollision.Consequently,upon

adoptingtheno-slipconditionfor thegasvelocityatthewall andemployingtheconstitutive
relations(13)and(15), thevaluesof u, v andw atthewall mustsatisfy

u = 0, (19)
dv v
dr = A d ' (20)

and

where

and

dw w (21)-&--=B T ,

A =- 384_ (l-e)/{ 7120_ + 96q-2 (l-e)]} (22)

32q2 v 2 (A) 2] 14(1- ewB=_ (l-e){(_--) [ 1- - +_)}. (23)

The second set of boundary conditions is provided by symmetry. At the centerline,

du dv dw
_-= _-= _ = 0. (24)

RESULTS AND DISCUSSION

Equations (1), (2), and (4) are solved numerically using a simple iterative finite dif-

ference algorithm. To verify the predictions of the model, gas and particle velocity profiles

are now compared with detailed measurements in a vertical pipe. Using a laser-d0ppler-

anemometer, Tsuji, etal. (1984) measured gas and particle velocity profiles in a vertical

pipe of 30.5 mm ID. In these experiments, polystyrene particles (Ps = 1020 kg/m 3, d =

5001.tm) were suspended in air with ratios of particle-to-gas mass flow rates (loading) as
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high as 3.6. Because the integral lengthscale A is of the order of the pipe radius, A/d = 30

and [(u'A/v) (Ps/P)] 1/2 _- 600. Therefore, Hinze's criterion (16) is clearly satisfied. Under

these conditions, the particles cannot follow the gas turbulence. In the calculation we as-

sume coefficients of restitution of 0.9 and 0.8 for particle-particle and particle-wall colli-

sions, respectively. We input the pressure gradient in the gas and the particle concentration

at the wall and adjust these until we agree with the measured gas velocity at the centerline

and the measured loading in the experiments.
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_. Calculated gas and particle velocity profiles compared with the data from Tsuji, et
al____.(1984). The calculated velocities are normalized with the calculated gas velocity
at the centerline (7.9 m/s), while the measured velocities (triangles: gas, squares:
particles) are normalized with the measured gas velocity at the centerline (8.1 m/s).
The ratio of gas-to-particle mass flow rates is 3.6.

Figure 1 shows good agreement between the measured mean velocities and the pre-

dictions of the model. At the centerline, the gas velocity is reproduced to within 5%, and

the particle slip velocity to within ! 0%. However, the gas velocity profile near the wall dif-

fers from the model predictions. This difference is not altogether surprising, considering

the simplicity of the gas equations used. Nevertheless, the overall agreement in the gas

phase is good, because the term that dominates the gas momentum equation is not the

Reynolds stress, but the difference between the pressure gradient and the particle drag.

The predicted particle velocity at the wall is positive, although not as high as the

experimental value. Comparable observations were made by Lee and Durst (1982) in a
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similar situation. At first sight, these observation might be surprising; because the gas ve-

locity is zero at the wall, one might expect the particles to fall. In fact, there is a region near

the wall where the particles can acquire a velocity higher than that of the gas. This effect

results from the shear stress in the particle phase. Particles further from the wall are lifted

by the gas and, through the particle shear stress, they lift the particles closer to the wall.

Clearly, the details of the momentum exchange in the particle phase are essential for an ac-

curate description of the flow.
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Fi_Lg_.2. Particle fluctuation velocity normalized with the calculated gas centerline velocity.

Figure 2 shows the radial distribution of kinetic energy. In this case, w increases

away from the wall. There is a slight decrease in energy in the immediate neighborhood of

the wall followed by an increase into the interior. In more dense flows the supply or dissi-

pation of energy by the wall is expected to be more important. The particle volume fraction

is calculated using equation (14), and it decreases away from the wall (Figure 3). Unfortu-

nately, these predictions cannot be compared with the experiments of Tsuji, et al. (1984),

who did not measure the particle velocity fluctuations or the concentration of the particle

phase. Nevertheless, the predicted concentration profile agrees qualitatively with other ex-

periments in pneumatic transport (e.g., Boothroyd, 1971 and Kramer & Depew, 1972).

Several explanations have been proposed for these larger particle concentrations near the

wall. Boothroyd (1971) attributes this to electrostatic forces, while Berker & Tulig (1986)

invoke non-gradient turbulent diffusion. In the regime dominated by particle collisions, be-
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cause of the constant particle normal stress and the constitutive relation (14), this trend is a

direct result of the profile of fluctuation energy.
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Finally, we propose that the enhancement of the gas turbulence observed by Tsuji,

et al. (1984) in the presence of large particles is due to fluctuations in the gas induced by

the random motion of the particles. Turbulent enhancement of the order of our calculated w

were measured for the 500pro particles by Tsuji, etal. (1984), and the strength of the tur-

bulence was observed to increase with particle diameter.
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Introduction

The challenge of the study of gas-solid turbulent flows arises because of the complexity

of physical interactions between the two phases. Research needs are also not universal for

different situations. Depending on the particle loading ratios, particle sizes and particle-

particle collision frequencies, the flow of gas-particle mixture law can be classified as dense

flows or dilute flows. The characteristic dimensions of the distribution of particles in turbu-

lent flows may determine whether the two-phase mixture can be regarded as a continuum

or not [1,2]. In a dilute suspension flow in which particle motion is controlled by the aero-

dynamic forces on the particle, Crowe [3] has suggested a criterion for treating the particle

cloud as a continuum. In this case, the Stokes number (St) which is defined St = vrt./Ac

, where v_ is the slip velocity between two phases, t. is the particle relaxation time and

Ac the distance traveled between collisions, should be less than 0.1 and depending on the

magnitude of flow Reynolds number, boundary conditions for particulate phase have to be

modified.

In this paper, scaling factors determining various aspects of particle-fluid interactions

and the development of physical models to predict gas-solid turbulent suspension flow fields

will be discussed based on two-fluid, continua formulation.

Scaling Rules

The motions of particles in a turbulent flow field are determined by relative density,

particle size, inertia, free fall velocity, as well as the correlation between particles and

underlying flow turbulence. On the other hand, the particulate phase may influence the

turbulence energy spectrum of the gas phase in wave number ranges corresponding to the

size of spacing of dispersed-phase dimensions [4]. To investigate the various modes of in-

teraction, the relaxation time t. of particles has to be compared with various characteristic

1 _d_ is a measure of
times of the underlying flow field, t., in its simplest definition - 1-8 p . '

how quickly a particle of density Ps and diameter dp can respond to changes in the ambient

fluid velocity, _, is the kinematic viscosity of the fluid. In the continuum mixture theory,

t. can be redefined based on a particle Reynolds number weighted by the concentration of
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solids [5]. If t, is small compared with a time scale corresponding to some particular flow

structure, then the particle will follow the motion of that structure; if not, the particle will

tend to be uncoupled from these motion.

Hinze [4] pointed out that the dynamic behavior of a discrete particle will not be

determined by the eddies of size much smaller than that of the particles. The effect of

these smaller eddies will tend to average out over the particle surface. In the case of

turbulent flows, this requires that the particle size be smaller than the important dynamic

scales of turbulence before the time scale ratio becomes a useful measure of the particle-

fluid interaction.

Let us consider the dynamically smallest eddies in the turbulent flow. These eddies

can be characterized by the Kolmogorov microseale 7_, and the characteristic time scale r

is of order (_,/e) 1/2. The ratio of the particle relaxation time to this time then becomes
2

.._ _,e,_ So for the typical suspension problem we are interested in, i.e., Ps/P > O(102),
r 11_ p

the particles have to be at least one order of magnitude smaller than the Kolmogorov

length scale in order to be subjected to the motion of the smallest eddies.

