BAGA 67-183446

189400-39-F

Final Report

### SPATIAL CHARACTERIZATION OF ACID RAIN STRESS IN CANADIAN SHIELD LAKES

F.J. TANIS, Principal Investigator E.M. MARSHALL Advanced Concepts Division MARCH 1989

(NASA-CP+103446) SPATIAL CHAPACIENIZATION NOU-10479 OF ACTU RAIN STRESS IN CANADIAN SHIFLD LAKES Finel Report (FRIM) 17. p CSCL 138

> Unclus 63/45 0234340

NASA/Goddard Space Flight Center Code 620 Greenbelt Road Greenbelt, MD 20771 Contract No. NAS5-28779 Technical Officer: Mr. Harold Oserfoff



• • .

| Uncl | ass | ifi | ed  |  |
|------|-----|-----|-----|--|
|      |     |     | · · |  |

•

\_\_\_\_

----

| REPORT DOCUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          | OMB No. 0704-0188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1b. RESTRICTIVE M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RKINGS                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Inclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SECURITY CLASSIFICATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. DISTRIBUTION/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VAILABILITY OF RE                                                                                                                                                                                                                                                                              | PUNI                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unimitied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 MONITORING OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GANIZATION REPOR                                                                                                                                                                                                                                                                               | RT NUMBER(                                                                                                                                                               | S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PERFORMING ORGANIZATION REPORT NUMBERS(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 189400-39-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7a. NAME OF MON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TORING ORGANIZA                                                                                                                                                                                                                                                                                | TION                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Environmental Research (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N / A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Institute of Michigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | State and 7IP Cod                                                                                                                                                                                                                                                                              | e)                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ic. ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76. ADDRESS (City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , State, and Zir Goo                                                                                                                                                                                                                                                                           | .,                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P.O. Box 8618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3300 Plymouth Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ann Arbor, MI 40107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9. PROCUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INSTRUMENT IDEN                                                                                                                                                                                                                                                                                | TIFICATION                                                                                                                                                               | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3a. NAME OF FUNDING /SPUNSURING (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NASA/Goddard Space Ctr. N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AC ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10. SOURCE OF FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INDING NUMBERS                                                                                                                                                                                                                                                                                 | TACK                                                                                                                                                                     | WORK UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Greenbelt Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO.                                                                                                                                                                                                                                                                                            | NO.                                                                                                                                                                      | ACCESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Greenbelt, MD 20771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ELEMENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11 TITLE (Include Security Classification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11. TITLE (include Security classification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tress in Cana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | adian Shiel                                                                                                                                                                                                                                                                                    | d Lakes                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Spatial Characterization of Actu Ram S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 PERSONAL AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| F.J. Tanis and E.M. Marshall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                       | PAGE COUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13a. TYPE OF REPORT 13b. TIME COVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14. DATE OF REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Year, Month, Day)                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                       | PAGE COUNT $x + 102$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13a. TYPE OF REPORT 13b. TIME COVERED<br>Final Report FROM <u>8-86 to 12-88</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 DATE OF REPORT<br>1989, Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Year, Month, Day)<br>h, 1                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                       | PAGE COUNT<br>x + 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13a. TYPE OF REPORT13b. TIME COVEREDFinal ReportFROM 8-86 to 12-8816. SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 DATE OF REPORT<br>1989, Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Year, Month, Day)<br>h,1                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                       | PAGE COUNT<br>x + 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13a. TYPE OF REPORT13b. TIME COVEREDFinal ReportFROM 8-86 to 12-8816. SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 DATE OF REPORT<br>1989, Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ' (Year, Month, Day)<br>h,1                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                       | PAGE COUNT<br>x + 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13a. TYPE OF REPORT     13b. TIME COVERED       Final Report     FROM 8-86 to 12-88       16. SUPPLEMENTARY NOTATION       17.     COSATI CODES       18. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14. DATE OF REPORT<br>1989, Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Year, Month, Day)<br>h, 1<br>erse if necessary                                                                                                                                                                                                                                                | 15<br>and identif                                                                                                                                                        | PAGE COUNT<br>x + 102<br>fy by block number,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13a. TYPE OF REPORT     13b. TIME COVERED       Final Report     FROM 8-86_T0_12-88       16. SUPPLEMENTARY NOTATION       17.     COSATI CODES       18. SUBJECT TERMS       FIELD     GROUP       SUB-GROUP     acid rain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Year. Month. Day)<br>h, 1<br>Frse if necessary<br>ng, optica                                                                                                                                                                                                                                  | and identii                                                                                                                                                              | PAGE COUNT<br>x + 102<br>fy by block number,<br>parency,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13a. TYPE OF REPORT     13b. TIME COVERED       Final Report     FROM 8-86 TO 12-88       16. SUPPLEMENTARY NOTATION       17.     COSATI CODES       FIELD     GROUP       SUB-GROUP       acid rain,       1ake monito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14. DATE OF REPORT<br>1989, Marc<br>6 <i>(Continue on reve</i><br>remote sensi<br>ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Year, Month, Day)<br>h, 1<br>wrse if necessary<br>ng, optica                                                                                                                                                                                                                                  | and identii<br>trans                                                                                                                                                     | PAGE COUNT<br>x + 102<br>fy by block number,<br>parency,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86 to 12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         FIELD       GROUP         SUB-GROUP         acid rain,         lake monito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14 DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Year, Month, Day)<br>h, 1<br>erse if necessary<br>ng, optica                                                                                                                                                                                                                                  | and identii<br>trans                                                                                                                                                     | PAGE COUNT<br>x + 102<br>fy by block number,<br>parency,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_T0_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         FIELD       GROUP         SUB-GROUP         18. SUBJECT TERMS         19. ABSTRACT (Continue on reverse if necessary and identify by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>v block number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Year, Month, Day)<br>h, 1<br><i>Trse if necessary</i><br>ng, optica                                                                                                                                                                                                                           | and identii<br>trans                                                                                                                                                     | PAGE COUNT<br>x + 102<br>fy by block number)<br>parency,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         FIELD       GROUP         SUB-GROUP         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake scidification in North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>6 block number)<br>ern Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Year, Month, Day)<br>h, 1<br>rrse if necessary<br>ng, optica<br>has been i                                                                                                                                                                                                                    | and identia<br>trans                                                                                                                                                     | PAGE COUNT<br>x + 102<br>fy by block number,<br>parency,<br>jated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86 to 12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         FIELD       GROUP         SUB-GROUP         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         Using Landsat TM to sense lake yolu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>ern Ontario<br>me reflectar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als                                                                                                                                                                                                      | and identii<br>trans                                                                                                                                                     | PAGE COUNT<br>x + 102<br>fy by block number,<br>parency,<br>pated<br>rovide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         acid rain,         1ake monito         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>hern Ontario<br>me reflectar<br>aracteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als<br>s. The pu                                                                                                                                                                                         | and identii<br>and identii<br>trans<br>nvestig<br>o to pr<br>rpose c                                                                                                     | PAGE COUNT<br>x + 102<br>fy by block number<br>parency,<br>pated<br>povide<br>of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         acid rain,         1ake monito         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch         project was to determine the abilit                                                                                                                                                                                                                                                                                                                                                                                                                  | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>hern Ontario<br>me reflectar<br>haracteristic<br>y of Landsat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als<br>s. The pu<br>to assess                                                                                                                                                                            | and identified<br>and identified<br>trans                                                                                                                                | PAGE COUNT<br>x + 102<br><i>ty by block number</i><br>parency,<br>pated<br>covide<br>of this<br>quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         FIELD       GROUP         SUB-GROUP         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch         project was to determine the abilit         characteristics associated with lake                                                                                                                                                                                                                                                                                                                                                                | 14 DATE OF REPORT<br>1989, Marc<br>5 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>tern Ontario<br>me reflectan<br>aracteristic<br>y of Landsat<br>ce acidificat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Year, Month, Day)<br>h, 1<br>rrse if necessary<br>ng, optica<br>has been i<br>ce and als<br>s. The pu<br>to assess<br>cion. Resu                                                                                                                                                              | and identia<br>and identia<br>trans<br>trans<br>o to pr<br>rpose c<br>water<br>lts fro                                                                                   | PAGE COUNT<br>x + 102<br>fy by block number<br>parency,<br>parency,<br>gated<br>covide<br>of this<br>quality<br>om this<br>mitic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86 TO 12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18.       SUBJECT TERMS         FIELD       GROUP         SUB-GROUP       acid rain, lake monito         19.       ABSTRACT (Continue on reverse if necessary and identify by The lake acidification in North using Landsat TM to sense lake volu important vegetation and terrain ch project was to determine the abilit characteristics associated with lake study demonstrate that a remote ser                                                                                                                                                                                                                                                                                                                           | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi-<br>ring<br>block number)<br>ern Ontario<br>me reflectan<br>aracteristic<br>cy of Landsat<br>(ce acidificat<br>asor can disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ce and als<br>c. The pu<br>to assess<br>ion. Resu<br>criminate 1                                                                                                                                                 | and identia<br>and identia<br>trans<br>trans<br>o to pr<br>rpose c<br>water<br>lts fro<br>ake cla                                                                        | PAGE COUNT<br>x + 102<br>fy by block number<br>parency,<br>gated<br>rovide<br>of this<br>quality<br>om this<br>arity<br>arity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         acid rain,         18. SUBJECT TERMS         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch         project was to determine the abilit         characteristics associated with lak         study demonstrate that a remote ser         based upon reflection.                                                                                                                                                                                                                                                                                     | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>tern Ontario<br>me reflectan<br>aracteristic<br>cy of Landsat<br>(c) and ison<br>asor can dison<br>hypothesis ison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als<br>is. The pu<br>to assess<br>tion. Resu<br>triminate l<br>is that seas                                                                                                                              | and identiant<br>and identiant<br>trans<br>trans<br>o to pr<br>rpose c<br>water<br>lts from<br>ake cla<br>onal an                                                        | PAGE COUNT<br>x + 102<br>fy by block number<br>parency,<br>parency,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>parenty,<br>paren |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         acid rain,         18. SUBJECT TERMS         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch         project was to determine the abilit         characteristics associated with lak         study demonstrate that a remote ser         based upon reflection. Our basic h         year changes in lake optical transpondent                                                                                                                                                                                                                       | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>hern Ontario<br>me reflectan<br>aracteristic<br>y of Landsat<br>(ce acidificat<br>hsor can disc<br>hypothesis is<br>barency are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als<br>is. The pu<br>to assess<br>tion. Resu<br>triminate 1<br>s that seas<br>indicative                                                                                                                 | and identia<br>and identia<br>trans<br>trans<br>o to pr<br>rpose o<br>water<br>lts fro<br>ake cla<br>onal an<br>of sens                                                  | PAGE COUNT<br>x + 102<br><i>Ty by block number</i><br>parency,<br>parency,<br>parenty,<br>of this<br>quality<br>om this<br>arity<br>nd multi-<br>sitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         FIELD       GROUP         SUB-GROUP       acid rain,<br>lake monito         19. ABSTRACT (Continue on reverse if necessary and identify by<br>The lake acidification in North<br>using Landsat TM to sense lake volu<br>important vegetation and terrain ch<br>project was to determine the abilit<br>characteristics associated with lak<br>study demonstrate that a remote ser<br>based upon reflection. Our basic h<br>year changes in lake optical transp<br>to acidic deposition. In many acid                                                                                                                                                                                                | 14. DATE OF REPORT<br>1989, Marc<br>5.(Continue on reve<br>remote sensi<br>ring<br>block number)<br>tern Ontario<br>me reflectan<br>aracteristic<br>ty of Landsat<br>te acidificat<br>asor can disc<br>hypothesis is<br>barency are<br>d-sensitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als<br>s. The pu<br>to assess<br>tion. Resu<br>triminate l<br>s that seas<br>indicative<br>lakes optic                                                                                                   | and identia<br>and identia<br>trans<br>trans<br>o to pr<br>rpose o<br>water<br>lts fro<br>ake cla<br>onal an<br>of sens<br>al tran                                       | PAGE COUNT<br>x + 102<br>fy by block number<br>parency,<br>parency,<br>gated<br>ported<br>parency,<br>parenty<br>multi-<br>sitivity<br>nsparency<br>resent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13a TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86 TO 12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         FIELD       GROUP         SUB-GROUP       acid rain, lake monito         19. ABSTRACT (Continue on reverse if necessary and identify by The lake acidification in North using Landsat TM to sense lake volu important vegetation and terrain ch project was to determine the abilit characteristics associated with lake study demonstrate that a remote ser based upon reflection. Our basic h year changes in lake optical transpito acidic deposition. In many acid is controlled by the amount of dise                                                                                                                                                                                          | 14 DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi-<br>ring<br>block number)<br>dern Ontario<br>me reflectant<br>aracteristic<br>cy of Landsatt<br>ce acidificat<br>hoor can disc<br>barency are<br>d-sensitive<br>solved organi-<br>ansparency of the sensitive<br>solved organi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ce and als<br>s. The pu<br>to assess<br>tion. Resu<br>triminate l<br>s that seas<br>indicative<br>lakes optic<br>ic carbon (<br>f lakes can                                                                      | and identia<br>and identia<br>trans<br>trans<br>o to pr<br>rpose c<br>water<br>lts fro<br>ake cla<br>onal an<br>of sens<br>al tran<br>DOC) p                             | PAGE COUNT<br>x + 102<br>fy by block number<br>parency,<br>parency,<br>gated<br>portide<br>of this<br>quality<br>om this<br>arity<br>nd multi-<br>sitivity<br>nsparency<br>resent.<br>tially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13a TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         acid rain,         18. SUBJECT TERMS         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch         project was to determine the abilit         characteristics associated with lak         study demonstrate that a remote ser         based upon reflection. Our basic h         year changes in lake optical transp         to acidic deposition. In many acid         is controlled by the amount of diss         Seasonal changes in the optical transp                                                                                        | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>tern Ontario<br>me reflectan<br>aracteristic<br>cy of Landsat<br>(c) acidificat<br>asor can disc<br>bypothesis is<br>parency are<br>d-sensitive<br>solved organ<br>ansparency or<br>s due to acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als<br>s. The pu<br>to assess<br>tion. Resu<br>to assess<br>tion. Resu<br>to assess<br>tion. Resu<br>to assess<br>tion. Resu<br>to assess<br>tion (<br>to assess<br>tion (<br>f lakes can<br>d depositio | and identia<br>and identia<br>trans<br>trans<br>o to pr<br>rpose c<br>water<br>lts fro<br>ake cla<br>onal an<br>of sens<br>al tran<br>DOC) pr<br>poten<br>on and         | PAGE COUNT<br>x + 102<br>fy by block number<br>parency,<br>parency,<br>parenty<br>of this<br>quality<br>om this<br>arity<br>nd multi-<br>sitivity<br>nsparency<br>resent.<br>tially<br>loading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13a TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17       COSATI CODES         18. SUBJECT TERMS         FIELD       GROUP         SUB-GROUP         acid rain,         18. SUBJECT TERMS         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch         project was to determine the abilit         characteristics associated with lak         study demonstrate that a remote ser         based upon reflection. Our basic h         year changes in lake optical transp         to acidic deposition. In many acid         is controlled by the amount of diss         Seasonal changes in the optical transp         provide an indication of the stress | 14 DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>hern Ontario<br>me reflectan<br>aracteristic<br>cy of Landsat<br>(ce acidificat<br>hypothesis is<br>barency are<br>d-sensitive<br>solved organ<br>ansparency of<br>s due to acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als<br>is. The pu<br>to assess<br>tion. Resu<br>to assess<br>tion. Resu<br>that seas<br>indicative<br>lakes optic<br>ic carbon (<br>f lakes can<br>d depositic                                           | nvestig<br>o to pr<br>rpose c<br>water<br>lts fro<br>ake cla<br>onal ar<br>of sens<br>al trai<br>DOC) p<br>poten<br>on and                                               | PAGE COUNT<br>x + 102<br>Ty by block number,<br>parency,<br>parency,<br>parency,<br>parity<br>of this<br>quality<br>om this<br>arity<br>nd multi-<br>sitivity<br>nsparency<br>resent.<br>tially<br>loading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13a TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86_TO_12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         acid rain,         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         uimportant vegetation and terrain ch         project was to determine the abilit         characteristics associated with lak         study demonstrate that a remote ser         based upon reflection.       Our basic h         year changes in lake optical transp         to acidic deposition.       In many acid         is controlled by the amount of diss         Seasonal changes in the optical transp         provide an indication of the stress                                                                                                     | 14 DATE OF REPORT<br>1989, Marc<br>A continue on reve<br>remote sensi-<br>ring<br>a block number)<br>thern Ontario<br>me reflectant<br>aracteristic<br>ty of Landsatt<br>(c) acidificat<br>aracteristic<br>ty of Landsatt<br>(c) acidificat<br>bor can disc<br>bor can disc<br>b | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ce and als<br>s. The pu<br>to assess<br>tion. Resu<br>to assess<br>tion. Resu<br>that seas<br>indicative<br>lakes optic<br>ic carbon (<br>f lakes can<br>d depositic                                             | and identia<br>and identia<br>trans<br>trans<br>trans<br>o to pr<br>rpose c<br>water<br>lts fro<br>ake cla<br>onal an<br>of sens<br>al tran<br>DOC) p<br>poten<br>on and | PAGE COUNT<br>x + 102<br>fy by block number,<br>parency,<br>parency,<br>gated<br>of this<br>quality<br>om this<br>arity<br>nd multi-<br>sitivity<br>nsparency<br>resent.<br>tially<br>loading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86 TO 12-88         16. SUPPLEMENTARY NOTATION         17.       COSATI CODES         18. SUBJECT TERMS         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch         project was to determine the abilit         characteristics associated with lak         study demonstrate that a remote ser         based upon reflection. Our basic h         year changes in lake optical transp         to acidic deposition. In many acid         is controlled by the amount of diss         Seasonal changes in the optical transp         provide an indication of the stress                                                                                        | 14. DATE OF REPORT<br>1989, Marc<br>3. (Continue on reve<br>remote sensi<br>ring<br>block number)<br>tern Ontario<br>me reflectan<br>aracteristic<br>cy of Landsat<br>(ca acidificat<br>aracteristic<br>cy of Landsat<br>(ca acidificat<br>aracteristic<br>solved organ<br>ansparency or<br>s due to acid<br>21. ABSTRACT<br>unclassi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ice and als<br>s. The pu<br>to assess<br>tion. Resu<br>triminate l<br>s that seas<br>indicative<br>lakes optic<br>ic carbon (<br>f lakes can<br>d depositic<br>SECURITY CLASSIF<br>fied                          | and identia<br>and identia<br>trans<br>trans<br>o to pr<br>rpose c<br>water<br>lts fro<br>ake cla<br>onal an<br>of sens<br>al tran<br>DOC) pr<br>poten<br>on and         | PAGE COUNT<br>x + 102<br>fy by block number,<br>parency,<br>parency,<br>parency,<br>duality<br>om this<br>arity<br>nd multi-<br>sitivity<br>nsparency<br>resent.<br>tially<br>loading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13a. TYPE OF REPORT       13b. TIME COVERED         Final Report       FROM 8-86TO_12-88         16. SUPPLEMENTARY NOTATION         17       COSATI CODES         18. SUBJECT TERMS         acid rain,         19. ABSTRACT (Continue on reverse if necessary and identify by         The lake acidification in North         using Landsat TM to sense lake volu         important vegetation and terrain ch         project was to determine the abilit         characteristics associated with lake         study demonstrate that a remote ser         based upon reflection. Our basic f         year changes in lake optical transp         to acidic deposition. In many acid         is controlled by the amount of diss         Seasonal changes in the optical transp         provide an indication of the stress                                                                      | 14. DATE OF REPORT<br>1989, Marc<br>6 (Continue on reve<br>remote sensi<br>ring<br>block number)<br>hern Ontario<br>me reflectan<br>aracteristic<br>y of Landsat<br>(c) acidificat<br>haracteristic<br>sor can disc<br>hypothesis is<br>barency are<br>d-sensitive<br>solved organ<br>ansparency of<br>s due to acid<br>21. ABSTRACT<br>unclassi<br>22b. TELEPHOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Year, Month, Day)<br>h, 1<br>rse if necessary<br>ng, optica<br>has been i<br>ce and als<br>s. The pu<br>to assess<br>tion. Resu<br>to assess<br>tion. Resu<br>that seas<br>indicative<br>lakes optic<br>ic carbon (<br>f lakes can<br>d depositic<br>SECURITY CLASSIF<br>fied                 | and identia<br>and identia<br>trans<br>trans<br>o to pr<br>rpose of<br>water<br>lts fro<br>ake cla<br>onal ar<br>of sens<br>al tran<br>DOC) p<br>poten<br>on and         | PAGE COUNT<br>x + 102<br>Ty by block number<br>parency,<br>parency,<br>parency,<br>parency<br>of this<br>quality<br>om this<br>arity<br>nd multi-<br>sitivity<br>nsparency<br>resent.<br>tially<br>loading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

•



### FOREWORD

The authors wish to acknowledge the helpfulness of the many individuals who contributed to this study and especially John Fortescue of the Ontario Geological Survey who organized and coordinated the August 1986 field measurements and to John Colwell and Norm Roller of ERIM who developed the approach to eco-physical stratification and who also reviewed this final report.

### PRECEDITAL PACE PLANK NUT FILMED

PAGE | \_\_\_\_INTENTIONALLY BLANK

-----

**.** 1

-----

TABLE OF CONTENTS

| 1.0 | TECHNI                       | CAL SUMMARY                                                                                                                                                                                  | 1                                      |
|-----|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2.0 | INTROD<br>2.1<br>2.2<br>2.3  | UCTION<br>STATEMENT OF THE PROBLEM<br>STATEMENT OF THE OBJECTIVES<br>BACKGROUND<br>2.3.1 PH<br>2.3.2 Aluminum<br>2.3.3 Dissolved Organic Carbon<br>2.3.4 Alkalinity<br>2.3.5 Optical Effects | 5<br>5<br>5<br>7<br>7<br>8<br>8<br>9   |
|     | 2.4<br>2.5                   | DATA COLLECTED<br>DESCRIPTION OF THE STUDY REGION<br>2.5.1 Sudbury Site<br>2.5.2 Algoma Site<br>2.5.3 Dorset Site<br>2.5.4 Wawa Site                                                         | 10<br>11<br>13<br>14<br>14             |
|     | 2.6                          | SUPPORTING RESEARCH                                                                                                                                                                          | 15                                     |
|     | 2.7                          | STUDY ORGANIZATION                                                                                                                                                                           | 16                                     |
|     | 2.8                          | STUDY PARTICIPANTS                                                                                                                                                                           | 17                                     |
| 3.0 | ECO-PHY<br>3.1<br>3.2<br>3.3 | SICAL CHARACTERIZATION<br>OBJECTIVE<br>PROCEDURE<br>STRATIFICATION OF ECO-PHYSICAL FEATURES<br>3.3.1 Vegetation and Percent Cover<br>3.3.2 Sulfate Deposition<br>3.3.3 Bedrock and Soil      | 21<br>21<br>21<br>22<br>23<br>24<br>28 |
|     | 3.4                          | COMPOSITE MAP CONSTRUCTION                                                                                                                                                                   | 29                                     |
|     | 3.5                          | SENSITIVITY INDEX MODEL                                                                                                                                                                      | 31                                     |
|     | 3.6                          | CLUSTERING OF MODEL SENSITIVITY VALUES                                                                                                                                                       | 32                                     |
|     | 3.7                          | SAMPLE SITE SELECTION                                                                                                                                                                        | 35                                     |
| 4.0 | DATA C                       | OLLECTION METHODS                                                                                                                                                                            | 47                                     |
|     | 4.1                          | LAKE SAMPLING STRATEGY                                                                                                                                                                       | 47                                     |
|     | 4.2                          | SUBSURFACE OPTICAL MEASUREMENTS                                                                                                                                                              | 48                                     |
|     | 4.3                          | AIRBORNE RADIOMETER MEASUREMENTS                                                                                                                                                             | 49                                     |
|     | 4.4                          | LANDSAT TM ACQUISITIONS                                                                                                                                                                      | 49                                     |
|     | 4.5                          | DATA QUALITY MEASURES                                                                                                                                                                        | 50                                     |
| 5.0 | SUBSURF.                     | ACE AND AIRBORNE RADIOMETRIC DATA REDUCTION                                                                                                                                                  | 51                                     |
|     | 5.1                          | MER DATA REDUCTION                                                                                                                                                                           | 51                                     |
|     | 5.2                          | TRANSMISSOMETER DATA REDUCTION                                                                                                                                                               | 54                                     |
|     | 5.3                          | PROBAR DATA REDUCTION                                                                                                                                                                        | 55                                     |

**ERIM** 

TABLE OF CONTENTS (Continued)

- -----

| 6.0   | LANDSA<br>6.1<br>6.2<br>6.3         | T TM PROCESSING METHODS         LAKE SIGNATURE EXTRACTION         SOLAR ELEVATION ANGLE CORRECTION         ATMOSPHERIC HAZE CORRECTIONS                                                                     | 59<br>59<br>60<br>60       |
|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 7.0   | DEVELOI<br>7.1<br>7.2<br>7.3<br>7.4 | PMENT OF A BIO-OPTICAL REFLECTANCE MODEL         REFLECTANCE MODEL         MODEL CALIBRATION         MODEL EXTENSION WITH PROBAR DATA         REFLECTANCE SENSITIVITY TO CHANGES IN WATER         CHEMISTRY | 61<br>61<br>64<br>64<br>67 |
|       | 7.5                                 | MODEL-PREDICTED SENSITIVITY OF TM                                                                                                                                                                           | 70                         |
| 8.0   | ANALYS                              | IS OF RADIOMETRIC DATA RELATIONSHIPS<br>CHARACTERIZATION OF WATER CHEMISTRY OF STUDY                                                                                                                        | 73                         |
|       | 8.2<br>8.3<br>8.4                   | AREA LAKESANALYSIS OF SUBSURFACE IRRADIANCE MEASUREMENTS<br>ANALYSIS OF SURFACE MEASUREMENT DATA<br>THE COMPARISON OF SURFACE AND SUBSURFACE                                                                | 73<br>73<br>79             |
|       | 8.5<br>8.6                          | MEASUREMENTS<br>ANALYSIS OF TM MEASUREMENTS<br>MULTITEMPORAL RELATIONSHIPS<br>8.6.1 MER Multitemporal Analysis                                                                                              | 79<br>83<br>83<br>83       |
|       | 8.7                                 | 8.6.2 TM Multitemporal Analysis<br>ANALYSIS OF TRANSMISSOMETER ATTENUATION DATA                                                                                                                             | 85<br>89                   |
| 9.0   |                                     | IS OF ECO-PHYSICAL CLUSTERS                                                                                                                                                                                 | 93                         |
|       | 9.2                                 | PHYSICAL CLUSTERS                                                                                                                                                                                           | 93                         |
|       | 9.3                                 | PHYSICAL CLUSTERS                                                                                                                                                                                           | 94                         |
|       | 9.4                                 | DIFFERENCES AND ECO-PHYSICAL CLUSTERS<br>Analysis of TM Signal Changes Due to Acid                                                                                                                          | 95                         |
|       | 9.5                                 | Deposition ChangesANALYSIS OF DOC REFLECTANCE SENSITIVITY                                                                                                                                                   | 95<br>96                   |
| 10.0  | CONCLU<br>10.1<br>10.2<br>10.3      | USIONS AND RECOMMENDATIONS<br>GENERAL CONCLUSION<br>SPECIFIC CONCLUSIONS<br>RECOMMENDATIONS                                                                                                                 | 99<br>99<br>99<br>101      |
| REFER | ENCES                               | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                     | 103                        |
| APPEN | DIX A:                              | ECO-PHYSICAL CLUSTER ANALYSIS                                                                                                                                                                               | A-1                        |
| APPEN | DIX B:                              | PROBAR REFLECTANCE DATA                                                                                                                                                                                     | B-1                        |

\_\_\_\_\_

TABLE OF CONTENTS (Concluded)

| APPENDIX C: | SUMMARY STATISTICS FOR THE ECO-PHYSICAL POLYGON CLUSTER ANALYSIS        | C-1          |
|-------------|-------------------------------------------------------------------------|--------------|
| APPENDIX D: | WATER CHEMISTRY DATA                                                    | D-1          |
| APPENDIX E: | TRANSMISSOMETER DATA DERIVED TRANSMISSION AND ATTENUATION COEFFICIENTS  | E-1          |
| APPENDIX F: | MER-SUBSURFACE SPECTRAL RADIOMETER MULTI-<br>TEMPORAL LAKE REFLECTANCES | F <b>-</b> 1 |
| APPENDIX G: | LAKE EXTRACTED TM SIGNAL VALUES AND ATMOSPHERIC<br>CORRECTED VALUES     | G-1          |

\_\_\_\_\_

### LIST OF FIGURES

| 2.1 | The Location of the Three Study Areas                                                                                                          | 12 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.2 | Study Organization                                                                                                                             | 18 |
| 3.1 | The Annual Deposition (G/M**2) of Sulfate in Ontario<br>(from Chan, Tang and Lusis, 1983)                                                      | 25 |
| 3.2 | The Stratification Procedure                                                                                                                   | 30 |
| 3.3 | Color Code for Test Site Clusters                                                                                                              | 37 |
| 3.4 | The Algoma Area Clusters and Sampling Sites                                                                                                    | 39 |
| 3.5 | The Sudbury Area Clusters and Sampling Site                                                                                                    | 41 |
| 3.6 | The Algonquin Area Clusters and Sampling Sites                                                                                                 | 43 |
| 5.1 | Downwelling Irradiance Attenuation $K_{d}(\lambda)$                                                                                            | 52 |
| 5.2 | Subsurface Reflectance R( $\lambda$ )                                                                                                          | 53 |
| 7.1 | Absorption Cross Sections for Chlorophyll-a, DOC,<br>Suspended Minerals, and the Absorption Coefficient of<br>Pure Water                       | 62 |
| 7.2 | Backscatter Cross Sections for Chlorophyll-a, Suspended<br>Minerals, and the Backscatter Coefficient of Pure Water.                            | 63 |
| 7.3 | Reflectance Model for Dissolved Organic Carbon                                                                                                 | 66 |
| 7.4 | Model Predicted Versus PROBAR Predicted Subsurface<br>Reflectance at 440nm. PROBAR Data Collected from<br>Algoma and Sudbury Site, August 1986 | 68 |
| 7.5 | Model Predicted Versus PROBAR Predicted Subsurface<br>Reflectance at 470nm. PROBAR Data Collected from<br>Algoma and Sudbury Site, August 1986 | 69 |
| 7.6 | Sensitivity of Reflectance to Changes in DOC<br>Concentration for a Clear Lake Typical of the Sudbury<br>Site                                  | 71 |
| 8.1 | Dissolved Organic Carbon Versus pH Value for Water<br>Samples Collected from Algoma and Sudbury Sites, August<br>1986                          | 75 |

PAGE VIII INTENTIONALLY BLANK

LIST OF FIGURES (Concluded)

......

| 8.2 | Spectral Reflectance for Sunnywater Lake as Derived from MER Data Collected 13 August 1986                                                                | 77   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 8.3 | Spectral Reflectance for Center Lake as Derived from<br>MER Data Collected 22 August 1986                                                                 | 77   |
| 8.4 | Comparison of MER and PROBAR Derived Spectral<br>Relfectances                                                                                             | 79   |
| 8.5 | TM Band 1 Versus Dissolved Organic Carbon Using the<br>August 13, 1986 (P19, R27) and August 18, 1986 (P22,<br>R27) Data Sets                             | 84   |
| 8.6 | TM Band 1 Versus Dissolved Organic Carbon Using the May<br>12, 1987 (P19, R27) Scene Data                                                                 | 86   |
| 8.7 | TM Band 1 Versus Dissolved Organic Carbon Using the<br>June 13, 1987 (P19, R27) Scene Data                                                                | 87   |
| 8.8 | TM Band 1 Multitemporal (August 13, 1986 and May 22,<br>1985) Differences Versus DOC Concentration Sudbury<br>Field Site August 1986 Water Chemistry Data | 90   |
| 8.9 | Beam Attenuation Coefficient Versus Suspended Solids<br>Concentration 1987 Spring/Summer Data                                                             | 91   |
| 9.1 | Mean DOC Induced Reflectance Sensitivity for Each Eco-<br>Physical Strata Estimates Based upon August 1986 Water<br>Chemistry Measurements                | 97   |
| D.1 | MER and PROBAR Sampling Stations for the Algoma Site                                                                                                      | D-11 |
| D.2 | MER and PROBAR Sampling Stations for the Sudbury Site                                                                                                     | D-13 |
| F.1 | Smoothwater Lake                                                                                                                                          | F-2  |
| F.2 | Whitepine #1 Lake                                                                                                                                         | F-4  |
| F.3 | Sunnywater Lake                                                                                                                                           | F-6  |
| F.4 | Wolf Lake                                                                                                                                                 | F-8  |
| F.5 | North Yorkston Lake                                                                                                                                       | F-10 |
| F.6 | Whitepine #2 Lake                                                                                                                                         | F-12 |
| F.7 | Dougherty Lake                                                                                                                                            | F-14 |
| F.8 | Centre Lake                                                                                                                                               | F-16 |

**DERIM** 

### LIST OF TABLES

|     | and the second sec | 23 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.1 | Vegetation and Percentage Cover Sensitivities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 |
| 3.2 | Sensitivity Values of Sulfate Desposition Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 |
| 3.3 | Bedrock Sensitivity Categories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26 |
| 3.4 | Soil Depth Categories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 |
| 3.5 | Bedrock/Soil Sensitivity Index Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 |
| 3.6 | Topographic Relief Categories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29 |
| 3.7 | Relief Sensitivity Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 |
| 3.8 | Sensitivity Ratings and Type Values for the Ten<br>Significantly Different Clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33 |
| 3.9 | Cluster Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35 |
| 4.1 | Image Tapes Requested from NASA GSFC Landsat Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 |
| 6.1 | Thematic Mapper Data Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59 |
| 7.1 | Reflectance Model Coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65 |
| 7.2 | Comparision of PROBAR and MER Model Coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67 |
| 7.3 | Predicted Changes in Reflectance and TM Band 1 Counts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72 |
| 8.1 | Pearson Correlation Coefficient for Water Chemistry<br>Parameters with their Significance Probabilities Given<br>Directly Below Each Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74 |
| 8.2 | Pearson Correlation Coefficient for Water Chemistry<br>Parameters with MER Derived Reflectances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76 |
| 8.3 | Coefficients for Subsurface Reflectance Model using MER<br>Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78 |
| 8.4 | Pearson Correlation Coefficient for Water Chemistry<br>Parameters with PROBAR Derived Reflectances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81 |
| 9.1 | Results for Tukey's Studentized Range Test for<br>Significantly Different Mean Water-Quality Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93 |
| 9.2 | TM Relationships to Eco-Physical Sensitivity, August<br>TM 1 Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94 |



-----

LIST OF TABLES (Concluded)

| 9.3 | TM Relationships to Eco-Physical Sensitivity Analysis<br>of Variance of August-May Differences | 95   |
|-----|------------------------------------------------------------------------------------------------|------|
| B.1 | Corrected PROBAR Reflectances Above the Water Surface and Water Chemistry Data                 | B-2  |
| B.2 | PROBAR Subsurface Predicted Reflectances                                                       | B-7  |
| C.1 | Summary Statistics on Each Cluster, Maximum Like-<br>lihood Cluster Analysis                   | C-2  |
| D.1 | August 1986 WQ Data Collected from the Algoma and Sudbury Sites                                | D-2  |
| D.2 | May-June 1987 WQ Data Collected from Selected Lakes in the Sudbury Site                        | D-9  |
| G.1 | Sudbury Quad 3, August 13, 1986, Raw TM Signals and<br>Standard Deviations                     | G-2  |
| G.2 | Algoma Quad 4, August 18, 1986, Raw TM Signals and<br>Standard Deviations                      | G-6  |
| G.3 | Sudbury Quad 3, May 12, 1987, Raw TM Signals and Standard Deviations                           | G-7  |
| G.4 | Sudbury Quad 3, June 13, 1987, Raw TM Signals and Standard Deviations                          | G-8  |
| G.5 | Sudbury Quad 3, August 13, 1986, Corrected TM Signals and Standard Deviations                  | G-8  |
| G.6 | Algoma Quad 4, August 18, 1986, Corrected TM Signals<br>and Standard Deviations                | G-9  |
| G.7 | Sudbury Quad 3, May 12, 1987, Corrected TM Signals and Standard Deviations                     | G-10 |
| G.8 | Sudbury Quad 3, June 13, 1987, Corrected TM Signals and Standard Deviations                    | G-11 |
|     |                                                                                                |      |



### 1.0 TECHNICAL SUMMARY

The lake acidification in Northern Ontario has been investigated using Landsat TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of Landsat to assess water quality characteristics associated with lake acidification. Our basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of reaction to acidic deposition. Results from this study demonstrate that a remote sensor can discriminate lake transparency based upon measured reflectance. In many acid sensitive lakes, optical transparency is controlled by the amount of dissolved organic carbon (DOC) present. DOC is a strong absorbing nonscattering material which has the greatest impact at short visible wavelengths including TM band one. Acid sensitive lakes have high concentrations of aluminum, which have been mobilized by acidic components contained in the runoff. Aluminum complexing with DOC is considered to be the primary mechanism to account for increased lake transparency.