Direct interaction between particles which results from particle-particle collisions can

be estimated from the ratio of t, and the time scale between particle collisions tc which

is given [4] ,-_ O(@) for particles of uniform size dp. t,_ is the relative velocity between

particles and n is the particle number density. For the case t,/tc '4< 1, the particle has time

to respond to the local velocity field before the next collision so its motion is dominated

by the supporting flow forces and the collision which leads to direct interaction between

particles can be neglected. Then a solid particle is subjected to a variety of time-varying

forces by the ambient fluid flow. For particles with p_/p > 102, the governing forces due

to inertia effect ( drag ) and crossing trajectory effect have been singled out [6,7,8]. To

describe the behavior of particles in a turbulent flow, the simplified Basset, Boussinesq

and Oseen (BBO) equation has to be solved. This equation in principle cannot be solved

unless the relation of the Lagrangian and Eulerian correlations of the random fluid field is

known rigorously. However, the particle trajectory can be determined similar to a random

walk computation [9] in which a dispersed-phase element is assumed to interact with an

typical turbulent eddy as long as the relative displacement of the element with respect to

the eddy does not exceed the characteristic eddy size, l_, and the time of interaction does

not exceed the characteristic eddy time, t_. The selections of l_ and t_ are cleanly arbitrary

since turbulent flows composed a spectrum of length scales and time scales.

To gain some insight of the sealing rule for turbulent dispersion, the fundamental

dispersion results of Snyder and Lumley [6] are used to compare with the stochastic pre-

dictions. The experiments involved the dispersion of individual particles which were isoki-

netically injected into a grid-generated turbulent flow. The mean flow are uniform in

the test region and the detailed turbulent structure were measured downstream of the
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injection point. Since the grid-generated turbulent field is homogeneous decaying and is

approximately isotropic with fluctuating intensity decreasing in the direction of the mean

flow. Typically, grid turbulence is also characterized by self-similar spectral distribution

in which a local set of characteristic eddy time scale can be identified. Following Gosman

and Ioannides, the eddy time scale is evaluated from the expression te = /e(2k)-½ and3

_a l I I
le = C 4. k}/e, where k is the turbulent kinetic energy (= 7uiui) and e is the isotropic tur-

bulent kinetic energy dissipation rate and C, = 0.09. The ratios of _, over eddy time scales

for the three types of mono-dispersed particles used in Snyder and Lumley's experimental

setup are plotted on Figure 1. Mean-squared radial dispersion of the particles is plotted

as a function of the residence time in the flow for three types of particles.

o

CZ)

[-_

_o
r,4 _

&

i

i

'A

• HoLLow GLass

0 Corn PoLLen

0.D 0.7

o

[3

' " " 0 .....

..... G ....... o .......... o ..... o ...... _ .......... o ........... E_

0. I 0'.2 0.3 o'.l 0'.5 0.6

TIME (sec)

Figure 1. Time scale ratio of various particles in a uniform grid generated turbulent flow

The results are obtained by averaging over 2000 particles following a 4th-order Runge-

ICutta integration of the simplified BBO equation ( only inertia term retained ) using 10

percent of interaction time as integration time step. The agreement between the stochastic

model predictions and the measurements for the case of corn pollen ( with material density

1000kg/rn a and 87#m diameter ) are much better compared to the other two cases of

hollow glass particles and copper particles. This is not surprising in viewing the scaling

rules involved ( see Figure 1 ): the corn pollen particles are most closely associated with the

turbulent time scales responsible for dispersion. For !ight particle such as glass particles,

the turbulent eddies responsible for the dispersion should be of higher frequency ( smaller

time scales ), probably Kolmogorov time scales. The net results is that the numerical

model underpredicts the dispersion. On the other hand, copper particles should interact
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with eddiesassociatedwith larger time scales.Using the integral time scale(t_,) results in
overpredicting the turbulent dispersionby inertia effects.
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Figure 2. Predicted and Measured particle dispersion in a uniform grid generated turbulent fl_m,

The numerical models used for the calculation in this study do not account for the

crossing trajectory effect due to the particle free fall. For the particles studied, especially

heavy particles, inertia and crossing trajectories are inseparable at the very downstream

of the decay. According to the scaling rule, gravity has an influence on the two-phase

flow when ut _- u', where ut is the ternlinal velocity (= gt,) and u' is the characteristic

u j2 x )--Ivelocity scale of turbulence. In the grid turbulence u_--7 _x (,W , thus we expect the

free-fall effects to be insignificant in the decay of the grid turbulence if _ << O(E-u-) 1/_
gt.

Here, UM is the mean longitudinal velocity along x-axis and M is the mesh size. Only

for the smaller particles with t, _< 10 msec this condition can be satisfied. However, the

above calculations indicate the close relationship between the scale parameters and the

particle-i:hfid interactions.

Two-Phase Turbulence Modeling

In most turbulent multiphase flows of practical interest there exists a spectrum of

dispersed phase time and length scales. Despite the abundant use of single time and

length scale nmdels ( such as the k - e model ), the underlying carrying gas turbulence

is also dominated by a variety of time scales. A two-phase two-scale turbulence model
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basedon continuum approachhassince been developed[10] according to the scaling rule
describedabove. The modification of particles on the turbulence, the socalledmodulation

effect, has been taken into account for large eddiesby mean slip between two phaseand
small eddiescausedby the particle slip velocity on the fluctuation level.
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Figure 3. Mean axial velocity profiles across the pipe of gas phase and particulate phase

The turbulent transport equations are summarized here:

0 (Uikp) = °q tit Okp P_-'/(1 +0.79_/-_p +O.O13R%)(Ui- V,) (1)

o (u_k,)= _)+_ _, 1-_,p[-; )o( .__ok, 2k N( 1 t.]
Oxi Oxi _rk, - 7, p _ r (2)

OXi(UiEp) = OXi 0"%O*i ) -t- _p(CplPk - Cp2Ep) (3)

0 0 ;-'t Oct ep --
Ox,(U`_') = -_x,(--Ox--_,) + k (c'l_p -C'2_')- 2PP_'

0"_, p p _.
(4)
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Here, the k v and kt are turbulent kinetic energy of the large-scale energetic eddies

and the small-scale transfer eddies and ep is the energy transfer rate from the large eddies

to the transfer eddies. This model composed of two set of scales for gas-phase turbulence.

The model is valid for the situation rp(= _) > t. >> r ( Kolmogorov time scale ) and

particle loading ratio ( pp/p ) of order of 1. This model has been applied to a gas-solid

suspension pipe flow by Tsuji et al [11]. In Figure 3, the comparisons are made for two

particle loadings with dp = 200#m. The predicted velocity profiles are flatter than the

experimental data and the relative velocities between two phases decrease with increasing

particle loadings. The distance of the sign change of the slip velocity shifts toward the

wall for larger particle loadings. The flattening effect by the particles on the fluid velocity

distributions can be observed in the Figure 4. Besides this flattening effect, the point of

maximum gas phase velocity even deviates from the pipe axis as the loading increases.

Such a concave profile indicate counter-diffusion type of momentum transport and cannot

be predicted by the current model. It is interesting to note that such profiles were not

found in other LDV measurements for similar configuration [12,13], this phenomena should

await t\_rther experimental confirmation.
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Figure 4. Effect of particle loadings on gas phase velocity profiles

The modulation effect of particles on the turbulence is shown in Figure 5 for longi-

tudinal turbulence intensity profiles for 200tim particles. Cases with particle size greater

than 200#m were not computed due to model limitation based on the scaling rules. It is
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known that fluid turbulence is greatly influenced by the particles and the mode of influ-
encediffers with particle size. For larger particles (> 300#rn), the turbulence intensities
of the fluid are increaseddue to the presenceof particles while suppressionof the turbu-

lenceproperties is observedfor smaller particles. It is seenin Figure 5 that for a particle
loading of 0.9 the turbulence intensities are reducedby 30 % in the core region. However,

the intensity in the core region increases again as the particle loading increases from 0.9

to 3.2 and the intensity in the wall region is monotonously damped. This phenomenon

can be explained by the competitive mechanism between modulation due to mean motion

and fluctuation motion. The small scale modulation effect always acts as a sink term in

the kt equation while the large eddy motion modulation effect can be extra production

or dissipation depending on the signs of (Ui - V/) and the distribution of mean particle

density profiles. The cross-over of the intensity profiles is closely related to the cross-over

of mean velocity profiles of gas phase and particulate phase. The relative magnitude of

the modulation effects is reasonably well represented by the model.
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Figure 5. Modulation Of particles on gas phase turbulence intensities

Summary

The modes of particle-fluid is discussed based on the length and time scale ratio, which

depends on the properties of the particles and the characteristics of the flow turbulence.