When eco-physical properties developed from vegetation, soil/ bedrock, sulfate deposition, and topographic relief characteristics were stratified across the study regions, it was determined that these regions could be described as ten separate environments based upon a simple acid sensitivity index model. This classification of the environment predicts location of regions containing acid sensitive lakes. The spatial co-occurrence of acid sensitive eco-physical parameters showed that acidification of a lake is driven mostly by local geology and soil conditions and less by the rate of sulfate deposition. Geologies which are weather resistant containing quartz rich sandstones and other quartz rock with bare or shallow sandy soils are most susceptible to regional acid deposition. These geologies produce naturally very low buffered acid sensitive lakes, contain very low amounts of DOC, and tend to have lower values of pH.

This study involved gathering an extensive amount of supporting data from 1986 and 1987. During August 1986, data were gathered from several sites representative of the range of ecosystems found in Northern Ontario. These data include limnological parameters, subsurface spectral irradiance, subsurface beam attenuation, airborne radiometry, and Landsat TM coverage. Based on these data, lake reflectance was modelled in terms of DOC and chlorophyll-a pigment concentrations. It was demonstrated that acid lakes having abnormally small amounts of DOC show greater reflectance than lakes with normal pH and DOC values. Significant correlation was found between in-situ and above surface lake volume reflectances. The model-predicted changes in TM band one signal response were consistent with observed values.

A second data set was gathered during May and June of 1987 on eight lakes to observe possible seasonal changes in subsurface and Landsat TM reflectance measurements. It was expected that spring runoff would produce decreases in DOC concentration and an increase in reflectance as a result of aluminum complexing. Actually, seasonal changes in TM observations of the lakes were very small as were the changes in the subsurface reflectance data. The significance of these changes was doubtful. In addition, little seasonal change could be demonstrated in lake water chemistry from May to June for this data set. Many of these latter constituent concentrations were near the reported lower limit of detection. During the winter of 1986 and 1987, the precipitation was particularly anomalous. Lack of snow during the winter left water levels down an average of three to four feet in the Sudbury area during spring, 1987. The lack of snow and subsequent runoff may explain the absence of a seasonal change in TM reflectance. More extensive seasonal observations are necessary to validate the season transparency hypothesis.

An historical TM scene pair (1985-1986), however, did demonstrate multi-year changes that were consistent with expected changes in water chemistry, but lacks the chemistry and in situ optical data needed for



hypothesis validation. Lakes displaying the greatest TM changes are also the ones which were identified to be in acid sensitive strata. We conclude that there is likely some seasonal changes in transparency which can be related to the acidification process but it is also likely that year to year variability is significant. Strong relationships were found between chemical and optical properties of sampled lakes and the eco-physical strata within a single date. Optical transparency in clear acidified lakes is sensitive to water guality changes.

Results show that a remote sensor can discriminate clear acid lakes from colored high DOC lakes based upon reflection. The clear acid lakes may be naturally clear. TM signals were found to be generally higher for these lakes due to higher volume reflectance and greater effective transparency. Subsurface and airborne spectral reflectance measurements confirm this result. High DOC lakes in the same sensitive environments are less prone to pH change and certainly to changes in reflectance. Many of these lakes were originally acidic and will remain so but seem to be less impacted by acid deposition than the clearer low DOC lakes. Both lake types can be distinguished by remote sensing but it is necessary to first stratify the region to identify the acid sensitive environments. When stratification of ecophysical properties is used to identify acid sensitive areas TM can be used to pick lakes which are likely to be most sensitive to acid deposition and which also are indicators of temporal change.

The opportunities for using TM to monitor multitemporal lake reflectance changes remains positive but additional data collections are considered necessary to confirm or deny the interpretations made in the present study. However, it is apparent that remote sensing of lake reflectance provides a means to identify many of these lakes and to possibly monitor their decline or recovery over extended period of time.

-------------



### 2.0 INTRODUCTION

### 2.1 STATEMENT OF THE PROBLEM

The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major problem with acid deposition is the cumulative ecosystem damage to lakes and forests. The number of lakes affected by this in northeastern United States and on the Canadian Shield is thought to be enormous.

#### 2.2 STATEMENT OF THE OBJECTIVES

This research had three principal objectives. First, determine how lake constituent concentration and lake transparency are related to annual acidic load. Second, investigate the utility of Thematic Mapper (TM) based observations to measure changes in the optical transparency in acid lakes. Third, examine the relationships between variations in lake acidification and eco-physical properties.

#### 2.3 BACKGROUND

Previous investigations have suggested that DOC, which originates from the dissolution of humic substances, controls transparency in many Canadian Shield Lakes (Howard and Perley, 1982). It has also been established that aluminum, which is abundant in the local rocks and soils, is easily mobilized by acidic components contained in spring runoff (Hendry and Brezonik, 1984). The presence of any significant amount of aluminum induces a loss of DOC from the water column by coagulation and complexing resulting in increased optical transparency. This process has not been observed in lakes with normal pH levels associated with buffered geologies. In a normal lake, transparency would tend to decrease in time with the seasonal phytoplankton productivity cycle. Thus seasonal changes in the optical transparency of lakes should potentially provide an indication of the stress due to acid deposition.

### PRECEDING PAGE BLANK NOT FILMED

5

FASE 4 MERINALLY BLANK

The potential for this optical response is related to a number of local eco-physical features with soil/geology being, perhaps, the most important. Other important factors include sulfate deposition, vegetation type, vegetation cover, and topographic relief. The area of northern Ontario under study contains a wide variety of geologies from acid-sensitive quartzite to acid-insensitive dolomite. Annual sulfate deposition ranges from 1.0 to 4.0 grams per square meter (Environmental '82 Committee, 1982).

An acidifying lake undergoes a process of decay known as oligotrophication. Fewer and fewer ions of acid within the lake can be neutralized by the biological community. Increasing acidity further hampers the normal biological processes. Even though the acidity is not yet fatal to most fish, the lake is considered acid-sensitive and scientists would most like to monitor a lake at this delicate point. An acid-sensitive lake is thought to have, in general, high aluminum ion concentrations, low pH values, low alkalinity concentrations, and low DOC concentrations.

Several investigators including Almer [1974], Malley [1982], Schofield [1972], and Yan [1983] have reported a reduction in water attenuation with acidification. Almer proposed that the changes resulted from probable interaction between aluminum mobilized in the watershed and DOC and argued that an aqueous solution with pH below 5 will result in the precipitation of humic substances (such as DOC) from the water column. At pH's above 5.5 the aluminum, as aluminum hydroxide, will precipitate from the water column. The concentration of soluble aluminum will increase significantly if watershed soils are acidified and thus there is correlation between dissolved aluminum and lake pH. Acidified lakes with high concentrations of aluminum should also be relatively clear because of the complexing reductions of DOC. Almer, however, suggests in lakes with very high humus the aluminum complexing does not result in precipitation. Effler's [et.al., 1985] description of experiments in Dart Lake not only confirm the strong relationship between DOC and lake transparency but also demonstrate

### ERIM

the coagulation/adsorption of DOC by aluminum. The following discussions relate how chemical and optical properties will be effected by the acidification process.

### 2.3.1 PH

Many lakes in the Northern Ontario region have experienced a 100-fold increase in acidity (i.e., from pH=6.8 to pH=4.4) in one decade. Much of this is due to abnormally acidic atmospheric deposition and the low buffering capacity of the Shield. The present average acid deposition over Ontario has a pH level of 4, which is ten times more acidic than normal rain and 1000 times more acidic than neutral water. Two classifications of lakes based on pH are made most often. Lakes with pH's less than 6.5 are typically acid-sensitive lakes. These lakes have severe pH fluctuations, especially during spring thaw, resulting in obvious negative biotic impacts. Lakes with a pH of 5.0 or less can only support a few acid-insensitive plankton and are generally considered "acidified". Near pH 6.5 the effects are not as noticeable, but the pH fluctuations kill off most of the young biotic generations. The process leading to an "acidified" lake begins at a pH of 6.5. Those lakes with pH's greater than 6.5 are considered more or less "normal" and the water chemistry remains fairly stable (Environment '82 Committee, 1982).

#### 2.3.2 Aluminum

Acidification transforms organic weak-acid dominated lakes to mineral strong-acid dominated lakes. More specifically, acidification decreases the availability of organic ligands for binding metals such as aluminum (Davis et al., 1985). As a result, aluminum ions are usually found in high concentrations in acid lakes, and aluminum ion data could be used to predict acid-sensitive lakes. High concentrations of aluminum ions will ensure the absence of fish since aluminum hydroxide forms on their gills, making it difficult for the fish to intake oxygen. In general, if the aluminum concentrations reach 200

 $\mu$ g/l, the lake becomes toxic to fish (Environment '82 Committee, 1982).

Since precipitation has a very low aluminum concentration, the aluminum found in a lake's water column reflects mineral weathering within watersheds or mineral dissolution from lake sediments. Therefore, we would expect that a relationship would exist between surrounding terrain and within-lake concentrations.

### 2.3.3 Dissolved Organic Carbon

Acidified lakes found in Norway undergo a precipitation of the colored organic matter (DOC) in the water by acid-mobilized metals such as aluminum (Davis, Anderson and Berge, 1985). Increasing mineral acids actually protonate organic molecules and increase their tendency to aggregate and precipitate. The mobilization of aluminum in inorganic form provides further charge neutralization of organic functional groups leading to their precipitation. Dissolved organic carbon measured from lake samples represents the amount of organics still within the water column and may reflect the nutrient status of the lake.

### 2.3.4 Alkalinity

Alkalinity is a measure of the ability of water to neutralize acid. The presence or absence of hydroxide, bicarbonate, and carbonate strongly influence the alkalinity or "buffering capacity" of a lake. Alkalinity is determined by measuring the amounts of acid required to neutralize alkaline water to pH 8.2 and pH 4.5 (pH 8.2 indicates the conversion of the carbonate to bicarbonate ions and pH 4.5 indicates the conversion of the bicarbonate ions to carbonic acid). These two acid levels determine the buffering capacity of the lake. A pH of 7.0, that of neutral water, bears little significance in the determination or expression of alkalinity (Chow, 1964). Therefore, alkalinity levels provide information not acquired with pH data alone.

### ERIM

When using Total Inflection Point (TIP) as a measure of alkalinity, an acidified lake is indicated when the TIP is less than or equal to zero (Keller and Pitblado, 1985).

A review of the literature shows that in-lake pH levels, and concentrations of DOC, aluminum and alkalinity all indicate the acid sensitivities of a lake. These parameters, however, are not just a function of in-lake processes and <u>atmospheric loading</u>; they are also a function of <u>terrigenous loading</u>, i.e., a function of bedrock, soil, vegetation, and possibly terrain relief (Effler, Schafran, and Driscoll, 1985).

#### 2.3.5 Optical Effects

The bio-optical state is a measure of the total effect of biological and chemical processes on the lake optical properties. This concept maintains that diverse constituents in natural waters can be described by a few optical parameters which represent a meaningful average estimate of the material present at any time and place.

The reflectance of a lake is optically determined from the scattering and absorption processes which occur in the epilimnion (i.e. to the depth where the downward irradiance medium can be predicted by means of the radiative transfer equation). The absorption and scattering properties are inherent optical properties and do not depend on the light field external to the medium. There are three inherent properties which together are sufficient to describe the behavior of light in the medium. The absorption coefficient is the fraction of energy absorbed from the collimated beam per unit distance traversed in the medium. The scattering coefficient is the fraction of energy which is scattered out of a collimated beam per unit distance traversed by the beam. The volume scattering function describes the fraction of energy scattered in a specific direction per unit scattering volume. These three inherent properties can be used to predict the subsurface irradiance reflectance which is described as an apparent property of the medium. The subsurface reflectance can in turn be

related to the above surface upwelling radiance which is also controlled by the radiance distribution parameters and the Fresnel transmittance. This latter radiance is a component of the radiance observed by an airborne radiometer or by Landsat TM.

The scattering and absorbing agents in natural waters can be divided into three categories: water, dissolved materials, and suspended materials. If the absorption and scattering characteristics of the medium are known, the behavior of light with the suspended and dissolved materials in the water column can be estimated. The reflectance can be related to the constituent concentrations using a simple model described later in Section 7.0 since the absorption and scattering coefficients for constituents are additive.

For lakes in slow-weathering soil/rock conditions the amount of suspended mineral content is minimal. The remaining components in these lakes which have an optical impact are chlorophyll-a pigment and DOC. Both of these components have large absorption coefficients in the blue-green spectral region. Scattering by chlorophyll-based phytoplankton is small so we are essentially dealing, in many cases, with an aquatic medium which is dominated by absorption. An increase in DOC results in increased absorption and a decrease in reflectance. Since the absorption cross section for DOC is large in the blue-green spectral region, small changes in the DOC concentration may produce significant changes in reflectance especially when the base concentration is low.

### 2.4 DATA COLLECTED

Water quality parameters were measured along with in-situ optical data in representative lakes of the Canadian Shield. This was done to calibrate a Bio-Optical Model which defines the linkages between the acid-deposition induced chemical lake processes and the upwelling radiometric signals measured by the Landsat Thematic Mapper sensor. A spring/summer TM scene pair and companion field measurements were obtained for the selected study sites located in northern Ontario.

### **SERIM**

These data will be used to investigate possible formulations of the multitemporal remote sensing causal relationships between water chemistry and observed changes in water transparency.

### 2.5 DESCRIPTION OF THE STUDY REGION

The study region of Northern Ontario consisted of four principal sites located within the following three Landsat scenes: Sudbury, Algoma, and Dorset. Relative locations of the study sites are shown in Figure 2.1 and their general characteristics are described in the section below.

### 2.5.1 Sudbury Site

<u>Location</u>: The Sudbury Site is located within the Landsat TM scene 19-27 and has the following coordinates:

> Upper Left: 47° 40.05' -80° 49.40' Lower Right: 46° 16.51' -80° 36.50'

<u>Geology</u>: The geology of the Sudbury site is dominated by the Lorrain formation which consists of quartzite, arkose, quartz sandstone, micaceous and aluminous quartz sandstone, quartz feldspar sandstone, and minor conglomerate and siltstone. Mafic intrusive diabase and granophyte dikes and sheets are distributed evenly throughout the site except near lake Wanaptei Significant amounts of conglomerate, sandstone, siltstone and argillite are found in the southern half and northern tip of the site. In addition scattered areas of felsic intrusive and metamorphic rocks, and felsic to intermediate metavolcanics occur.

<u>Vegetation</u>: Approximately 65% of the test site has conifer forest cover and approximately 35% is classified as mixed forest.

<u>Soil Sensitivity</u>: Approximately 90% of this site has low potential to reduce acidity and the soil is predominantly shallow. The remaining 10% of the site has a moderate potential to reduce acidity with shallow soils and ultramafic bedrock.



Figure 2.1. The Location of the Three Study Areas



<u>Limnology/Water Chemistry</u>: The quartzite regions have very transparent lakes (e.g., Sunnywater has a Secchi depth of 25-30 meters) with high concentrations of aluminum, low pH values (4-5.5), low DOC concentrations, and metal fallout from the Sudbury smelter. The dark humic lakes tend to have higher pH values.

<u>Acid Deposition</u>: Annual deposition in 1982 was  $1.24 \text{ g/m}^2$  of sulfate

2.5.2 Algoma Site

<u>Location</u>: The Algoma site is located within the TM scene 22-27 and has the following coordinates:

Upper Left: 47<sup>°</sup> 21.5', -84<sup>°</sup> 25.8' Lower Right:47<sup>°</sup> 00.0', -84<sup>°</sup> 13.8'

<u>Geology</u>: Granitic rock predominates (60%) in the Algoma site and is concentrated in the northeast and southwest corners. Approximately 25% of the geology consists of acid to intermediate metavolcanics and 15% is basic and undifferentiated metavolcanics. Several lakes are situated in greywacke-slate-arkose and grabbro formations.

<u>Vegetation</u>: Hardwood forests predominate (Sugar Maple, Birch, Trembling Aspen) with a few mixed stands in the lowland areas (White Birch, Black Spruce, and White Spruce).

<u>Soil Sensitivity</u>: The northern half (approximately 55%) of the site has a high sensitivity to acid deposition with 0.25 to 1 meter soil depth with sandy texture and granite and associated alkalic bedrock. The southern corner(5%) is the same as the northern half of the site. A moderate potential to reduce acidity is found in the southern part of the test site (35%), which stems from a differing bedrock (ultramafic serpentine, non-calcareous silicic sediments and anorthosite)

<u>Limnology/Water Chemistry</u>: Lakes in this region are less transparent due to a higher DOC content. Levels of pH are typically between 5 and 6.

<u>Acid deposition</u>: Annual deposition of sulfate 1.5-2.0  $g/m^2$ 

### 2.5.3 Dorset Site

<u>Location</u>: the Dorset site is located near the southern edge of TM scene 18-28.

<u>Geology</u>: Acid intrusives occur throughout this area including granite, syenite, granite gneiss, grantized sedimentary and volcanic rocks.

<u>Vegetation</u>: Predominantly hardwoods (Sugar Maple, Red Maple, Yellow Birch, Trembling Aspen) occur in this area. Hemlock and Eastern white pine are found in selected areas.

<u>Soil Sensitivity</u>: The Dorset area is in the center of a large region of high deposition. West of Dorset there is less than 50% exposed bedrock and to the east 50 to 75% is exposed.

<u>Limnology/Water Chemistry</u>: Lakes in this region are poorly buffered. DOC levels are higher and secchi depths are lower compared to the Sudbury area.

<u>Acid Deposition</u>: Annual deposition of sulfate 2.90 g/m<sup>2</sup>.

2.5.4 Wawa Site

Location: The Wawa site is located northeast of Wawa, Ontario near Michipicoten Bay.

<u>Geology</u>: The northern third of the Wawa site consists of mafic metavolcanics. Felsic metavolcanics occur in the southern tip of the site and are also interspersed with metasediments (conglomerate, greywacke, shale, arkose, and quartzite) near the middle of the site.

<u>Vegetation</u>: This site contains large non-vegetated areas which have been impacted by the smelter fumes from Wawa.

<u>Soil Sensitivity</u>: This area is primarily moderately sensitive to acid deposition. A small area of high sensitivity exists along the Maple River in the southern part of the Wawa plume.

### **BERIM**

### Limnology/Water Chemistry

Lakes in this region are buffered , have higher pH values, high DOC levels, and relatively low transparency except in the immediate vicinity of the Wawa smelter plume where the lakes are acid and clear and highly contaminated with smelter waste.

Acid Deposition: Annual deposition in 1982 was 1.5 g/m<sup>2</sup>

### 2.6 SUPPORTING RESEARCH

An historical water quality database, has been obtained from the Ministry of Environment for all of Ontario which contains many lakes within our proposed field sites. A second database is being acquired for approximately 300 lakes in the Sudbury area, many of which are located within the proposed sampling sites. The most important parameters within this database are those which have impact on the optical transparency of the water. These parameters are chlorophyll pigments, suspended mineral particles, and dissolved organic carbon. Of these DOC is considered to have the greatest influence on optical properties in Northern Ontario.

One obvious feature indicating a declining lake is low pH, but a low pH is not the only characteristic of an acidified lake. Chemical levels within a lake can also indicate its health. A study involving lake classification near Sudbury, Ontario used principal component analysis to show that chemical variability of acidified lakes is attributed to three main components: nutrient status, buffering status, and atmospheric deposition status (Pitblado et al., 1980). Nutrient status of a lake could be indicated by levels of dissolved organic carbon, while buffering status could be indicated by the alkalinity of a lake. Atmospheric deposition status might be indicated by the annual rate of sulfate deposition within an area.

Some historical data collected by John Fortescue at OGS, using the PROBAR/helicopter over a portion of the Algoma site, were made available to be analyzed with coincident limnological data. These data



were collected on August 22, 1984 and on September 6, 1985. Fortescue had attempted to used these data to separate clear and colored acidic and normal pH lakes within the site [Fortescue, 1986]. Since many of the same lakes were to be sampled during the August 1986 field work using the PROBAR radiometer, it seem reasonable to examine these data for potential relationships between the PROBAR measurements in TM bands and the measured values of DOC, pH, etc. The data set consisted of 113 sample locations and a representative subset was selected for data reduction. The reported reflectances at 10 nm intervals were first reduced to simulate TM band reflectances in bands 1 through 4. These data were then statistically correlated to the available limnological data.

Attempts to run analyses on the combined 1984/1985 data set yielded very poor correlations. The 1985 data were found to be suspect because of reported instrumentation problems and further analysis of the 1985 PROBAR data set was therefore discontinued. The pH values of the 1984 data set ranged from 4.9 to 5.57 with a mean value of 5.24. DOC values were high and ranged from 3.1 to 14.1 mg/l with a mean value of 6.7 mg/l. Correlations with estimated TM reflectance values were considered modest (-0.73 for pH and TM band 3, -0.71 for pH and TM band 4). Similarly, coefficients of 0.62 and 0.64 were determined between the two TM bands and measured DOC. Correlations of comparable magnitude were observed between pH, DOC, and Secchi depth transparency. The lack of strong correlation was attributed to the relatively high levels of DOC which almost completely absorb the radiation in TM bands 1 and 2.

### 2.7 STUDY ORGANIZATION

This study was divided it into four types of activities: 1) stratification of eco-physical sensitivity, 2) water quality measurements, 3) lake optical measurements, and 4) remote sensing measurements. These activities in turn supported calibration of an optical model which would describe the reflectance sensitivity to changes in water



parameters and relationships between spatial eco-physical features. These eco-physical features describe the environmental sensitivity to acidification. Our approach is outlined with the organizational flow chart contained in Figure 2.2. The desired result from this effort was to be able to identify which environments contain lakes which are sensitive to acidification and can be monitored using Landsat TM data.

### 2.8 STUDY PARTICIPANTS

A cooperative program with Canadian agencies and Universities interested in the remote sensing aspects of the acid deposition problem have resulted in an informal joint program which includes four major Canadian participants. These are Professor Roger Pitblado of Laurentian University in Sudbury, Ontario, Dr. John Fortescue of the Ontario Geological Survey (OGS), Dr. Vernon Singroy of the Ontario Centre for Remote Sensing (OCRS), and Professor Michael Dickman from Brock University in Saint Catherine, Ontario.

The Canadians are funded through the Ministry of Environment (MOE) and the Ontario Geological Survey for a one year period to work collaboratively on the program. These funds were budgeted to support equally remote sensing data collection and analysis and a geochemical survey.

The Canadian effort was based on meeting two separate but highly complementary objectives. The OGS objective was designed to look the relationships between environmental and geochemical studies involving lake acidification and remote sensing. The geochemical survey techniques developed by John Fortescue of the OGS involve analysis of chemical constituents in lake water samples and in bottom sediment cores. A mineral resource appraisal was a specific objective of the OGS. The MOE support was directed at examining the role remote sensing can play in the study of lake acidification in both the short and in the long term. The MOE had stressed that effort be placed on the Sudbury site where there exists an extensive limnological database.



Figure 2.2. Study Organization



The MOE plan includes examination of several historical Landsat TM and MSS collections.

- ----

·•

•



#### 3.0 ECO-PHYSICAL CHARACTERIZATION

#### 3.1 OBJECTIVE

The objective of the eco-physical stratification and characterization of acid-sensitive parameters was to reveal the location and cooccurrence of environmental attributes that influence lake acidification. The study areas were stratified into the following four parameters:

- 1. type and percent cover of vegetation,
- 2. soil and bedrock buffering capacity,
- 3. topographic relief,
- 4. sulfate deposition rate.

The acid sensitivities of these areas were then determined, based on these four parameters. Each of these parameters affects the sensitivity of the ecosystem a lake is found in and ultimately affects the water chemistry and optical signature of that lake. Stratification also provided a basis to characterize lakes within study areas which aided in the sampling design.

#### 3.2 PROCEDURE

The three Landsat scenes were stratified into eco-physical units, or "polygons", based upon soil/bedrock sensitivity, vegetation sensitivity, topographic-relief sensitivity and acid- deposition sensitivity. Sensitivity values were assigned to each polygon and combined in a linear function which produced a "sensitivity index" for each polygon using a sensitivity model. Maximum-likelihood clustering of these sensitivity indexes then revealed the location and co-occurrence of similar polygons.

#### 3.3 STRATIFICATION OF ECO-PHYSICAL FEATURES

The Algoma, Sudbury, and Dorset study areas were stratified in terms of bedrock/soil, vegetation, relief and sulfate deposition.

### PRECEDING PAGE BLANK NOT FILMED

21

PACE 20 INTENTIONALLY BLANK

# <u> ERIM</u>

Four mylar overlays were constructed, one for each of the variables, at a scale of 1:250,000.

#### 3.3.1 Vegetation and Percent Cover

The lowest pH values are found in coniferous forests. Fir trees are often found growing on weathering-resistant soils and bedrock. When precipitation falls on this type of area, the acidic water flows largely unaltered into nearby lakes at a pH of 5.6. Broadleaf forests are generally found in terrain of higher pH, so precipitation is neutralized more before it enters a lake. A much higher rate of sulfate deposition would be necessary to make the pH of runoff from a deciduous forest reach that of a coniferous forest (Environment '82 Committee, 1982).

Percent cover of vegetation also plays a factor in lake acidification. If percent cover is low, the extent and volume of surface runoff is frequently higher than for average cover conditions increases. Under these conditions, very little of the precipitation has time to penetrate into the rock and/or soil and become neutralized by the buffering systems.

TM satellite images were used for vegetation classification and lines were drawn between areas of different vegetation types and different percent covers of these types. Vegetation was categorized as conifer, hardwood, mixed or barren. If an area's vegetation consisted of 80% or more of either conifer forest or hardwood forest, then it was classified hardwood or conifer, otherwise it was classified as a mixed forest.

Percent cover for an area was derived using existing soil and bedrock sensitivity maps published by the Environment Canada Lands Directorate in 1983. These maps outline percent exposed bedrock at three levels: 0-24%, 25-50%, and 50-99%. Since there were no extensive areas of low vegetation, such as prairies, marshes, etc., the following equation was used:

(Percent forest cover) = 1 - (Percent exposed bedrock) .
### **DERIM**

Percent forest cover was divided into three classifications:

- 1. 0 49 % cover,
- 2. 50 74 % cover,
- 3. 75 99 % cover.

Vegetation and percent cover sensitivities were derived from the literature (Environment '82 Committee) and are shown in Table 3.1.

TABLE 3.1. VEGETATION AND PERCENT COVER SENSITIVITIES

| Cover    | Percent   | <u>Sensitivity Value</u> |
|----------|-----------|--------------------------|
| hardwood | 0 - 49 %  | 3.33 x .75               |
| hardwood | 50 - 74 % | 3.33 x .5                |
| hardwood | 75 - 99 % | 3.33 x .25               |
| mixed    | 0 - 49 %  | 6.67 x .75               |
| mixed    | 50 - 74 % | 6.67 x .5                |
| mixed    | 75 - 99 % | 6.67 x .25               |
| conifer  | 0 - 49 %  | 10 x .75                 |
| conifer  | 50 - 74 % | 10 x .5                  |
| conifer  | 75 - 99 % | 10 x .25                 |

These sensitivity values rank the combinations of vegetation type and percent cover on a scale from 1 to 10. Terrain with conifer forest cover was rated most sensitive and terrain with hardwood forest cover was rated least sensitive. The higher the percent cover the less sensitive the polygon was rated for potential damage.

#### 3.3.2 Sulfate Deposition

Large emissions of sulfur dioxide and nitrogen oxide from combustion (usually within coal burning industries) lead to their oxidation in the atmosphere to sulfuric acid and nitric acid. These acids dissolve in water droplets and fall to the ground via some form of precipitation. The presence of sulfuric acid in precipitation over the Continental Shield results in 100 times more acid entering these already poorly buffered ecosystems (Hendry and Brezonick, 1984).

## ERIM

The sulfate deposition overlay was drawn from enlarged 1981 meteorologic maps (Chan, et al. 1983) provided by the Ontario Ministry of the Environment (see Figure 3.1) Sulfate deposition was measured in grams/m<sup>2</sup>/year. Across all three areas, the following six classifications were derived from the maps in terms of deposition rates:

- 1. 1.0-1.5,
- 2. 1.5-2.0,
- 3. 2.0-2.5,
- 4. 2.5-3.0,
- 5. 3.0-3.5,
- 6. 3.5-4.0.

Sulfate deposition was assigned sensitivity values based on amount of sulfate deposited. Each of the six levels was assigned equally spaced sensitivity values on a scale from 1 to 10. The highest sulfate deposition was given the highest sensitivity value. The results are given below in Table 3.2.

### TABLE 3.2. SENSITIVITY VALUES OF SULFATE DEPOSITION LEVELS

| gm/m <sup>2</sup> /year | Sensitivity Value |
|-------------------------|-------------------|
| 1.0-1.5                 | 1.67              |
| 1.5-2.0                 | 3.33              |
| 2.0-2.5                 | 5.00              |
| 2.5-3.0                 | 6.67              |
| 3.0-3.5                 | 8.33              |
| 3.5-4.0                 | 10.00             |

#### 3.3.3 Bedrock and Soil

In general, the easier the ground materials around a lake weather, the less susceptible that lake is to acidification. Thus, weatherability of the lake's surrounding bedrock and soil play a large factor



OPIGINAL PAGE IS DE POOR QUALITY

Figure 3.1. The Annual Deposition (G/M\*\*2) of Sulfate in Ontario (from Chan, Tang and Lusis, 1983).

## **DERIM**

on the lake's acidity. The rate at which bedrock and soil weather depend on their hardness and their ability to release buffering ions which counter lake acidification by reducing the impact of the water runoff.

Bedrock resistant to weathering does not neutralize acid rainwater therefore it is associated with acidic lake systems. Sensitivities for bedrock/soil combinations were derived from the Environment Canada Sensitivity Maps. Bedrock was divided into four categories based on its sensitivity. These four categories are found in Table 3.3.

TABLE 3.3 BEDROCK SENSITIVITY CATEGORIES

#### Type Description

- 1 limestone, marble, dolomite
- 2 carbonate-rich siliceous sedimentary: shale, limestone; noncalcareous siliceous with carbonate interbeds: shale, siltstone, dolomite; quartzose sandstone with carbonates.
- 3 ultramafic rocks, serpentine, noncalcareous siliceous sedimentary rocks: black shale, slate, chert; gabbro, anorthosite: gabbro, diorite; basaltic and associated sedimentary: mafic volcanic rocks.
- 4 granite, gneiss, quartzose sandstone, syenitic and associated alkalic rocks.

The ability of the soil to neutralize the acid was found to be the most important factor influencing the susceptibility of a lake to acidification. Lime-rich, easy-weathering soils protected the lakes, but lakes surrounded with sandy soil and expanses of flat bare rock are mostly acid (Environment '82 Committee, 1982). Basically three categories of soil can be defined: easy-weathering clay, normalweathering loam, and resistant-weathering sand.

The soil's depth also affects the neutralization of precipitation. A deeper soil will contain larger quantities of weatherable minerals



and other buffering substances. Thin soils are often leached of such buffering substances. In the stratification, one of the soil types (clay, loam or sand) was assigned to each polygon. Each polygon was also assigned a unique soil depth. The soil depth categories used are shown in Table 3.4.

#### TABLE 3.4. SOIL DEPTH CATEGORIES

#### Category

#### Definition

| deep:    | > 1 m average soil thickness       |
|----------|------------------------------------|
| shallow: | 25 cm - 1 m average soil thickness |
| bare:    | < 25 cm average soil thickness     |

Different combinations of bedrock type, soil type, and soil depth were already ranked on the Environment Canada maps from most to least sensitive. Since there were 28 soil/bedrock combinations, the most sensitive combination was assigned a 10.0. The other combinations were assigned sensitivities ranging from 1 to 10 separated by units of 10/28. These combinations are shown in Table 3.5. **DERIM** 

| ROCK TYPE | SOIL TYPE | SOIL DEPTH | SENSITIVITY VALUE |
|-----------|-----------|------------|-------------------|
| 1         | clay      | deep       | .36               |
| 1         | loam      | deep       | .71               |
| 1         | sand      | deep       | 1.07              |
| 1         | clay      | shallow    | 1.43              |
| 1         | loam      | shallow    | 1.79              |
| 1         | sand      | shallow    | 2.14              |
| 1         | none      | bare       | 2.5               |
| 2         | clay      | shallow    | 2.86              |
| 3         | clay      | shallow    | 3.21              |
| 2         | clay      | deep       | 3.57              |
| 3         | clay      | deep       | 3.93              |
| 4         | clay      | deep       | 4.29              |
| 2         | loam      | deep       | 4.64              |
| 3         | loam      | deep       | 5.                |
| 2         | sand      | deep       | 5.36              |
| 3         | sand      | deep       | 5.71              |
| 2         | loam      | shallow    | 6.07              |
| 3         | loam      | shallow    | 6.43              |
| 2         | sand      | shallow    | 6.79              |
| 3         | sand      | shallow    | 7.14              |
| 2         | none      | bare       | 7.5               |
| 3         | none      | bare       | 7.86              |
| 4         | clay      | shallow    | 8.21              |
| 4         | loam      | shallow    | 8.57              |
| 4         | loam      | deep       | 8.93              |
| 4         | sand      | deep       | 9.29              |
| 4         | none      | bare       | 9.64              |
| 4         | sand      | shallow    | 10.00             |

TABLE 3.5. BEDROCK/SOIL SENSITIVITY INDEX VALUES

#### 3.3.4 Relief

Since the extent and volume of surface runoff plays an important factor in lake acidification, the topographic relief of the terrain surrounding a lake would help determine its acidification state. An area with steep topographic relief would allow less time for precipitation to penetrate the soil and bedrock and become neutralized. Flat topographic relief would contribute more to the neutralization of precipitation since the extent and volume of surface runoff would be less.

Relief was divided into three categories: steep, rolling, and level. This information was extracted from standard topographic maps

### FRIM

at a scale of 1:250,000. Change in elevation across unit distances was measured perpendicular to elevation contours and categorized into one of three types for each polygon. These categories are shown in Table 3.6.