For particle size smaller than or comparable with the Kolmogorov length scale and con-
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centration low enough for neglectingdirect particle-particle interaction, scaling rules can
be establishedin variousparameter ranges. The variousparticle-fluid interaction will give
rise to additional mechanismswhich will affect the fluid mechanicsof the conveying gas
phase. Theseextra mechanismsare incorporated into turbulence modeling method based
on the scaling rules. A multiple-scale two-phase turbulence model has been developed,
which gives reasonablepredictions for dilute suspensionflow. Much works is yet to be
doneto account for the poly-dispersedeffectsand the extension to densesuspensionflows.
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ABSTRACT

This paper presents a m_Itiphnse turbulence

closure employing one transport equation, rk_ely

the turbulence kinetic energy equation. The

proposed form of this equation is different from

the earlier formulations in some aspects. The

power spectrum of the carrier fluid is divided

into two regions, which interact in different ways

and at different rates with the suspended

particles as a function of the particle-eddy size

ratio and density ratio. The length scale is

described algebraically, h mass/time averaging

procedure for the momentum and kinetic energy

equations ts adopted. The resulting turbulence
correlations are modeled under less restrictive

assumptions comparative to the previous work. The

closures for the momentum and kinetic energy

equations are given. Comparisons of the

predictions with experimental results on

liquid-solid Jet and gas-solid pipe flow show

satisfactory agreement.
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a amplitude ratio

b body force
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D turbulent diffusion coefficient for solid

phase

E(_c} energy spectrum
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k kinetic energy of turbulence
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Re Reynolds number based on the most

energetic eddy size

time and averaging time intervals

corresponding to the turbulence

(i)

( ) - For further correspondence;
On sabbatical leave at Caltech 104-44,

Cl 91125, until lay 30, 1989.

U,V

V,_v

X. ,X . .X
1

Y
a

£

n
/(

U

P
O

T

production and transfer range.

respectively

Eulerian and l._grangiv,'a velocities.

respectively

volume and averaging volume, respectively
Cartesian coordinates

j n
distance from the wall

concentration of volume

dissipation rate of turbulence kinetic

enerKy

Kolmogorov length scale
_rave number

d)T_a_ic vlscosity

dens ity

turbulent Schmidt/Prandtl number

shear stress

Subscripts

i.j.n denote Cartesian coordinates (= 1,2,3)

e eddy

k turbulence kinetic energy

K flow component K

KP phase K in the production range

K']" phase K in the transfer ra.r_e

laminar

L,S denote liquid and solid, respectively

P production range
t turbulent

T transfer range

Tot total

average over area

• dissipation rate of turbulence kinetic

energy

Superscripts

T

ft

f.

f"

P

T

_ fK

<rE >

mass average of f

turbulence fluctuation of f

fluctuation of f at low wave number

(production range)
fluctuation of f at intermediate wave

number (transfer range)

production
transfer

volume/time and mass/time averages of f

over K

intrinsic space average of f over K

147



1. INTROD_IO_

Hul tiphase flows are widely applied in

engineering processes from chemical, petroleum.

mining and other industries. Various theoretical

eLnd experimental techniques for the investigation

of those flows are available. Some of them are a

strnightforward extension from the single phase

flow models by introducing some ad hoc

modifications. Other investigations originate

from the Kas-solld flow (Soo. Igg3) or fluidized

bed models (War_ et al., 19_S).

Increasing concern for the prediction of

turbulent multiphase flows have been noticed

durlr_ the last twenty years (De.non et al. (1974),

AI-Taweel and Landau (1977), Genchev and Karpuzov

(1980) . Melville and Bray (1979), Crowe and

S_rma (1978). Nichaelldes and Farmer (Igg3). and

Shuen et al. (Ig_3)). Two equation turbulence

models have been proposed for dilute particulate

flows by Elghobashi et al. (Igg2. IGS3, Ig_q) and

Crowder et al. (Ig_'[). Algebraic and one equation

turbulence models have been suggested also for

dense llquld-solld flows (Roco et al., Ig_3. 1985.

Ig_6) in which the partlcle-partlcle interactions

play an important role besides the fluid-fluid and

fluld-solld interactions. Most of these studies

as well as other earlier investlzations have some

limitations. In the above mentioned studies the

response of solids to the turbulent fluctuations

of the carrier fluid is obtained under

restrictions similar to those refered by Hinze

(1975. p. 460), which llmit their use. In

addition to that, empirical constants and

empirical functions are usually introduced in

these models.

The purpose of the present paper is

i) To propose a specific mass/time averaging

approach for mltiphase turbulent flows. Even if

the approach is developed for incompressible flow,

its application for other multlphase flows is

foreseen: From the llquid-solld interaction forces

only the drag force is considered in this peper.

ii) To improve the one-_iu_tion turbulence

model reported in [28] by tncludin¢ the modulation

Of turbulence by particles as a function of

particle size and density.

ill) To test the proposed model with other

models and experimental data for various two-phase

flows, without adopting any adjusting empirical

coefficients.

2. MIXED AVERAGING APPROAO_

The continuum transport equations for

multlphase flows can be obtained by assuming a

continuum medium with averaged field quatlties by

using either time. local volume, local mass or

spectral averaging (see Buyevich (1971). Soo

(1967), Vernier and De Ihaye (1968). Hetsroni

(Ig82)). The averaging for multiphase flow

systems may be performed in various ways. Mass

averaging technique was applied by Abou-Arab

(1985) for turbulent incompressible and

compressible flows. To express the spatial

nonuniformitles and interactions between the flow

components Roco and Shook (1985) have developed a

specific volume/time averaging technique for

turbulent multicomponent systems, in which the

size of the averaging volume Av is related to the

turbulence scale. Since the Eulerian description

of the flow is more convenient than the Lagrm-_lan

descrlpt lon and there are more comprehensive

mathemetlcal schemes for such formulation, they

transformed the vol_Itime averaging into double

time averaging. For any flow function f and any

component K in the mixture, at a position r and

time t

_K (_.t) = l [t+_T/2
"_Tat__T/2 < fK > dt

where

Cl)

AT = time averagir_ interval corresponding to

the turbulence production range (AT -* ¢o),

1 [t+_ t/2
( fK ) =-_'t" at_At/2 f(r,v) K(r,T) R(T-t) dv

(2a)
= intrinsic averaging of f over At and

the flow component K.

At = Eulerian time scale for the most energetic

=J_ R(v-t)dr (corresponding to the
eddies

Taylor's length scale), Note that At((AT.

but much larger than particle residence time

at r.

I if the considered flow component

resides at point _and time vK(L.T) (2b)
t 0 otherwise

= phase distribution function

R(v-t) = V"(t)V"Ct-T)

V"2(t)

(2c)

= auto-correlatlon coefficient of the

velocity fluctuations of the most

energetic eddies (Taylor's scale)

"/'he time averaging over At corresponds to the

aver_Ir_ over local volume Av. The dimension of

Av is given by the turbulence mixing length, and

At = (length scale of _v)/(mean velocity) [29].

By integrating over a flow component K its

interfaces with other flow components become

boundary of inte_ratlon, and the interaction terms

are derived in a straighforward manner in the

differential formulation. According to (I), any

instantaneous value differs from the mean value by

a turbulence fluctuation with two components f_

and f_:

rx ...r.K• ft _- •

where

(3)

f_ = fK - < fK >

= spatial nonuniformities within _v (or

temporal nonunlformittes within _t)

: < fK>-

(d)

(s)
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= temporal nonunlformttles of < fK > within AT.

Since the averaging domain (Av or At) has the

dimensions of the mixing length or Eulerian time

scale, respectively, the turbulence fluctuation f_

corresponds to the turbulence transfer range. The

temporal nonuniformittes f_ reflect the turbulence

fluctuations in the production range.

By averaging with formula (I) the point

instantaneous conservation equations, one obtains

the double time averaged equations. The

formulation is equivalent to the volume/time

averaging. The momentum and kinetic energy

equations are given in Appendix A.

The local mass average of f over a flow

component K is denoted T K. It is obtained by

applying (I). in which the phase distribution

function K(L.T) is weighted by the specific mass

PK'

In this paper we model the phase interaction

by using spectral analysis and suggest a closure

of the mass averaged equations for linear momentum

and kinetic energy. The averaged equations are

Initially written with all the terms, and then

simplified formulations for various flow

conditions are suggested.

3. ENERGY SPECTRUM AND SOLIDS - EDDY INTERACTION

It is well accepted that turbulence is

characterized by fluctuating motions defined by

an energy spectrum (Tennekes a_nd Lumely (1972)).