#### TABLE 3.6. TOPOGRAPHIC RELIEF CATEGORIES

| Category | Definition                       |
|----------|----------------------------------|
| level:   | < 400 ft change in 2 kilometers  |
| rolling: | > 400 ft < 800 ft change in 2 km |
| steep:   | > 800 ft change in 2 kilometers  |

Topographic relief levels were assigned three sensitivity values, equally spaced from 1 to 10. These three values are shown below in Table 3.7.

TABLE 3.7. RELIEF SENSITIVITY VALUES

| <u>Relief</u> | <u>Sensitivity Value</u> |
|---------------|--------------------------|
| level         | 3.33                     |
| rolling       | 6.7                      |
| steep         | 10.00                    |

#### 3.4 COMPOSITE MAP CONSTRUCTION

The four maps were produced for each of the ecosystem parameters (bedrock and soil, sulfate deposition, terrain relief, and vegetation type and percent cover). Each map consisted of polygons that represented uniform ecosystem parameters and that were assigned corresponding sensitivity values. A composite map was then produced for each of the study areas by overlaying the four ecosystem parameter maps, and tracing them on to one overlay (see Figure 3.2). Ultimately, the new polygons created with the composite map had four sensitivity values:



Figure 3.2. The Stratification Procedure.

# **ERIM**

one for bedrock/soil, one for vegetation, one for relief and one for the sulfate deposition.

The three composite maps produced 694 polygons with a minimum polygon size of 25 square kilometers. Each polygon was numbered from 1 to 694. A computer program was written and used to read the polygon number, forest type, percent cover, bedrock type, soil type, soil depth, topographic relief and sulfate deposition into computer memory. A program subroutine was used to assign four ecosystem sensitivity values, ranging from 1 to 10, to each polygon and compute the sensitivity index for each polygon using the sensitivity index model.

A list of the polygons with eco-physical characteristics and sensitivity index values is found in Appendix A.

#### 3.5 SENSITIVITY INDEX MODEL

A sensitivity index model was developed which assigned a sensitivity index to each composite map polygon. The sensitivity index, SI, is a function of a linear combination of the four ecosystem parameters within the polygon:

SI = A x (bedrock/soil sensitivity value)

- B x (vegetation sensitivity value)
- C x (sulfate deposition sensitivity value)
- D x (topographic relief sensitivity value).

The coefficients A, B, C and D were derived from the literature, but in the absence of quantitative information. An ecosystem sensitivity study in Sweden concluded that bedrock and soil were found to be the most important factors influencing the susceptibility of a lake to acidification (Environment '82 Committee). Also, areas of nearly equal rates of sulfate deposition, but differing types of bedrock and soil, have been found to contain lakes of different buffering capacities, supporting the idea that bedrock and soil are the most important eco-physical parameters in terms of lake sensitivity. Therefore the

## **DERIM**

coefficient "A" equals four, the highest number assigned to a coefficient. A review of the literature indicated that vegetation type was highly correlated with soil and bedrock type in terms of sensitivity, so the vegetation sensitivity value was weighted as the second most important variable.

If the vegetation and soil/bedrock sensitivity values were identical in two areas, it is assumed that sulfate deposition would affect the sensitivity of a lake within the area more than topographic relief would. Therefore the following equation was developed:

#### SI = 4 x (bedrock/soil sensitivity value)

- 3 x (vegetation sensitivity value)
- 2 x (sulfate deposition sensitivity value)
- 1 x (topographic relief sensitivity value).

The sensitivity index of an eco-physical polygon is driven by the bedrock/soil and vegetation sensitivity values. The sulfate deposition and topographic relief sensitivity values still contribute to an area's sensitivity, so they are included in the model but weighted as less important. Therefore, it is hypothesized that the sensitivity index rates the acid sensitivity of an eco-physical area on a scale from 1 to 10.

#### 3.6 CLUSTERING OF MODEL SENSITIVITY VALUES

The sensitivity indexes of the polygons (approximately 694) were then clustered using a maximum likelihood hierarchical clustering procedure. The results of this clustering procedure has produced 10 significantly (p > .95) different clusters (see Appendix B). These clusters are summarized in Table 3.8. **ERIM** 

| CLUSTER RATING | BEDROCK/SOIL | VEGETATION | RELIEF | SULFATE | DEPOSITION |
|----------------|--------------|------------|--------|---------|------------|
| 1              | 5.66         | 7.04       | 4.67   | 5.57    | 4.40       |
| 2              | 6.36         | 8.05       | 4.65   | 5.78    | 5.82       |
| 3              | 6.74         | 8.16       | 5.83   | 5.28    | 5.00       |
| 4              | 6.02         | 7.67       | 4.63   | 5.25    | 5.18       |
| 5              | 7.41         | 8.47       | 7.13   | 5.62    | 6.59       |
| 6              | 3.55         | 3.28       | 2.08   | 5.57    | 5.27       |
| 7              | 7.07         | 8.50       | 6.37   | 5.36    | 6.10       |
| 8              | 5.14         | 5.96       | 4.71   | 5.46    | 3.97       |
| 9              | 7.83         | 8.71       | 8.53   | 5.20    | 6.29       |
| 10             | 4.34         | 5.21       | 3.82   | 5.01    | 3.05       |

TABLE 3.8 SENSITIVITY RATINGS AND TYPE VALUES FOR THE TEN SIGNIFICANTLY DIFFERENT CLUSTERS

The ten clusters are described in terms of their mean eco-physical sensitivity values in the following paragraphs.

<u>Cluster 1</u> is characterized by shallow sandy soils over rock types 3 and 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately 2.0 g/m<sup>2</sup>/yr.

<u>Cluster 2</u> is characterized by moderate depth soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately 2.5  $g/m^2/yr$ .

<u>Cluster 3</u> is characterized by deep sandy soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers

### **ERIM**

and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately 2.5  $g/m^2/yr$ .

<u>Cluster 4</u> is characterized by moderately deep soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately  $2.25 \text{ g/m}^2/\text{yr}$ .

<u>Cluster 5</u> is characterized by moderately deep sandy soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately 2.75 g/m<sup>2</sup>/yr.

<u>Cluster 6</u> is characterized by deep clay soils over rock type 3 with less than 30% cropping out. Vegetative cover is mostly hardwood. The terrain is level to rolling. The average acid deposition is approximately 2.25 g/m<sup>2</sup>/yr.

<u>Cluster 7</u> is characterized by shallow sandy soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the conifers. The terrain is level to rolling. The average acid deposition is approximately 2.5  $g/m^2/yr$ .

<u>Cluster 8</u> is characterized by moderately deep sandy soils over rock type 3 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods. The terrain is level to rolling. The average acid deposition is approximately 2.0 g/m<sup>2</sup>/yr.

<u>Cluster 9</u> is characterized by shallow sandy soils over rock type 4 with less than 25% cropping out. Vegetative cover is dominated by conifers. The terrain is level to rolling. The average acid deposition is approximately 2.5  $g/m^2/yr$ .

<u>Cluster 10</u> is characterized by deep sandy soils over rock types 3 and 4 with less than 50% cropping out. Vegetative cover is a mixture of

### **SERIM**

conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately 1.5  $q/m^2/yr$ .

These clusters are separated by only small changes in the mean value for each sensitivity index. The standard deviations of the above mean sensitivity index values was typically only one or two percent. Each cluster was color coded as shown in Figure 3.3. Color coded maps that show the location of the polygons within each cluster are shown in Figures 3.4 3.5 and 3.6. The listing of all eco-physical polygons by cluster with the strata descriptors is given as Appendix A. The summary statistics for the clusters is given in Appendix C.

The above clusters were further grouped into three classes which are shown in Table 3.9.

#### TABLE 3.9. CLUSTER CLASSES

| <u>Class</u>     | <u>Clusters</u> |
|------------------|-----------------|
| insensitive      | 1, 6, 8, 10     |
| mildly sensitive | 2, 3, 4         |
| sensitive        | 5, 7, 9         |

#### 3.7 SAMPLE SITE SELECTION

Site selection for in situ lake measurements was based upon the stratification and clustering analysis described above and each of the following considerations: (1) availability of historical water quality and remote sensing data, (2) existing Canadian initiatives to collect site-specific data, (3) accessibility, and (4) coverage of ecophysical lake types. Sites selected included (1) Algoma, (2) Sudbury, (3) Wawa, and (4) Dorset. Nine of the ten clusters were represented by the selected sites.

The Canadian program recommended the use of the Algoma and Sudbury sites, each comprising approximately 1000 sq. km. Priorities were set

------





| Ecophysic  | al Color | Sensitivity Index |
|------------|----------|-------------------|
| Areas      | Code     | Mean Value        |
| Cluster 1  |          | 5.66              |
| Cluster 2  |          | 6.36              |
| Cluster 3  |          | 6.74              |
| Cluster 4  |          | 6.07              |
| Cluster 5  |          | 7.41              |
| Cluster 6  |          | 3.55              |
| Cluster 7  | ORIC     | 7.07              |
| Cluster 8  | GINAL    | 5.14              |
| Cluster 9  | PAGE     | 7.83              |
| Cluster 10 | ↓        | 4.34              |

CRICINAL PAGE IS OF FOOR QUALITY

1. **1**. 1



30 km

Figure 3.4 The Algoma Area Clusters and Sampling Sites

#### ORIGINAL PAGE COLOR PHOTOGRAPH

ORIGINAL PAGE IS OFFOR QUALITY

PRECEDING PAGE BLANK NOT FILMED

### UNIGINAL PAGE CHUCR PHOTOGRAPH



30km

Figure 3.5 The Sudbury Area Clusters and Sampling Site

AREQUERING THEAT BLANK NOT FILMED

PRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE CCLOR PHOTOGRAPH



Figure 3.6 The Algonquin Area Clusters and Sampling Sites

N. S. S. S. S. FOLDOUT PRECEDING PAGE BLANK NOT FILMED

-----



for each of the four collection sites based upon group interests and availability of resources. First priority was given to the Sudbury site, second to Algoma, and third to Wawa. The Dorset site was viewed to be largely beyond the reach of a one-month field program and would only be addressed after the other data objectives had all been met. A lake sampling budget of approximately 300 samples was divided between the first three sites with 150 samples allocated to Sudbury, 130 allocated to Algoma, and 20 to Wawa. An additional 25 samples would be taken to support the Dorset sampling if resources were available.

#### RECEDING PAGE BLANK NOT FILMED

\_\_\_\_\_



#### 4.0 DATA COLLECTION METHODS

#### 4.1 LAKE SAMPLING STRATEGY

The ERIM field plan specified sampling at three different levels and with three different optical measurements. Field data collections were made during the summer of 1986 and spring of 1987. The August 1986 collections included three sites: Sudbury, Algoma, and Wawa. At each of these sites, water samples were gathered from a well distributed set of lakes using a helicopter. Radiometric measurements were made using Landsat TM, a helicopter (BELL-206) spectral radiometer (PROBAR), a subsurface spectral irradiance meter, and a subsurface beam transmissometer. The sampling strategy was to gather subsurface measurements from a small number of lakes and in sufficient number to calibrate a subsurface reflectance model. Airborne spectral measurements were gathered over a much larger set to be used to extend the subsurface results to a broader set of lake conditions. Finally these lake reflectance spectral characteristics were used to predict the reflectance characteristics of the still larger TM lake sample data set. The strategy in this three-tier sampling scheme was to develop a model/relationship from the in situ optical measurements and the measured limnological parameters. This "optical response model", once validated, was extended to the PROBAR data set and finally to the Landsat data set where it aided in the interpretation of TM observations.

During August 1986 field data were gathered from each of the three sites which included 21 water quality parameters (296 lakes), detailed subsurface optical measurements (12 lakes), airborne spectral radiometer measurements (102 lakes), and Landsat data. Most of these measurements were made in the Algoma and Sudbury sites (shown as Figures D.1 and D.2). All water chemistry data are compiled as Appendix D. PROBAR spectral radiometer measurements were made in most of the lakes that were larger than 20 hectares. The subsurface optical measurements were made in a representative set of lakes at each site. Water



parameters were determined from collected samples by the MOE on-site or at the Toronto Laboratory. Water parameters especially important to this study included DOC, conductivity, total chlorophyll-a pigment concentration, pH, sulfate, alkalinity, TIP, turbidity, suspended solids, and aluminum.

The May-June 1987 field effort involved collecting subsurface MER reflectance and transmissometer data on four separate dates from eight lakes. Water samples were also collected and were processed by the MOE. Field data collections were made on 5 May, 14 May, 13 June, and 29 June at four to eight lakes in the Sudbury site. These data were collected coincident with the TM overpass on each of those dates. Two of these TM acquisitions (12 May and 13 June) were of excellent quality and were requested from NASA GSFC. No PROBAR airborne radiometer data were collected during the spring period because the unit was not available for project use.

#### 4.2 SUBSURFACE OPTICAL MEASUREMENTS

Two instruments were used to make the subsurface optical measurements: a subsurface spectroradiometer (Biospherical Inc. MER-1000) with 11 narrow spectral bands (410, 441, 488, 520, 540, 560, 589, 625, 671 and 694 nm) and a transmissometer (SEATECH Inc.) with a single wavelength at 664 nm. These instruments were used to characterize the optical properties in several of the PROBAR-sampled lakes.

The MER-1000 subsurface upwelling and downwelling spectral spectral scans were collected in the field at variable sampling depths below the lake-water surface. MER data collections were made from a canoe (August 1986) and from a float plane pontoon (May-June 1987). The canoe measurements each consisted of 20 scans and the float plane measurements consisted of 10 scans. Fewer scans were used during the plane measurements since the instrument was allowed to drop through the water column at a faster rate. At each station a series of upwelling and downwelling irradiance measurements were made in suc-

### ERIM

cession. A pressure sensor in the MER recorded the depth of each spectral scan.

#### 4.3 AIRBORNE RADIOMETER MEASUREMENTS

A helicopter-mounted (BELL 206) spectroradiometer (PROBAR) was used to collect radiometric data in each of 10 narrow spectral bands (443, 470, 520, 550, 580, 610, 640, 670, 700 and 732 nm) at the center of each sample lake.

PROBAR data was collected on four days in 1986:

```
August 1215 LakesAugust 1354 LakesAugust 1418 LakesAugust 1846 Lakes
```

Lakes sampled with the PROBAR were limited to those large enough to be visible in TM imagery and sufficiently deep not to produce a bottom reflected signal. The PROBAR unit had been rented from Moniteq Ltd., Toronto, Ontario and was controlled with an IBM PC that also was mounted in the helicopter. The PC logged the radiometer data and allowed easy transfer to the DEC VAX780 for data analysis.

#### 4.4 LANDSAT TM ACQUISITIONS

All possible Landsat TM acquisitions were requested for the Algoma, Sudbury, and Dorset scenes for the month of August 1986. Algoma and Sudbury coverage were requested for May and June 1987. Of the scenes collected, four were considered sufficiently cloud- free to be useful. Image tapes were obtained from NASA GSFC Landsat office and are listed in Table 4.1.

#### TABLE 4.1. IMAGE TAPES REQUESTED FROM NASA GSFC LANDSAT OFFICE

| Path/Row | <u>Date</u>     |  |  |
|----------|-----------------|--|--|
| 19/27    | August 13, 1986 |  |  |
| 19/27    | May 12, 1987    |  |  |
| 19/27    | June 13, 1987   |  |  |
| 22/28    | August 18, 1986 |  |  |

All of the other acquisitions were considered non-usable based upon the positive print of TM band one received from GSFC.

#### 4.5 DATA QUALITY MEASURES

Provisions were made to ensure the quality of the data measurements. During the MER data collection, deck cell measurements of downwelling hemispherical irradiance were taken coincidentally. This ensured that the MER downwelling and upwelling profile measurements were taken while the downwelling irradiance remained constant.

When TM signals were being extracted, band four signals of water surfaces were examined for high standard deviations (> 0.5). If the standard deviation was higher than 0.5, it was assumed that the data were contaminated with either bottom or land reflectance, and they were not used.

Before transmissometer measurements were made, the air voltage was checked and recorded. The transmissometer measurement was only made if the air voltage was in the appropriate range. This air voltage was later used for calibration when calculating attenuation coefficients.

PROBAR measurements were corrected for the time of day and were calibrated using a white card of known reflectance. Instrument calibration was also done in the lab before the field work.



### 5.0 SUBSURFACE AND AIRBORNE RADIOMETRIC DATA REDUCTION

Radiometric data collected with the Biospherical MER-1000 radiometer, the SeaTECH transmissometer, the PROBAR spectral radiometer, and Landsat TM were reduced as described in the following sections.

#### 5.1 MER DATA REDUCTION

MER-1000 data were first used to interpolate the irradiance data to common depths on a logarithmic scale before computing values of subsurface reflectance. The slope of the depth log-irradiance regression equation defines the average irradiance attenuation coefficient (K). The irradiance attenuation coefficient changes very little within the mixed layer, but rapidly within the transition zone (thermocline). The thickness of the mixed layer was easily determined from the temperature depth profile. Therefore only irradiance measurements from the mixed layer were used to determine K. Downwelling irradiance attenuation for low DOC lakes (Sunnywater and Wolf) and high DOC lakes (Whitepine and Barbara) are shown in Figure 5.1.

Subsurface spectral reflectances were calculated at 2, 4, 6, and 8 meters below the surface. Example reflectance curves are shown in Figure 5.2, along with the DOC and Chlorophyll-a measurements. The impact of DOC and Chlorophyll-a on reflectance is apparent. As DOC increases the blue-green portion of the reflectance spectrum is diminished due to highly selective absorption. Chlorophyll-a also diminishes the measured reflectance below 520 nm, due to absorption. Wavelengths greater than 520 nm absorption are reduced and backscattering is increased. The reflectance calculations at 700 nm are not considered valid since the irradiances are very small and contaminated by sensor noise.

In the spring of 1987 the MER pressure sensor was calibrated so measurement depths were available without depth correction. The pressure sensor in August 1986 sampling period was precise but it was not accurate. A control profile was made during which actual and measured





Figure 5.2 Subsurface Reflectance  $R(\lambda)$ 

87-10528



depths were recorded and a simple linear relationship was found between them.

Depth = Measured Depth / .567

To obtain reflectance values it was necessary to develop two linear equations describing the relationship between the natural logarithm of irradiance (ln(E)) and corrected depth for both the upwelling and downwelling profiles. The diffuse attenuation coefficient determines the rate of irradiance loss through the water column and is defined by the following equation.

$$K(\lambda) = \frac{-1}{E(\lambda,z)} \frac{dE}{dz}$$

The irradiance data collect at multiple depths were first used to estimate K from the solution to the above equation as given by the following linear form.

$$ln(E(\lambda,z)) = K(\lambda)*z + intercept$$

Depths of 2, 4, 6 and 8 meters were then entered into the linear equation to estimate  $ln(E_u)$  and  $ln(E_d)$ . Reflectance at these four depths were then produced using the following equation:

$$R(\lambda,z) = EXP(ln(E_{\mu}(\lambda,z)) - ln(E_{d}(\lambda,z)))$$

Where  $E_u(\lambda, z)$  = upwelling irradiance at z meters and  $Ed(\lambda, z)$  = downwelling irradiance at z meters.

#### 5.2 TRANSMISSOMETER DATA REDUCTION

SeaTECH transmissometer profiles were made at every station coincident with the MER measurements. Voltage measurements were made usually at 2, 4, 6, and 8 meters after an air reading was made at each station.

Corrected voltage was then obtained using the following equation:

## **DERIM**

where Cvolt = Corrected voltage Lab Air = Lab air reading = 4.775 volts Field Air = Field air reading Mvolt = Measured voltage

Fractional transmission could be determined since it is known that 100% transmission through 25 cm of pure water has a corrected voltage of 5 volts. Fractional transmission through 25 cm of lake water is found using the following relationship:

T(664nm) = (Cvolt) / 5 volts.

The beam attenuation coefficient (c) can be derived using the fractional transmission in the following equation:

$$c(664nm) = -4 LOG(T(664nm))$$

The reduced transmission and beam attenuation coefficients for all SeaTECH measurements are given as Appendix E.

#### 5.3 PROBAR DATA REDUCTION

One objective in reducing the PROBAR data was to estimate illumination independent reflectance values which could be compared to the MER data derived values. The airborne PROBAR measurements, however, were made complicated by the helicopter blade motion and by the need for irradiance reflectance given the PROBAR is a radiance device. The rotating blade interfered with the downwelling irradiance meter and also possibly with the upwelling radiance measurements as well. The raw data from several dates showed a significant change in downwelling irradiance between measurements taken on the ground using a standardized white reflectance card. This effect was dependent on time of day and date illumination conditions. These conditions necessitated a series of five corrections be made to these data in order to make them compatible to the MER reflectance data. These corrections were (1) for standardized white card reflectance, (2) for airborne conditions, (3) for time of day, (4) for day-to-day variations in sky illumination, and (5) for surface reflectance.

### **DERIM**

Upwelling radiance,  $L_u(\lambda)$ , and downwelling irradiance values were read for ten 20 nm - wide bands ranging from 433 nm to 710 nm. Reflectance was computed in the following manner:

> $R(\lambda,0) = M(\lambda,0)/E_{d}(\lambda,0)$ where  $M(\lambda,0) = L_{u}(\lambda)*\pi$

All dates show a large change in downwelling irradiance between measurements taken on the ground (white card measurements) and measurements taken when the helicopter was airborne (all lake measurements). This discrepancy was accounted for in the change in helicopter blade tilt. When the instrument was airborne, the blades were tilted at a higher angle, thus allowing more light to reach the downwelling irradiance sensor. A correction was made by producing a second order regression equation of all airborne downwelling irradiances as a function of time. The true white card downwelling irradiance was then estimated using the resultant equation. This correction was made for each PROBAR band.

All data needed to be normalized to one unique white card reflectance for each band. The white card used for correcting the data was known to have a nearly constant reflectance value (.989) for the bands being studied. The white card reflectances were fit to a second order equation using time as the independent variable producing the measured white card reflectance curve. The true lake reflectance is adjusted by the same percent difference as that between the measured white card reflectance (MWCR) the known white card reflectance curve.

$$R(true) = R(measured) \times \left[1 - \left[\frac{MWCR - .989}{MWCR}\right]\right]$$

A final correction was made to PROBAR measurements which was lakedependent. The assumption was made that no internal lake reflectance was measured in the band centered at 700 nm. This measurement was assumed to be an indication of wave induced surface reflected noise and thus was subtracted at all wavelengths. This correction only changed the offset of the spectral reflectance curve, not its shape.



The above and below surface corrected PROBAR reflectances are given as Appendix B.




6.0 LANDSAT TM PROCESSING METHODS

#### 6.1 LAKE SIGNATURE EXTRACTION

Extraction software was applied to all three TM scenes. Lake signals were extracted from the TM images by finding the latitude and longitude of lakes of interest on topographic maps and using these latitudes and longitude to extract lake signatures from geometrically corrected imagery using extraction software. Nine brightness values were extracted from each lake and their means were used in subsequent processing. A three by three pixel area was extracted and the mean signal and its standard deviation for each band were recorded. To ensure that the spectral signatures represented water and not cloud, shoreline or bottom reflectance, TM band 4 signals were inspected. Average signals in TM band four were found to range between 11.0 and 14.0 with a standard deviation for values within an individual samples of less than 1.0. Thus for samples which had mean values outside this range or with sample standard deviations greater than 1.0 the sample was rejected and considered to indicate a non-water mixed reflectance. The rejected samples were replaced with values extracted from another part of the lake surface. Brightness values were extracted from the approximate center of each lake based upon the latitude and longitude of each lake center. These extracted mean values were then correlated to historical water chemistry data available for the same lakes as discussed in Section 8.0.

The TM data extracted is summarized in Table 6.1.

# TABLE 6.1. THEMATIC MAPPER DATA EXTRACTED

| Path/Row | Quad | Date    |
|----------|------|---------|
| 22/27    | 1    | 8/18/86 |
| 22/27    | 4    | 8/18/86 |
| 22/27    | 4    | 5/27/85 |
| 19/27    | 3    | 8/13/86 |
| 19/27    | 3    | 5/22/85 |

59

PAGE 58 INTENTIONALLY BLANK

# ERIM

# 6.2 SOLAR ELEVATION ANGLE CORRECTION

All lake data were corrected for the solar elevation angle of each scene. This correction simply involved dividing each brightness value mean by the cosine of the solar zenith angle.

# 6.3 ATMOSPHERIC HAZE CORRECTIONS

A haze correction needed to be applied to the TM data so that real comparisons could be made between lakes within and between scenes which had varying amounts of haze distorting the signals. Lakes of equivalent Dissolved Organic Carbon (DOC) concentrations should have similar TM signals in band one but these data showed instead wide variations. The lakes with elevated TM band one counts also had elevated counts in bands two, three, and four. Since band 4 counts represent virtually no internal lake reflectance, it was hypothesized that relative differences between lakes in band four represented differences in atmospheric haze. Linear regression analyses between bands one and four, bands two and four, and bands three and four showed nearly linear behavior but with different slope and a small intercept. Also, these derived slope values were found to be scene dependent. The slopes between bands were derived using regression analyses and used directly in the haze correction algorithms. Thus the correction for haze was both wavelength dependent and scene dependent. The following three equations are the haze correction algorithms for the three TM bands used:

 $TM-1(corr) = TM-1 - (TM-4 \times M_1)$   $TM-2(corr) = TM-2 - (TM-4 \times M_2)$  $TM 3(corr) = TM 3 - (TM 4 \times M_3)$ 

 $\rm M_1,~M_2,~and~M_3$  are the slopes between bands one and four, bands two and four, and bands three and four, respectively.

This procedure reduced the impact of haze as indicated by the improved correlation between TM band one signals and DOC (i.e. from 0.62 to 0.83).



7.0 DEVELOPMENT OF A BIO-OPTICAL REFLECTANCE MODEL

#### 7.1 REFLECTANCE MODEL

A TM radiative transfer model was developed to predict possible changes in radiometer signal levels which result from field-measured changes in chemical properties. Work on this model included specific calibration for the Landsat TM sensor. The model treats atmospheric optics, water optics, and the wind ruffled air-water interface. A solar ephemeral model has also been implemented to provide a capability to simulate the entire sun-sensor geometry. For many of the lakes involved in this study absorbing effects of DOC dominate the scattering effects of suspended minerals and organic particles. Under these conditions subsurface reflectance can be estimated as the ratio of backscattered radiation to the total lost by both backscattering (Bb) and absorption (a).

The specific values of a and Bb will depend on the concentrations of silt (mineral particles), chlorophyll-a pigments (C), and DOC. The absorption and scattering cross sections used in the present study were those derived by Bukata [1985] in his detailed optical analysis of Lake Ontario waters. These cross sections are shown in Figures 7.1 and 7.2.

The specific concentrations of each component were used together with these cross sections to estimate the absorption and backscattering coefficient. The following equation gives the general subsurface reflectance model:

$$R(\lambda) = C_{0}(\lambda) \cdot \frac{Bb(\lambda)}{a(\lambda) + Bb(\lambda)}$$

where  $R(\lambda)$  = Subsurface irradiance reflectance  $C_0(\lambda)$  = Constant (typical value = .33)  $Bb(\lambda)$  = Total backscattering coefficient  $a(\lambda)$  = Total absorption coefficient

Absorption Cross Sections for Chlorophyll-a, DOC, Suspended Minerals, and the Absorption Coefficient of Pure Water. Figure 7.1.







This model calculates subsurface reflectances (at the wavelengths measured by the MER) given the concentrations of chlorophyll, DOC, and suspended solids as shown in the following equation:

$$R(\lambda) = C_{O}(\lambda) \cdot \frac{(Bb_{W}(\lambda) + Bb_{C}(\lambda) \cdot [C] + Bb_{SM}(\lambda) \cdot [SM])}{(a_{W}(\lambda) + a_{C}(\lambda) \cdot [C] + a_{SM}(\lambda) \cdot [SM] + a_{DOC}(\lambda) \cdot [DOC] + Bb's)}$$

where R = Subsurface hemispherical reflectance

- SM = suspended solid concentration (mg/l)
- C = chlorophyll concentration ( $\mu g/1$ )
- DOC = Dissolved organic carbon concentration (mg/l)

#### 7.2 MODEL CALIBRATION

Backscattering and absorption values were regressed with the MER-1000 estimated subsurface reflectance at each wavelength producing an estimate of constant coefficient ( $C_0$ ) which is listed in Table 7.1. The resulting set of reflectance equations can be used to examine the spectral reflectance dependence on DOC and other constituents. The mineral particle concentrations were found to be extremely small, on the order of 0.1 mg/l. If one assumes a chlorophyll-a concentration of 1.0  $\mu$ g/l (a typical value) then the DOC reflectance varies between 1% and 6% in TM band one as depicted in Figure 7.3.

# 7.3 MODEL EXTENSION WITH PROBAR DATA

The PROBAR above-surface reflectance data were collected in August 1986. These data were converted to subsurface reflectances for over one-hundred lakes using a regression procedure (described in Section 8.5).

The model developed for the MER subsurface reflectance data was tested using the PROBAR-predicted subsurface reflectance data. The Marquardt method was used for developing the non-linear model. This method is equivalent to performing a series of ridge regressions and is most useful when the parameter estimates are highly correlated.

Table 7.1.

-

# **Reflectance Model Coefficients**

| <u>λ (nm)</u> | ്     | Std. Error |
|---------------|-------|------------|
| 410           | 0.731 | 0.1382     |
| 441           | 0.678 | 0.1193     |
| 488           | 0.525 | 0.0063     |
| 520           | 0.360 | 0.0318     |
| 540           | 0.319 | 0.0373     |
| 560           | 0.301 | 0.0520     |
| 589           | 0.374 | 0.0679     |
| 625           | 0.300 | 0.0753     |
| 656           | 0.345 | 0.0930     |
| 671           | 0.383 | 0.0936     |
| 694           | 0.519 | 0.1156     |



Figure 7.3. Reflectance Model for Dissolved Organic Carbon (DOC)

Since DOC and chlorophyll, (the two model parameters), have a correlation coefficient of about 0.73, the Marquardt method seemed appropriate.

To estimate how well this model fit the PROBAR predicted subsurface reflectance data, the coefficients produced using these data were compared to those produced using the MER data. The results of using the non-linear model on data from wavelengths of 443, 470, 520 and 540  $\mu$ m are listed in Table 7.2.

TABLE 7.2. COMPARISON OF PROBAR AND MER MODEL COEFFICIENTS

|                                                          | PROBAR            | MER               |
|----------------------------------------------------------|-------------------|-------------------|
| C <sub>443</sub><br>C <sub>470</sub><br>C <sub>520</sub> | .51<br>.48<br>.42 | .73<br>.68<br>.36 |
| C550                                                     | .32               | .32               |

The model fits the data best in the longer wavelengths. At worst, the model coefficients are different by .22, or approximately 30% (for  $\lambda$ =443 nm). At best, there is no difference between the coefficients ( $\lambda$ =550 nm).

A comparison of the actual PROBAR predicted subsurface reflectance and the model-predicted subsurface reflectance was made to test the performance of the reflectance model. The correlation between the predicted and actual subsurface reflectance models was quite high, ranging from .81 to .89, depending on the wavelength. Model-predicted versus PROBAR-predicted subsurface reflectances at 440 nm and 470 nm are shown in Figures 7.4 and 7.5, respectively.

# 7.4 REFLECTANCE SENSITIVITY TO CHANGES IN WATER CHEMISTRY

The sensitivity of reflectance to changes in DOC is given by the following derivative of the model equation:



Model Reflectance





$$\frac{dR(\lambda)}{d[DOC]} = \frac{a_{DOC}(\lambda) \cdot (Bb_{w}(\lambda) + Bb_{SM}(\lambda) \cdot [SM] + Bb_{C}(\lambda) \cdot [C] \cdot Co(\lambda)}{(a_{DOC}(\lambda) \cdot [DOC] + a_{C}(\lambda) \cdot [C] + a_{SM}(\lambda) \cdot [SM] + a_{w}(\lambda))^{2}}$$

Figure 7.6 shows the change in reflectance sensitivity for a given DOC concentration. The plotted sensitivity values are for the Sudbury site, calculated using the above equation and measured values of DOC and chlorophyll-a.

# 7.5 MODEL-PREDICTED SENSITIVITY OF TM

The ability to detect a seasonal change using depended on the measured TM reflectance changes, and on the sensitivity of reflectance to changes in DOC and chlorophyll-a pigment concentration.

The impact of DOC changes on reflectance can be calculated using the sensitivity equation in Section 7.4. The expected TM band one signal change per percent subsurface reflectance change was estimated previously to be 2.86 counts/percent. If it is assumed that seasonal changes in DOC are on the order of 50%, then background levels of two to three count changes are projected in the TM response. These predictions are summarized as Table 7.3.



Figure 7.6. Sensitivity of Reflectance to Changes in DOC Concentration for a Clear Lake Typical of the Sudbury Site.

# PREDICTED CHANGES IN REFLECTANCE **AND TM BAND 1 COUNTS** Table 7.3.

|                    | AIM COUNS | 1.7  | 2.0  | 1.6  | 1.6  | 0.6  |
|--------------------|-----------|------|------|------|------|------|
| <u>AB(%)</u>       |           | 0.84 | 1.00 | 0.80 | 0.80 | 0.30 |
| ADOC (mo/l)        |           | 0.15 | 0.25 | 0.50 | 1.00 | 1.00 |
| DOC(ma/l)          |           | 0.3  | 0.5  | 1.0  | 2.0  | 3.0  |
| DOC<br>Sensitivitv |           | 5.6  | 4.0  | 1.6  | 0.8  | 0.3  |

RIM

# 8.0 ANALYSIS OF RADIOMETRIC DATA RELATIONSHIPS

# 8.1 CHARACTERIZATION OF WATER CHEMISTRY OF STUDY AREA LAKES

The August 1986 water chemistry data collected in this experiment contain twenty-eight in-lake water parameters for 300 lakes across Ontario. Pearson correlation coefficients and their significance probabilities were produced for a subset of these data set and are listed in Table 8.1. There were strong correlations between pH and total inflection point alkalinity and aluminum (.88 and -.75, respectively). The correlation between pH and DOC was found to be much lower at 0.61 but which still indicates a significant relationship exists. A scatter plot of pH and DOC is shown as Figure 8.1. It is evident from these data that the strongest relationship exists for DOC values less than 3.0 mg/1.

# 8.2 ANALYSIS OF SUBSURFACE IRRADIANCE MEASUREMENTS

Based upon the reflectance model analysis high correlations were expected between lake water chemistry and MER optical measurements. The Pearson correlation coefficients and their significant probabilities are tabulated in Table 8.2 for the August 1986 water chemistry data. In general, there is a high correlation between the short wavelength reflectances ( $\lambda < 540$  nm) with Secchi depth (SD), chlorophyll-a (CHLOR), DOC, aluminum (AL), and pH. The high correlations with SD, DOC, and AL support the phenomenological relationships between water chemistry parameters and optical properties as discussed previously in Chapter 2.0. The lower correlations with chlorophyll-a values were expected since pigment concentrations measured in many of these lakes was so small.

Mer spectral reflectances were plotted for selected lakes which are given as Appendix F. The clear acid lakes were found to have spectral reflectances with peaks in the 400-450 nm range and shape similar to that obtained for Sunnywater Lake (see Figure 8.2). By contrast the high DOC lakes have spectral reflectance curves which

| Pearson Correlation Coefficient for Water Chemistry | Parameters With Their Significance Probabilities Give | Directly Below Each Value. |
|-----------------------------------------------------|-------------------------------------------------------|----------------------------|
| Table 8.1.                                          |                                                       |                            |

|          | H                  | DOC                | ٩٢                 | S04                | TTLCHLA            | TIP                |
|----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Н        | 1.00000<br>0.0000  | 0.81434<br>0.0001  | -0.74745<br>0.0001 | -0.07978<br>0.5085 | 0.38838<br>0.0009  | 0.87665            |
| DOC      | 0.61434            | 1.00000            | -0.52390           | -0.26801           | 0.63197            | 0.60011            |
|          | 0.0001             | 0.0000             | 0.0001             | 0.0238             | 0.0001             | 0.0001             |
| AL       | -0.74745           | -0.52390           | 1.00000            | 0.17498            | -0.39310           | -0.55308           |
|          | 0.0001             | 0.0001             | 0.0000             | 0.1445             | 0.0007             | 0.0001             |
| S04      | -0.07976<br>0.5086 | -0.26801<br>0.0238 | 0.17498<br>0.1445  | 1.00000            | -0.31333<br>0.0078 | -0.08545<br>0.4788 |
| TTLCHL_A | 0.38638            | 0.63197            | -0.39310           | -0.31333           | 1.00000            | 0.27312            |
|          | 0.0009             | 0.0001             | 0.0007             | 0.0078             | 0.0000             | 0.0212             |
| TIP      | 0.87665            | 0.60011            | -0.55306           | -0.08546           | 0.27312            | 1.00000            |
|          | 0.0001             | 0.0001             | 0.0001             | 0.4786             | 0.0212             | 0.0000             |
| TM1M     | -0.37128           | -0.62291           | 0.29944            | 0.04549            | -0.41944           | -0.30883           |
|          | 0.0014             | 0.0001             | 0.0112             | 0.7084             | 0.0003             | 0.0088             |
| TM2M     | -0.12047           | -0.02355           | 0.08366            | -0.27447           | 0.17102            | -0.11600           |
|          | 0.3170             | 0.8454             | 0.4879             | 0.0205             | 0.1539             | 0.3354             |
| TM3M     | 0.09888            | 0.30386            | -0.10660           | -0.41955           | 0.38174            | 0.08820            |
|          | 0.4120             | 0.0100             | 0.3763             | 0.0003             | 0.0010             | 0.4645             |
| TM4M     | 0.00220            | 0.15893            | -0.07001           | -0.20989           | 0.31086            | -0.03488           |
|          | 0.9855             | 0.1855             | 0.5618             | 0.0789             | 0.0083             | 0.7742             |

.....



Figure 8.1. Dissolved Organic Carbon Versus pH Value for Water Samples Collected From the Algoma and Sudbury Sites, August 1986.

★ ALGOMA
▲ SUDBURY

75

H

| Pearson Correlation Coefficient for Water Chemistry | Parameters With MER Derived Reflectances. |
|-----------------------------------------------------|-------------------------------------------|
| Table 8.2.                                          |                                           |

|              | SD       | CHLOR    | DOC      | Н        | S04      | ٩٢       |
|--------------|----------|----------|----------|----------|----------|----------|
| R410         | 0.87358  | -0.40861 | -0.68363 | -0.65564 | 0.47815  | 0.75800  |
|              | 0.0102   | 0.3628   | 0.0904   | 0.1098   | 0.2778   | 0.0483   |
| R441         | 0.94129  | -0.67301 | -0.85663 | -0.71163 | 0.47624  | 0.75093  |
|              | 0.0051   | 0.1429   | 0.0294   | 0.1127   | 0.3397   | 0.0853   |
| R488         | 0.94829  | -0.54928 | -0.78658 | -0.75139 | 0.66595  | 0.78604  |
|              | 0.0011   | 0.2018   | 0.0359   | 0.0515   | 0.1096   | 0.0361   |
| R520         | 0.90124  | -0.62673 | -0.69532 | -0.62782 | 0.76237  | 0.59270  |
|              | 0.0056   | 0.2266   | 0.0828   | 0.1311   | 0.0463   | 0.1608   |
| R540         | 0.53591  | -0.15807 | -0.25555 | -0.16285 | 0.62424  | 0.14878  |
|              | 0.2150   | 0.7350   | 0.5802   | 0.7272   | 0.1340   | 0.7502   |
| <b>R56</b> 0 | -0.65033 | 0.70762  | 0.77824  | 0.80694  | -0.26848 | -0.72104 |
|              | 0.2005   | 0.0763   | 0.0393   | 0.0283   | 0.5605   | 0.0675   |
| R589         | -0.76855 | 0.88722  | 0.94489  | 0.92644  | -0.55073 | -0.76152 |
|              | 0.0435   | 0.0077   | 0.0013   | 0.0027   | 0.2001   | 0.0467   |

----



Figure 8.2. Spectral Reflectance for Sunnywater Lake as Derived From MER Data Collected 13 August 1986.



Figure 8.3. Spectral Reflectance for Center Lake as Derived From MER Data Collected 22 August 1986.

have generally lower reflectances values and a spectral peak at approximately 550 nm. For these lakes, the high DOC concentrations (2.0 - 4.0 mg/1) are consistent with the low reflectance values derived for the shorter wavelengths.

The high-DOC basic lakes have curves shaped more like Center Lake (see Figure 8.4). Therefore, the following indicator for characterizing acid and basic lakes using these spectral data could be calculated:

$$I = \frac{\text{Reflectance (500 } \mu\text{m})}{\text{Reflectance (560 } \mu\text{m})}$$

This suggested indicator, I, which takes advantage of the difference in the shapes of spectral curves, is greater than 1.0 for acidified lakes and is less than 1.0 for buffered, high DOC lakes.

The MER reflectances were also analyzed using the non-linear reflectance model described in Section 7.0. The suspended solids were assumed to be constant at 0.1 mg/1. The model converged for all the MER data collected and the following coefficients  $C_0(\lambda)$  are shown in Table 8.3.

| TABLE 8.3. | COEFFICIENTS FOR<br>USING MER DATA | SUBSURFACE | REFLECTANCE | MODEL |
|------------|------------------------------------|------------|-------------|-------|
|------------|------------------------------------|------------|-------------|-------|

|                 | 1986 |       | 1      | .987    |         |
|-----------------|------|-------|--------|---------|---------|
| Wavelength (µm) | Aug  | May 5 | May 12 | June 13 | June 30 |
| 488             | .524 | .388  | .523   | .779    | .89     |
| 560             | .302 | .338  | .332   | .523    | .667    |

The August data were collected under the best conditions, so the coefficients produced for these data were used as standards to compare the other dates. The May 12 data produced coefficients nearly equal to those produced using the August data. The June reflectance data do not seem to fit the same model suggesting that the water chemistry had



# Figure 8.4. Comparison of MER and PROBAR Derived Spectral Reflectances.

changed dramatically and the DOC reflectance model assumptions were no longer valid.

To find out how well the model worked for each date, the correlations between actual and model-predicted subsurface reflectances were calculated. There was no correlation between actual and predicted subsurface reflectance for any of the spring data at 560  $\mu$ m. For 488  $\mu$ m the correlation between actual and predicted reflectances was less than .24 for the two June dates. However, the same correlations for May 5 and May 12 are .93 and .97, respectively. The reflectance differences between actual and predicted reflectances were less than 1.15% for these two dates.

#### 8.3 ANALYSIS OF SURFACE MEASUREMENT DATA

The PROBAR-derived surface reflectance data were found to be highly correlated with the MER subsurface reflectance data as shown by the examples in Figure 8.3. To determine if the correlations of water chemistry with PROBAR data were similar to those with the MER data, another correlation matrix was calculated. Table 8.4 contains PROBAR correlations with water chemistry at multiple wavelengths. The correlations of reflectance with the water chemistry are much lower, but still reach -.80, -.68, and -.64 for DOC, pH and chlorophyll. This was expected, however, since varying lake surface waves and atmospheric haze introduced more noise in the signal measured by the PROBAR.

# 8.4 THE COMPARISON OF SURFACE AND SUBSURFACE MEASUREMENTS

An experiment was conducted to determine the relationship between the surface and the subsurface measurements of lake volume reflectance. The surface reflectance was measured using the PROBAR spectral radiometer mounted in a helicopter and the subsurface reflectance was measured using the MER submersible radiometer. Modeling theory predicted that the relationship between these two measurements would be

| Table { | 3.4. Peć         | arson Correl           | lation Coe         | fficient for       | Water Ch          | emistry           |
|---------|------------------|------------------------|--------------------|--------------------|-------------------|-------------------|
|         | Par              | ameters Wi             | th PROBA           | R Derived          | Reflectan         | ces.              |
|         | <u>م</u>         | H DOC                  | TIP                | TTLCHL_A           | AL                | ,<br>\$0 <b>4</b> |
| R443    | -0.6410          | 8 -0.73158             | -0.44737           | -0.62890           | 0.57202           | 0.57597           |
|         | 0.000            | 1 0.0001               | 0.0001             | 0.0001             | 0.0001            | 0.0001            |
| R470    | -0.6569          | 6 -0.75080             | -0.46922           | -0.63443           | 0.57275           | 0.58581           |
|         | 0.000            | 1 0.0001               | 0.0001             | 0.0001             | 0.0001            | 0.0001            |
| R490    | -0.6609          | 4 -0.75960<br>1 0.0001 | -0.47927<br>0.0001 | -0.63707<br>0.0001 | 0.58908<br>0.0001 | 0.58866<br>0.0001 |
| R520    | -0.6809<br>0.000 | 1 0.001                | -0.50436<br>0.0001 | -0.64002<br>0.0001 | 0.58672<br>0.0001 | 0.62239<br>0.0001 |
| RSEO    | -0.6281          | 3 -0.78275             | -0.47444           | -0.58288           | 0.54829           | 0.59749           |
|         | 0.000            | 1 0.0001               | 0.0001             | 0.0001             | 0.0001            | 0.0001            |

linear. Therefore, the relationship between PROBAR and MER measurements could be described using the equation:

 $R_i(mer) = m \times R_1(PROBAR) + b$ 

where m = slope

b = y-axis intercept

 $R_i$  = reflectance at band i

The results of a linear regression analysis of each spectral band and the corresponding statistical significance ( $\alpha = .05$ ) of each regression are found in the following table:

| Wavelength | <u>b</u> | <u> </u> | <u>Significant (a &lt; .05)</u> |
|------------|----------|----------|---------------------------------|
| 443        | 33       | .53      | yes                             |
| 470        | .215     | .44      | yes                             |
| 490        | .43      | .42      | yes                             |
| 520        | .55      | .44      | yes                             |
| 550        | 1.17     | .19      | no (p = .36)                    |
| 580        | 1.04     | .14      | no (p = .76)                    |
| 610        | -1.11    | 1.59     | yes                             |
| 640        | 57       | 1.86     | yes                             |
| 670        | 27       | 1.49     | yes                             |
| 700        | 0.0      | 1.0      | yes                             |

The results shown in Section 5.5 support the hypothesis that there is a linear relationship between the MER and the PROBAR data for all but wavelengths 550 and 580 nm. At most wavelengths, then, subsurface lake volume reflectance can be predicted with reasonable accuracy when only the PROBAR reflectance data are available. This result is significant since acquiring lake reflectance data with the PROBAR is less expensive and quicker that with the in situ measurements.

# ERIM

#### 8.5 ANALYSIS OF TM MEASUREMENTS

The haze normalized TM data for August 1986 show sensitivity to lake DOC concentrations as indicated by the data plotted in Figure 8.5. These results confirm the model predicted sensitivity of the TM band on signals to changes in DOC. The model predicted a DOC reflectance range of about 5% which corresponds to a 14.3 signal count spread in the TM band one data. TM data from the Sudbury site are consistent with the predicted spread in DN counts. The Algoma data appear to lack sensitivity to changes in DOC which is likely due to the fact that most lakes in the Algoma region have high values of DOC and chlorophyll-a.

#### 8.6 MULTITEMPORAL RELATIONSHIPS

Multitemporal analyses could be made for TM and MER data only since these were the only measurements made in the spring of 1987. PROBAR multitemporal relationships could not be examined since this instrument was not available to the project in 1987.

# 8.6.1 MER Multitemporal Analysis

The corrected MER data yielded several multitemporal trends. These trends differed depending on the buffering capacity of the lake. Acidified lakes, such as Dougherty and Wolf, (TIP < 0), had small multitemporal reflectance changes from 500  $\mu$ m to 600  $\mu$ m (< .4% reflectance). All the acid lakes showed large reflectance differences in to 400  $\mu$ m to 500  $\mu$ m region. Each lake showed a decrease in reflectance form August, 1986 to May 5, 1987, and then an increase in reflectance from May 5, 1987 to May 12, 1987 between 400  $\mu$ m to 500  $\mu$ m. These data for three lakes' reflectances at 441  $\mu$ m are tabulated below:



\$.



| Name       | <u>8/86</u> | <u>5/5/87</u> | 5/12/87 |
|------------|-------------|---------------|---------|
| Sunnywater | 6.5         | -             | 7.4     |
| Wolf       | 3.2         | 2.1           | 3.2     |
| Dougherty  | 3.8         | 2.3           | 2.6     |

In contrast, the buffered lakes, (TIP > 0), did not show a large difference (> .4% reflectance) in the 400  $\mu$ m to 500  $\mu$ m region but did show large multitemporal differences from 500  $\mu$ m to 600  $\mu$ m. At 560  $\mu$ m, the basic lakes increased in reflectance form August 1986 to May 5, 1987. No consistent change in reflectance from May 5, 1987 to May 12, 1987 was found for the buffered lakes. The reflectance data for 560  $\mu$ m measured from buffered lakes are found below:

| Name        | 8/86 | <u>5/5/87</u> | <u>5/12/87</u> |  |
|-------------|------|---------------|----------------|--|
| Centre      | 1.8  | 2.6           | 1.7            |  |
| Whitepine 2 | 1.2  | 1.6           | 2.0            |  |

In conclusion, differences in multitemporal MER reflectance trends between buffered and acidified lakes were found. Acidified lakes had a decrease in reflectance for the 400  $\mu$ m to 500  $\mu$ m region and relatively no change for the 500  $\mu$ m to 600  $\mu$ m region. Buffered lakes had an increase in reflectance for the 500  $\mu$ m to 600  $\mu$ m region and relatively no change to the 400  $\mu$ m to 500  $\mu$ m region.

#### 8.6.2 TM Multitemporal Analysis

The TM band one seasonal change patterns are similar to those indicated for the August 1986 data. The August low DOC lakes were found to have larger TM DN values than with the May 12, 1987 and June 13, 1987 collection dates. These data are shown in Figures 8.6 and 8.7, respectively. The extracted and atmospherically normalized TM data are given as Appendix G. The size of the TM band one count changes for Sudbury are substantially larger than predicted. Furthermore,





these count differences suggest a two to three percent change in subsurface reflectance, needed a greater DOC change sensitivity than predicted in Table 7.3.

Multitemporal differences were calculated for the following pairs of dates:

August 1986 - May 1987 August 1986 - June 1987 June 1987 - May 1987

These differences were analyzed to determine whether or not they aided in identifying acidified and buffered lakes.

The multitemporal changes in MER-derived subsurface reflectance were used to determine the expected changes in TM signal counts for bands one and two using the conversion factors given in Section 2.5. The expected changes in TM signal counts for band two were all found to be within the noise level for band two data. Therefore, the band two multitemporal differences were insignificant for the 1986-1987 scene pair. Furthermore, approximately 90% of the TM band 1 differences were also in the noise level. As a result, obvious multitemporal differences using TM data were not found.

The majority of the multitemporal analyses were based on the August - May scene pair. When all of the lakes (n = 41) are analyzed for significant differences  $(\alpha = .1)$  between August and May reflectance changes, no difference is found between acidified and buffered lakes.

Another test was made to determine if the August - May TM band one differences were a function of DOC, TIP, chlorophyll and/or aluminum levels measured in 1986. A multivariate regression analysis was done and all of the parameter estimates were insignificant ( $\alpha = .5$ ). These results lead to conclusion that the TM band one differences were not a function of water chemistry.

Data were also extracted from a May 22, 1985 scene for the Sudbury site and the differences in TM band 1 were formed with the August 13, 1986 scene. These differences were then compared to DOC values collected in August 1986. The results are shown in Figure 8.8 and indicated a possibly strong seasonal relationship to DOC concentrations and especially for those lakes with less than 3.0 mg/1 DOC.

#### 8.7 ANALYSIS OF TRANSMISSOMETER ATTENUATION DATA

A study was conducted which examined the relationship between the water attenuation coefficient ( $\alpha$ ) at 600  $\mu$ m and the suspended solid concentrations in eight lakes. The attenuation coefficient correlates positively with the suspended solids ( $\rho$  = .845). These data are shown in Figure 8.9 and shows and a linear relationship between the attenuation coefficient and the suspended solids. This further supported the possibility of suspended solid concentrations affecting the accuracy of the subsurface reflectance model since the suspended solids concentration coefficient and the attenuation coefficient affects lake volume reflectance.







- - ----

.



#### 9.0 ANALYSIS OF ECO-PHYSICAL CLUSTERS

# 9.1 RELATIONSHIP OF WATER CHEMISTRY WITH ECO-PHYSICAL CLUSTERS

Since the eco-physical clusters represented unique acidsensitivities across the Ontario test sites, it is reasonable to expect to find significantly different water-quality parameters for lakes that occurred in different clusters. An analysis was performed to test the hypothesis that the mean water-quality parameters were different at the 5% significance level between clusters. The following water variables were analyzed: dissolved organic carbon (DOC), Secchi depth, sulfate concentration, aluminum ion concentration, pH and total chlorophyll-a concentration. This analysis is summarized in Table 9.1.

TABLE 9.1. RESULTS FOR TUKEY'S STUDENTIZED RANGE TEST FOR SIGNIFICANTLY DIFFERENT MEAN WATER-QUALITY PARAMETERS

| <u>Chlorophyll-a</u>     | <u>D0C</u>                                                                              | <u>Secchi Depth</u>             | <u>Sulfate</u>                                                                                                      | <u>Aluminum</u>                 | pl                                                                                                                                      | <u>+</u>                                                                  |
|--------------------------|-----------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1-7<br>1-9<br>1-8<br>1-5 | 2-5<br>2-9<br>2-7<br>4-5<br>7-5<br>4-7<br>3-9<br>3-7<br>1-7<br>2-8<br>3-5<br>4-8<br>7-8 | 1-7<br>2-7<br>2-9<br>4-7<br>5-7 | 7-1<br>7-2<br>7-3<br>7-4<br>8-9<br>1-2<br>7-8<br>7-9<br>9-1<br>9-3<br>9-4<br>5-1<br>5-4<br>3-1<br>1-4<br>1-6<br>5-7 | 7-5<br>3-7<br>4-5<br>5-9<br>7-8 | 1-2<br>1-3<br>1-4<br>1-5<br>1-6<br>1-7<br>1-8<br>1-9<br>1-10<br>6-2<br>6-3<br>6-5<br>6-7<br>6-9<br>10-2<br>10-3<br>10-5<br>10-7<br>10-9 | 8-2<br>8-3<br>8-5<br>2-7<br>4-3<br>4-5<br>4-7<br>4-5<br>3-7<br>5-7<br>9-7 |

#### PRECEDING PAGE BLANK NOT FILMED

# **ERIM**

Clustering was especially successful in separating different levels of lake pH. For significantly different clusters, the most acidsensitive clusters (5,7,9) had lake waters with lower DOC and pH values and a higher sulfate concentration than those with less sensitivity (1,2,3,4). Thus, the clustering analysis appears to have produced significant eco-physical clusters that contain lakes that also have some significantly different water-quality parameters. Of the three most significantly different water-quality parameters (DOC, pH and sulfate), changes in DOC provide the basis for remote sensing monitoring and identification.

#### 9.2 RELATIONSHIP BETWEEN TM SIGNALS AND ECO-PHYSICAL CLUSTERS

An analysis was performed to determine if significant differences existed among the eco-physical clusters based on the TM signals of lakes within the clusters. For the August 1986 Algoma and Sudbury data sets, two groupings were identified. Group A (lakes in clusters 5, 7 and 9) had mean signals (73.5 to 75.9) that were significantly different (a= .05) than signals (64.8 to 67.5) from lakes in group B (clusters 2, 4 and 8). The results are shown in Table 9.2.

| TABLE 9.2. | TM RELATIONSHIPS | Τ0 | ECO-PHYSICAL | SENSITIVITY |  |
|------------|------------------|----|--------------|-------------|--|
|            | AUGUST TM 1 DATA |    |              |             |  |

| Group | <u>Mean TM 1</u> | <u>Cluster</u> | <u>Significantly Different at 5%</u> |
|-------|------------------|----------------|--------------------------------------|
| А     | 75.86            | 7              | 2, 4, 8                              |
| Α     | 74.14            | 9              | 2, 4, 8                              |
| А     | 73.47            | 5              | 2, 4, 8                              |
| В     | 67.50            | 8              | 5, 7, 9                              |
| В     | 66.37            | 2              | 5, 7, 9                              |
| В     | 64.77            | 4              | 5, 7, 9                              |

The mean eco-physical sensitivity of group A clusters was 7.44 and group B mean sensitivity was 5.85. The largest signals measured were from cluster 7 with a mean sensitivity index of 7.07 and the smallest


from cluster 4 with a sensitivity index of 6.07. The primary difference in these two eco-physical clusters was the soil type and soil depth over the underlying bedrock. Cluster 7 had shallow (i.e. less than one meter) sandy soils while cluster 4 had soils of mixed types (sand, clay, loam) that had depths greater than one meter.

## 9.3 RELATIONSHIP BETWEEN TM MULTITEMPORAL DIFFERENCES AND ECO-PHYSICAL CLUSTERS

Examination of the August 1986 - May 1985 difference signals for TM band one produced similar results which are shown in Table 9.3. Group A and group B contained the same clusters as in Section 9.2 and the largest and smallest mean differences were found in clusters 7 and 4, respectively.

| TABLE 9.3 | TM RELATIONSHIPS TO ECO-PHYSICAL SENSITIVITY  |
|-----------|-----------------------------------------------|
|           | ANALYSIS OF VARIANCE OF AUGUST-MAY DIFFERENCE |

| Group | <u>Mean Diff</u> | <u>Cluster</u> | <u>Significantly Diff. at 5%</u> |
|-------|------------------|----------------|----------------------------------|
| A     | 4.94             | 7              | 2, 4, 8                          |
| Α     | 2.91             | 9              | 2, 4, 8                          |
| A     | 2.68             | 5              | 2, 4, 8                          |
| В     | 0.61             | 8              | 5, 7, 9                          |
| В     | -0.96            | 2              | 5, 7, 9                          |
| В     | -2.45            | 4              | 5, 7, 9                          |
|       |                  |                |                                  |

9.4 Analysis of TM Signal Changes Due to Acid Deposition Changes

This analysis examined the relationship between the August - May signal differences from polygons that have similar eco-physical properties with the exception of sulfate deposition. For this case, lakes were selected from polygons with sandy soils over granitic rock types and the sulfate deposition was 1.5 or 2.5 g/m2/yr. The TM band one signals were found to be significantly different (at 5% level) based upon deposition level alone. This preliminary analysis suggests that



TM signal seasonal changes may be dependent upon changes in acid deposition.

## 9.5 ANALYSIS OF DOC REFLECTANCE SENSITIVITY

In addition to seasonal analyses, the spatial aspects of DOC reflectance sensitivity were investigated. Measured water-quality parameters were used together with the equation given Section 7.4 to calculate a lake value of reflectance sensitivity based to change in DOC concentration. The larger the derivative of reflectance with respect to DOC the more sensitive lake reflectance is to changes in DOC. As shown in Table 7.3, a reflectance sensitivity value of 4.0 corresponds to an expected count change in TM band 1 of at least two counts. The lake DOC sensitivity values were analyzed with the eco-physical clusters and the mean sensitivity was determined for each cluster as shown in Figure 9.1. These results indicated that clusters 5, 7, 8 and 9 have lakes most sensitive to DOC changes. These clusters also have the higher stratification sensitivity index values.

This preliminary analysis shows that TM band one seasonal difference signals will differentiate acid-sensitive from acid-insensitive areas.



Figure 9.1. Mean DOC Induced Reflectance Sensitivity for Each Ecophysical Strata Estimates Based Upon August 1986 Water Chemistry Measurements.



# **SERIM**

Ĺ

2

10.0 CONCLUSIONS AND RECOMMENDATIONS

#### 10.1 GENERAL CONCLUSION

Modeling, field measurements, and TM observations suggest that TM is useful to identify acid sensitive lakes and to monitor water quality changes associated with lake acidification.

### 10.2 SPECIFIC CONCLUSIONS

- 1. Modeling surface and subsurface reflectance measurements have shown the important relationships between lake optical properties and water chemistry.
  - A simple DOC reflectance model accounts for observed subsurface hemispherical reflectance and also for the companion airborne (PROBAR) reflectance measurements.
  - b. We found that clear acid sensitive lakes can be distinguished from the colored high DOC lakes using PROBAR data. The colored lakes tend to have greater buffering capacity than clear lakes in acid sensitive areas.
  - c. The blue-green reflectance of clear lakes is highly sensitive to the presence of DOC. Modeling predicts a one percent change in subsurface reflectance for an expected seasonal fluctuation of about 50% in DOC concentration.
- 2. Modeling has shown that TM is sufficiently sensitive to monitor expected lake reflectance associated with acid deposition and acidification.
  - a. An historical TM seasonal pair (August 1986 May 1985) for the same Sudbury Lakes in a normal snowfall year supports our expectations but lacks the chemistry and in situ optical data needed for hypothesis validation.
  - b. The expected seasonal changes (August 1986 to May/June 1987) in water chemistry did not occur nor did we observe

PRECEDING PAGE BLANK NOT FILMED

PAGE 98 INTENTIONALLY BLAMK



a significant change in TM response. This lack of change may be due to the unusually small snow pack and spring runoff. While these TM data and water chemistry are consistent with our hypothesis, they do not validate it.

- c. In areas of high acid deposition Landsat TM DN values were found to separate high DOC lakes (moderate acidity) found to separate high DOC lakes (moderate acidity) from low DOC lakes (high acidity). The expected TM band one signal change per percent subsurface reflectance change was estimated to be 2.86 counts/percent. In clear acid lakes seasonal change of two or three counts are expected from DOC fluctuations.
- 3. Stratification of eco-physical properties provides a way to locate areas which are sensitive to acid deposition.
  - a. When stratification of eco-physical properties was applied to our study sites, we could identify acid sensitive areas and use TM to pick lakes which are likely to be sensitive to acid deposition.
  - b. Clustering of eco-physical strata suggests that areas with shallow sandy soils over slow weathering granitic bedrock types are most sensitive to acid deposition and lakes located within these areas will have lower concentrations of DOC and lower pH values than for other soil and bedrock types.
  - c. TM band one lake response was found to be related to ecophysical sensitivity. The (August 1986 - May 1985) TM seasonal pair produced signal differences in eco-physically sensitive strata (1-6 DN) but not so in non-sensitive strata (-2 to 0 DN).
  - d. Nearly identical and sensitive eco-physical strata with different sulfate deposition rates were found to have different TM lake signal response.

# ERIM

## 10.3 RECOMMENDATIONS

While studies thus far are consistent with our seasonal change hypothesis they do not confirm its validity. Further study is needed to provide confirmation to the above results.

- Collect lake chemistry and TM data in years of typical snowfall to demonstrate the capability of using TM data to monitor acidification under a wider range of environmental conditions (i.e., normal snowfall years).
- 2. Develop a TM based capability for assessing effects of acid deposition on terrestrial vegetation. Apply the vegetation monitoring technique and compare with lake monitoring technique.

-- --

RIM

#### REFERENCES

- Almer, B., W. Dickson, C. Ekstrom, and E. Hornstrom, "Sulfer Pollution and the Aquatic Ecosystem." In <u>Sulfer in the Environment: Part</u> <u>II, Ecological Impacts</u>, John Wiley & Sons, New York, NY, pp. 271-311, 1978.
- Bukata, R.P., J.E. Bruton, and J.H. Jerome, <u>Application of Direct</u> <u>Measurement of Optical Paramters to the Estimation of Lake Water</u> <u>Quality Indicators</u>, CCIW Scientific Series Report 140, 1985.
- Fortescue, J.A., and V.H. Singroy, "Remote Sensing as an Aid in Planning Regional Geochemical Surveys in the Canadian Shield." In Fourth Thematic Conference: Remote Sensing for Exploration Geology, San Francisco, CA, April 1985. In On Geology and Remote Sensing, Las Vegas, NV, November 1985.
- Malley, D.F., D.L. Findlay, and P.S. Chang, "Ecological Effects of Acid Precipation on Zoplankton." In <u>Acid Precipation Effects on</u> <u>Ecological Systems</u>, Ann Arbor Science Publishers Inc., pp. 297-327, Ann Arbor, MI, 1982.
- Schofield, C.L., "The Ecological Significance of Air Pollution Induced Changes in Water Quality of Lake Districts in the Northeast." Trans. Northeast Fish and Wildlife Conference, pp. 98-112, 1972.
- Yan, N.D., <u>Effects of Changes in Changes in pH on Transparency and</u> <u>Thermal Regimes of Lohi Lake, Near Sudbury, Ontario</u>, Vol. 40, Canadian J. Fisheries and Aquatic Science, pp. 621-626, 1983.
- Effler, S.W., G.C. Schafran, and C.T. Driscoll, <u>Partitioning Light</u> <u>Attenuation in an Acidic Lake</u>, Vol. 42, Canadian J. Fisheries and Acquatic Science, pp. 1707-1711, 1985.
- Almer, B., "Effects of Acidification on Swedish Lakes," <u>Ambio</u>, Vol. 3, No. 1, p. 30, 1974.
- Chan, W.H., A.J.S. Tang, and M.A. Lusis, <u>Precipitation Concentration</u> <u>and Wet Deposition Fields of Pollutants in Ontario, September 1980</u> <u>to December 1981</u>, Report No. ARB-61-83-ARSP, Ontario Ministry of the Environment, p. 42, 1983.
- Chow, V.T., <u>Handbook of Applied Hydrology</u>, <u>A Compendiums of Water-</u> <u>Resources Technology</u>, McGraw-Hill Book Co., pp. 19-10, 1964.
- Davis, R.B., D.S. Anderson, and F. Berge, "Palaeolimnological Evidence that Lake Acidification is Accompanied by Loss of Organic Matter," <u>Nature</u>, Vol. 316, pp. 436-438, August 1, 1985.





#### REFERENCES (Concluded)

- Effler, S.W., G.C. Schafran, C.T. Driscoll, "Partitioning Light Attenuation in an Acidic Lake," <u>Canadian J. Fisheries and Acquatic</u> <u>Science</u>, Vol 42, pp. 1707-1711, 1985.
- Harris, R.J., <u>A Primer of Multivariate Statistics</u>, Academic Press, Inc., New York, NY, pp. 190-195, 1985.
- Hendry, C.D., and P.L. Brezonick, "Chemical Composition of Softwater Florida Lakes and their Sensitivity to Acid Precipitation," <u>Water</u> Resources Bulletin, Vol. 20, No. 1, pp. 75-86, 1984.
- Howard, R., and M. Perley, <u>Acid Rain: The Devastating Impact on North</u> America, McGraw-hill Book Company, pp. 11-38, 1982.
- Keller, W., and J. Roger Pitblado, <u>Water Quality Changes in Sudbury</u> <u>Area Lakes, 1974-76 to 1981-83</u>, APIOS Report No. 007/85, Ontario Ministry of the Environment, p. 2, 1985.
- Pitbaldo, J.R., W. Keller, N.I. Conroy, "A Classification and Description of Some Northeastern Ontario Lakes Influenced by Acid Precipitation," <u>Journal of Great Lakes Research</u>, 6(3), pp. 247-157, 1980.
- Swedish Ministry of Agriculture Environment '82 Committee, "Acidification Today and Tomorrow." A Swedish study prepared for the 1982 Stockholm Conference on the Acidification of the Environment, S. Harper, trans., pp. 30-57, 1982.
- Yan, N.D., "Effects of Changes in pH on Transparency and Thermal Regimes of Lohi Lake, Near Sudbury, Ontario," <u>Canadian J.</u> <u>Fisheries and Aquatic Science</u>, Vol. 40, pp. 621-626, 1983.