Single time scale models, which are normally used

for the prediction of turbulent flows, seems

simplistic because different turbulent
interactions are associated with different parts

of the energy spectrum (Hanjalic' et al. (1979)).

A typical energy spectrum can be divided into

three regions. The first region is the production

region of large eddies and low wave number. The

third region is the dissipation region with small

eddies and high wave number, in which the total

kinetic energy produced at the lower ,rave number

is dissipated. The intermediate range of wave

numbers represents the Taylor's transfer range.

The total kinettc energy k of turbulence may be

divided into production range (kp) and transfer

range (kT) because there is negligible kinetic

energy in the dissipation range:

k = kp * kT (6)

where

1 '2

kp = _ u i (7a)

l "2
kT = g ui (Vb)

,o

u i . u I = fluctuating velocities in the

production and transfer range.

respectively.

tc
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Figure 1. Schematic showing the relative particle

size to different eddy sizes in the

energy spectrum.

This partitioning of the energy spectrum was shown

to be important for swirling flows (Chert (1986)).

and hetrogeneous mixture flows such as two-phase

Jet (AI-Taweel andLandau (1977)).

By using spectral analysis in conjunction

with mass/time averaging some additional turbulent
correlations will result in the mixture flow

equations comparative to homogenous flows. These

correlations can be classified into five

categories:

i)
ii)

ill)
iv)

v)

Eddy-eddy interaction

Eddy-mean flow interaction

Eddy-particle interaction

Particle-mean flow interaction

Particle-particle interaction (for dense

suspension flow).

These correlations have to be modeled. Since the

suspended particles may be of different sizes and

different materials, their response to the carrier

fluid fluctuations wtll vary as a function of the

mean and fluctuating properties of the flow. The

present work will consider a two-way interaction
mechanism between solid particles and fluid

vorticies in dilute suspensions. This interaction

mechanism depends on the ratio between the

perticle size d S and the turbulent vortex (eddy)

size 1 e. These length scales are compared with

the turbulence disslpetton micro-scale (_).

To determine the particle-eddy interaction

the energy spectrum for multiphase flow system is

divided into three typical zones (Figure 1):

l. "Large vortex zone" (#1). where the

turbulence energy is extracted from the mean

flow by low frequency eddies. Here. the eddy

length scale tel is larger than the particle

size ds:
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lel > d s > r/ (_a)

2. "Medium vortex zone" {_2), where the solid

particles are about the same size with the
vortex size. i.e.

le2 _ d s > _ (Sb)

3. "Smn 11 vortex zone" (#3). which would

correspond to the Kolmogorov's length scale,

i.e.

d S > le3 _ n (Sc)

In zone #I the solid particles generally follow

the motion within a vortex, and have an energy

dissipation effect. The particle response to the

turbulent fluctuations (turbulence modulation) is

fully determined (see Hinze, 1975). In the small

vortex zone #3 the solid particles can not

significantly affect the turbulence

microstructure. For the intermediate zone #2 a

linear variation of the particle response is

considered. This partitioning allows for the

particles-nonunlform slze eddies interaction to be

efficiently modeled.

The present closure formulation originates

from the idea of subgrid scale modeling. If this

idea Is to be accepted, any flow quantity u. v, a.

k ..... etc. may be separated into three parts

according to {3). where fK and f_ define the

fluctuations in the production and transfer ranges

of the energy spectrum, respectively. By starting

from the particle equation of motion in its

general form, the relation between the particle
motion and different fluid eddies can be

determined, and from here the fluctuation

components fKand f_ (see section 6).

4. _ AVERACED EQgATIONS

4.1 Mean Flow Governing Equations

The mass/time averaged momentum equation

t fK + f_ yields:(Appendix A, Eq. A2) with fK =

TEam rate c-/wxruze of the aw.an flo_ _ctton

B

+PK _-7 [%_Ki_Kj ]
J

Nean flo_ conoection

0

Irmrttal effect

a %Ki Kj] +- " "+oK _ ([%uKioKj+ "u" u" uKj[%uKi+%uKi]
J

Collisiorual/Iruerttal Effects

uKi%u_0 * _x0_i ',u"u' +• + _ Kixj _iutj

Bodg force

_. [%PK * %r_
1

Pressau-e effect

Frictfonal effect

+ _'hji ÷ _'_ji] ÷ (_Ki)K
P_l._e lntert_ctlon

(9)

where K is a flow component, hKi is the body force

in the i-th direction, and (IKi)_ K is the

projection in the i-th direction of the

interaction vector (I4<)_ K

Equation (9) contains correlations which are

related to the production and transfer wave number

ranges of the turbulence spectrum. It contains
also mixed correlations.

_.2 The Kinetic EnerKy Equation

Similar to the me&n flow governing equation

the mass/time averaging form of the turbulent

kinetic energy equation can be derived for a flow

component K. The exact form of this equation for

steady state turbulent flow is given in Appendix A

(Eq. AS). It contains more than one hundred
correlations which are related to the eddies in

the production and transfer ranges as well as some

mixed correlations. However, only some of these

are predomina.nt in a given flow situation as a

function of relative particle-vortex size and

density ratio.

_.3 Some Modeling Principles and Assumptions

By analysing the derived mean momentum and

kinetic energy conservation equations, it c.an be

easily recognized that some modeling assumptions

must be made, based on the physical interpretation
and the nature of each term. Previous

exi>erimental and theoretical findings c.a.nhelp in

modeling "collectively" similar terms with minimum

number of empirical constants. Secondly, carrying

out an order of magnitude analysis for different

correlations which appear In the governing

equations some terms may be neglected. Thirdly,

the micromechanics which control the ability of

the flow variables to correlate with each other

and the factors affecting the magnitude of these
correlations should be considered. _ith the

previous remarks in mind, one can assume for the

sake of simplicity that:
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1) where

2)

The correlations between the large eddies

from the production range and the smn21

eddies from the transfer range {mixed

correlations e.g. u'u") can be neglected as

they originate differently and they are

related to different ranges of the power

spectrum. Similar assumptions are accepted

in the classical single fluid turbulence

theory.

The void fraction fluctuations occur mainly

at low frequencies i.e.

3)

4)

5)

6)

a = a + a" + a" (10)

with a' >> a" (11)

This is a simplifying assumption which is

acceptable for such complicated problems. If

the particles are of small diameter their

concentration Is relatively uniform

distributed in the Taylor length scale. High

void fractions are mostly associated with

large size and high density particulate

flows, These large size particles are mainly

fluctuating at low frequencies due to its

high inertia, hence they in turn correlate

weakly at high frequencies.

The correlations of higher order than three.

for instance a'u'Op'/Ox i. u;u i _ "'"
J

etc., are neglected. These are at least an

order magnitude smaller than those of the

third order (see Ha.njalic" and Launder

(1972)),

Pressure diffusion contribution to the total

turbulent diffusion in the kinetic energs'

equation will be neglected because of its

relatively small magnitude (Hanjalic' and

Launder (1972)).

The Boussinesq gradient type approximation is

adopted for modeling of different fluxes and

triple correlations, with assumptions similar

to Elghobashi and Abou-Arab (19S3) and Roco

and _hadevan (1986)

The following constitutive relations are

employed for the shear stress of carrier

f2uid:

pu:u : ÷
2 2

9 u °_x i) - 3kLP6iJ - 3VlpSij un.n

(12)

2

+uluj "eTCh--:+.... = J Ox i) - 5 kLT6iJ

2

- 5VLTSijUn,n

(13)

t t
while the total shear stress -p u u can be given

i3

by

t t

puiu j:pu:u'j ,pu':u';,j. (1,)

V-Lp = %p PLkLp 1/2 lp. (15)

Pl.T = %T PLkLT I/2 IT . and (16)

P _ PLkL I/2Pl_t = _I_P + T : % ]L (I7)

Similar relations can be written for the viscosity

of the dispersed phase _St (see R0co and

tkalakrishnan (1985)). However, in the present

work we choose to define the eddy viscosity of
solids as follows:

VSt = VLt / o (IS)

where

o = aaS I oS (19)

and

°oS = VLt/D S (20)

a S = VSt/D s (21)

Appropriate expressions for °aS are cited in many

articles such as Peskin (1971), Picart et a].