Μ

### APPENDIX A ECO-PHYSICAL CLUSTER ANALYSIS

The maximum likelihood method was used to produce 10 clusters of polygons based on the sensitivity values for percent cover, vegetation type, soil depth, soil texture, bedrock type, relief and sulfate deposition. The data are sorted by cluster. Descriptions for each polygon are in the printout. The "cluster" data are either missing data or have vegetation types which were not used in the data.

| 185 POLYG    | ON PERCENT   | VEG      | DEPTH           | TEXTURE  | BEDROCK    | SENSI    | RELIEF  | S04_DEP0  |
|--------------|--------------|----------|-----------------|----------|------------|----------|---------|-----------|
| 1 48         | 0-49         | BARREN   | SHALLOW         | SAND     | ю ·        | WODERATE | ROLLING | 1.5-2.0   |
| 2 66<br>3 73 | 0-49<br>0-49 | WIXED    | DEEP<br>Shallow | SAND     | 4 4        | HOIH     |         | 1.5-2.0   |
| 4 191        | 0-49         | AGRIC    | DEEP            | SAND     | ŝ          | HIGH     | LEVEL   | 2.0-2.5   |
| 238          | 0-49         | CLOUD    | DEEP            | SAND     | m •        | HIGH     | LEVEL   | 2.0-2.5   |
|              | 54-9         |          |                 |          | 1 (*       |          |         | C. 7-0. C |
| 280          |              | BARREN   | SHALL DW        | SAND     | <b>b</b> 4 | HIGH     |         | 2.0-2.5   |
| 307          |              | AGRIC    | DFFP            | CL AY    | r (*)      | LOW      | LEVEL   | 2.0-2.5   |
| 305          | 04-0         | AGRIC    | DEEP            | CLAY     | )          | LOW      | LEVEL   | 2.0-2.5   |
| 306          | 0-49         | AGRIC    | ANY             | ORGANICS | -          | HIGH     | LEVEL   | 2.0-2.5   |
| 307          | 0-49         | AGRIC    | DEEP            | LDAN     | 2          | MODERATE | LEVEL   | 2.0-2.5   |
| 3 308        | 0-49         | AGRIC    | DEEP            | SAND     | c)         | HIGH     | LEVEL   | 2.0-2.5   |
| 309          | 0-49         | AGRIC    | DEEP            | CLAY     | 4          | LOW      | LEVEL   | 2.0-2.5   |
| 318          | 0-49         | SC U.CON | DEEP            | SAND     | e          | HIGH     | UNKNOWN | 2.0-2.5   |
| 320          | 0-49         | AGRIC    | DEEP            | CLAY     | 4          | LOW      | LEVEL   | 2.0-2.5   |
| 324          | 0-49         | UP CON   | DEEP            | SAND     | m          | HIGH     | UNKNOWN | 2.0-2.5   |
| 331          | 0-49         | AGRIC    | DEEP            | LOAM     | 0          | MODERATE | LEVEL   | 2.0-2.5   |
| 335          | 04-0         | AGRIC    | DEEP            | LOAM     | -          | MODERATE | LEVEL   | 2.0-2.5   |
| 341          | 0-49         | AGRIC    | DEEP            | LDAM     | 4          | MODERATE | LEVEL   | 2.0-2.5   |
| 351          | 04-0         | AGRIC    | DEFP            | DAM      | · (*)      | MODERATE | I FVFL  | 2.0-2.5   |
| 353          | 04-0         | AGRIC    | DEEP            | LDAM     | ) (T)      | MODERATE | EVEL    | 2.0-2.5   |
| 357          | 01-0         | AGRIC    | DEEP            | LDAM     | • •        | MODERATE | LEVEL   | 2.0-2.5   |
| 404          | 0-49         | AGRIC    | DEEP            | LOAM     | 4          | MODERATE | LEVEL   | 2.5-3.0   |
| 439          | 64-0         | LO CON   | SHALLOW         | SAND     | 4          | HIGH     | UNKNOWN | 2.5-3.0   |
| 443          | 0-49         | URBAN    | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 444          | 0-49         | URBAN    | DEEP            | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 8 445        | 0-49         | URBAN    | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 9 446        | 6-49         | AG&HRDWD | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 455          | 6-49         | AGRIC    | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 456          | 0-49         | AGRIC    | DEEP            | LOAN     | 4          | MODERATE | LEVEL   | 2.5-3.0   |
| 457          | 0-49         | AGRIC    | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 458          | 04-0         | AGRIC    | DEEP            | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 459          | 0-49         | AGRIC    | SHALLOW         | SAND     | 4          | HIGH     | ROLLING | 2.5-3.0   |
| 460          | 0-49         | AGRIC    | DEEP            | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 463          | 0+-0         | AGRIC    | DEEP            | SAND     | 4          | HIGH     | ROLLING | 2.5-3.0   |
| 464          | 0-49         | AGRIC    | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 465          | 0-49         | SCLBARE  | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 9 475        | 0-49         | CONIFER  | SHALLOW         | SAND     | 4          | HIGH     | NMONXND | 2.5-3.0   |
| 3 476        | 67-0         | MIXED    | SHALLOW         | SAND     | 4          | HIGH     | UNKNDWN | 2.5-3.0   |
| 1 477        | 0-49         | MIXED    | SHALLOW         | SAND     | 4          | HIGH     | UNKNOWN | 2.5-3.0   |
| 2 478        | 0-49         | SCLBARE  | SHALLOW         | SAND     | 4          | HIGH     | UNKNOWN | 2.5-3.0   |
| 3 479        | 6-49         | MIXED    | SHALLOW         | SAND     | 4          | HIGH     | UNKNOWN | 2.5-3.0   |
| 4 482        | 0-49         | SCLBARE  | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 5 489        | 0-49         | AGEHRDWD | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 5 491        | 0-49         | AGEHRDWD | DEEP            | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 7 499        | 0-49         | AGEHRDWD | SHALLOW         | SAND     | 4          | HIGH     | ROLLING | 2.5-3.0   |
| B 500        | 0-49         | AGEHRDWD | DEEP            | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 9 524        | 0-49         | AGEHRDWD | DEEP            | LOAM     | 4          | MODERATE | LEVEL   | 2.5-3.0   |
| 526          | 0-49         | AGEHRDWD | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 527          | 6-49         | AGEHRDWD | ANY             | ORGANICS | 4          | HIGH     | LEVEL   | 2.5-3.0   |
| 528          | 0-49         | AGEHRDWD | DEEP            | LOAM     | 4          | MODERATE | LEVEL   | 2.5-3.0   |
| 529          | 0-49         | AGEHRDWD | SHALLOW         | SAND     | 4          | HIGH     | LEVEL   | 2.5-3.0   |

-

|                                                | S04_DEP0 | 2.5-3.0  | 2.5-3.6         | 2.5-3.6          | 2.5-5.2<br>5.5-3 6 | 2 F. 3 G | 2 C - C - C - C - C - C - C - C - C - C | 2.5-2.6 | 2.3-3.U |         |         |          | 2.5-3.0 | 2.5-3.6       | 2.5-3.6        | 2.5-3.5            | 2.5-3.6  |         | 2.5-3.6 | 2.2-2.5<br>2.2-2.0 | 20 F 1 C | 20.01   | 2 5 3 2 6 | 3 G-13.5   | 3 6-3.5  | 3.0-3.5  | 3.0-3.5  | 3.0-3.5  | 3.0-3.5  | 3.0-3.5  | 3.0-3.5  | 3.0-3.5  | 2.5-3.0  | 3.0-3.5        | 3.0-3.5  | 3.0-3.5  | 3.6-3.5      | 3.0-3.5   | 6        | 4.6-7.9<br>2 F - 2 G          | 0.5-0.7    |        |         | S04 DEP0 |         | 1.0-1.5          | 1.0-1.5  | 6.1-0.1<br>2 1 0 1 | 1.6-1.5 | 1.0-1.5  | 1.5-2.0      |           |
|------------------------------------------------|----------|----------|-----------------|------------------|--------------------|----------|-----------------------------------------|---------|---------|---------|---------|----------|---------|---------------|----------------|--------------------|----------|---------|---------|--------------------|----------|---------|-----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|----------|----------|--------------|-----------|----------|-------------------------------|------------|--------|---------|----------|---------|------------------|----------|--------------------|---------|----------|--------------|-----------|
| ;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | RELIEF   | UNKNOWN  | NMONXNO         |                  |                    |          |                                         |         |         | NMONNNO |         | NMNNNNN  | CNKNOWN | UNKNOWN       | NMONNO         | UNKNUWN            |          |         |         |                    |          |         |           |            |          |          |          |          |          | LEVEL    | LEVEL    | UNKNOWN  | UNKNOWN  | ROLLING        | ROLLING  | LEVEL    | ROLLING      | ROLLING   |          | ר היר<br>היר איני<br>היר איני | LEVEL      |        |         | RFI TEF  |         | ROLLING          | ROLLING  | ROLLING            |         | ROLLING  | ROLLING      |           |
|                                                | SENSI    | HIGH     | HIGH            | HIGH             | HOLI               |          | HIGH                                    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH     | HIGH    | HICH          | HIGH           | HIGH               | HICH     | HIGH    | HIGH    | HIGH               | HIGH     | HOTH    |           |            |          |          |          |          | HICH     | HIGH     | HICH     | HIGH     | MODERATE | HIGH           | HIGH     | HIGH     | HIGH         | HIGH      | HIGH     | HIGH                          | HIGH       |        |         | CENCI    | JCIN T  | HIGH             | MODERATE | MODERATE           | HDIGH   | MUDERATE | HIGH         |           |
|                                                | BEDROCK  | 4        | 4               | 4                | 4                  | 4        | 4                                       | 4       | 4       | 4       | 4       | 4        | 4       | 4             | 4              | 4                  | 4        | 4       | 4       | 4                  | 4        | 4       | 4         | <b>ر</b> ي | 4        | 4 •      | 4 4      | 4 4      | 4 -      | • •      | • •      | 1 4      | r (*     | ) ৰ            | 4        | 4        | 4            | 4         | 4        | 4                             | 4          |        |         | NJUQUUQ  | BEURULN | 4                | r m      | ы                  | च (     | ייז ניי  | 0 4          |           |
| 5TER=                                          | TEXTURE  | SAND     | SAND            | SAND             | SAND               | SAND     | SAND                                    | SAND    | SAND    | SAND    | SAND    | SAND     | SAND    | SAND          | SAND           | ANY                | SAND     | SAND    | SAND    | SAND               | SAND     | SAND    | SAND      | SAND       | SAND     | ORGANICS | SAND     | SAND     | SAND     |          |          |          |          | OBCANTOS       |          |          | <b>UNA</b> S | SAND      | SAND     | SAND                          | SAND       |        | USTER=1 |          | TEXIUKE | <b>UND</b>       | SAND     | SAND               | SAND    | SAND     |              |           |
| CLUS                                           | DEPTH    | SHALL DW | SHALLOW         | SHALLOW          | SHALLOW            | SHALLOW  | SHALLOW                                 | SHALLOW | SHALLOW | SHALLOW | SHALLOW | SHALLOW  | SHALLOW | SHALLOW       | SHALLOW        | SHALLOW            | SHALLOW  | SHALLOW | SHALLOW | SHALLOW            | SHALLOW  | SHALLOW | SHALLOW   | DEEP       | SHALLOW  | ANY      | DEEP     | SHALLOW  | DEEP     | SHALLOW  | DEEP     | SHALLUW  | SHALLUW  | SHALLUW<br>Any |          |          |              | SHALLOW   | DFFP     | SHALLOW                       | DEEP       |        | CL      |          | DEPTH   | 0<br>L<br>L<br>L | SHALLOW  | SHALLOW            | SHALLOW | SHALLOW  | SHALLUW      |           |
|                                                | VEG      | MTVED.   | MIACU<br>A RARE | HARDWOOD         | SC&BARE            | SCLBARE  | SCLBARE                                 | CONTFER | SCEBARE | SCERARE | STERARE | JON TEER |         | MIAEU<br>Arru |                | STERARF<br>STERARF | HARDWOOD | SCERARE | SCERARE | SCLBARE            | HARDWOOD | WIXED   | HARDWOOD  | HARDWOOD   | AGEHRDWD | AGEHRDWD | AGEHRDWD | AG&HRDWD | AGLHRDWD | AGEHRDWD | AGEHROWD | AGEHRDWD | HARDWOOD | HARDWOOD       | AGEHKDWD | AGEHKDWD |              |           | ACEHROWD | AGEHRDWD                      | AGEHRDWD   |        |         |          | VEG     |                  | MIXED    | CONTEER            | MIXED   | CONIFER  | CONIFER      |           |
|                                                | PERCENT  | e<br>e   | 5 C T           |                  | 50-74              | 0-49     | 50-74                                   | 04-00   | 07-0    |         | 0 0 U   |          |         | 100           | 4/-90<br>4/-01 | 100-11             |          |         |         | 59-74              | - 10C    | 0-49    | 04-0      | 67-0       | 0-49     | 64-0     | 0-49     | 6-49     | 6-49     | 0-49     | 0-49     | 0-49     | 0-49     | 0-49           | 0-49     | 0-49     | 6-49         | 6-40<br>1 | 2410     | 0 4 0                         | 0 4 - 0    | 2      |         |          | PERCENT |                  | 010      | 904                | 64-0    | 0-49     | 0-49<br>0-70 | 7)<br>191 |
|                                                | POLYGON  |          | 534             | 535              | 000                |          | 020                                     |         | 9 - L   | 140     | 242     | 5 T      | 544     | 545           | 546            | 047                | 84 C     | 540     | 0,1     | 100                | 700      |         |           | 500        | 272      | 574      | 575      | 530      | 581      | 584      | 631      | 633      | 634      | 638            | 648      | 649      | 650          | 652       | 656      | 657<br>660                    | 000<br>693 | 5      |         | •        | POLYGON |                  | -        | 18                 | 4 C     | 31       | 36           | 45        |
|                                                | OBS      |          | 54              | 2<br>2<br>2<br>2 | 5                  | - C      | 5 C                                     | 500     | 60      | 61      | 62      | 63       | 64      | 65            | 66             | 67                 | 68       | 69      | 70      |                    | 22       | - r     | 4 1       | C)<br>91   | 01       |          | 07       | 6 U      | 90       | 82       |          | 9.6      | 82       | 86             | 87       | 88       | 68           | 06        | 91       | 92                            | 50         | 4<br>D |         |          | 085     | •                | 95       | 96                 | 16      | 0 G G    | 100          | 101       |
|                                                | 1        |          |                 |                  |                    |          |                                         |         |         |         |         |          |         |               |                |                    |          |         |         |                    |          |         |           |            |          |          |          |          |          |          |          |          |          |                |          |          |              |           |          |                               |            |        |         |          |         |                  |          |                    |         |          |              |           |

-

1

|         | S04_DEP0 | 1.5-2.0  | 1.5-2.0 | 1.5-2.0  | 0.2-0.1  | 1.5-2 0 | 1.5-2.0 | 1.5-2.0  | 1.5-2.0  | 1.5-2.0  | 1.5-2.0  | 1.5-2.0  | 1.5-2.0  | 1.5-2.0  | 1.5-2.0 | 1.5-2.0           | 1.5-2.0  | 1.5-2.0        | 9 . Z - G . T | 0.7-0.1  | 1 5-2 6  | 1 5-2 6  | 1.5-2.0  | 1.5-2.0      | 1.5-2.0   | 1.5-2.0 | 1.5-2.0 | 1.5-2.0      | 1.5-2.0      | 2.0-2.5  | 2.6-2.5 | 2.2-2.2  | 2.0-2.5 | 2.0-2.5 | 2.0-2.5               | 2.0-2.5        | 2.0-2.5  | 2.6-2.5    | 6.2-9.2<br>2 C 0 C | 0.0-0.0<br>0.0 5 | 0 - 0 - 0<br>0 - 0 - 0 | 2.0-2.5 | 2.0-2.5       | 2.0-2.5 | 2.0-2.5 | 2.0-2.5 | 2.0-2.5      | 6.7-9.7<br>6.2-9.7 | 2.5-3.0  |
|---------|----------|----------|---------|----------|----------|---------|---------|----------|----------|----------|----------|----------|----------|----------|---------|-------------------|----------|----------------|---------------|----------|----------|----------|----------|--------------|-----------|---------|---------|--------------|--------------|----------|---------|----------|---------|---------|-----------------------|----------------|----------|------------|--------------------|------------------|------------------------|---------|---------------|---------|---------|---------|--------------|--------------------|----------|
|         | RELIEF   | ROLL ING | ROLLING |          | RUL INC  | LEVEL   | LEVEL   | ROLLING  | ROLLING | ROLLING           | LEVEL    | 01010<br>01010 |               | ROLI TNG | STEEP    | ROLLING  | STEEP    | STEEP        | STEEP     | STEEP   | STEEP   | LEVEL        | LEVEL        | KULLING  |         | ROLLING  | LEVEL   | LEVEL   | LEVEL                 | LEVEL          |          |            |                    |                  |                        | LEVEL   | LEVEL         | LEVEL   | LEVEL   | LEVEL   | RULLING      | LEVEL              | LEVEL    |
|         | SENSI    | HIGH     | HIGH    |          | HIGH     | HIGH    | HIGH    | HIGH     | HIGH     | HIGH     | HIGH     | HIGH     | HIGH     | HIGH     | HIGH    | HIGH              | HOTH     |                | NODERATE      | HIGH     | HIGH     | HIGH     | HIGH     | HIGH         | MODERATE  | HIGH    | HIGH    | HIGH         | HIGH         | MUUEKAIE |         | MODERATE | HIGH    | HIGH    | HIGH                  | HIGH           |          |            | HIGH               | LOW              | HIGH                   | HIGH    | LOW           | LOW     | LOW     | LOW     | MUDERAIE     | MODERATE           | MODERATE |
|         | BEDROCK  | e        | 4       | 1 4      | 4        | 4       | 4       | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4       | 4                 | 4        | • 4            | r et          | ) 🔫      | 4        | 4        | 4        | 4            | e         | ◄ 1     | 4       | 4            | <b>4</b> (   | •        | r er    | ) m      | m       | ŝ       | <b>ლ</b> ი            | <b>m</b> 1     | <b>"</b> | <b>.</b> . | <b>,</b> m         | • 4              | ę                      | ß       | 4             | 4       | ৰ (     | י ניי   | <b>,</b> , , | ) <b>(7)</b>       | e)       |
| USTER=1 | TEXTURE  | SAND     | SAND    | SAND     | CNAS     | SAND    | SAND    | SAND     | SAND     | SAND     | SAND     | CNVS     | SAND     | SAND     | SAND    | ONAS<br>DAVO      |          | SAND           | SAND          | SAND     | SAND     | SAND     | SAND     | SAND         | SAND      | SAND    | SAND    | UNAS<br>0443 | ONAX<br>ONAX |          | SAND    | SAND     | ON T L  | 21      | SAND                  | UNANU<br>DIANG |          | SAND       | SAND               | CLAY             | SAND                   | SAND    | CLAY          | CLAY    |         | CLAT    | SAND         | SAND               | SAND     |
| CL      | DEPTH    | DEEP     | SHALLUW | SHALL OW | SHALLOW  | DEEP    | DEEP    | SHALLOW  | SHALLUW | DEED              |          | DEEP           | SHALLOW       | SHALLOW  | DEEP     | SHALLOW  | DEEP     | DEEP         | SHALLOW   | DEEP    |         |              |              | DEFP     | SHALLOW | SHALLOW  | DEEP    | DEEP    |                       |                | DFFP     | DEEP.      | DEEP               | DEEP             | DEEP                   | DEEP    | DEEP          | DEEP    |         |         | SHALLOW      | SHALLOW            | SHALLOW  |
|         | VEG      | CONIFER  |         | HARDWOOD | HARDWOOD | WIXED   | WIXED   | HARDWOOD | HARDWOOD | HARDWOOD | HARDWOOD | HARDWOOD | HARDWOOD | HAKDWUUD |         | MAKUWUUU<br>MTYED | HARDWOOD | HARDWOOD       | CONIFER       | HARDWOOD | HARDWOOD | HARDWOOD | HARDWOOD | HARDWOOD     | WIXED     |         |         |              |              | HARDWOOD | MIXED   | MIXED    | LO CON  |         |                       |                | UP CON   | UP CON     | UP CON             | SC U.CON         | UP CON                 | LO CON  | SC U.CON      |         |         | UTXED   | WIXED        | MIXED              | MIXED    |
|         | PERCENT  | 0140     |         | 0-49     | 0-49     | 0-49    | 0-49    | 6-40     | 6-49     | 6-49     | 6-49     | 0 - 4 0  | 24-2     |          |         |                   | 04-0     | 0-49           | 0-49          | 0-49     | 0-49     | 0-49     | 0-49     | 0-40<br>0-60 | 8-40<br>0 | 0-49    | 04-0    | 04-0         | 67-0         | 6-40     | 0-49    | 6-49     | 0-49    | 0.4     | 0 4 4<br>0 4 7<br>0 4 |                | 64-0     | 0-49       | 0-49               | 0-49             | 0-49                   | 6-49    | 10-49<br>0-49 | 0-49    | 0 4 - 0 | 04-0    | 0-49         | 0-49               | 0-49     |
|         | POLYGON  | 52       | 0 Y     | 57       | 67       | 70      | 11      | 76       | 87       | 69       | 16<br>16 | 50       | 000      |          | 105     | 106               | 121      | 129            | 130           | 132      | 142      | 144      | 147      | 152          | 151       | 150     | 172     | 173          | 180          | 193      | 203     | 207      | 221     | 822     | 162                   | 237            | 248      | 259        | 268                | 286              | 290                    | 294     | 316           | 212     | 332     | 367     | 368          | 375                | 375      |
|         | 085      | 102      | 104     | 105      | 106      | 107     | 108     | 109      | 110      | 111      | 211      | 577<br>7 | • 1 T    | C11      | 6 F F   | 118               | 511      | 120            | 121           | 122      | 123      | 124      | 125      | 971          | 121       | 871     | 130     | 131          | 132          | 133      | 134     | 135      | 136     | 151     | 071                   | 140            | 141      | 142        | 143                | 144              | 145                    | 146     | 141           | 140     | 15.6    | 151     | 152          | 153                | + c T    |

-

|         | SO4_DEPO | 88888888888888888888888888888888888888                                                                                            |         | SO4_DEPO | 44444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | RELIEF   | LEVEL<br>ROLLING<br>ROLLING<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING |         | RELIEF   | R C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | SENSI    | HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>KADGH<br>KATE<br>KODERATE                                                         |         | SENSI    | MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MULTICH<br>MUL |
|         | BEDROCK  | 4 M 4 4 4 4 4 4 M 4 M                                                                                                             |         | BEDROCK  | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JSTER=1 | TEXTURE  |                                                                                                                                   | USTER=2 | TEXTURE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CLI     | DEPTH    | DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP                                                                      | CL      | DEPTH    | SHALLOW<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | VEG      | НАКОЖОО<br>МІХЕФ<br>НАКОЖООО<br>НАКОЖООО<br>НАКОЖООО<br>НАКОЖООО<br>НАКОЖООО<br>НАКОЖООО<br>НАКОЖООО<br>НАКОЖООО                  |         | VEG      | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | PERCENT  | <i>2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</i>                                                                                    |         | PERCENT  | ØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØØ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | POLYGON  | к м 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                         |         | POLYGON  | 00100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | OBS      | 1125<br>1125<br>1559<br>1559<br>1663<br>1663<br>1664<br>1663                                                                      |         | 085      | 2210008708789351000870878797077777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |          |                                                                                                                                   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

-----

|        | YGON          | PERCENT | VEG            | DEPTH    | TEXTURE       | BEDROCK    | SENSI            | RELIEF           | SO4_DEPO                   |
|--------|---------------|---------|----------------|----------|---------------|------------|------------------|------------------|----------------------------|
| 101    |               | 0-49    | SC U.CON       | DEEP     | SAND          | m          | HIGH             | LEVEL            | 2.0-2.5                    |
| 10     | 23<br>03      | 04-0    | SC U.CON       | DEEP     | SAND          | . W        | HIGH             | LEVEL            | 2.0-2.5                    |
| ŝ      | 23            | 6-49    | SC U.CON       | DEEP     | SAND          | m) m       | HIGH<br>MODERATE | LEVEL<br>ROLITNG | 2.0-2.0                    |
| m i    | 25            | 0-49    |                | SHALLUW  | UNAS<br>UNAS  | <b>n</b> m | HIGH             | I EVEL           | 2.0-2.5                    |
| m      | 56            | 0 - 4 G |                |          | UNAU<br>I DAN | ) (M       | MODERATE         | ROLLING          | 2.0-2.5                    |
| 50     | 70            |         |                | SHALLOW  | SAND          | . ന        | MODERATE         | ROLLING          | 2.0-2.5                    |
| ה ה    | 200           |         |                | SHALLOW  | SAND          | m          | MODERATE         | ROLLING          | 2.0-2.5                    |
| 5 a    | 22            | 04-0    | WIXED          | SHALLOW  | SAND          | 4          | HIGH             | LEVEL            | 2.0-2.5                    |
| הה     |               | 04-0    | MIXED          | DEEP     | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| 57     | 10            | 0-40    | WIXED          | DEEP     | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| 5 4    |               |         | MIXED          | DEEP     | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| •      | 010           | 64-6    | MIXED          | DEEP     | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| • •    | 10            | 01-0    | WIXED          | DEEP     | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| ri     | 10            | 0-40    | WIXED          | DEEP     | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| ŕ      | , n<br>1<br>1 | 04-0    | HARDWOOD       | SHALLOW  | SAND          | 4          | HIGH             | ROLLING          | 2.5-3.0                    |
| ŗ      |               |         | HARDWOOD       | SHALL OW | SAND          | 4          | HIGH             | ROLLING          | 2.5-3.0                    |
| •      |               |         |                | SHALLOW  | SAND          | 4          | HIGH             | ROLLING          | 2.5-3.0                    |
| 4      | 12            |         |                |          | SAND          | . 4        | HIGH             | LEVEL            | 2.5-3.0                    |
| 4      | 28            | 2410    | MIXED<br>MIXED |          | OND'S         | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| 4      | 95            | 5410    |                |          | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| 4      | 4 L           |         |                |          | SAND          | - 4        | HIGH             | LEVEL            | 2.5-3.0                    |
| •      |               |         |                | DEFP.    | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
| 4 4    |               |         | HARDWOOD       | SHALLOW  | SAND          | 4          | HIGH             | ROLLING          | 2.5-3.0                    |
|        | 10            |         | WTXED          | DEEP     | SAND          | 4          | HIGH             | LEVEL            | 2.5-3.0                    |
|        | 70            |         | HARDWOOD       | DEEP     | SAND          | 4          | HIGH             | STEEP            | 2.5-3.0                    |
|        | 50            | 0.410   | HARDWOOD       | SHALLOW  | SAND          | 4          | HIGH             | ROLLING          | 2.5-3.0                    |
| . 4    | 96            | 64-0    | HARDWOOD       | SHALLOW  | SAND          | 4          | HIGH             | ROLLING          | 2.5-3.0                    |
| ° O    | 05            | 0-49    | MIXED          | DEEP     | SAND          | 4          | HIGH             |                  | 2.5-3.6                    |
| S      | 60            | 0-49    | MIXED          | DEEP     | SAND          | 4          | HIGH             |                  | 0.5-5.2                    |
| ŝ      | 111           | 0-49    | MIXED          | DEEP     | SAND          | •          | HIGH             | LEVEL            | 2.5-3.0                    |
| ŝ      | 16            | 0-49    | HARDWOOD       | SHALLOW  | SAND          | 4          | HIGH             | RULLING          | 2.5-3.0                    |
| ŝ      | 158           | 0-49    | MIXED          | DEEP     | SAND          | 4          | HOTH             |                  | 2.5-3.0                    |
| ŝ      | 160           | 0-49    | HARDWOOD       | SHALLOW  | SAND          | 4          | 1971             |                  | 1. 0-0. N                  |
| ß      | 161           | 6-49    | WIXED          | DEEP     | SAND          | 4          |                  |                  | 0.0+0.4<br>0.0             |
| S      | 564           | 6-49    | HARDWOOD       | SHALLOW  | SAND          | 4          |                  |                  | 2 2 2 2 7 0<br>2 2 2 2 3 0 |
| S      | 567           | 0-49    | HARDWOOD       | DEEP     |               | 4 -        |                  |                  | 0.0-14 C                   |
| S      | 569           | 0-49    | HARDWUUD       | SHALLUW  |               | 4 <        |                  | DUL TNC          | 0. 6-14. C                 |
| ı<br>م | 171           | 04-0    | HARDWUUD       |          |               | •          | HICH             | I FVFI           | 2 5-3 0                    |
| ומ     | 272           | 9-4-9   |                |          |               | 1 4        | HICH             | ROL I ING        | 3.0-3.5                    |
|        | 586           | 24-0    |                |          |               | r •1       | HIGH             | ROLLING          | 3.0-3.5                    |
| 0      | 119           | 241     |                |          |               | •          | HIGH             | LEVEL            | 3.0-3.5                    |
| 00     | 513           |         |                |          |               | - 1        | HIGH             | ROLLING          | 3.0-3.5                    |
| 0 4    | • •           |         |                |          | SAND          | . 4        | HIGH             | ROLLING          | 3.0-3.5                    |
|        | 5 T C         | 04-0    | HARDWODD       | DFFP     | SAND          | 4          | HIGH             | ROLLING          | 3.0-3.5                    |
| 94     | 200           | 04-0    | HARDWOOD       | DEEP     | SAND          | 4          | HICH             | ROLLING          | 3.0-3.5                    |
|        | 000           | 04-0    | HARDWOOD       | DFEP     | SAND          | 4          | HIGH             | ROLLING          | 3.0-3.5                    |
| ) (C   | 200           | 140     | HARDWOOD       | DEEP     | SAND          | 4          | HIGH             | ROLLING          | 3.0-3.5                    |
| 9.0    | 540           | 6-4-0   | HARDWOOD       | DEEP     | SAND          | 4          | HIGH             | ROLLING          | 3.0-3.5                    |
| Ð      | 544           | 0-49    | HARDWOOD       | SHALLOW  | SAND          | 4          | HIGH             | LEVEL            | 3.6-3.5                    |
| ω      | 551           | 0-49    | HARDWOOD       | DEEP     | SAND          | 4          | HIGH             | ROLLING          | 3.6-3.5                    |
| 9      | 355           | 0-49    | HARDWOOD       | DEEP     | SAND          | 4          | HIGH             | ROLLING          | 3.0-3.5                    |

|        | S04_DEP0 | 3.0-3.0<br>3.0-3.5<br>3.0-3.5<br>3.0-3.5<br>-3.5<br>3.0-3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>5<br>3.5<br>5<br>5<br>5 | 3.0-3.5<br>3.0-3.5<br>3.0-3.5<br>2.5-3.0                           | S04_DEP0           | 1.0-1.5<br>1.0-1.5  | 1.0-1.5<br>1.0-1.5 | 1.5-2.0        | 1.5-2.0<br>1.5-2.0                    | 1.5-2.0<br>1.5-2.0 | 1.5-2.0                         | 2.0-2.5 | 2.0-2.5      | 2.0-2.5             | 2.0-2.5<br>1.5-2.0 | 2.0-2.5      | 2.0-2.5          | 2.0-2.5                                        | 2.0-2.5          | 2.0-2.5 | 2.0-2.5 | 2.0-2.5       | 2.0-2.5    | 2.0-2.5          | 2.0-2.5      | 2.0-2.5 | 2.0-2.5        | 2.0-2.5                              | 2.0-2.5          |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|---------------------|--------------------|----------------|---------------------------------------|--------------------|---------------------------------|---------|--------------|---------------------|--------------------|--------------|------------------|------------------------------------------------|------------------|---------|---------|---------------|------------|------------------|--------------|---------|----------------|--------------------------------------|------------------|
|        | RELIEF   | LEVEL<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>STEEP                                                                   | ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING                | RELIEF             | ROLLING             | ROLLING            | STEEP          | ROLLING                               | ROLLING            | STEEP                           | LEVEL   |              | ROLLING             | ROLLING            |              | LEVEL            |                                                | LEVEL            | ROLLING |         | LEVEL         | רפעפר      |                  | ROLLING      | LEVEL   | LEVEL          | LEVEL                                | LEVEL            |
|        | SENSI    | н<br>1911<br>1911<br>1911<br>1911<br>1911<br>1911<br>1911<br>19                                                                         | H5H<br>H51H<br>H101H                                               | SENSI              | HIGH                | HIGH               | HIGH           | HIGH                                  | HIGH               | HOLH                            | HDIH    | HIGH         | HIGH                | HIGH               | HIGH         | HIGH<br>WODFRATF | HIGH                                           | HIGH<br>MODERATE | HIGH    | HIGH    | HIGH          | HIGH       | HIGH<br>WODEPATE | HIGH         | HIGH    | HIGH           | HOIH                                 | HOIH             |
|        | BEDROCK  | <b>प प प प प</b>                                                                                                                        | ****                                                               | BEDROCK            | 4 4                 | 4 4                | ৰ ব            | च च                                   | 4 4                | . 4. 4                          | 1 4     | 4 4          | • •                 | 4 4                | T 4          | 4 (*             | 0 4                                            | <b>4</b> (*      | ი ო     | •       | 1 4           | 4          | 4 0              | იო           | 4       | 4 4            | •                                    | * *              |
| STER=2 | TEXTURE  | S S S S S S S S S S S S S S S S S S S                                                                                                   | SAND<br>SAND<br>SAND<br>SAND                                       | JSTER=3<br>TEXTURE | SAND                | SAND               | SAND           | SAND                                  | SAND               | SAND                            | SAND    | SAND<br>0142 | SAND                | SAND               | SAND         | QNAS             | SAND                                           | SAND<br>CAND     | SAND    | SAND    | SAND          | SAND       | SAND             | ONAS<br>SAND | SAND    | SAND           | SAND                                 | SANU             |
| כרח    | DEPTH    | SHALLOW<br>DEEP<br>DEEP<br>Shallow<br>Shallow<br>DFFP                                                                                   | SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW                | СLL<br>DEPTH       | SHALLOW<br>Shall OW | SHALLOW            | SHALLOW        | DEEP                                  |                    | SHALLOW                         | DEEP    | DEEP         | SHALLUW<br>Shall DW | SHALLOW            | DEEP         | DEEP             | DEEP                                           | DEEP             | DEEP    |         |               | DEEP       | DEEP             | DEEP         | DEEP    | DEEP           |                                      | DEEP<br>DEEP     |
|        | VEG      | HARDW000<br>HARDW000<br>HARDW000<br>HARDW000<br>HARDW000<br>HARDW000                                                                    | HARDWOOD<br>HARDWOOD<br>HARDWOOD<br>HARDWOOD                       | VEG                | CONTEER             | CONIFER            | MIXED<br>VIXED | CONTER                                | CONTEER            | MIXED                           | WIXED   |              | WIXED               | MIXED              | LO CON       | UP CON           | C CON                                          | UP CON           |         | UP CON  |               |            | UP CON           | SC L.CON     | LO CON  |                | UP CON                               | LO CON<br>UP CON |
|        | PERCENT  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                             | 50-74<br>50-74<br>50-74<br>6-49                                    | PERCENT            | 6-49<br>240         | 000                | 0-49           | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |                    | 0<br>4<br>1<br>0<br>4<br>0<br>0 | 0 4 - 0 | 14           | 0110                | 04                 | 0-49<br>0-49 | 6-40             | 0<br>1<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0 | 0-49             |         | 0-49    | 69-49<br>0-40 | 04-0       | 0-49             | 04-00        | 6-49    | 0-1-0<br>0-1-0 | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>0 | 0-49<br>0-49     |
|        | POLYCON  | 9 0 0 0 0 0<br>9 0 0 0 0<br>9 0 0 0 0<br>9 0 0 0 0                                                                                      | 642<br>642<br>682<br>682<br>692                                    | POLYGON            | r .                 | 36<br>36           | 9 <b>1</b> 1   | 501<br>501                            | 124                | 125<br>133                      | 155     | 1.1          | 189                 | 1905               | 206          | 216              | 216<br>219                                     | 222              | 232     | 243     | 246           | 250        | 254              | 255<br>260   | 264     | 269            | 279                                  | 283<br>284       |
|        | CBS      | 288<br>289<br>289<br>289<br>289<br>289<br>289<br>289<br>289<br>289                                                                      | 280<br>280<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>288 | 085                | 266                 | 268<br>268<br>268  | 270            | 272                                   | 275                | 275<br>276                      | 277     | 279          | 280                 | 282                | 283          | 285              | 216<br>267                                     | 288              | 289     | 291     | 2 <b>92</b>   | 500<br>709 | 295              | 296<br>207   | 298     | 299            | 301                                  | 302<br>303       |
|        |          |                                                                                                                                         |                                                                    |                    |                     |                    |                |                                       |                    |                                 |         |              |                     |                    |              |                  |                                                |                  |         |         |               |            |                  |              |         |                |                                      |                  |

.

\_\_\_\_

----

|         | S04_DEP0 | ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛                                                                                                                        |           | SO4_DEPO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | RELIEF   | ROLLING<br>LEVEL<br>STEEP<br>STEEP<br>STEEP<br>STEEP<br>STEEP<br>STEEP<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING           |           | RELIEF   | ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLIN |
|         | SENSI    |                                                                                                                                                               |           | SENSI    | HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | BEDROCK  | * * * * * * * * * * * * * * * * * * *                                                                                                                         |           | BEDROCK  | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ISTER=3 | TEXTURE  | 88888888888888888888888888888888888888                                                                                                                        | JS I EK=4 | TEXTURE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CLU     | DEPTH    | SHALLOW<br>DEEP<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW |           | DEPTH    | DEEP<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | VEG      | HARDWOOD<br>MIXED<br>MARD~00D<br>HARD~00D<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED         |           | VEG      | CONTFER<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | PERCENT  | <i>6 6 6 6 6 6 6</i> 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                  |           | PERCENT  | <i>₽ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | POLYGON  | 6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                              |           | POLYGON  | 111111111<br>122211110000090909090444090909109090<br>122221111000091448844709091470909109090<br>8046088747274729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | OBS      | 250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250                                                                                            |           | 085      | 888259999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |          |                                                                                                                                                               |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

.....