{I_6), and Hetsronl (19_2). o S is a Schmidt

number and its value is about 1.5 (Abou-Ellail and

Abou-Arab (1985)).

7) In the present approach for dilute

particulate flows the turbulence kinetic

energy equation is written only for the

carrier flow. The solid phase turbulence

kinetic energy and turbulence correlations

are evaluated from the available solution of

the linearized equation of motion of a solid

particle after its transformation from the

real time to the frequency domain.

Terms which are of similar nature i.e.

convection, diffusion, dissipation, etc. can

be modeled collectively. The length-,

velocity- and time-scale which are

appropriate for the description of their rate

of change must be identified from the

physical interpretation of these terms.

The response function which shows the ability
of solid particles to follow the eddies is

obtained from the equation of motion of
particles for different local dimensionless

parameter, ds/l e and ps/PL.

s)

0)

10) To establish the degree of generality of the

proposed model validation tests were carried

out for air-laden and water-laden Jet, and

air-solid pipe flow.

5. _ FOR THE l,UmA.'i FIOW EQL'ATIO_S

With the modeling assumptions given in the

previous section, the steady state mea_n flow

momentum equations for any flow component, reads
0 0

(°xuxiuKj)+ "K( X KiuKj+  Ku iuKj) +

151



-K Ki Kj uKi(_uKj _u_j)
J

l

+ aTj(_KCK_ji)÷ {IKi)-K (22)

In Eq. (22) there are 16 correlations, half

of them in the production "large eddy" range of

the spectrum. The terms are modeled following the

criteria: i) Physically correct behavior, li)

Minimum number of empirical functions and

constants, and ill) Co.vi3ari sons against

experimental data over a wide range of conditions

are required to check the validity of the model.

The turbulent stresses caused by the large

and small size energetic eddies, -PLUiUj and

-PLUi'U'_. are defined by F.as. (12) and (13). The

correlation between u"i'and u; is weak when i _ j.

This finding will be explained in the next

sect i on.

"Fne colllslonal ef[ect correlations are

modeled after Launder 41976):

p (k_p) a G' '
NuKiuLj= - C*s _KP (uK_K__ KJ_K

, . a

where C P
_5 is a constant of a value of about 0. I.

Similarly

...... T kK'T .... 8 -

a}<uKiuKj : - C¢5 (_) (uKiUKl _-'TlUKja_

. 8

T

where C_5 must be optimized by comparison with

experimental data The fluxes in (23) and (2q)

can also be collectively modeled as:

"U .... --

kK t t a t t

- c_ _ (UKi_l • o_---_%%

t t a t t"

÷ _<juKl • _ _Kl_ _
(25)

Thediffusionflu es .... etc.
are modeled using Bousslnesq approximation as:

v_ 07, K (2o)

- aKUKi = op Ox i

while

VKT _'K 427)

- uRi- T
OaK

Similar expression can be written for al_uKj and

___a_u_j.... etc. However, according to our

assumptions, especially those concerning the void

fraction fluctuation at high frequency a", the

fluxes in Eels (26) and (27) can be modeled

collectively as:

t t VKt O_K

- aKUKi = Oa K Ox i
(2s)

The solution of the two transport equations

(for kp and kT) would require also a description

for the length, scales. This point will be

explained in more details in the next section.

The fourth group of terms with the void
fractlon-shear stress turbulent correlations

contains the laminar viscosity as a multiplier.

and will be neglected due to Its smaller order of

magnitude.

The pressure effect contribution to the mean

flow equation consists of two groups. Each

contains three terms. The first of these terms is

the mean pressure-void fraction. The second and

the third terms are the pressure-void fraction

correlations which can be modeled after Elghobashi

and Abou-Arab 41983) by

- (°_iPl_ + (_PK) = @] + *2 429)

where

k_12 t t*l :-C_sPK_ "_K
and

_2 - C_HPK kl/2 t t

The values of the constants C@3 and __C_d are about

unl ty.

The second correlation in the second group of

terms can be also modeled following Launder (1976).

The final form is

a_ _ _ t F
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t t

UKiUK1 2 6i t t
%2 ( k K - _ 1)'UKl% ]

t t OU'-Ki t t OuK1

+ PK(0_8 UKIOK" a_--7-.- 0.2 UKl-.K • a,,:. ) (30)
1 1

The values of the constants C¢1 and %2 are 4.3 and

-3.2. respectively. The modeling of these

correlations suffers from the embodied assumptions

concerning the velocity and length scale

description. It would require a large number of

transport equations to model accurately each of the

above correlations.

m

The interaction term (IKi)_ K for K = L

(liquid) and -K = S (solid) is modeled for dilute

suspensions with particle Reynolds numbers less

than unity:

(ILl)S---

.°LP °LT & .°uP
+ tT+ T ) ÷ ÷

o_ °aS E', r--F-OOas°%.s--/-) E_ ] (3])

where the first term is the drag interaction for

particles in the Stokes range. The second and

third terms are the turbulent fluxes due to the

relative motion between the particles and fluid.

The gradient transport model with the exchange

coefficients vLp and VLT corresponding to the

production and transfer ranges is adopted for

thesefl es ( uti. "h" % Usi' and

°; %i)

If only single velocity scale is chosen for

the whole enerKy spectrum, kL, there will be only

one momentum exchange coefficient VLt instead of

vLp a_d VLT

vLp VLT

VLI : P + T

°%S °°aS

(32)

6. CLOSURE FOR THE KINETIC L'_'ERCY EQUATION

In the present work, the turbulence kinetic

energy for the liquid phase "'kL'" (turbulence

velocity scale) is obtained from an exact transport

equation (Eq. A5 in Appendix A). and the length

scale "I" is described algebraically. The kinetic

energy equation AS contains a large number of
turbulence correlations. In order to obtain an

engineering turbulence model, it is sufficient to

consider the principles and the assumptions given

in Section 4.3. By engineering turbulence model.

it Is meant, a physically correct model with

minimum number of empirical coefficients.

The first group of terms in the k-eq_uation

(Croup #1) is the convection of the total specific

kinetic energy, where

ak L akLp akLT
+ (33)

- axjaxj axj

Diffusion transport of k is composed of two

main parts. The first part (Croup #2) is the

velocity diffusion and it contains the 3rd order

velocity correlations, while the second part (Croup

#3) is the pressure diffusion with the

pressure-velocity correlations The modeling of

the velocity diffusion part is obtained as follows:

' ' ' uLP OkLP (34)
PL aL ULjULiULi = - PL_L T

o k J

and

..... VLT _l_T

p]_ %u iuL, :- "k:T%

D

where o_ end o_ are the turbulent Prandtl/Schmidt

numbers for the kinetic energy in the production

and transfer ranges. To reduce the number of

empirical constants and the number of governing

equations the above two correlations are modeled

collectively as follows

t t t VLt CTkL

-PLULjULiULi = -PL_L "Ok o_xj
(36)

where o k is of order of unity.

The presure diffusion term is negligible

relative to the velocity diffusion (Hanjalic' and

Launder (1972)).

Mixed and higher order correlations (Croups #3

and _5) can be neglected according to the modeling

assumptions stated and discussed in section 4.3 of

the present paper.

The production terms are divided into two

groups. The first group (Croup _5) is common for

single and multiphase incompressible flows,

@ULi OULi

' + u:' .u[.PLaL ULiULj o_x. PLaL El J Ox.
J J

be modeled collectively as follows:

-- , and

-- u t u t OULi - ,OULi )2

PLaL Li Lj ax.j - alV_Ltt_j-- j (37)

The physics of turbulence and the

consideration of the spectral energy transfer

assume that the production is only due to the

interaction between the mean flow and the large

eddy. Since the u_iu_j__ correlation is for medium

size eddies which have almost no direct interaction

with the mean flow, it results that the
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contribution of these sn_ll eddies to the

turbulence production via the mean field is smaller

than that of the large eddies. This

means also that U[lU_----_ correlation is weak if I

J, i.e. it is only of significant value if the

.2

turbulent normal stress components (ULi , i = l, 2,

3) are considered. According to Ba,njallc' et al.

(1979) multiple scale model the turbulent viscosity

is defined as follows:

_Lt/PL = C k L (kLp/_Lp)

where k L = kLp + RLT

and C = 0.09

This equation can be rewritten as

k 2

( L.__[+ kLT kLp
_Lt/PL = C u eLp eL----- _

(3s)

(39a)

(39b)

= + C .0.51 = +
%pkOp51Lp pTRLT LT (_I_P _1_T)/PL (40)

where Cup and CUT are two additional constants and

ILp and ILT are also two additional length scales

for the large and medium size eddies. The length

scale can be related with the following relations

(fro,.Eqs. (3a) and (40))

IL T = Cl IL P (kLT/kLp) (41)

Since the ratio kLT/kLp is of the order of unity

and IL P > ILT, the constant C l should be smaller

than unity. Thus if the multiple time scale model

is not recommended (due to its large number of

additional constants) an alternative approach is to

consider a multiple velocity scale model. In this

model only two differential equations for kLp and

kLT have to be solved. The length scales can be

obtained by using the previous relation Eq. {41)

and any expression for the length scale of the

large eddies ILp. for example that used by Roco and

Shook (19_3) for cylindrical pipes.

The modeling of the additional production terms

(Group #7) is achieved as follows:

°LP
(42)

- aLuLi _ii = "-_ _xi °_xi
°aS

OI_L VLT /_L OPL

T hlhl
°aS

(43)

and both collectively as

°Lt
(44)

aULi _Li

Termslike uLi and are eled in
a similar manner to that Of the above terms i.el

- + _ (4s)
(%"/J hi %s hl

The extra production terms (Group #7) can be

written in the following form

Extra production -

0"_ Ox"-'_ (ULi _ )
(46)

The terms and PLaLVL @x @x. in
PL _- J.-h i 8"xi j J

Croup _19 represeAts the dissipation rate from large

eddies eLP and transfer eddies _LT Since viscous -

dissipation is mainly confined to small scale

eddies and to simplify the mathematical form of the

multlp]e time scale turbulence models, Ha.njalic" et

al. (1979) have. assumed that there is an

equilibrium spectrum energy transfer between the

dissipation and transfer region i.el, etota I = eL,

where eL is the dissipation rate in the single

scale scheme. Thus

@ul'i @Ul'i- -- _ ,Sh_Li ,2

PLaLVL Oxj Oxj = -PLaLeLP = UlULTt_j--j ) (47)

and

- -
PLa'LVL Oxj Oxj - PLaLeLT

where

(_s)

_LP = CDp k:pS/ILp and

'_LT = CDT RCTS/ILT

In equation (47) a spectral cascading between the

production and transfer eddies is considered

(HanJalic' et al. (1979)). This equation gives an

additional relation between the spectrum scales

The correlations between the fluctuating

velocity component and the fluctuating friction

forces (interaction terms in Croups _ and #I0) are

due to fluid-fluid and fluid-solid drag force in
dilute flows. The friction interaction terms due

to molecular collision (fluid-fluid interaction.

Croup _8) are given above by Eq. (47) and (qS)

The form of the correlation between the fluctuating

drag force and the velocity fluctuations depends on

the expression adopted for the drag force. The

viscous drag correlation (VDC) in Group #lO for

Stokes flow over particles in dilute suspensions
reads
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18_ L _ -

voc = - : (ULi- Usl)'Al
dS

2 (aS'A2 + A3)

d S

(49-_)

where :

= • %uZl(uZi- ;i) (49d)

The first correlation group A 1 (F.,q. 49a) can be

approximated using the gradient type assumption.

The second correlation in this expression (q9b) is

that due to the relative sllp fluctuating motion

uLi(uLi - Usi } and u_i(u_i - u_i ). These can be

modeled using similar approach to that of

Elghobashi and Abou-Arab (1983) but with some
modifications which allow for different

particle-eddy interaction according to their

relative size. These modifications are based on

the spectral analysis carried out by Ding_uo (19_7)

for the response of the particles to the turbulent

fluctuations of the carrier fluid, For very large

eddies K (< KS .

%-- (Vs}K = (vL)K a-

where K is the wave number; KS is the

B_sset-Boussinesq-0ssen wave number defined as

I/ds: (Vs) K and (VL) K are the solid and liquid

velocity components with the wave number K; a is

the amplitude ratio of oscillations

a = [(1 + q2 )2 ÷ q_]0.5 (Sla)

and p is the phase angle of oscillation

p = tg-I [q2/(l + ql )] (5]b)

The expressions of ql and q2 are

9NS l-s

(l + )(s+-_.5)

ql = J_(s+O.S) (5_)

81 (PJV_ + NS'2 9NS )2
(s*O.5) 2 _2 + (l + --J_(s+O.s)

N S

(2.N_, _-)
(s+0.5) 2

81 (2H_ + HS'2 9NS )2
(s+O.S)2 _ + (I + ,F_(s+O.S)

(52b)

with the following dimensionless paraz_eters:

s = ps/PL

"s-- uLKd- "
where

K-F = is the wavenumber of the most energetic

eddies,

Re = Reynolds number based on I T , and

"S = Stokes number.

For small eddies with wave numbers K >> KS.

the particle response can be described by'

%.3 PL (s3)
.s = (Vs)K = (vL)K (-_) %

For the intermediate size eddies K _ K S

use (SO) with

or_e

as

l (s_)a = -- a.nd
s

p = ta_ -I (s) (S_b)

If the fluctuating slip velocity w i is defined

w' ' ' (s6)
x = Usi - ULi

then the

becomes

.2 2

ratio of the mean square w i and ULi

2 2 -,2 -. , --_ "-_

= (Usi - 2UkiUSi Uki) I UkiwiJ°Li *

with

- , 1 u_12/uLl2 -.2 .2ULiUsi E ULi 2 (I += wi /ULt)

l ,2 (l -
= 2 ULi + rSL rRL ) (57)

The values of FSL and FRL can be obtained by using

the preceding solution (Eq. 50):

.srSL =[Ioa2T-L(K)dK+_S KS6-

or

2h
rSL - -(h÷l) tan-l(_S/_) (59)

where

h - A _ is %)2/R e%% (s+O.5)(%Y . A :

1BY L

(s + 0.5)d 2
S
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Figure 2. The effect of eddy-particle size ratio

(_S./¢,-f)on the particle response to the

-.2 -.2

eddy fluctuations (Usi/uLi)

and

rp.L= s (a2-l) (,)dr

J_K " _S.3 s-l_ )2 "_o+ ((-E) 1 EL(_)d_] 1 E(_) d_ (6O)
S

2 .2.0.5
where a I = (fl + t2J mad EL(_ ) is the liquid

energb' spectrum function for which any arbitrary

form can be adopted, for instance

.2

2 ULi 1

EL[_) - " "-r l+(_,_r) 2 (6l)

Figure 2 illustrates the effect of

eddy-particle size ratio expressed as KS/K_T on the

ratio FSL = USi21U_l 2 which indicates the particle

response to the eddying motion It can

be noticed that hlgh values of _S/_I. (i.e. small

particle or large eddy) the particles follows quite

well the eddy motion.

Substituting the expressions for FSL and FRL

(Eqs. (58) or (59), and Eq. (60)) into Eq. (57),

the correlation 42 can be obtained

! .2
A2 = _- ULl (I - rSL + rRL ) (62)

The above analysis applies equally well to the

large eddies as to small eddies. The energy

spectrum function E.L(_ ) for a two-phase flow is

given by AI-Taweel and Landau (1977). However,

since its form is not essential (Dir_guo {19S7)) it

is sufficient to adopt any simple form as that

given above by Eq. (61). It is clear from the

above analysis that the particle response to the

carrier fluid fluctuations is a function of the

density ratio pSJPL, size of interacting eddy

relative to particle size JcS,/K and Reynolds number

based on the size of the most energetic eddies of

the flow. An analogous expression to that given by

Eq. (62) is that based on the Chao's solution (see

Chao (196d)). This solution ca_ be considered as a

substitution of Dingg_o's solution only for K <( K S

i.e. for fine particles.