-----

1111

MAXIMUM LIKELIHOOD METHOD CLUSTERS

A-9

-----

|                                                                                             |         |            |                   | נרח     | ISTER=4      |              |          |                |                    |  |
|---------------------------------------------------------------------------------------------|---------|------------|-------------------|---------|--------------|--------------|----------|----------------|--------------------|--|
| 085                                                                                         | POLYGON | PERCENT    | VEG               | DEPTH   | TEXTURE      | BEDROCK      | SENSI    | RELIEF         | S04_DEP0           |  |
| 405                                                                                         | 143     | 6-49       | HARDWOOD          | SHALLOW | SAND         | 4            | HDIH     | STEEP          | 1.5-2.0            |  |
| 406                                                                                         | 148     | 0-49       | HARDWOOD          | SHALLOW | SAND         | 4            | HIGH     | STEEP          | 1.5-2.0            |  |
| 407                                                                                         | 149     | 0          | MIXEU<br>HARNWOOD | DEEP    | UNAS<br>DAND | 4 4          | HOTH     | KULLING        | 1.5-2.0            |  |
| 400                                                                                         | Lot     |            | HARDWOOD          | SHALLOW | SAND         | • •          | HOTH     | STFFP          | 1 5-2 0            |  |
| 410                                                                                         | 171     |            | MIXED             | DEEP    | SAND         | - 4          | HIGH     | ROLLING        | 1.5-2.0            |  |
| 411                                                                                         | 174     | 64-0       | MIXED             | SHALLOW | SAND         | . 4          | HIGH     | LEVEL          | 1.5-2.0            |  |
| 412                                                                                         | 175     | 64-0       | MIXED             | SHALLOW | SAND         | 4            | HICH     | LEVEL          | 1.5-2.0            |  |
| 413                                                                                         | 179     | 0-49       | MIXED             | DEEP    | SAND         | 4            | HIGH     | LEVEL          | 2.0-2.5            |  |
| 414                                                                                         | 188     | 0-49       | WIXED             | DEEP    | SAND         | 4            | HICH     | LEVEL          | 2.0-2.5            |  |
| 415                                                                                         | 198     | 60         | UP CON            | SHALLOW | SAND         | e            | WODERATE | LEVEL          | 2.0-2.5            |  |
| 416                                                                                         | 212     | 0-49       | MIXED             | DEEP    | SAND         | 4            | HIGH     | LEVEL          | 2.0-2.5            |  |
| 417                                                                                         | 214     | 0-49       | LD CON            | SHALLOW | SAND         | n            | MODERATE | LEVEL          | 2.0-2.5            |  |
| 418                                                                                         | 217     | 0-49       | UP CON            | SHALLOW | SAND         | Ð            | WODERATE | LEVEL          | 2.0-2.5            |  |
| 419                                                                                         | 224     | 0-49       | LO CON            | DEEP    | SAND         | e            | HIGH     | ROLLING        | 2.0-2.5            |  |
| 420                                                                                         | 233     | 0-49       | UP CON            | SHALLOW | SAND         | m            | MODERATE | LEVEL          | 2.0-2.5            |  |
| 421                                                                                         | 235     | 0-49       | UP CON            | SHALLOW | SAND         | 'n           | WODERATE | LEVEL          | 2.0-2.5            |  |
| 422                                                                                         | 241     | 0-49       | LO CON            | DEEP    | SAND         | m            | HIGH     | ROLLING        | 2.0-2.5            |  |
| 423                                                                                         | 245     | 0-49       | UP CON            | SHALLOW | SAND         | ( <b>1</b> ) | MODERATE | LEVEL          | 2.0-2.5            |  |
| 424                                                                                         | 252     | 0-49       | UP CON            | SHALLOW | SAND         | ( <b>7</b> ) | MODERATE | LEVEL          | 2.0-2.5            |  |
| 425                                                                                         | 258     | 0-49       | LO CON            | DEEP    | SAND         | ( <b>m</b> ) | HIGH     | ROLLING        | 2.0-2.5            |  |
| 426                                                                                         | 261     | 0-49       | UP CON            | DEEP    | SAND         | ŝ            | HIGH     | ROLLING        | 2.0-2.5            |  |
| 427                                                                                         | 265     | 0-49       | UP CON            | SHALLOW | SAND         | m 1          | MODERATE | LEVEL          | 2.0-2.5            |  |
| 428                                                                                         | 293     | 0-40       | UP CON            | SHALLOW | SAND         | <b>ന</b> (   | MODERATE |                | 2.0-2.5            |  |
| 429                                                                                         | 297     | 0-49       | UP CON            | SHALLOW | SAND         | וניה         | MODERATE |                | 2.0-2.5            |  |
| 430                                                                                         | 316     | 0 0        | UP CON            | SHALLOW | SAND         | m ·          | MODERATE | LEVEL          | 2.0-2.5            |  |
| 431                                                                                         | 319     | 0 - 40     |                   |         |              | 4 (          |          |                | 2.0-2.5            |  |
| 201                                                                                         | 125     |            |                   |         |              | <b>"</b> (   |          | רה ער<br>היייר | 2.6-2.5            |  |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 175     |            |                   |         |              | <b>n</b> r   |          |                | C.7-0.7            |  |
|                                                                                             |         | 04-0       |                   |         |              | 4 (*         | NUDERATE |                | 0.0-0.0            |  |
|                                                                                             | 360     | 0-40       | WIXED             | SHALLOW | SAND         | <b>)</b> (1) | MODERATE | STEEP          | 2 9-2 E            |  |
| 437                                                                                         | 364     | 0-49       | LD CON            | DEEP    | SAND         | ) (T)        | HIGH     | ROLLING        | 2.0-2.5            |  |
| 438                                                                                         | 382     | 0-49       | HARDWOOD          | SHALLOW | SAND         | 4            | HIGH     | LEVEL          | 2.5-3.0            |  |
| 439                                                                                         | 388     | 0-49       | MIXED             | SHALLOW | SAND         | ŝ            | WODERATE | ROLLING        | 2.5-3.0            |  |
| 440                                                                                         | 401     | 0-49       | MIXED             | SHALLOW | SAND         | m            | VODERATE | ROLLING        | 2.5-3.0            |  |
| 441                                                                                         | 418     | 0-49       | HARDWOOD          | SHALLOW | SAND         | 4            | HIGH     | LEVEL          | 2.5-3.0            |  |
| 442                                                                                         | 423     | Ø-49       | HARDWCOD          | SHALLOW | SAND         | •            | HIGH     | LEVEL          | 2.5-3.0            |  |
| 443                                                                                         |         | 0 - 4 C    |                   |         |              | • •          | 1911     |                | 2.5-3.0            |  |
| 4                                                                                           | 4       | 2410       |                   |         | ONAS C       | 4            |          | LEVEL          | 2.5-3.0            |  |
| 440                                                                                         | 104     |            |                   |         |              | 4 -          | HOTH     |                | 2.5-3.0            |  |
| 0 t t t                                                                                     | 104     |            | MIAEV<br>VADAWOOD |         |              | 4 4          |          | רבעבר          | 2.5-2.5            |  |
| 440                                                                                         | 101     | 0110       |                   |         |              | 1 4          |          | רמעמר          | N. 5-5. 5<br>5 5 5 |  |
| 449                                                                                         | 472     | 04-0       | HARDWOOD          | SHALLOW | QNPS         | 1 4          |          |                | 2.5-5.2<br>5 5-2 G |  |
| 450                                                                                         | 474     | 0-40       | HARDWOOD          | SHALLOW | SAND         | 1 4          | HIGH     |                | 9 5-3 6            |  |
| 451                                                                                         | 486     | 0-49       | HARDWOOD          | DEEP    | SAND         | 4            | HIGH     | ROLLING        | 2.5-3.0            |  |
| 452                                                                                         | 487     | 0-49       | HARDWOOD          | SHALLOW | SAND         | 4            | HIGH     | LEVEL          | 2.5-3.0            |  |
| 463                                                                                         | 490     | 0-49       | HARDWOOD          | SHALLOW | SAND         | 4            | HIGH     | LEVEL          | 2.5-3.0            |  |
| 454                                                                                         | 493     | 0-49       | HARDWOOD          | SHALLOW | SAND         | 4            | HIGH     | LEVEL          | 2.5-3.0            |  |
| 455                                                                                         | 498     | 0-49       | HARDWOOD          | DEEP    | SAND         | 4            | HIGH     | ROLLING        | 2.5-3.0            |  |
| 456                                                                                         | 501     | 0-40<br>40 |                   | DEEP    | SAND         | 4 •          | HIGH     | ROLLING        | 2.5-3.0            |  |
| - 04                                                                                        | 000     | アオーロ       |                   | VEEL    | DARU         | Ŧ            | HUL      | RULLING        | 2.5-3.0            |  |

|                                                                                                      |            |                                                                                                            |                      | נרח              | ISTER=4       |            |                      |                    |                    |  |
|------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------|----------------------|------------------|---------------|------------|----------------------|--------------------|--------------------|--|
| 085                                                                                                  | POLYGON    | PERCENT                                                                                                    | VEG                  | DEPTH            | TEXTURE       | BEDROCK    | SENSI                | RELIEF             | so4_bepo           |  |
| 458                                                                                                  | 513<br>522 | 0<br>4 - 0<br>9 4 - 0<br>0 4 - 0                                                                           | HARDWOOD<br>HARDWOOD | DEEP<br>Shallow  | SAND          | 4 4        | HDIH                 | ROLLING            | 2.5-3.0<br>2.5-3.0 |  |
| 460                                                                                                  | 523        | 04-0                                                                                                       | HARDWOOD             | DEEP             | SAND          | 44         | HIGH                 | ROLLING            | 2.5-3.0            |  |
| 461                                                                                                  | 070        |                                                                                                            | HARDWOOD             | SHALLOW          | SAND          | 1 4        | HICH                 | LEVEL              | 2.5-3.0            |  |
| 463                                                                                                  | 557        | 0-49                                                                                                       | HARDWOOD             | DEEP             | SAND          | <b>4</b> ' | HIGH                 | ROLLING            | 2.5-3.0            |  |
| 464                                                                                                  | 583<br>720 | 0140                                                                                                       |                      |                  | SAND<br>SAND  | 4 4        | HIGH                 |                    | 6.6-9.5<br>5.5.5   |  |
| 405                                                                                                  | 200        |                                                                                                            | HARDWOOD             | DEEP             | SAND          | 1 🛥        | HIGH                 | LEVEL              | 3.0-3.5            |  |
| 467                                                                                                  | 591        | 61-0                                                                                                       | MIXED                | SHALLOW          | SAND          | e          | VODERATE             | LEVEL              | 3.0-3.5            |  |
| 468                                                                                                  | 594        | 0-49                                                                                                       | MIXED                | SHALLOW          | SAND          | c) ·       | MODERATE             | LEVEL              | 3.0-3.5            |  |
| 469                                                                                                  | 599        | 6-40                                                                                                       | HARDWOOD             |                  |               | 4 4        |                      |                    | 1. U-1. S          |  |
| 470                                                                                                  | 000        |                                                                                                            |                      |                  | SAND          | •          | HIGH                 |                    | 3. 0-3. 5          |  |
| 472                                                                                                  | 641<br>641 | 64-0                                                                                                       | HARDWOOD             | DEEP             | SAND          | 4          | HIGH                 | LEVEL              | 3.0-3.5            |  |
| 473                                                                                                  | 646        | 0-49                                                                                                       | HARDWOOD             | DEEP             | SAND          | 4          | HIGH                 | LEVEL              | 3.0-3.5            |  |
| 474                                                                                                  | 647        | 0-49                                                                                                       | HARDWOOD             | DEEP             | SAND          | 4          | HIGH                 |                    | 3.8-3.5            |  |
| 475                                                                                                  | 653        | 0-49                                                                                                       | HARDWOOD             | DEEP             | SAND          | ◄ `        | HIGH                 |                    | 3.6-3.5            |  |
| 476                                                                                                  | 661        | 0-40                                                                                                       | HARDWOOD             | DEEP             | SAND          | •          |                      | LEVEL<br>DOL 1 TNC | 4. U-4. U          |  |
| 477                                                                                                  | 664        | 50-74                                                                                                      |                      |                  |               | • •        |                      |                    |                    |  |
| 4 78                                                                                                 | 667        | 50-74                                                                                                      |                      |                  |               | 1 4        | HDIH                 | ROLLING            | a.e-3.5            |  |
|                                                                                                      | 614<br>676 | 20-14                                                                                                      | HARDWOOD             |                  | SAND          | •          | HIGH                 | ROLLING            | 3.8-3.5            |  |
| 400                                                                                                  | 678        | 50-74                                                                                                      | HARDWOOD             | DEEP             | SAND          | •          | HIGH                 | ROLLING            | 3.2-3.5            |  |
| 482                                                                                                  | 690        | 0-49                                                                                                       | HARDWOOD             | DEEP             | SAND          | 4          | HIGH                 | ROLLING            | 2.5-3.0            |  |
|                                                                                                      |            |                                                                                                            |                      |                  |               |            |                      |                    |                    |  |
| 1                                                                                                    |            |                                                                                                            |                      | CLI              | JSTER=5       |            |                      |                    |                    |  |
| 085                                                                                                  | POLYCON    | PERCENT                                                                                                    | VEG                  | DEPTH            | TEXTURE       | BEDROCK    | SENSI                | RELIEF             | S04_DEPO           |  |
| 483                                                                                                  | 181        | 0-49                                                                                                       | LO CON               | SHALLOW          | SAND          | 4          | HIGH                 | ROLLING            | 2.0-2.5            |  |
| 484                                                                                                  | 197        | 61-6                                                                                                       | UP CON               | SHALLOW          | SAND          | •          | HIGH                 | ROLLING            | 2.2-2.5            |  |
| 485                                                                                                  | 208        | 0-49                                                                                                       |                      | SHALLOW          | SAND          | •          | HIGH                 | ROLLING            | 2.0-2.5            |  |
| 486                                                                                                  | 210        | 0140                                                                                                       |                      | SHALLOW          | ONAN<br>DAAN  | • •        |                      |                    | 2.6-2.0            |  |
| 184                                                                                                  | 223        | 0410                                                                                                       |                      | SHALLOW          | SAND          | • •        | HIGH                 | ROLLING            | 2.0-2.5            |  |
|                                                                                                      | 263        | 04-0                                                                                                       |                      | SHALLOW          | SAND          | -          | HIGH                 | ROLLING            | 2.8-2.5            |  |
| 490                                                                                                  | 272        | 0-49                                                                                                       | UP CON               | SHALLOW          | SAND          | 4          | HIGH                 | ROLLING            | 2.0-2.5            |  |
| 491                                                                                                  | 275        | 0-49                                                                                                       | UP CON               | SHALLOW          | SAND          | 4          | HIGH                 | ROLLING            | 2.8-2.5            |  |
| 492                                                                                                  | 334        | 04-0                                                                                                       |                      |                  |               | 4          | WUJERAIE<br>WODERATE |                    | 2.2-2.2<br>2.0-2.0 |  |
| 504<br>707                                                                                           | 545        |                                                                                                            | SC U.CON             |                  |               | 1 4        | MODERATE             | LEVEL              | 2.8-2.0            |  |
| 1 00<br>1 7<br>1                                                                                     | 346        | 04-0                                                                                                       | SC L.CON             | DEEP             | LOAN          | •          | MODERATE             | LEVEL              | 2.0-2.5            |  |
| 496                                                                                                  | 358        | 0-49                                                                                                       | LO CON               | SHALLOW          | SAND          | 4          | HIGH                 | ROLLING            | 2.0-2.5            |  |
| 497                                                                                                  | 362        | 67-D                                                                                                       |                      | SHALLOW          | SAND          | 4          |                      | KULLING            | 2.6-2.0            |  |
| 4 9 8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 383<br>202 | 0<br>4<br>1<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | NDC 4D               | SHALLUW<br>Oferd | UNANU<br>AND  | 4 4        |                      | ROI LING           | 2.5-3.5            |  |
|                                                                                                      | 900<br>900 | 04-0                                                                                                       | UP CON               | SHALLOW          | SAND          | 4          | HIGH                 | LEVEL              | 2.5-3.2            |  |
| 501                                                                                                  | 395        | 0-49                                                                                                       | LO CON               | DEEP             | SAND          | 4          | HIGH                 | ROLL ING           | 2.5-3.2            |  |
| 502                                                                                                  | 398        | 0-49                                                                                                       | SC L.CON             | SHALLOW          | SAND          | m •        | WODERATE             | ROLLING            | 2.5-3.5            |  |
| 503                                                                                                  | 410        | 0-49<br>0-40                                                                                               |                      | SHALLUW          | UNANU<br>VANU | ৰ ব        | HIGH                 | LEVEL<br>POLITING  | 2.5-3.0            |  |
| 504<br>805                                                                                           | 412        | 2410<br>2410                                                                                               | SC MIXED             |                  | SAND          | r •        | HIGH                 | ROLLING            | 2.5-3.3            |  |

•

----

|         |            |            |                |                                      | CLU                | STER=5        |                 |                  |                 |                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|---------|------------|------------|----------------|--------------------------------------|--------------------|---------------|-----------------|------------------|-----------------|------------------------|---------------------------------------------------------------------------------------------|
|         | 085        | POLYGON    | PERCENT        | VEG                                  | DEPTH              | TEXTURE       | BEDROCK         | SENSI            | RELIEF          | SO4_DEPO               |                                                                                             |
|         | 506        | 421        | 6-40           | LO CON                               | SHALLOW            | SAND          | 4 4             | HICH             | LEVEL           | 2.5-3.0<br>2.5-3.0     |                                                                                             |
|         | 507<br>508 | 431        | 0-40<br>0-40   |                                      | SHALLOW            | SAND          | r 4             | HDIH             | LEVEL           | 2.5-3.0                |                                                                                             |
|         | 503        | 469        | 6-40           | CONTFER                              | SHALLOW            | SAND          | 4               | HIGH             | LEVEL           | 2.5-3.0                |                                                                                             |
|         | 510        | 470        | 0-49           | CONIFER                              | SHALLOW            | SAND          | 4 •             | HOTH             | LEVEL           | 2.5-3.0                |                                                                                             |
|         | 511        | 480        | 0-49           | CONIFER                              | SHALLOW            | CAND<br>CAND  | 4 4             |                  | LEVEL<br>ROLING | 2 0-3.0                |                                                                                             |
|         | 512        | 582        | 94-90          | MIXED                                | SHALLOW<br>SHALLOW | ONAS<br>DANAS | • 4             | HIGH             | ROLLING         | 3.0-3.5                |                                                                                             |
|         | 510        |            | 04-0           | M TYFD                               | SHALLOW            | SAND          | -               | HIGH             | ROLLING         | 3.0-3.5                |                                                                                             |
|         | 4 L<br>0 L |            |                | MIXED                                | SHALLOW            | SAND          | 4               | HIGH             | ROLLING         | 3.0-3.5                |                                                                                             |
|         | 010        | 100        |                | MTXFD                                | DEEP               | SAND          | . 4             | HIGH             | STEEP           | 3.0-3.5                |                                                                                             |
|         |            |            |                | MIYED                                | SHALLOW            | SAND          | 4               | HIGH             | ROLLING         | 3.0-3.5                |                                                                                             |
|         | - 10       |            |                |                                      |                    | SAND          | 4               | HICH             | LEVEL           | 3.0-3.5                |                                                                                             |
|         |            | 518        | 04-0           | CONTEER                              | DEEP               | SAND          | 4               | HIGH             | LEVEL           | 3.0-3.5                |                                                                                             |
|         |            | 620        | 0-40           | WIXED                                | SHALLOW            | SAND          | 4               | HIGH             | ROLLING         | 3.0-3.5                |                                                                                             |
|         | 102        | 645        | 0-49           | WIXED                                | SHALLOW            | SAND          | 4               | HIGH             | ROLLING         | 3.0-3.5                |                                                                                             |
|         | 522        | 684        | 0-49           | WIXED                                | SHALLOW            | SAND          | 4               | HIGH             | ROLLING         | 3.0-3.5                |                                                                                             |
|         | 523        | 688        | 50-74          | MIXED                                | DEEP               | SAND          | 4               | HIGH             | STEEP           | 3.5-4.0                |                                                                                             |
|         |            |            |                |                                      |                    |               |                 |                  |                 |                        |                                                                                             |
|         |            |            |                |                                      | CLU                | STER=6        |                 |                  |                 |                        |                                                                                             |
| OE      | BS         | POLYGON    | PERCENT        | VEG                                  | DEPTH              | TEXTURE       | BEDROCK         | SENSI            | RELIEF          | S04_DEPO               |                                                                                             |
|         |            |            |                |                                      |                    |               |                 |                  |                 |                        |                                                                                             |
| 101     | 24         | 36         | 0-40<br>40     | HARDWOOD<br>HARDWOOD                 | DEEP<br>Shal Low   | SAND          | ოო              | HIGH<br>VODERATE | ROLLING         | 1.3-1.5<br>1.0-1.5     |                                                                                             |
|         | 26 2       | 162        | 0110           | HARDWOOD                             |                    | SAND          | 0               | HICH             |                 | 1.5-2.0                |                                                                                             |
|         | 27         | 677        | 50-74          |                                      | DEEP               | SAND          | r-1 <b>p</b> -1 |                  | ROLLING         | 8.0-9.0<br>0.0-0.0     |                                                                                             |
| 0.0     | 28<br>29   | 6/9<br>680 | 50-74<br>50-74 | HARDWOOD                             | DEEP               | SAND          | 4 -4            | LOW              | ROLLING         | 3.6-3.5                |                                                                                             |
|         |            |            |                |                                      |                    |               |                 |                  |                 |                        |                                                                                             |
|         |            |            |                | F<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | CLU                | ISTER=7       |                 |                  |                 |                        | L<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     |
| 0       | BS         | POLYGON    | PERCENT        | VEG                                  | DEPTH              | TEXTURE       | BEDROCK         | SENSI            | RELIEF          | SG4_DEPO               |                                                                                             |
| Ŭ       |            | 53         | 9-40           | CONTERR                              | SHALL OW           | SAND          | 4               | HIGH             | ROLLING         | 1.5-2.3                |                                                                                             |
| n u     | 9.5        |            | 04-60          | CONTRER                              | SHALLOW            | SAND          | 4               | HDIH             | ROLLING         | 1.5-2.0                |                                                                                             |
| 5 6     | 100        | 101        | 0-49           | CONTFER                              | SHALLOW            | SAND          | 4               | HIGH             | ROLLING         | 1.5-2.2                |                                                                                             |
|         | 33         | 119        | 0-49           | CONIFER                              | SHALLOW            | SAND          | 4               | HIGH             | ROLLING         | 1.5-2.0                |                                                                                             |
| 25      | 34         | 122        | 0-49           | CONTEER                              | SHALLOW            | SAND          | 4               |                  | KULLING         | 1.0-2.0<br>0.0 0.0     |                                                                                             |
| 6       | 35         | 195        | 0-49           | MIXED                                | SHALLOW            |               | 4 -             |                  |                 | 2.2-0.2                |                                                                                             |
| LG 1    | 36         | 196        | 0              |                                      |                    |               | 14              |                  | STREP<br>STREP  | 2.8-2.5                |                                                                                             |
| Ϋ́ Ϋ́   | 100        | 212        |                |                                      | SHALLOW            | SAND          | 4               | HOH              | LEVEL           | 2.2-2.5                |                                                                                             |
| ńù      | 00         | 272        | 04-0           |                                      | SHALLOW            | SAND          | 4               | HOTH             | LEVEL           | 2.0-2.5                |                                                                                             |
| ο<br>Ο  | 04         | 229        | 0-49           | UP CON                               | SHALLOW            | SAND          | ব               | HIGH             | LEVEL           | 2.0-2.5                |                                                                                             |
| ů       | 41         | 244        | 0-19           | UP CON                               | SHALLOW            | SAND          | च (             |                  | LEVEL           | 2.8-2.5                |                                                                                             |
| ů.      | 42         | 257        | 67-3           |                                      |                    |               | <b>ب</b> ر.     |                  |                 | 0 3 - 7 - 1<br>0 3 - 7 |                                                                                             |
| ι.<br>Γ |            | 271        | 57 - 57 C      |                                      | SHALLOW<br>SHALLOW |               | 14              | HOLI             |                 | 2.0-2.5                |                                                                                             |
| ň       | 4 1        | 180        |                | UP CON                               | SHALLOW            | SAND          | 4               | HIGH             | LEVEL           | 2.0-2.5                |                                                                                             |
| 5 uč    | 14         | 282        | 04-0           | UP CON                               | SHALLOW            | SAND          | 4               | HIGH             | LEVEL           | 2.0-2.5                |                                                                                             |
| ι ώ     | 47         | 287        | 0-49           | UP CON                               | SHALLOW            | SAND          | 4               | HICH             | LEVEL           | 2.0-2.5                |                                                                                             |

•

|          | 04_DEP0 | ჅჅჅჅჅჅႧႧႧႧႧႧႧႧႧႧႧႧႧႧႧႧႧႧჅჅჅჅჅჅჅჅჅ<br>ႽჄჂჂჂჂ<br>ჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿჿ<br>ჿჿჿჿჿჿ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14_CEPO      | 60000000000000000000000000000000000000                                                                                            |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
|          | RELIEF  | $\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RELIEF SC    | ROLLING<br>LEVEL<br>ROLLING<br>ROLLING<br>LEVEL<br>ROLLING<br>LEVEL<br>LEVEL<br>LEVEL<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING |
|          | SENSI   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ISNBS        | HIGH<br>HIGH<br>HIGH<br>NODERATE<br>MODERATE<br>MODERATE<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH                          |
|          | BEDROCK | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BEJROCK      | 4 4 4 0 0 0 0 0 0 0 4 0 0 0 0 0                                                                                                   |
| -USTER=7 | TEXTURE | C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEXTURE      | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                             |
| Cl       | DEPTH   | SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>DEEEP<br>DEEEP<br>DEEEP<br>DEEEP<br>DEEEP<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>DEPTH</b> | SHALLOW<br>DEEP<br>DEEP<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP                          |
|          | VEG     | HARMAN HARMAN CHAMMAN CONTRACTOR | VEG          | HARDWOOD<br>MIXED<br>MIXED<br>CONIFER<br>MIXED<br>CONIFER<br>CONIFER<br>MIXED<br>MIXED<br>MIXED<br>MIXED                          |
|          | PERCENT | <i>₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</i> ₽₽<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERCENT      | 00100000000000000000000000000000000000                                                                                            |
|          | POLYGON | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POLYGON      | 000471000000000000000000000000000000000                                                                                           |
|          | 085     | Α Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 085          | ₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩                                       |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                                                                   |

-----

-----

| 1                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                  |
|--------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------|
|                                                                                                  | S04_DEPO | 888789898989898989898989898989898989898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S04_DEPO | 000000000<br>00000000<br>0000000000000000000                                                     |
|                                                                                                  | RELIEF   | ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLIN                                                                                                                                                                                                                                                               | RELIEF   | ROLLING<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL         |
|                                                                                                  | SENSI    | VODERATE<br>VODERATE<br>MIGHRATE<br>MIGHRATE<br>HIGH<br>HIGH<br>HIGH<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE<br>MODERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SENSI    |                                                                                                  |
|                                                                                                  | BEDROCK  | លលលថ លថ ថ ថ ថ ល ថ ល ថ ល ល ល ល ល ថ ថ ល ល ល ល ល ល ល ថ ថ ថ ថ ថ ថ ល ល ល ល ល ល ល ល ល                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BEDROCK  | ৰ ৰ ৰ ৰ ৰ ৰ ৰ ৰ ৰ                                                                                |
| ISTER=8                                                                                          | TEXTURE  | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TEXTURE  | SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>ORGANICS<br>SAND<br>ORGANICS<br>SAND                     |
| CLU                                                                                              | DEPTH    | SHALLOW<br>SHALLOW<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEEP<br>DEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEPTH    | SHALLOW<br>SHALLOW<br>SHALLOW<br>DEEP<br>SHALLOW<br>ANY<br>ANY<br>ANY<br>SHALLOW<br>SHALLOW      |
|                                                                                                  | VEG      | MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED |          |                                                                                                  |
| 1<br>5<br>1<br>8<br>8<br>8<br>8<br>1<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | PERCENT  | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|                                                                                                  | NUCK IDA | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | POLYGON<br>200<br>220<br>225<br>253<br>265<br>265<br>265<br>273<br>277                           |
|                                                                                                  | 500      | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
|                                                                                                  | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                  |

|         | S04_DEPO | <i>8999999999999999999999999999999999999</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | SO4_DEPO | 66666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | RELIEF   | SS<br>CECCUL<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECCUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CECUC<br>CE                                                                     | *                 | RELIEF   | LEVEL<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>STEEP<br>ROLLING<br>STEEP<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING<br>ROLLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | SENSI    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | SENSI    | HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH<br>HIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | BEDROCK  | * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>             | BEDROCK  | <sup></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JSTER=9 | TEXTURE  | SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND<br>SSAND | USTER=10          | TEXTURE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CLI     | рертн    | SHALLOW<br>DEEP<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>DEEP<br>DEEP<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW<br>SHALLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CL                | DEPTH    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | VEG      | MACANOCOCOLUNASSOSOSOSOSOSOSOSOSOSOSOSOSOSOSOSOSOSOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | VEG      | MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED<br>MIXED |
|         | PERCENT  | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | PERCENT  | <i>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 </i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | POLYGON  | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • • • • | POLYGON  | 1111111<br>100000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 085      | ਲ਼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | 085      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

----

-----

\_\_\_\_

|          | EF SO4_DEPO | L 2.8-2.5<br>L 2.8-2.5<br>L 2.8-2.5                                     |
|----------|-------------|-------------------------------------------------------------------------|
|          | RELI        | E<br>LEVE<br>LEVE<br>LEVE                                               |
|          | SENSI       | HIGH<br>HIGH<br>MODERAT                                                 |
|          | BEDROCK     | M M M                                                                   |
| USTER=10 | TEXTURE     | SAND<br>SAND<br>GNAS<br>SAND                                            |
| CLI      | DEPTH       | DEEP<br>DEEP<br>Shallow                                                 |
|          | VEG         | HARDWOOD<br>HARDWOOD<br>HARDWOOD<br>HARDWOOD                            |
|          | PERCENT     | 0<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4 |
|          | POLYGON     | 192<br>370<br>373                                                       |
|          | 085         | 692<br>693<br>694                                                       |



#### APPENDIX B PROBAR REFLECTANCE DATA

- Table B.1. Corrected PROBAR reflectances above the water surface and water chemistry data.
- Table B.2. PROBAR subsurface predicted reflectances.

-----

|            | LIMN                  |
|------------|-----------------------|
|            | AND                   |
| Table B.1. | D PROBAR REFLECTANCES |
|            | 111                   |

٠

|           |                  | רחאובר                                |      |                |            |             |             |           | TDAA2       | TB470               |
|-----------|------------------|---------------------------------------|------|----------------|------------|-------------|-------------|-----------|-------------|---------------------|
| LAKE_ID   | NAME             | PROFILE                               | Н    | sD             | TTLCHL_A   | 200         | 504         | ۲         |             |                     |
| 796       | FREDERIC         | 14                                    | 4.75 | 5.0            | 0.60       | Ø.6         | 12.90       | 200       | 0.095150    | 0.100440            |
| 308       | DOUGHERT         | 35                                    | 4.61 | 17.4           | 0.20       | 8.9<br>9    | 13.40       | 260       | 025050.0    | 0.50000 0           |
| 300       | DOUGHERT         | 32                                    | 4.63 | 19.0           | 0.30       | 20          | 13.50       | 202       | 0.102500    | 0.00000             |
| 300       | DOUGHERT         | 38                                    | 4.63 | 19.0           | 0.30       | 8<br>9      | 95.51       | 967       |             | 0.101.01<br>0.00000 |
| ALE       | ×                | 21                                    | 5.69 | 9. E           | 3.10       | 5.2         | 11.00       | a11       | 0.022100    | 017770.0            |
| 310       | ×                | 22                                    | 5.97 | 49.<br>19      | 2.30       | 9.0         | 11.30       |           | 0066000.0   |                     |
| ACE       | ×                | 18                                    | 5.95 | 7.7            | 1.30       | 2.7         | 11.20       | 72.       | 0.034/20    | 010040.0            |
| 200       | CHINIGUC         | 25                                    | 5.12 | 12.3           | 0.30       | Ø.8         | 12.50       | 170       | 0.069540    | 0.00/080            |
| 170       |                  | 15                                    | 6.24 | 8.3            | 0.70       | 4.0         | 14.20       | 11        | 0.023480    | 0.022010            |
|           |                  | . r                                   | 40   | 18.0           | 0.30       | <b>0</b> .3 | 12.60       | 410       | 0.129130    | 0.132950            |
|           |                  | 5                                     | 4 98 | 2.4            | 0.80       | 6.0         | 10.40       | 180       | 0.065940    | 0.071590            |
| 100       | <>               | 4 00                                  | 44   | - U            | 0.30       | 0.2         | 11.50       | 360       | 0.091450    | 0.084490            |
| 345       |                  | 20                                    |      | 0.01           | 0.30       | 0.3         | 12.00       | 180       | 0.093430    | 0.093330            |
|           | CHINIGUC         | 0 0                                   |      | 1              | 939        | 0           | 10.50       | 440       | 0.116640    | 0.117270            |
| 341       | 7.00.0           | 6 V -                                 |      |                | 0 40       | 6           | 12.00       | 760       | 0.091180    | 0.104920            |
| 35A       | MARJURIE         | 71                                    |      |                | 01.0       | ) u<br>     | 12.60       | 240       | 0.090590    | 0.096650            |
| 358       | DEWDNEY          | י ת<br>ו                              |      | • •            |            | o u<br>o e  | 12 00       | 140       | 0.113520    | 0.118410            |
| 350       | CHINIGUC         | 29                                    | 8    | י פ<br>י ת     |            |             | 10.00       | 041       | 0 098630    | 0.103110            |
| 35C       | CHINIGUC         | 24                                    | 4.84 | 69.69<br>19.69 | 94.9       | 0 0<br>9 0  | 00.71       |           | a 103600    | 0.097590            |
| 360       | CHINIGUC         | 31                                    | 4.60 | 12.5           | 9.30       | 9 I<br>9    | 00.01       |           | 00000110    | 0 117530            |
| 360       | CHINIGUC         | 21                                    | 4.60 | 12.5           | 0.30       | 0           | 13.50       | 0 G Z     | 0.110000    | 00111.00            |
| 360       | I AWI OR         | 18                                    | 4.51 | 4.7            | 0.60       | 6.0         | 95.11       | 378       | 0.002000    |                     |
| 975       |                  | 9                                     | 4.66 | 11.0           | 0.30       | 0.7         | 12.90       | 300       | 0.101920    |                     |
|           | ,                | 4.6                                   | 4 29 | 7.5            | 0.80       | 1.1         | 11.60       | 770       | 0.092920    | 0.090040            |
|           | •                |                                       |      | 7.5            | 0.80       | 1.1         | 11.60       | 770       | 0.096560    | 0.100680            |
| 210       | <>               | 14                                    | 212  | 11.2           | 0.20       | 0.8         | 13.10       | 150       | 0.137310    | 0.132338            |
| 3/E       | <                | 01                                    |      |                | 2          |             |             |           |             |                     |
| TR520     | TR550            | TR58Ø                                 |      | TR610          | TR640      | Ţ           | 3670        | TR700     | TR73        | 2                   |
|           | 031010 0         | 0 0E36800                             | 6    | 0051000        | 0.0352000  | 0.0         | 309600      | 0.028250  | 0.0247      | 008.                |
| 0.082380  | 0.12100          |                                       |      | 0001000        | 0 0143600  | 6           | 32900       | 0.010500  | 0.0080      | 1500                |
| 0.047890  | 0.0460/0         | 0075040.0                             | 9 e  |                | 0000110.0  | 6           | 2 3 6 B 0 0 | 0.017450  | 0.0161      | 200                 |
| 0.072560  | 0.061060         | 0.0495300                             | 9.6  | 0001000        |            |             | 716700      | 0 070490  | 0 0.0657    | 900                 |
| 0.144560  | <b>8</b> .125998 | 0050560.0                             | 9    | 0011790        | aartela.a  |             | 00000       | 0 015600  | 0 0 0123    | 600                 |
| 0.022780  | 0.021320         | 0.0203500                             | 9    | 0061420        | 0076710    | 9.6         | 000001      | 0.0010-00 |             | 001                 |
| 0.063260  | 0.062960         | 0.0597800                             | 0    | 0560100        | 0.00035000 |             |             | 001210.0  |             | 1800                |
| 0.042540  | 0.040510         | 0.0420300                             | ø    | 0320900        | 008/120.0  | 9<br>9<br>9 | 0016/1      |           |             | 0000                |
| 0.057870  | 0.052940         | 0.0445500                             | ø    | 0345700        | 0.0275200  | 9           | 005052      | 016770.0  |             | 0070                |
| 0.021170  | 0.021790         | 0.0168300                             | 69   | 0150600        | 0.0111300  | 5           | 00110       | 0004000.0 |             |                     |
| 0 093660  | 0.077940         | 0.0571900                             | Ø    | 0453200        | 0.0420600  | 0           | 382300      | 0.034300  | 0 0.032     | 000                 |
| a affifa  | 0 061610         | 0.0471800                             | 9    | 0330200        | 0.0261900  | 0.0         | 225400      | 0.018290  | icia a a    | 200                 |
| 0.00010   | 0 058700         | 0 0483500                             | 0    | 0336800        | 0.0268500  | 0.0         | 238300      | 0.022420  | 0.0200      | 1000                |
|           | 0 04040          | 0 0338400                             | 6    | 0250800        | 0.0210500  | 0           | 191600      | 0.016580  | 0 0.0138    | 3200                |
|           | 019500 0         | 0 0678900                             | 6    | 0443600        | 0.0364200  | 0.0         | 315200      | 0.029690  | 0 0.0246    | 3300                |
|           |                  | 0.02.22.00                            | 5    | 0429600        | 0.0221200  | 0.0         | 149900      | 0.012910  | 0 0.009(    | 360 <b>0</b>        |
| 041150.0  |                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5    | 0762400        | 0 0184400  | 0           | 116400      | 0.011840  | 0 0.0073    | 2500                |
| 0000010.0 | aroroa, a        |                                       | 9 6  | GEADEAG        | 0 0519000  | 6           | 490600      | 0.047580  | 0 0.042     | 300                 |
| 0.1112/0  | 0.100200         |                                       | 9 6  |                | 0 0475300  |             | 986300      | 0 036160  | 0 0.0325    | 0010                |
| 0.086810  | 0.077580         | 0.024040                              | 9    | 09/2/40        |            |             | 000000      | 0 000330  | 0 0 07      | 1300                |
| 0.073390  | 0.062850         | 0.0516200                             | 9    | 040/800        | 0033/000   | 90          |             |           | a a a a a   | 200                 |
| 0.083140  | 0.070330         | 0.0494300                             | 0    | .0403800       | 0.0354000  | 9<br>9      | 331000      |           |             |                     |
| 0.079040  | 0.075350         | 0.0546400                             | 0    | 0364900        | 0.0296200  | 9           | 245900      | 0.1220.0  |             |                     |
| 0 090300  | 0.072200         | 0.0588600                             | 0    | .0309800       | 0.0231800  | 0.0         | 151300      | 0.012300  | 1600.0<br>- | 0000                |
| 0.086030  | 0.083790         | 0.0773500                             | 0    | .0622800       | 0.0515600  | 0.0         | 471100      | 0.043200  | 0.040       | 2000                |
| a 107000  | 0 100293         | 0.0806300                             | 0    | .0607300       | 0.0464700  | 0.0         | 422800      | 0.039590  | 0 0.032     | 001                 |
| a 100560  | 0.085350         | 0.0562800                             | 0    | 0309200        | 0.0223300  | 0.0         | 197000      | 0.016160  | 0 0.013     | 1300                |
|           |                  |                                       |      |                |            |             |             |           |             |                     |