The last term to be modeled in the VCD group,

43 , is separated into four correlations:

i%
43 = - 2 [(aSULiULi + aSULiULi)

d S

TI 1"2

- (%uLi%i + a uf i%i) J (63)

T3 Tq

where the triple correlations ]3 and T4 are modeled

in a similar manner to that used for the

calculation of TI and T2 by using Eqs. (23) and
(2q), thus

_ULi"S._P

TI : aSUl_iuLl :-E_5 (kLF/eLp)(2uLiUl' 1 El l

(_L i _S *"' ,,

T E1"2 = a;u_lu_'l = -C_5 (kLT/eLT) (2u;'iU_l iT'
1

= (kLl%p)(uAi°ii

+ UsiUl' l 8x I )P

T'i= --'C_5 (kLT/eLT)(u_'iU;l @Xl + u;iu_, l 8Xl )T

(64)

These correlations can also be collectively modeled

using single velocity and length-scale, and total

k L and t L. The first two mad the last two terms

yield, respectively:

2k L t t

TI + T2 = C(k 5 _ (u_iu: l _ULiaS"bx--_ -)

t
2k L t-----'--_O_USlaS

T3 + Tq = C k5 -_L (ULiuSi dYXl

(65o)
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The terms in Group #9 of Eq. AS are of

diffusive and dissipative nature. The diffusion

terms as they appeared in Group #9 are multiplied

by the molecular viscosity and therefore will be

neglected due to their relatively small magnitude.

Other higher order correlations and mixed

correlations in this group are also neglected

according to the modeling principles stated

previoulsy in section 4.3 and as they are also

multiplied by the molecular viscosity.

By substituting all previously modeled terms
into the exact form of the turbulence kinetic

energy equation, and rearraz_ing these terms, one
obtains the simplified modeled form given in

Appendix B (Eq. B2).

Since the present model is based on an exact

equation, namely the turbulence kinetic energy

equation, and the modeled form of this equation has

no adjusting coefficients it is expected that the

model will generally produce good results and have

less limitations compared to other models. The

only modeling assumption is that of the Boussinesq

gradient type, which generally is accepted. The

correlations that requires questionable

semi-empirlcal modeling assumptions and

introduction of empirical constant are (1) fewer in

number (for _u_iu_j and _UsiU_j ). and {il) for

terms having an order of magnitude smaller {by

ratio a'/_) compared to other main terms in the

k-equation. The only significant new correlation

used in the present closure is that due to the

relative motion between the phases, This is

modeled with less restrictions and taking into

consideration the effect of the particle

diameter-eddy size ratio on the particle response

to the eddying motion. The limitation of the

present one-equation k model closure is the

a|gebralc formulation for the length scale. Since

there are many factors affecting this length scale

and since it is even difficult in many practical

applications to give a unique and accurate
description of the length scale, the use of a

transport equation for the length scale in the

two-equation model of Elghohashi and Abou-Arab

(19S3) is expected to give better results with fine

particles (d S < n). However. it should be noticed

that the former model and any other similar models

contain some empirical constants specific for

various flow conditions, and they require the

solution for an additional transport equation. It

can be expected that the present model combined

with an appropriate length scale equation e.g.

dissipation rate equation will simulate better most

of the important.features of multiphase turbulent

flows, particularly the fluid particle interaction.

In that case the number of closure transport

equations will increase to three {if two velocity

scale, kp and k T. and one length scale transport

equations) or four transport equations (if two

velocity scales and two length scale, Ip and l T.

are adopted).
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Figure 3. Computed and measured [20] mean velocity

distribution of air in air-solid pipe

flow (_- single-phase, -- 2 Eqs. k-e

model.f12], -.- 1 Eq. k-model [27]. -x_-

I Eq. k-model [12]. - .... I Eq, vt-model ['263).
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Figure 4. Predicted radial distribution of the

turbulence intensity of air in air-solid

pipe flow using different turbulence

models (keyrtote as in Fig. 3).

7. SAKPLE OF RESULTS

Figures 3 to 6 compare the present predictions

with LDA-measurements for single and two-phase

turbulen_ pipe flow {see Raeda et al (lg@O)) and

turbulent round water Jet laden with uniform-size

solid particles (see Parthasarathy and Faeth

(1987)). Both flows are oriented vertically
downward. These flows are axlsymmetrlcal. The

concentration profiles are given as input data
based on experimental results.

In these flow situations the average eddy size

$e was varying from about one d S to few hundreds
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dS. The corresponding representative eddy size in

the transfer range was only a fraction of particle

dla_w_ter d S in the pipe flow case. In the jet flow

case the mean size of large eddies and the

Kolmogrov length scale were also varied in a wide

range. These scales are field variables, and they

depend upon the flow configuration, location in the

flow domain emd particle dimensions.

Two-phase flow solutions were obtained by

solving the flow governing equations in their

modeled form which are described in the previous

section and given in Appendix B. The numerical

procedure used for these predictions is based on a

developed version of the Geru_ix_e of Spaldir_

(1977). However. since the main objective of this

paper is to give a complete description of a

developed turbulence closure for multiphase flows

and due to the space limitation the details of this

numerical approach will not be given here. "I'heCPU

Time for the two considered flow cases was about 4

minutes on a VAX 760 Mini--C_mputer and 2 minutes on

IBM 308q.

Case I: C.as-Solid Vertical Pipe Flow:

Figure 3 shows a comparison between the

experimental data and the present predictions using

five different models of turbulence namely I.

One-equation k-model of Roco and Kmhadevan (1986),

2. One-equation v -model of Roco and Balakrishnan
t

(1985), 3. The k-equation as given in the

two-equation k-t model of Elghobashl and Abou-Arab

(19fl3), 4. The two-equation model of Elghobashl and

Abou-Arab (19_3), and 5. The

present one--_Iuatio_ k-l_del. The figure displays

the mean axial velocity distrlbution in the fully

developed zone of the pipe flow for single and

two-phase cases. The "differences between the

predictions of all one-equatlon turbulence models

and experiments is minly caused by the general

algebraic expression adopted for the turbulence

length scale which was not optimized or adjusted.

In the present comi_tation the concentration

profiles are assumed based on previous experimental
data. The inlet concentr_tlon distribution is

taken to be similar to that given by the best curve

fit after the experimental data of Soo (1967).

Figure 4 compares the calculated turbulence

J- UL2defined as (=_kL) / _L with Itsintensity

measured values. The near wall treatment is based

on a modified form for the law of wall (see

Abou-Ellall and Abou-Arab (l_d). Lee and Claung

(19_'/)) a_nd the particle sllp condition at the pipe
wall.

The present model as coatpered with the one

equation models of Refs. [12] and [27] predicts

slightly higher values for the mean flow

quantities. However, it must be mentioned that the

last k_els contain empirical constants in the

dissipetion term of the k equation. Concerning the

fluctuating flow quantities the present model gives

slightly better results for the turbulence

intensity in the near wall region than other

one-equation models. The expression for the

turbulence length scale was not optimized. It is

also expected that the current model will give

better predictions for coarse (d S ) _) and heavy
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0.0 0.08 0.16 0.24
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Figure 5. Coml_ted and masured [23J mean velocity
distributlon in water-solid Jet flow.
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Figure 6. Predicted radial distribution of the
turbulence intensity of water in water-

solid Jet flow.

suspension flows for which no set of comprehensive

2D data is available for comparison.

Case II: Turbulent Round later Jet Laden with

Uniform-size Solid Particles

Comperison between experimental

numerical predictions of different

closures are given in Figures 5 and 6.

data and

turbulence

The two-phase flow measurements on velocity.

concentration emd turbulence correlations used for

comparisons are taken from Parthasarathy & Faeth

(1987). Different axial locations within the round

Jet. between eight and fourty Jet dieoneters from

the injection nozzle are
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Figure 7. Radial distribution of solid phase

concentration in water-solid Jet flow.

considered. The radial distribution of solid

concentration given in Figure 7 are at eight
diameters from the nozzle.

The comparison shows that the two-equation

two-phase k-e model of Elghobashi and Abou-Arab

(1983) describes both flows better than the

one-eqt.uation mass/time averaged turbulence model.

However. it is important to mention here that the

presently developed closure uses only one transport

equation and without adjusting any empirical

coefficient. At the same time. the present closure

is in its early stages and more refinements and

validation tests are required, especially for

coarse particles two-phase flows for which one

would expect that the present k-formulation will

provide improved predictions. The difference

between the predictions of the mean and fluctuating

flow velocity components as obtained by the present

k-formulation and that of Ref. [12] depends on the

particle size relative to its surrounding eddies.

Figure 8 illustrates this difference at two

different loading ratios for the pipe flow at a

radial distance (R - r)/'R equal O.l.