•

CORRECTED PROBAR REFLECTANCES AND LIMNOLOGICAL DATA

| TR4 70  | 0.056640<br>0.083750<br>0.083750<br>0.1361710<br>0.017700<br>0.017700<br>0.017700<br>0.0550388<br>0.0553388<br>0.0254500<br>0.021480<br>0.021480<br>0.021480<br>0.021480<br>0.021480<br>0.021480<br>0.021480<br>0.02123<br>0.02123<br>0.02123<br>0.0212380<br>0.031223<br>0.022160<br>0.031223<br>0.022160<br>0.031223<br>0.0220010<br>0.0220010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>4<br>2<br>2<br>2<br>2<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TR443   | 0.051610<br>0.107130<br>0.107130<br>0.107130<br>0.107130<br>0.03191360<br>0.0319120<br>0.02403120<br>0.0240310<br>0.0240310<br>0.02403100<br>0.0240310000<br>0.024051000<br>0.0240510000<br>0.0241360000<br>0.02755500000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R73<br>8773<br>387369<br>387369<br>3873969<br>3865986<br>3865986<br>3787869<br>3787869<br>3787869<br>3787869<br>3787869<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986<br>3655986 |
| ٦٢      | 2880.0<br>2880.0<br>2880.0<br>2880.0<br>2880.0<br>2880.0<br>2880.0<br>2890.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0<br>280.0000000000 | ©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$04    | 111111111111<br>0000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A constraint of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DOC     | <i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.67       7.670       6.012510       6.012510       6.039110       6.039110       6.039110       6.039110       6.039110       6.039110       6.039110       6.031120       6.031120       6.012200       6.013200       6.013750       6.013750       6.013750       6.013750       6.013750       6.013750       6.013750       6.013750       6.013750       6.013750       6.013804       6.013804       6.013804       6.013804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 01000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TR640<br>1.015090<br>0.015090<br>0.015090<br>0.015090<br>0.015090<br>0.015090<br>0.0110730<br>0.012050<br>0.012050<br>0.015650<br>0.015650<br>0.015650<br>0.015650<br>0.015650<br>0.015650<br>0.015650<br>0.015650<br>0.0114<br>0.02550<br>0.015650<br>0.015600<br>0.015600<br>0.0114<br>0.015600<br>0.0114<br>0.015600<br>0.0114<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0.0116<br>0                                                                                                                                                                                                                                                                             |
| SD SD   | ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>1</li> <li>2</li> <li>3</li> <li>4</li> <li>4</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PH      | 44440044//00000/00000000004<br>00000/00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PROFILE | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NAME    | SILVESTE<br>SILVESTE<br>OTTER<br>MATAGAMA<br>X<br>MATAGAMA<br>RATHBUN<br>WANAPITE<br>ATOMIC<br>EAST<br>MONTREAL<br>MONTREAL<br>X<br>DYER<br>DYER<br>ALUIN<br>BARBARA<br>X<br>ALVIN<br>BARBARA<br>X<br>ALVIN<br>BARBARA<br>X<br>ALVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BIG FIKE<br>TR559<br>0.055290<br>0.055290<br>0.055290<br>0.055290<br>0.0515290<br>0.0515290<br>0.0515290<br>0.019650<br>0.017561<br>0.017561<br>0.0315569<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315561<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315520<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315550<br>0.0315500<br>0.0315550<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.0315500<br>0.03155000<br>0.03155000<br>0.03155000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LAKE_ID | ж ж ж ж ж ж ж <del>4 4 4 4 4 4 4 4 4 4 4 4 4</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F<br>TR5 20<br>0.055333<br>0.0755333<br>0.0755333<br>0.0755333<br>0.0755333<br>0.0755333<br>0.075533<br>0.071530<br>0.0319055<br>0.0319055<br>0.0319055<br>0.0319055<br>0.03170<br>0.0215533<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.02155555<br>0.02155555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.0215555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.02155555<br>0.021555555<br>0.02155555<br>0.0215555555<br>0.021555555<br>0.02155555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

CORRECTED PROBAR REFLECTANCES AND LIMNOLOGICAL DATA

| TR470    | 0.022360         0.022360         0.022360         0.022360         0.022360         0.02117400         0.022360         0.021360         0.021360         0.021360         0.021360         0.021360         0.02140         0.02131500         0.02131500         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000         0.02131000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TR443    | 0.0238015<br>0.0238015<br>0.02347600<br>0.0234783<br>0.0234783<br>0.0228000<br>0.0228000<br>0.0228000<br>0.0228000<br>0.02284800<br>0.02284800<br>0.02284800<br>0.02284800<br>0.02284800<br>0.02284800<br>0.02284800<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.02284400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.0228400<br>0.02284000<br>0.02284000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R732<br>R732<br>(122159599<br>(122159599<br>(1221599<br>(1221599<br>(1221599<br>(1231599<br>(1133999<br>(113399<br>(113399<br>(113399<br>(1125899<br>(1125899<br>(1125899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(1155899<br>(115589)<br>(1155899<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>(115589)<br>( |
| ٩٢       | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| S04      | 4444440404444000040400440044<br>80014010000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TR700<br>0.015329<br>0.015329<br>0.007978<br>0.007978<br>0.007978<br>0.0017162<br>0.0018730<br>0.01270<br>0.012480<br>0.014720<br>0.014890<br>0.014890<br>0.014890<br>0.014890<br>0.014990<br>0.014990<br>0.014990<br>0.014990<br>0.014990<br>0.014990<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.014930<br>0.017330<br>0.017330<br>0.017330<br>0.017330<br>0.017330<br>0.017330<br>0.017330<br>0.017330<br>0.017330<br>0.017330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.007330<br>0.0073300<br>0.0073300<br>0.0073300<br>0.0073300<br>0.0073300<br>0.0073300<br>0.007330000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DOC      | ਲ਼ਗ਼ਲ਼ਸ਼ਸ਼ਸ਼ਫ਼ਲ਼ਫ਼ੑੑਸ਼ਫ਼ਫ਼ਲ਼ਲ਼ਲ਼ਫ਼ਜ਼ਫ਼ਲ਼ਲ਼ਲ਼ਲ਼ਜ਼ਲ਼ਫ਼ਲ਼ਲ਼ਲ਼<br>ਜ਼ਲ਼ਲ਼ਲ਼ਲ਼ਫ਼ਲ਼ਸ਼ਲ਼ਲ਼ਲ਼ਫ਼ਜ਼ਫ਼ਲ਼ਲ਼ਲ਼ਲ਼ਜ਼ਲ਼ਫ਼ਫ਼ਲ਼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TR676<br>6.014397<br>6.014397<br>6.0193569<br>6.0193569<br>6.0103569<br>6.0103569<br>6.0108256<br>6.0108256<br>6.0108556<br>6.011176<br>6.011356<br>6.0113356<br>6.0113356<br>6.0113356<br>6.0113356<br>6.0113356<br>6.0113356<br>6.0113358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TTLCHL_A | 001104141900100940001000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TR646<br>0.0215282<br>0.0215282<br>0.0215282<br>0.0215282<br>0.0217663<br>0.011281<br>0.0215570<br>0.012570<br>0.012570<br>0.012570<br>0.0125330<br>0.0125330<br>0.017566<br>0.017566<br>0.017566<br>0.01710<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.01772<br>0.017720<br>0.017720<br>0.01772000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                 |
| SD       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hď       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRG16<br>TRG16<br>0.0155<br>0.0155<br>0.0126<br>0.0126<br>0.0126<br>0.0126<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125<br>0.0125                                                                                                                                                                                 |
| PROFILE  | 44000000469445000000000000<br>90000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TR580<br>0.017809<br>0.017809<br>0.0194273<br>0.0194273<br>0.0194273<br>0.025215<br>0.025515<br>0.015280<br>0.016520<br>0.016520<br>0.016520<br>0.019150<br>0.025180<br>0.019150<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.01780<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025180<br>0.025150<br>0.025150<br>0.025150<br>0.025150<br>0.025150<br>0.025150<br>0.02550<br>0.025150<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02550<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.02500<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.025000<br>0.0250000<br>0.0250000<br>0.0250000<br>0.0250000<br>0.0250000<br>0.0250000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NAME     | SHOEPACK<br>PATTERSO<br>CAND<br>CAND<br>CAND<br>CAND<br>AITCHELL<br>FULLER<br>AUINTET<br>TAY<br>TAY<br>AUINTET<br>AUCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLOU<br>MCCOLLO | TR550<br>0.017882<br>0.017882<br>0.015654<br>0.0245654<br>0.0245654<br>0.02455115<br>0.0245115<br>0.0245115<br>0.0245115<br>0.0245130<br>0.017230<br>0.017230<br>0.017230<br>0.017330<br>0.017330<br>0.018130<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.021330<br>0.0212320<br>0.0213300<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212320<br>0.0212200<br>0.0212220000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LAKE_ID  | £₽₽₽₽₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRS50<br>0.0220<br>0.0220<br>0.0220<br>0.0220<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.022456<br>0.02256<br>0.02256<br>0.02256<br>0.02256  |

-

CORRECTED PROBAR REFLECTANCES AND LIMNOLOGICAL DATA

| MANE         MANE <th< th=""><th></th><th></th><th>113000</th><th></th><th></th><th></th><th>000</th><th>S04</th><th>٩٢</th><th>TR443</th><th>TR470</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          | 113000   |                                         |                    |                                           | 000                   | S04       | ٩٢         | TR443        | TR470                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|-----------------------------------------|--------------------|-------------------------------------------|-----------------------|-----------|------------|--------------|-----------------------------------------|
| II       6       7.35       2.8       5.1       5.93       100.0       0.0284000         SH       31       7.44       999.9       0.0284000       0.0284000       0.0284000         SH       31       7.44       999.9       0.0284000       0.0284000       0.0284000         SS       7.44       999.9       0.0284000       0.0284000       0.0284000       0.0284000         NG       15       7.34       999.9       0.0284000       0.0284000       0.0284000         SS       15       7.34       999.9       0.0284000       0.0284000       0.02857300         SS       5.67       4.5       2.3       3.2       8.6       0.0284000       0.02857300         SS       6.20       7.5       1.3       2.2       11.7       999.9       0.02857300         SS       6.27       3.2       2.3       3.2       8.63       0.0284000       0.017900         SS       6.27       1.2       2.3       3.2       10.9       0.017900       0.017900         SS       6.20       7.5       1.3       2.3       3.7       179       100.0       0.017900         SS       5.33       2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NAME        |          | PK0F 1   | E<br>L                                  | 2                  |                                           |                       | C 17      | 47.0       | 0.0228400    | 0.0252100                               |
| ISH       34       7.44       999:9       2.8       7.9       5.10       599:9       0.0287800         KAB       25       7.44       999:9       4.0       0.0281900       0.0287800         S       15       7.34       999:9       4.0       0.031900       0.0287800         S       7.34       999:9       5.2       9.4       0.091:9       0.0257300         S       7.34       999:9       5.2       9.4       0.0110       0.0257300         ATI       5.67       4.5       5.3       9.4       0.011700       0.0257300         RIE       5.67       4.5       5.3       9.9       0.011700       0.0257300         RIE       5.67       4.5       2.3       3.2       8.6       0.0177100       0.0257300         RIE       6.20       7.5       1.3       3.2       8.63       0.0177100       0.0257300         RIE       6.20       1.3       5.67       4.5       2.3       3.7       9.2       9.4       0.0257300         RIE       6.20       1.1       6.20       1.1       9.2       1.1       0.0257300       0.0177100       0.0257300       0.0257300       0.0257300 </td <td>NORTH</td> <td>11</td> <td>Ð</td> <td>7.3</td> <td>5 2.8</td> <td>4.0</td> <td>n <del>-</del><br/>n 4</td> <td>20.7</td> <td>100.0</td> <td>0.0222200</td> <td>0.0200200</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NORTH       | 11       | Ð        | 7.3                                     | 5 2.8              | 4.0                                       | n <del>-</del><br>n 4 | 20.7      | 100.0      | 0.0222200    | 0.0200200                               |
| TISH 31 7.44 999.9 2.5 7.30 8.8 4.77 999.9 0.0287800 6.7 4.77 999.9 0.0384900 6.7 4.17 999.9 0.0384900 6.7 4.17 999.9 0.0384900 6.7 4.11 999.9 0.0381900 6.7 4.11 999.9 0.0381900 6.7 4.11 999.9 0.0381900 6.7 4.11 999.9 0.0381900 6.7 4.11 999.9 0.0381900 6.5 7.30 999.9 0.057300 6.6 7 4.5 7.30 999.9 0.057300 6.6 7 4.5 7.30 999.9 0.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0410700 6.0110700 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 6.000707 | PAINT       |          | 94       | 7.41                                    | 5 666              | 8 G<br>N I                                |                       |           | 0 000      | 0.0284600    | 0.0245900                               |
| KAB         28         7.44         999:9         3.9         6.7         4.77         999:9         6.304500           ATT         12         7.34         999:9         6.7         4.11         999:9         6.304500           ATT         12         7.34         999:9         6.7         4.11         999:9         6.304500           ATT         12         7.34         999:9         6.7         4.11         999:9         6.304500           ATT         5         7.34         999:9         6.20         7.5         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         6.20         9.4         9.4         6.20         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.4         9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRAYE       | HSI:     | 31       | 7.4                                     | 6 666 <del>6</del> | 7.7                                       | n .<br>               |           | 0.000      | 0.0287800    | 0.0247700                               |
| TECU $25$ $7.30$ $999.9$ $5.7$ $4.71$ $999.9$ $6.7$ $4.71$ $999.9$ $6.7$ $4.71$ $999.9$ $6.7$ $4.71$ $999.9$ $6.73190000$ VING         12 $7.37$ $999.9$ $6.7$ $4.73$ $999.9$ $6.7337900$ $6.733790000$ $6.7337900000$ $6.7337900000000$ $6.733790000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WF C T      | KAR      | 28       | 4. ~                                    | 5 666 \$           | 2.1                                       | 0                     |           | 0.000      | 0 0304000    | A 0790600                               |
| Current         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          | , c      | 7.30                                    | а 999.5            | 3.9                                       | 6.7                   |           | 0          |              | 0 0102000                               |
| IS       7.34       999.9       5.2       9.4       4.73       999.9       9.6       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4       6.6       9.4      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |          | 25       |                                         | 5 666 1            | 9.4                                       | 6.7                   | 4.11      | 5.555      | 0.0501300    | 000000000000000000000000000000000000000 |
| NUNG         15         7.37         999.9         6.0         9.4         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ž           |          | 7        | - 1                                     |                    | c<br>U                                    | 9.8                   | 4.30      | 6665       | 0.03100000   | 0001620.0                               |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N.<br>N     | SUS      | 16       | 5                                       |                    |                                           |                       | A 78      | 94.6       | 0.0150200    | 0.0142400                               |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KABE        | DNUNG    | 19       | 7.3                                     | 5.888 1            |                                           | • 0                   | 000       | 000        | 0.0257300    | 0.0225900                               |
| VERIE         7.69         999.9         1.2         6.5         1.1.7         991.9         1.2         6.5         9.410600           VORTE         5.67         4.5         2.3         3.2         8.63         6.6.9         0.0410600           VORTE         5.67         4.5         2.3         3.2         8.63         6.0         0.0410600           VONL         75         1.3         2.9         10.90         10.90         10.90         0.0454700           TRE         44         6.20         7.5         1.4         2.9         9.29         10.90         0.0759900           TRE         75         1.4         2.3         3.79         130.9         0.0294323           TRESO         TR500         7.5         1.4         2.7         3.79         130.9         0.0294323           TR550         TR500         7.5         1.4         2.7         3.79         130.9         0.0294323           TR550         TR500         7.55         1.4         2.7         3.79         130.9         0.0292433           0011         7.85         7.85         7.85         7.79         130.9         0.02177100         0.02177100      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | u<br>u<br>u | DIATT    | 12       | 7.3                                     | 9.999.5            | 1.9                                       | 0.0                   |           |            | 0 0763700    | 0 0233700                               |
| NORTE         7         5         7         5         7         5         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6 <th7< th="">         10         10         10<!--</td--><td></td><td></td><td>) «</td><td>7.8</td><td>5.666 6</td><td>1.2</td><td>6.5</td><td>11./0</td><td>5</td><td></td><td>a a375700</td></th7<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |          | ) «      | 7.8                                     | 5.666 6            | 1.2                                       | 6.5                   | 11./0     | 5          |              | a a375700                               |
| NUMLE         5.67         4.5         7.5         1.3         2.0         10.96         10.0         0.014900           TRE         41         6.20         7.5         1.3         2.0         10.96         10.0         0.0150300           TRE         41         5.33         4.2         1.3         2.0         10.96         10.0         0.0150300           TRE         41         5.33         4.2         1.3         2.2         9.29         10.0         0.0150300           TRE         5.33         4.2         1.3         2.2         9.29         10.0         0.0150300           TRES         TR50         TR50         TR610         TR640         TR670         TR732         10.0         0.0234323           TRES         TR50         TR610         TR640         TR640         TR732         0.02177100         0.0234323           0012         5.33         4.2         1.4         2.2         3.7         3.79         130.0         0.0234323           0012         TR50         TR640         TR640         TR670         0.0177100         0.0234323           0112         0122         0122500         0.0112200         0.0112700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |          | • •      |                                         | 2 4 5              | 2.3                                       | 3.2                   | 8.63      | 90.00      | 0.001 Fa. 0  |                                         |
| NDRIE         53         5.01         7.5         1.3         2.6         16.9         16.0         6.454766           TRE         41         6.28         7.5         1.3         2.6         16.9         16.0         6.03736366           TRE         41         5.33         4.2         1.3         2.6         16.0         6.03736366         6.03736366           TRE50         TR560         TR610         TR610         TR610         TR640         TR670         TR760         6.0374660         6.0374660         6.0374660         6.0374660         6.0374660         6.0374660         6.0374660         6.0374660         6.0374660         6.0377260         6.03177600         6.03177600         6.03177600         6.03167660         6.0117460         6.03167660         6.01177600         6.0122560         6.0114660         6.013726           01924800         0.03147100         0.0127260         0.0112460         0.0114660         6.011726         0.0226600         0.0117260         0.0122560         0.0114660         0.0122260         0.0112260         0.0117260         0.0122600         0.0114660         0.0122260         0.0114660         0.012260         0.0122600         0.0114660         0.0122600         0.0116260         0.0122600 <th< td=""><td>N<br/>N</td><td>NUKIE</td><td>-</td><td></td><td></td><td></td><td>с<br/>С</td><td>B.63</td><td>66.0</td><td>0.0195900</td><td>0002220.0</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N<br>N      | NUKIE    | -        |                                         |                    |                                           | с<br>С                | B.63      | 66.0       | 0.0195900    | 0002220.0                               |
| TRE         41         5.20         7.5         1.3         2.2         9.29         10.0         0.0360305           TRE         75         5.33         4.2         1.3         2.2         9.29         10.0         0.0360305           TRE         5.33         4.2         1.3         2.2         9.29         10.0         0.0346305           TRES         5.33         4.2         1.4         2.2         9.29         10.0         0.0346305           TR50         TR50         TR610         TR610         TR640         TR700         0.0177100         0.0234305           TR50         0.0374600         0.017000         0.014000         0.0144200         0.0177100         0.0122500           0199900         0.037700         0.0144200         0.0144200         0.017250         0.017250         0.017250           0199900         0.034700         0.0144700         0.017260         0.0144700         0.0226600         0.0145600         0.021700           0199900         0.021700         0.034700         0.0217400         0.0217200         0.0214600         0.0217200           0114400         0.0217400         0.0217400         0.0217400         0.0225600         0.0114600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | NORIE    | 63       | 0.0                                     |                    | ) (<br> <br>                              |                       | 10 90     | 10.0       | 0.0454700    | 0.0446800                               |
| TRE         44         6.28         7.5         1.4         2.2         9.2         1.6         9.366366           TRPIN         75         5.39         9.0         1.4         2.2         9.2         1.6         9.356366           TRFS6         TR580         TR580         TR610         TR640         TR670         TR700         0.0177160         0.0177160         0.0177160         0.0177160         0.01395           01834200         0.0374600         0.0170000         0.0177200         0.0177160         0.0177160         0.0177160         0.01375           01895600         0.0374600         0.0177200         0.0127200         0.0117260         0.01077           01895600         0.0114000         0.0132700         0.0117260         0.01077         0.0226600         0.0117260           0192400         0.017200         0.0132700         0.0117260         0.01077         0.0226600         0.01077           0114000         0.0279600         0.0177200         0.0174200         0.0275600         0.0177260         0.02177           02114000         0.0279600         0.0177200         0.0275600         0.0177200         0.0275600         0.0174300         0.0226600         0.0177200         0.0275600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N HO        | TRE      | 14       | 6.2                                     | 9<br>              |                                           | 96                    | 00.01     | 0 0 1      | 0,0798900    | 0.0826000                               |
| TFPIN         T5         5.99         9.0         1.4         2.2         3.75         1.36.6         6.0234323           YR550         TR510         TR5100         D0114400         D0122560         D0114400         D0122560         D0114500         D0114720         D0114500         D0114720         D0114500         D0114720         D0114720         D0114500         D0122720         D0114500         D01227200         D0114500         D0122720         D01147500         D01227200         D01147500         D02265600         D0122720         D0122720         D0122720         D01227200         D01227200         D01227200         D012167200         D012727200         D01227200         D0122720         D022656100         D022656100 </td <td>N LLC</td> <td>TRF</td> <td>44</td> <td>6.2</td> <td>3.7</td> <td>5.1</td> <td>9.0</td> <td></td> <td>10.01</td> <td>0 0360300</td> <td>0.0386400</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N LLC       | TRF      | 44       | 6.2                                     | 3.7                | 5.1                                       | 9.0                   |           | 10.01      | 0 0360300    | 0.0386400                               |
| YOML         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7 <td></td> <td>TEPIN</td> <td>75</td> <td>5.9</td> <td>9.6 0</td> <td>1.4</td> <td>2.2</td> <td>N 7 7 A</td> <td></td> <td>0.0001222</td> <td>a 0289538</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | TEPIN    | 75       | 5.9                                     | 9.6 0              | 1.4                                       | 2.2                   | N 7 7 A   |            | 0.0001222    | a 0289538                               |
| TR550         TR510         TR5100         TR5100         TR5100         TR5100         TR5100         TR51100         TR5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRE<br>CRE  | YOWL     | 30       | 5.3                                     | 3.4.5              | 1.8                                       | 3.7                   | 3./9      | 130.0      | 0701070.0    |                                         |
| 0.0374600       0.0278200       0.0213500       0.0177100       0.0177100       0.0177100       0.0177100       0.017395         0.01995000       0.0173700       0.0174000       0.0174000       0.0175500       0.0114400       0.0122500       0.0114400       0.0122500       0.0114400       0.0122500       0.0114400       0.0122500       0.0114500       0.0122500       0.01140200       0.0122500       0.0114200       0.0122500       0.0114200       0.0122500       0.0114200       0.0122500       0.0114200       0.0122500       0.0112200       0.02256500       0.0112200       0.02256500       0.0122500       0.02256500       0.0112200       0.02256500       0.02256500       0.02256500       0.02256500       0.02256500       0.02256500       0.02256500       0.02256500       0.02256500       0.02126500       0.02256500       0.02156500       0.02256500       0.02256500       0.02156500       0.02256500       0.02156500       0.02256500       0.02156500       0.02256500       0.02156500       0.02156500       0.02156500       0.02156500       0.02156500       0.02156500       0.02156500       0.02156500       0.02156500       0.02155600       0.02155600       0.02155600       0.02155600       0.02156500       0.02155600       0.02155600       0.02155600       0.02155600       0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,           | TPEED    |          | TR580                                   | TR610              | TR640                                     |                       | TR670     | TR700      | <b>TR732</b> |                                         |
| 0341700         0.012560         0.0114400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014400         0.0014600         0.0014600         0.0014600         0.0014600         0.0014600         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.001200         0.002200         0.012500         0.002200         0.012500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500         0.002500 <th0.002500< th=""> <th0.002500< th=""> <th0.002< td=""><td></td><td></td><td></td><td>0031100</td><td>a a70516</td><td>40 0.022820</td><td>0</td><td>.0213600</td><td>0.0177100</td><td>0.013950</td><td></td></th0.002<></th0.002500<></th0.002500<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |          |          | 0031100                                 | a a70516           | 40 0.022820                               | 0                     | .0213600  | 0.0177100  | 0.013950     |                                         |
| •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9           | .034120  | ، و<br>و | 000000000000000000000000000000000000000 |                    | 0 014020                                  | 0                     | 0122500   | 0.0114400  | 0.008760     |                                         |
| 0192400       0.0175400       0.0155400       0.0154500       0.0152400       0.01226         0199900       0.0278100       0.0154500       0.0154500       0.0124500       0.0126100       0.0122600         0199900       0.02381300       0.0314700       0.0228600       0.0145600       0.0145600       0.0145600       0.0146600       0.0146600       0.014600       0.0228600       0.010187         0271400       0.02387300       0.03187300       0.03286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02286100       0.02186100       0.02186100       0.02186100       0.02186100       0.01186100       0.01186100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0           | .018960  | 0        | 0198400                                 | 100/10.0           |                                           |                       | 0107200   | 0 0110200  | 0.0087301    | ~                                       |
| 01999900       0.02381600       0.0194100       0.02184600       0.0194500       0.0194500       0.011750         0341700       0.0341600       0.0342600       0.034500       0.034500       0.0226600       0.01570         0341700       0.0408400       0.0342600       0.0326600       0.017200       0.0226600       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.0226500       0.025600       0.025600       0.0226500       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.025600       0.0255600       0.00151       0.0257500       0.02151500       0.0215100       0.0215600 </td <td>9</td> <td>.019240</td> <td>0.0</td> <td>0173700</td> <td>0.01604</td> <td>3/7CT0.00</td> <td>9 9 9</td> <td></td> <td>0 0145600</td> <td>0.012260</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9           | .019240  | 0.0      | 0173700                                 | 0.01604            | 3/7CT0.00                                 | 9 9 9                 |           | 0 0145600  | 0.012260     |                                         |
| 0343700         0.0381300         0.0342600         0.0284600         0.0226100         0.02200           0271700         0.0408400         0.0387300         0.0320100         0.0316900         0.02261           02711400         0.0279600         0.03270100         0.0326100         0.02251         0.02265           0211400         0.0279600         0.037700         0.03270100         0.02261         0.02235           0211400         0.0279100         0.037700         0.032700         0.02265         0.0225           011400         0.0279100         0.037700         0.027700         0.02265         0.02255           011400         0.0273100         0.017700         0.0174700         0.0213800         0.0135600         0.02256           011400         0.022500         0.017700         0.0174700         0.0174700         0.0135600         0.0215600         0.0015160           011400         0.022500         0.012700         0.0127400         0.0135600         0.0135600         0.015560           011400         0.022500         0.022600         0.023600         0.021714         0.023600         0.013560         0.015560           01015100         0.022500         0.0210200         0.0102700         0.010270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6           | 010000   | 6.0      | 0208100                                 | 0.019451           | 00 0.01/414                               | 2                     | aaco/10.  |            | 0 01 0 0     |                                         |
| 0.277400         0.0387300         0.0316900         0.0216900         0.0243100         0.02250100         0.02251100         0.02251100         0.02251100         0.02251100         0.02251100         0.02251100         0.02255100         0.02251100         0.02255100         0.02251100         0.02255100         0.02251100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02255100         0.02151400         0.02255100         0.02151400         0.02255100         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.02151400         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514100         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160         0.021514160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26          | 0101010  |          | 0381300                                 | 0.034260           | <b>30 0.02846</b> 0                       | 0                     | .0284400  | 0000770.0  |              |                                         |
| 0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.0000         0.000         0.000 <t< td=""><td>3 (</td><td></td><td></td><td>0000000</td><td>0 038731</td><td>0.032010</td><td>0</td><td>.0316900</td><td>0.0251100</td><td>000770.0</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 (         |          |          | 0000000                                 | 0 038731           | 0.032010                                  | 0                     | .0316900  | 0.0251100  | 000770.0     |                                         |
| .8271480 0.002/300 0.0017200 0.0005600 0.0081500 0.0085500 0.0085500 0.00855<br>00114800 0.0024200 0.0177200 0.0174700 0.0114800 0.0116800 0.00881<br>0.0316700 0.0229400 0.0177200 0.0174700 0.0174300 0.0174300 0.00851<br>0.0316700 0.0229200 0.0243100 0.0174300 0.0174300 0.0174300 0.00851<br>0.0165800 0.01235200 0.0243100 0.0174300 0.0174300 0.01514<br>0.0165800 0.0143680 0.0243100 0.0172200 0.0286000 0.0174300 0.01514<br>0.0165800 0.0143680 0.0231700 0.0102900 0.0102200 0.001355<br>0.0165800 0.0143680 0.0231700 0.0102900 0.01251<br>0.0137400 0.0243100 0.02548400 0.0172600 0.0137700 0.0108200 0.03823<br>0.0355852 0.0252301 0.0217321 0.0181032 0.0163905 0.0137700 0.0108200 0.00964<br>0.0255852 0.0252301 0.0217321 0.0181032 0.0163905 0.0137700 0.0108200 0.00964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9           | 971459.1 |          |                                         | 0 077070           | 0 05080                                   | 0                     | .0256100  | 0.0243100  | 0.022650     | •                                       |
| .0114000 0.0004200 0.0177200 0.0144700 0.0138000 0.0116800 0.00881<br>.0133800 0.0201700 0.0177200 0.0174700 0.0153000 0.0135600 0.00897<br>.0317200 0.0229200 0.0122900 0.0174700 0.0288000 0.0174300 0.01514<br>.0317200 0.0229200 0.0218100 0.0217700 0.0268100 0.008810<br>.0166800 0.0143600 0.0318700 0.0244700 0.0288800 0.0268100 0.00887<br>.0447400 0.025500 0.0318700 0.02447700 0.0268100 0.008810<br>.0317700 0.0268100 0.0248100 0.0517700 0.0441400 0.03821<br>.0335500 0.0236100 0.0248400 0.0172600 0.0137700 0.014826 0.03821<br>.0335500 0.0338100 0.0248400 0.0172600 0.0137700 0.0108200 0.098820<br>.03355652 0.0252301 0.0217321 0.0181032 0.0163905 0.013654 0.00963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9           | .027140  | ם<br>מי  | 0006/20                                 | 12120.0            |                                           | 0                     | 0087400   | 0.0085900  | 0.005900     | •                                       |
| 0.0193800 0.0201700 0.01/7200 0.0174700 0.015400 0.0135600 0.00890<br>0.0216700 0.0229200 0.0192100 0.027200 0.0208000 0.0174300 0.01514<br>0.01317200 0.0299200 0.0212900 0.0222200 0.02088000 0.0174300 0.00385<br>0.0166800 0.0143600 0.02129400 0.02247700 0.0288000 0.0204500 0.0385<br>0.0447400 0.0143500 0.03187700 0.02147700 0.0204500 0.01837<br>0.0447400 0.025500 0.0218900 0.051700 0.0204500 0.03832<br>0.0335100 0.0258900 0.0172600 0.0137700 0.0108200 0.00834<br>0.03351800 0.0217321 0.0181032 0.0163905 0.0137700 0.000834 0.0096<br>0.0355852 0.0252301 0.0217321 0.0181032 0.0163905 0.013634 0.0096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9           | 011400   | 0.<br>0  | 0034200                                 |                    |                                           |                       | 0138000   | 0.0116800  | 0.008810     | •                                       |
| , 0216700 0.0219400 0.0192100 0.0174100 0.01514<br>0317700 0.029900 0.024100 0.022200 0.0208000 0.0174300 0.00581<br>1.0317620 0.029900 0.024100 0.0102900 0.0088000 0.0068100 0.00385<br>1.0447400 0.0422500 0.0318700 0.0218700 0.024500 0.01822<br>1.0447400 0.0422500 0.0318700 0.051000 0.0452700 0.0441400 0.0383<br>1.0447400 0.0335100 0.02848400 0.0172600 0.0137700 0.0182200 0.0383<br>1.0391500 0.0335100 0.02848400 0.0172600 0.0137700 0.0188200 0.00583<br>1.0391500 0.0335100 0.0217321 0.0181032 0.0163905 0.0138534 0.00964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9           | 019380   | 0.<br>0. | 0201100                                 | 0.01/12/           |                                           |                       | . 0153000 | 0.0135600  | 0.008900     | •                                       |
| . 0317200 0.0299200 0.024100 0.0222200 0.0088000 0.0068100 0.00362<br>.0166800 0.0143600 0.0129400 0.0102900 0.0088000 0.02641400 0.01826<br>.0447400 0.0425500 0.0318700 0.0247700 0.0236900 0.02441400 0.03827<br>.0847400 0.0441400 0.0588990 0.0510000 0.045700 0.0441400 0.03827<br>.0391500 0.0336100 0.0248400 0.0517600 0.0137700 0.0130534 0.00834<br>.0391560 0.0252301 0.0217321 0.0181032 0.0163905 0.0130534 0.00964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9           | 0.021670 | 0.0      | .0219400                                | 17610.0            |                                           | 25                    |           | 00174300   | 0.015140     | •                                       |
| 0.0166800 0.0143600 0.012400 0.012500 0.018200 0.022000 0.01820<br>0.0447400 0.0442560 0.0318700 0.0247700 0.0235900 0.0204500 0.01820<br>0.0837400 0.0655100 0.0568900 0.05172600 0.0441400 0.03832<br>0.0331500 0.0335100 0.0248400 0.0172600 0.0137700 0.0108200 0.00883<br>0.0335852 0.0335100 0.0217321 0.0181032 0.0163905 0.0130534 0.00964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 031720   | 0.00     | 0299200                                 | 0.02431            | 00 0.022224                               | 9 9<br>9 9            | 0000000   | 0.00601000 | 0 003820     |                                         |
| 1.0447400 0.0422500 0.0318700 0.0247700 0.0235900 0.0204500 0.03187<br>1.0837400 0.0441400 0.0588900 0.0510000 0.0452700 0.0441400 0.03821<br>1.0837400 0.0335190 0.0248400 0.0172600 0.0137700 0.0108200 0.00834<br>1.0391500 0.0335190 0.0248400 0.0172600 0.0137700 0.0108200 0.00834<br>1.0255852 0.0252301 0.0217321 0.0181032 0.0163905 0.0130534 0.00964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10          | GIA680   | 0        | 0143600                                 | 0.01294            | 00 0.010290                               | 99                    | 00000000  | 0.10000.0  |              |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96          |          |          | 0100500                                 | 0.03187            | 00 0.024779                               | 00000                 | .0236900  | 0.0204500  | 07910.0      |                                         |
| .083/400 0.0336100 0.0244400 0.0172600 0.0137700 0.0108200 0.00837<br>.03391500 0.0336100 0.0244400 0.0172600 0.017800 0.0130634 0.00864<br>.0255852 0.0252301 0.0217321 0.08181032 0.0163905 0.0130534 0.00964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2           |          | 2        | 000130360.                              | 000000             | 0001000                                   | 0 00                  | .0452700  | 0.041400   | 0.038250     |                                         |
| .0391500 0.0335100 0.0217321 0.0181032 0.0163905 0.0130534 0.00966<br>.0255852 0.0252301 0.0217321 0.0181032 0.0163905 0.0130534 0.00966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9           | .083746  | 0        | 0010600.                                |                    | 0 01776                                   | 0                     | 0137700   | 0.0108200  | 0.008360     | 0                                       |
| 1.0255852 0.0252301 0.021/31 0.021/31 0.0101032 0.010100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61          | .039156  | 00       | .0330108                                |                    |                                           |                       | 0163905   | 0.0130534  | 0,009660     | ю                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>6</b> 3  | . 025585 | 52 69.   | .0252301                                | C/179 0            | 17 D. | 2                     |           |            |              |                                         |

COTES BERBAR BEELECTANCES AND LIMNOLOGICAL DATA

.....