6. (X)_CLUD ING RERARKS

The turbulence closure presented in this paper

for dilute suspension flow is based on the fluid

turbulence kinetic ener_,' equation. The main
features of this model are:

i) Two velocity scales are adopted in computation

for large and medium size eddies.

corresponding to the turbulence production and

transfer range, respectively They are

expressed into the governing equations by a

specific local mass/time averaging. On this

basis the spatial and temporal transfer rates

of the thermodylx_u_ic qumatities and the

particle-eddy interaction are better
estimated.
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(%) IO

o
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(b)

Figure 8. Differences between the present

k-formulation and that of Ref.

[12] for different mass loading ratios

L.R.: (a) fluctuating and (b) mean

axial velocity.

ii) Spectral m'k_]ysis of the interaction mecF,._.nism

between particles and most energetic eddies

provide analytical correlations for closure.

The particle response and the modulation of

turbulent eddying motion is given as a

function of the particle-fluid density and
size ratios.

"iii) To keep the number of transport equations of

the turbulence closure a.r,d the number of

empirical constants as minimum as possible,

the length scales lp and 1T are described

using algebraic expressions. Relations

between these scales (E2s. 40 and 47) are

suggested.

iv) The model does not introduce additional

empirical constants to the closure of the

velocity scale equation
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APPENDIX - A

Rass/']'ime Averaged conservation Equations

Rass averaging the conservation equations of mass

and momentum over'a flow component (K) one obtains

a new system of equations for meaJa velocity,

concentration and kinetic energy of turbulence.

The point instantaneous conservation equation

can be written for any flow component (K) or for

the entire mixture in the folowing general form

8

0--?(_) + v.(p___)* v.J_-s = 0 (AI)

where: p = density

u = velocity vector

= transported quantity

= flux vector for

S = source term

Let assume _ = UKi. By splitting each flow

property into mean and turbulent fluctuating

(_vi.. + __U_i} end t_ss/time or double timecomponent

averaging the equation {AI). one obtains the

following momentum equatiqns in the i-th direction

for am incompressible phase (K) without mass

exchange with other flow components (see Roco and

Shook (1985)):

8 -- t t 8

PK _- (aKUKi + aKuKi) ÷ OK _" (aKUKiUKj)

Time Rate Me_m Flow Convection

a -- tt
=P_XbK i O_i I

Body Force Pressure Effect

0 [ T -- t t

* _j aK l_ji -PKCLK'uKiuKj

Frictional Inertial

Effect Effect

• t t t t

-p_=x(uKi_Kj)• %,_..] * (Z--_?)_K
Jl ,,. Interactions

Col lisional Effect
with (-K)

(A2)

where

K = phase (or generally a flow component)

TK = mass/time average of f over K

i.j = 1.2,3 (Cartesian coordiantes)

bKi = body force in the i-th direction

(IKi)_K = projection in the i-th direction of the

interaction vector (I_K)_K

The interaction term as it stands for

solid/liquid drag is given by

CDs lULy-USyl(ULv-USv)

(IsI) L = (ILl) S = 0.75asp L d S (l--as)l7

(A3)

This drag term takes a simple form for Reynolds

numbers less than unity

(Isi)L = _ (ILi)S : asCZBPL/d:)CULi-usi ) (A4)

The transverse effects caused by the presence of

other solid particles, Saffrmm force and Ho and

Leal inertial force are neglected. "Fheir

importance is small in dilute suspension turbulent

flows with fine particles.

Equation (A2) contains terms due to the

unsteady flow, mean flow convection, diffusion.

pressure, body force, as well as frictional,
inertial and collisional effects. The mean form of

the turbulence kinetic energy governing equation is

obtained by subtracting from the steady state
instantaneous momentum equation for a component K =

L the corresponding mea_ flow equations, and then

multiplying the resulting difference equation by

(u_i + U"Ki ). By averaging one obtain the kinetic

ener,K Y equation for a flow component K = L. This

equation reads

0A%(- j • :T-I
Croup #I (Convection)

a , , ,

+ _---[Pk_-K(UKjUKiUKi
3

Croup #2 (Velocity

Diffusion)

-- , ,, ,

+u ju iu i÷  juKiu  +u ju  uKi÷uK?Ki K 

* UKju_iu_i__ _ + u_juKiuKi ÷ U"KjU',.u'LK:Ki )]

a

Croup #3 (Higher Order Correlations)

+ other 4th order and minor terms)]=
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Group #4 {Pressure Diffusion)

Group its (Extra Production and Transfer)

- (_i_ _ + "xl%_ i _i_ i

Ou-Ki OuKi,

Croup t_3 {Production)

m

Ou'Ei . . aUKiT__

- loKi_u--%
Croup t)7 (Extra Production)

Ou--Ki OUK i

+ .._... + _j_u_,-_-:_Ki% Kj_ j

](aEuKi + a_U"Ki ) _ + minor terms
1

+ PkztKuK-Oxj Oxj + PNztKUK Oxj Oxj

Croup tt_ (Dissipation)

mixed

+ PK_UK c_j c,_xj+ PKx_KuK c_j c?xj + correla-

tions

Croup _9 {Extra Dissipation & Diffusion)

• %_{IKi)_K + -_i{:_)_K

Croup #10 (Extra Dissipation)

(AS)

APPE_NDIX B

The Modeled Form of the Turbulence Kinetic

EnerKN Equation

The steady-state turbulence kinetic energZy equation

for the liquid phase (K = L) is:

_- _ ___ ._Li._
PLaLULj _- Oxj o k bxj + aLVLt {Oxj )

Convection Diffusion Production

%+_ {<+°_J--:7'" o--£:7_u"i%
Extra Production

- PLaLeL

Dissipation

l_t L
": : )uLt

d S

Extra Dissipation

- askL(I-FsL+FRL ) - __

1

1%
--::--(tl + T2 - T3 - T4) (BI)

d S

where the expressions for TSL. FRL. TI, T2. T3 mad

T4 are given in the text.

162





I, REPORT NO. 2. GOV_NM£_ ACCESSION NO.

NASA CP-3047

4. TITLE AND SUBTITLE

Constitutive Relationships and Models in Continuum

Theories of Multiphase Flows

3. RECIPIENT'S CATALOG NO.

5. REPORT DATE

September 1989

6. PERFORMING ORGANIZATION C_E

ES42

7. AUTHOR{S) B.PERFORMINGORGANtZAT_ONREPORt
Edited by Rand Decker;':

9. PERFORMINGORGANIZATIONNAME AND ADORESS

George C. Marshall Space Flight Center

Marshall Space Flight Center, AL 35812

12. SPONSORING AGENCY NAME AND ADORESS

National Aeronautics and Space Administration

Washington, D.C. 20546

O. woRK UNIT NO.

M-616

i. CONTRACT OR GRANT NO.

3. TYPE OF REPORT & PERIOD COVERED

Conference Publication

14. SPONSORING AGENCY CODE

15, SUPPLEMENTARY NOTES

,':National Research Council Associate.

Prepared by Space Science Laboratory, Science & Engineering Directorate.

16, ABSTRACT

During the first week of April 1989, a workshop, entitled "Constitutive

Relationships and Models in Continuum Theories of Multiphase Flows," was convened

at NASA's Marshall Space Flight Center. The purpose of this workshop was to open

a dialogue on the topic of constitutive relationships for the partial or per phase

stresses, including the concept of solid phase "pressure" and the models used for the

exchange of mass, momentum, and energy between the phases in a multiphase flow.

This volume is the result of the stated objective of the workshop. The program,

abstracts, and text of the presentations made at the workshop are included.

17. KE_ WOROS

Multiphase Flow, Two-Phase Flow Continuum

Mechanics Turbulence, Rheology, Kinetic

Theory Constitutive Equations

19. SECURTTY CLASSIF. (_ thts f.p_

Unclassified

MSFC - Form 3292 (Key. December 1972)

18. DISTRIBUTION STATEMENT

Unclassified--Unlimited

Subject Category: 34

!20. SECURITY CLASSIF. (ol th|l _Ee)

Unclassified

21. NO. OF PAGES 22. PRICE

172 A08

For sale by Na_onA1 Technical Ir2ormatlon Service, SprLt_fleld, Vixllnla 22161

NASA-Langley, 1989

t