Table B.2. Predicted subsurface reflectance at depth = 2 meters All Probar Lakes

| NM700  | c         | c         | c        | o c      | 0         | C         | 00       | 0        | 0        | 0        | 0        | 0        | 0         | 00         | 0        | 0         | 0        | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0          | 0            | 0          | 0          | 0          | 0          | 0        | 0          | 0          | 0          | 0                  | 0                  | 0                 | 0        | 5 0      | <b>,</b> | <b>)</b> ( | 00       | 5 0     | <b>-</b> | 00      | <b>)</b> ( | 00       | 0        | ) O      | 0        | 0        | 0        |
|--------|-----------|-----------|----------|----------|-----------|-----------|----------|----------|----------|----------|----------|----------|-----------|------------|----------|-----------|----------|----------|----------|------------|----------|----------|----------|----------|------------|--------------|------------|------------|------------|------------|----------|------------|------------|------------|--------------------|--------------------|-------------------|----------|----------|----------|------------|----------|---------|----------|---------|------------|----------|----------|----------|----------|----------|----------|
| NM670  | 0.273390  | 0.046068  | 0.610649 | 0.00000  | 0.000000  | 0.000000  | 0.00000  | 0.000000 | 0.062975 | 0.159975 | 0.112221 | 0.094314 | 0.022683  | 0.000000.0 | 0.000000 | 0.000000  | 0.059991 | 0.010745 | 0.016714 | 0.040591   | 0.048052 | 0.143559 | 0.216682 | 0.152613 | 0.000000   | 0.000000     | 0.000000.0 | 0.045068   | 0.000000.0 | 0.000000   | 0.710633 | 0.591249   | 0.186838   | 0.000000.0 | 0.000000           | 0.000000           | 0.358451          | 0.064468 | 0.133113 | 0.130129 |            | 6/1001.0 |         | 0.035/41 |         | 0.026540   | 0.246767 | 0.250085 | 0.049037 | 0.000000 | 0.382268 | 0.149128 |
| NM640  | 0.372809  | 0.298341  | 0.000000 | 0.322543 | 0.000000  | 0.000000  | 0.000000 | 0.00000  | 0.441692 | 0.013501 | 0.000000 | 0.007916 | 0.000000  | 0.000000   | 0.249937 | 0.000000  | 0.389664 | 0.229468 | 0.054468 | 0.000000.0 | 0.268554 | 0.354192 | 0.523606 | 0.272277 | 0.000000.0 | 0.149405     | 0.000000   | 0.000000.0 | 0.000000.0 | 0.000000.0 | 0.708053 | 0.501286   | 0.000000.0 | 0.000000.0 | 0.000000           | 0.141958           | 0.665265          | 0.331851 |          | 0.000000 |            |          |         |          |         | 0.0000     | 0 166700 | 0.269317 | 0.00000  | 0.000000 | 0.492739 | 0.036455 |
| OISMN  | 0.75450   | 0.13852   | 3.43690  | 0.63383  | 0.00000.0 | 0.00000.0 | 0.00000  | 0.17345  | 1.77631  | 0.15599  | 0.27029  | 0.09248  | 0.00000.0 | 0.00000    | 0.06391  | 0.00000.0 | 0.35920  | 0.07026  | 0.05915  | 0.00000.0  | 0.16234  | 0.31167  | 0.62272  | 0.71164  | 0.00000.0  | 0.00000.0    | 0.00000    | 0.00000    | 0.00000    | 0.00000    | 1.04344  | 0.72276    | 0.00000    | 0.00000    | 0.00000            | 0.69576            | 76097.1           | 0.414/0  | 16360.0  |          | 0 75970    | 0.0000   |         |          | 0.95807 | 0.0000     | 0.17102  | 0.86900  | 0.00000  | 0.00000  | 1.25419  | 0.28547  |
| NM580  | 1.31005   | 1.20635   | 1.70440  | 1.25366  | 1.17720   | 1.11552   | 1.17761  | 1.22465  | 1.42218  | 1.18723  | 1.19605  | 1.19347  | 1.08217   | 1.13477    | 1.20052  | 1.14101   | 1.26952  | 1.21231  | 1.19869  | 1.14982    | 1.20526  | 1.21584  | 1.26477  | 1.31249  | 1.10739    | 1.15592      | 1.12108    | 1.15741    | 1.09180    | 1.05357    | 1.26558  | 1.25203    | 1.12705    | 1.12840    | 1.15619            | 1.38285            | 107/15.1          | 10/407 1 | 1 16324  | 1.11705  | 1.31634    | 1.11344  | 1 12405 | 1.09517  | 1 20739 | 1.13617    | 1.23574  | 1.28015  | 1.14135  | 1.10837  | 1.43469  | 1.24464  |
| NMEEO  | 1.48311   | 1.40514   | 2.16382  | 1.46358  | 1.38391   | 1.31019   | 1.36712  | 1.44393  | 1.68094  | 1.41035  | 1.37503  | 1.39453  | 1.24283   | 1.31771    | 1.40283  | 1.32620   | 1.60415  | 1.43988  | 1.41637  | 1.26715    | 1.41923  | 1.40977  | 1.60685  | 1.63057  | 1.30980    | 1.32292      | 1.23395    | 1.31601    | 1.22102    | 1.22063    | 1.35187  | 1.39240    | 1.27120    | 1.32505    | 1.31154            |                    | 67000 T           | 1 80007  | 1 35129  | 1.29636  | 1.56799    | 1.25798  | 1 28607 | 1.29807  | 1.40826 | 1.29149    | 1.44153  | 1.49221  | 1.32164  | 1.26186  | 1.75167  | 1.48037  |
| NM520  | 1.06232   | 1.16827   | 1.35034  | 1.07790  | 0.99689   | 0.94436   | 0.95905  | 1.28668  | 1.67247  | 1.10506  | 1.04051  | 1.13488  | 0.69997   | 0.83619    | 1.08992  | 0.92789   | 1.26442  | 1.27733  | 1.16937  | 0.76853    | 1.11708  | 1.10996  | 1.29336  | 1.71402  | 1.02271    | 0.92744      | 0.70764    | 0.88872    | 0.84477    | 0.74827    | 0.85766  | 0.91097    | 0.84198    | 0.95148    | 0.86601            | 2.20423<br>0.45020 | 2,0002<br>1 24248 | 1.60541  | 1.01469  | 0.93352  | 1.48824    | 0.83896  | 0.95055 | 0.97796  | 1.12954 | 0.98663    | 1.14618  | 1.26087  | 0.97784  | 0.89076  | 1.81139  | 1.27809  |
| NM4 90 | 0.77986   | 0.91867   | 0.42778  | 0.81160  | 0.86577   | 0.84292   | 0.89074  | 1.13111  | 1.26146  | 1.01812  | 0.78197  | 1.03970  | 0.68802   | 0.75193    | 1.02235  | 0.78113   | 1.07229  | 1.10868  | 1.06783  | 0.70918    | 0.98860  | 0.97453  | 1.08762  | 1.64643  | 0.91666    | 0.75964      | 0.49420    | 0.84884    | 0.65387    | 0.53144    | 0.57830  | 0.62835    | 0.17620    | 0.88862    | 0.158/0            | 20802.2            | 1 65377           | 1.33129  | 0.97326  | 0.83799  | 1.34526    | 0.75367  | 0.80934 | 0.77723  | 1.03283 | 0.88282    | 1.02732  | 1.12122  | 0.84711  | 0.85566  | 1.60083  | 1.08415  |
| NM470  | 0.64865   | 0.77176   | 0.21532  | 0.65976  | 0.70699   | 0.67843   | 0.84598  | 0.92421  | 1.17843  | 1.05220  | 0.70954  | 0.94021  | 0.55710   | 0.66688    | 0.98332  | 0.70778   | 0.93176  | 1.00598  | 0.88776  | 0.48332    | 0.87978  | 0.76399  | 1.01620  | 1.47131  | 0.83532    | 0.65132      | 0.30955    | 0.70021    | 0.42821    | 0.46643    | 0.40154  | 0.49977    | 0.66910    | 0.81843    | 0.05200            | 18612.2            | 1 57484           | 1.21620  | 0.83443  | 0.63833  | 1.30632    | 0.64983  | 0.68854 | 0.75503  | 0.92200 | 0.72210    | 0.87728  | 0.89728  | 0.65003  | 0.66828  | 1.41144  | 0.89155  |
| NW443  | 0.00000.0 | 0.30118   | 0.0000   | 0.19663  | 0.32599   | 0.26211   | 0.44321  | 0.68524  | 0.79803  | 0.62167  | 0.18977  | 0.58947  | 0.15598   | 0.24785    | 0.73825  | 0.33286   | 0.49865  | 0.73995  | 0.66993  | 0.10846    | 0.56201  | 0.47278  | 0.65177  | 1.27006  | 0.71566    | 0.34870      | 0.00000    | 0.41417    | 0.02558    | 0.01183    | 0.00000  | 0.08575    | 0.42315    | 0.59316    | 14142.0<br>0 00705 | CCOCC C            | 1 08315           | 0.78799  | 0.46169  | 0.20628  | 0.90913    | 0.08236  | 0.38142 | 0.34079  | 0.53714 | 0.33375    | 0.44731  | 0.44374  | 0.22839  | 0.24601  | 0.89134  | 0.51717  |
| NAME   | N. TILLEY | L. TURKEY | TURKEY   | WISHART  | ×         | DREW      | BONE     | ADELAIDE | ×        | ×        | ×        | QUINTET  | TAY       | NCCOLLOU   | DICK     | ×         | MCGOVERN | GRIFFIN  | ×        | FULLER     | RAND     | BIGPIKE  | HAILEY   | BARBARA  | MONTREAL   | PRINCESS     | BRANT      | DESOLATI   | FUNGUS     | KABENUNG   |          | NEMATEGU   | TEST KAB   | CKATF 15H  | INTE INTE          |                    | NADER             | X        | LAGAWA   | EAST     | ATOMIC     | MALLOT   | UNION   | DYER     | GREYOWL | DREW       | ALVIN    | ×        | ROI      | SHOEPACK | PATTERSO | CARPENTE |
| LAKEID | ΟF        | Z         | ž        | IN       | LL<br>L   | 00        | Ľ        | U I      | MB       | Ž        | KB       | 47       | er        | Q.         | U A      |           | Ц        | Ĭ        | X        |            | 19       |          | HIJ      | DF       | 91         | 6 <b>M</b> : | ×          | 8M         | 84         | LM<br>LM   | W5       | <b>4 X</b> | 5 M        | 2.4        |                    | <>                 | ¥¥                | BH       | ٥V       | ٩V       | ¥¥         | BA       | g       | 5        | 60X     | 00         | £        | DI       | Ц.       | H        | ц<br>Ц   | HB       |
| OBS    | 1         | 2         | <b>m</b> | 4        | ß         | 60        | ~        | 80       | 0        | 2        | 11       | 12       | 13        | 1          | 16       | 16        | 17       | 8        | 19       | 20         | 21       | 22       | 23       | 24       | 55         | 28           | 21         | RZ         | 23         |            | 15       | 20         | <b>n</b> . | 4 10       | 0 C C              | 500                | 38                | 39       | 9        | 41       | 42         | 43       | 44      | 45       | 46      | 47         | 48       | 64       | 20       | 51       | 292      | 53       |

PREDICTED SUBSURFACE REFLECTANCE AT DEPTH = 2 WETERS ALL PROBAR LAKES

,

.

-----

| 10.         11.1055         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555         0.10555 <th0.10555< th=""> <th0.10555< th=""> <th0.105< th=""><th>0BS</th><th>LAKEID</th><th>NANE</th><th>NM443</th><th>NM470</th><th>NM490</th><th>NM520</th><th>NM660</th><th>NM580</th><th>NN610</th><th>NM640</th><th>NM670</th><th>001MN</th></th0.105<></th0.10555<></th0.10555<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0BS                   | LAKEID     | NANE                                  | NM443              | NM470              | NM490     | NM520              | NM660   | NM580              | NN610              | NM640   | NM670              | 001MN      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|---------------------------------------|--------------------|--------------------|-----------|--------------------|---------|--------------------|--------------------|---------|--------------------|------------|
| No.         Number is a constrained of the second of t                              | i                     | 4          |                                       | 0 31673            | 0.73439            | 0.81973   | 0.94673            | 1.31990 | 1.16505            | 0.00000            | 0.00000 | 0.055305           | 0          |
| File         File <th< td=""><td>ا <del>م</del><br/>ا ه</td><td>Ð,</td><td></td><td></td><td>0 99178</td><td>21411</td><td>1.09838</td><td>1.38507</td><td>1.18005</td><td>0.20203</td><td>0.38958</td><td>0.279359</td><td>0</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ا <del>م</del><br>ا ه | Ð,         |                                       |                    | 0 99178            | 21411     | 1.09838            | 1.38507 | 1.18005            | 0.20203            | 0.38958 | 0.279359           | 0          |
| Mark         Mark <thmark< th="">         Mark         Mark         <thm< td=""><td>99</td><td></td><td>MANAT 15</td><td></td><td>0 49132</td><td>0.81762</td><td>1.23460</td><td>1.68985</td><td>1.43138</td><td>2.00233</td><td>1.29249</td><td>0.998847</td><td>0</td></thm<></thmark<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99                    |            | MANAT 15                              |                    | 0 49132            | 0.81762   | 1.23460            | 1.68985 | 1.43138            | 2.00233            | 1.29249 | 0.998847           | 0          |
| W         With SMM         Clocked         Clocked <thcloked< th=""> <thclocked< th=""> <thclocked< td=""><td>ם<br/>מ</td><td></td><td></td><td>1 16128</td><td>1.43887</td><td>1.66900</td><td>2.12178</td><td>1.89845</td><td>1.54864</td><td>2.22618</td><td>1.02254</td><td>0.316666</td><td>0</td></thclocked<></thclocked<></thcloked<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ם<br>מ                |            |                                       | 1 16128            | 1.43887            | 1.66900   | 2.12178            | 1.89845 | 1.54864            | 2.22618            | 1.02254 | 0.316666           | 0          |
| Titukx         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4875         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4847         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447         0.4447<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                    |            |                                       | 1.02243            | 1.42331            | 1.70466   | 2.03642            | 1.89478 | 1.53874            | 2.64210            | 0.95552 | 0.585280           | 0 0        |
| Nime         Common         Common <td></td> <td></td> <td>THOUSE</td> <td>0.34975</td> <td>0.69178</td> <td>0.88904</td> <td>1.06609</td> <td>1.38912</td> <td>1.22899</td> <td>0.31474</td> <td>0.18664</td> <td>0.243544</td> <td><b>o</b> 0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |            | THOUSE                                | 0.34975            | 0.69178            | 0.88904   | 1.06609            | 1.38912 | 1.22899            | 0.31474            | 0.18664 | 0.243544           | <b>o</b> 0 |
| OTHER         11785         1.706X3         2.9644         2.0007         1.7754         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560         0.70560 <th0.7050< th=""> <th0.70500< th=""> <th0.70500< <="" td=""><td>50</td><td>066</td><td>X</td><td>0.08892</td><td>0.60643</td><td>0.74050</td><td>0.89762</td><td>1.36598</td><td>1.19262</td><td>0.14964</td><td>0.36164</td><td>0.289805<br/>0 1965</td><td><b>)</b> (</td></th0.70500<></th0.70500<></th0.7050<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                    | 066        | X                                     | 0.08892            | 0.60643            | 0.74050   | 0.89762            | 1.36598 | 1.19262            | 0.14964            | 0.36164 | 0.289805<br>0 1965 | <b>)</b> ( |
| 3.6         CHINGUE         1.8136         2.2664         2.4661         2.3661         2.4661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.3661         2.32610         2.32711         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611         2.3611 <th2.3611< th=""> <th2.3611< th=""> <th2.3611< td="" th<=""><td>5</td><td>380</td><td>OTTER</td><td>3.60465</td><td>3.17352</td><td>3.20522</td><td>2.96446</td><td>2.05555</td><td>1.52/22</td><td>1.//040<br/>1 54511</td><td>0.93600</td><td></td><td>00</td></th2.3611<></th2.3611<></th2.3611<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                     | 380        | OTTER                                 | 3.60465            | 3.17352            | 3.20522   | 2.96446            | 2.05555 | 1.52/22            | 1.//040<br>1 54511 | 0.93600 |                    | 00         |
| 3.5         CIMILIC         3.1539         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.16139         3.17139         3.10139         3.17139         3.11139         3.10139         3.11139         3.10139         3.11139         3.10139         3.11139         3.10139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.11139         3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62                    | 380        | SILVESTE                              | 1.83185            | 2.25864            | 2.42865   | 2.54512            | 2.02500 | 0007C.1            | 1101011            | 0.99573 |                    | o c        |
| 4.         DOC         DUNCHERT         1.77431         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.145053         0.147053         0.147053         0.147163         0.147053         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163         0.147163 <th0.147163< th=""> <th0.147163<< td=""><td>63</td><td>360</td><td>CHINIGUC</td><td>3.15396</td><td>3.36329</td><td>3.51161</td><td>30465.5</td><td>2.23032</td><td>1.47720</td><td>0.99740</td><td>0.56084</td><td>0.658403</td><td>00</td></th0.147163<<></th0.147163<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63                    | 360        | CHINIGUC                              | 3.15396            | 3.36329            | 3.51161   | 30465.5            | 2.23032 | 1.47720            | 0.99740            | 0.56084 | 0.658403           | 00         |
| 65         303         FIGURIT         1.77473         2.00731         0.177863         0.47736         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.00000         0.01333         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.01738         0.0108         0.01838         0.0108         0.01838         0.0108         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318         0.01318 <th0.01318< th=""> <th0.01318< t=""></th0.01318<></th0.01318<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64                    | 300        | DOUGHERT                              | 4.20310            | 3.82907            | 3.60387   | B0710.6            | 1 85290 | 1.46469            | 0.89579            | 0.14010 | 0.145052           | 0          |
| 6         736         FRENKL         1.4851         1.65251         1.65251         0.52513         0.52154         0.52055         0.51075         0.52055         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51075         0.51055         0.51175         0.51055         0.51175         0.51055         0.51175         0.51055         0.51175         0.51055         0.51175         0.51055         0.51175         0.51055         0.51175         0.51055         0.511755         0.51055         0.51055 </td <td>65</td> <td>308</td> <td>DOUGHERT</td> <td>1.77483</td> <td>2.01219</td> <td>2.061/3</td> <td>2.22328<br/>9.68979</td> <td>1.91659</td> <td>1.44317</td> <td>1.00692</td> <td>0.60738</td> <td>0.177882</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65                    | 308        | DOUGHERT                              | 1.77483            | 2.01219            | 2.061/3   | 2.22328<br>9.68979 | 1.91659 | 1.44317            | 1.00692            | 0.60738 | 0.177882           | 0          |
| 77 20. Contract Constant Co | 66                    | 290        | FREDERIC                              | 3.036/5            | 5.00041            | 1 46613   | 1.63523            | 1.63520 | 1.33784            | 0.69417            | 0.22573 | 0.212205           | 0          |
| 20         MDDING         Constant         Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67                    | X02        |                                       | 0.98333            | 0.63443            | 0.80737   | 0.99333            | 1.35207 | 1.16614            | 0.07185            | 0.10845 | 0.00000            | 0          |
| 70         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         7000         70000         70000         70000         70000         70000         70000         70000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         700000         7000000         7000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68                    | 2/2        | A NOTUC                               | 199866 0           | 0.92198            | 1.11334   | 1.33609            | 1.52017 | 1.32049            | 1.09424            | 0.61057 | 0.237574           | 0          |
| 71         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5) (C<br>1) (C        | 200        | I ALINDRIE                            | 0.91999            | 1.11043            | 1.08837   | 1.22438            | 1.44220 | 1.21163            | 0.00000            | 0.31323 | 0.231605           | 0 0        |
| 7. 27. 57. 57. 57. 57. 57. 57. 57. 57. 57. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2;                    |            |                                       | 0.91577            | 1.11043            | 1.07737   | 1.34900            | 1.51805 | 1.26965            | 0.59418            | 0.35605 | 0.137590           | 0          |
| 72         500         510UFER         1.9417         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1475         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1445         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.1111         1.11111         1.11111         1.11111         1.1111 <td>1 5</td> <td>274</td> <td>&lt; &gt;&lt;</td> <td>1.63828</td> <td>1.75575</td> <td>1.65800</td> <td>1.78035</td> <td>1.62342</td> <td>1.29853</td> <td>0.61160</td> <td>0.34488</td> <td>0.49/235</td> <td><b>o</b> c</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 5                   | 274        | < ><                                  | 1.63828            | 1.75575            | 1.65800   | 1.78035            | 1.62342 | 1.29853            | 0.61160            | 0.34488 | 0.49/235           | <b>o</b> c |
| 77         200         X         1.14165         1.24465         1.24465         1.24465         0.247217         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657         0.24657 <th0.24657< th=""> <th0.24657< th=""> <th0.24657< th=""></th0.24657<></th0.24657<></th0.24657<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 6                   | 280        | STOUFFER                              | 1.94379            | 1.92820            | 1.67239   | 2.11421            | 1.77975 | 1.41958            | 10/25.1            | 0.84840 | 0.191313           | 00         |
| 76         310         X         1.00078         1.2454         0.39741         1.7454         0.39741         1.7454         0.30740         1.24545         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.175555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.15555         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                     | 280        | ×                                     | 1.18558            | 1.34465            | 1.23607   | 1.54887            | 1.56155 | 1. 20403           | 0.10065            | 0.84778 | 0 242051           | 00         |
| 76         328         CHINICUC         2.13171         2.23730         2.47663         2.46614         1.9497         1.60258         0.66677         0.22673         0.66677         0.66677         0.66573         0.66677         0.66573         0.66573         0.66573         0.66573         0.66574         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.66573         0.65576         0.61763         0.6152573         0.66574         0.615763         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.000000         0.00000         0.000000         0.00000         0.00000         0.000000         0.00000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.0000000         0.0000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.00000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76                    | 310        | ×                                     | 1.00078            | 1.24664            | 0.99781   | 1.4256/            | 1.02020 | 1 22480            | 0.72276            | 0.26865 | 0.125852           | 00         |
| 77       3.46       X. MULCLUC       3.3171       2.9756       2.45674       1.3174       1.31725       0.52556       0.52555       0.52555       0.55275         79       376       X. MULCLUC       3.53771       2.99648       2.46644       1.39779       1.10256       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.157102       0.14012       0.165020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78                    | 328        | CHINIGUC                              | 2.13123            | 2.21130            | 1.97624   | 2.11245            | 1.1444C | 1 39283            | 0.66877            | 0.24621 | 0.000000           | 0          |
| 78         36C         CHINICU         3.553715         2.32379         2.44017         2.55379         1.65026         1.91025         0.9778         0.312389           80         710         73         36C         CHINICU         3.55371         1.65127         1.65127         1.65127         1.65128         0.00000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000 <t< td=""><td>11</td><td>348</td><td>×</td><td>3.31711</td><td>2.97398</td><td>2.43626</td><td>2.4/300</td><td>1.81334</td><td>1.34448</td><td>0.69894</td><td>0.23504</td><td>0.052529</td><td>0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                    | 348        | ×                                     | 3.31711            | 2.97398            | 2.43626   | 2.4/300            | 1.81334 | 1.34448            | 0.69894            | 0.23504 | 0.052529           | 0          |
| 79         370         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78                    | 380        | CHINIGUC                              | 3.593/9            | 3.2490/            | 2.01031   | 2.46644            | 1.94979 | 1.50528            | 1.91025            | 0.97786 | 0.312189           | 0          |
| 0         3/B         EMOREY         3.8003         3.99461         2.16525         1.64113         1.13817         0.66520         0.00000           315         MARURIE         3.6049         4.04127         2.5557         1.65113         0.11390         0.10800         0.00000           315         X.MIR         0.4653         1.44132         1.6605         1.47132         1.55166         1.106549         0.23060         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.001309         0.141013         0.141013         0.141013         0.141013         0.141013         0.141013         0.141013         0.141013         0.141013         0.011329         0.141013         0.011329         0.141013         0.011329         0.141013         0.011329         0.141013         0.141013         0.111221         0.141013         0.141013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62                    | 370        | X                                     | 10167.7            | 2.25100<br>4 98817 | 4.90733   | 4.03103            | 2.32247 | 1.67349            | 1.84675            | 1.44701 | 0.151021           | 0          |
| 82       3.5       WALNURT       3.00437       4.25807       1.003019       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.000000       0.00000       0.00000       0.00000       0.000000       0.00000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.0000000       0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80                    | 378        | WULT<br>DEWONEV                       | 4.40441            | 3.98482            | 4.00507   | 3.39491            | 2.16595 | 1.54105            | 1.16727            | 0.65020 | 0.000000           | 0          |
| 87       33,3       LAURA       0.46551       0.55398       1.17821       1.42366       1.11552       0.18430       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.000000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.00000       0.000000       0.00000       0.00000 <td< td=""><td>100</td><td>500<br/>100</td><td></td><td>3.80499</td><td>4,30462</td><td>4.22809</td><td>4.04127</td><td>2.55272</td><td>1.86124</td><td>3.66181</td><td>1.13611</td><td>0.039098</td><td>0 0</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                   | 500<br>100 |                                       | 3.80499            | 4,30462            | 4.22809   | 4.04127            | 2.55272 | 1.86124            | 3.66181            | 1.13611 | 0.039098           | 0 0        |
| 87         27         0.56623         1.43472         1.46061         1.00490         1.1.0149         1.1.0149         0.1.00000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000 <th0.0000< th="">         0.000000         <th0.00000< th=""></th0.00000<></th0.0000<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                    |            | LAURA                                 | 0.46591            | 0.95398            | 1.17682   | 1.12609            | 1.42386 | 1.15692            | 0.00000            | 0.00000 | 0.0000             | 00         |
| 5:       31.       X       0.04246       0.50500       0.71841       1.77821       1.46678       0.627065       0.627065         86       23E       SQLACE       1.46771       1.88597       1.77821       1.77821       1.46678       0.627065       0.637054         87       22C       PLLGRIM       1.03471       1.88597       1.75028       1.81817       0.51708       1.627788       1.627781       1.616531       1.81652       1.66608       1.36604       0.88185       0.071929       0.071929         89       220       PLLGRIM       1.03471       1.88597       2.38798       1.65608       1.36604       0.88185       0.617065       0.97146       0.57056       0.071299         91       188       N.YORSTO       2.77831       3.26776       2.38942       3.20750       2.18658       1.46678       0.617069       0.130549       0.142057       0.071299       0.142057       0.071299       0.172051       0.140567       0.142057       0.071329       0.071329       0.071329       0.0112221       0.66608       1.66608       1.66608       1.66608       1.66608       1.66608       1.66608       1.66608       1.66608       1.66608       1.66609       0.181897       0.071799       0.07059<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 4                   | 32A        | ×                                     | 0.58623            | 1.43842            | 1.44132   | 1.66061            | 1.60490 | 750/5.1            | Cance C            |         |                    | 00         |
| 86         23E         Solucte         1.44707         1.88597         1.71677         1.42446         1.81817         0.627055           87         220         McGIE         1.44707         1.88597         1.56508         1.38604         0.581435         0.617929         0.627055           87         220         PLUESUCK         1.57198         1.56531         1.81552         1.66631         1.61886         2.43251         0.514355         0.617929         0.617929           90         194         X         1.62435         2.09486         2.38798         1.94130         1.61542         1.95435         0.617929         0.617929           91         18         N.YORSTO         2.77638         1.95510         1.51542         1.65633         1.61886         2.48331         0.617229         0.017229         0.017229           92         17A         X         5.05748         1.33513         0.48938         0.71772         0.127221         0.61729         0.013729         0.013729           93         155         X         5.05748         1.33513         0.48938         0.7172617         0.013729         0.013729           94         174791         1.33513         1.48642         1.74791 </td <td>85</td> <td>AIE</td> <td>×</td> <td>0.04246</td> <td>0.50510</td> <td>0.73500</td> <td>0.8/44/</td> <td>1 77821</td> <td>1.46678</td> <td>1.46573</td> <td>0.68185</td> <td>0.340543</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85                    | AIE        | ×                                     | 0.04246            | 0.50510            | 0.73500   | 0.8/44/            | 1 77821 | 1.46678            | 1.46573            | 0.68185 | 0.340543           | 0          |
| 87         220         MGGIE         1.01471         1.52196         1.66608         1.36604         0.86827         0.65445         0.071929         0           88         227         PLIGRUK         1.67788         1.96551         1.66608         1.36604         0.86827         0.67419         0.617029         0           91         188         X         1.67481         1.98577         2.35765         2.4465         1.95210         1.61642         1.99915         0.64462         0.6147267         0           92         198         X         1.67431         2.57762         2.36776         2.36766         2.36766         2.36766         2.36776         2.19815         0.142067         0.0147267         0.017221           92         176         X         6.10070         4.54461         3.36914         2.76507         1.77791         1.38213         0.12722         0.12722         0.12722           94         147         JE6         4.91748         2.74015         1.37576         0.123729         0.12020         0.013729         0.00000         0.013729         0.00000         0.013729         0.00000         0.013729         0.00000         0.013729         0.000000         0.013729         0.00000 </td <td>86</td> <td>23E</td> <td>SOLACE</td> <td>1.48707</td> <td>17000 T</td> <td>1 75024</td> <td>1 86959</td> <td>1.71857</td> <td>1.42446</td> <td>1.81817</td> <td>0.97414</td> <td>0.627065</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86                    | 23E        | SOLACE                                | 1.48707            | 17000 T            | 1 75024   | 1 86959            | 1.71857 | 1.42446            | 1.81817            | 0.97414 | 0.627065           | 0          |
| B8       221       TLLUTM       1.0519       0.610649       0.610649         B9       221       TLLUTM       1.0519       0.610649       0.610649       0.610649         90       13       X       1.0719       2.35756       2.44452       1.95130       1.61562       1.961649       0.614620       0.142067       0.0142067         91       188       N.YORSTO       2.78331       3.20750       2.18748       1.45169       0.681782       0.142067       0.00000       0.112221         92       17A       X       6.10070       4.54461       3.99914       2.74633       1.81276       1.33513       0.681782       0.142067       0.00000       0.112221         93       15A       X       6.10070       4.54461       3.99914       2.74633       1.81276       1.33513       0.68172       0.013729       0.00000       0.112221       0.013729       0.00000       0.112221       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.01007       0.01000       0.1126176       1.32513       0.106177       0.00000       0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87                    | 22D        | MAGGIE                                | 16410.1            | 1.505.1<br>1 57198 | 1.65631   | 1.81552            | 1.66608 | 1.36604            | 0.88627            | 0.59435 | 0.071929           | 0          |
| 93       13       1.61543       2.38082       2.38798       1.94130       1.61542       1.99915       0.64462       0.142067         91       188       N.YORSTO       2.78331       3.26774       3.38793       2.05760       2.18563       1.611686       2.68338       1.51589       0.64462       0.142067         92       17A       X       6.10070       4.54461       3.38914       2.74633       1.81276       1.33513       0.64781       0.00000       0.112221         93       16A       5.69892       5.41572       4.58662       1.37791       1.33513       0.64781       0.10877       0.000000         94       13A       SWNTWAT       5.69892       5.41572       4.98181       3.85386       2.26071       1.34660       0.054781       0.013729       0.000000       0.112221       0.10877       0.000000       0.1132729       0.000000       0.1132729       0.013729       0.023729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729 <t< td=""><td>88</td><td>220</td><td></td><td>1 57788</td><td>1 98597</td><td>2.35755</td><td>2.44452</td><td>1.95210</td><td>1.54240</td><td>2.42621</td><td>1.05419</td><td>0.610849</td><td>0 (</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88                    | 220        |                                       | 1 57788            | 1 98597            | 2.35755   | 2.44452            | 1.95210 | 1.54240            | 2.42621            | 1.05419 | 0.610849           | 0 (        |
| 91       188       N.YORSTO       2.78331       3.26774       3.36942       3.20750       2.18553       1.61846       0.68782       0.00000       0.112221         92       17A       X       4.91748       4.76595       4.28672       3.37399       2.05748       1.46469       0.68782       0.000000       0.112221         93       16A       X       5.10070       4.5461       3.98181       3.85383       2.26071       1.66802       1.34646       0.000000       0.112221         94       14F       LERRY       5.89892       5.41572       4.98181       3.85383       2.26071       1.56802       1.132972       0.000000       0.112221         94       174       1.38218       1.91700       2.00026       1.74791       1.38218       0.39740       0.000000       0.000000         97       12A       WABUN       1.65703       1.91700       2.00026       1.74791       1.38249       0.63728       0.09013729       0.0000000         97       12A       WABUN       1.62210       2.11176       2.36051       2.36051       1.74791       1.38249       0.63708       0.070280       0.0000000         97       12A       WABUN       1.62210       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ר מ<br>מ<br>ס         | 191        | A A A A A A A A A A A A A A A A A A A | 1.62435            | 2.09486            | 2.38082   | 2.38798            | 1.94130 | 1.51542            | 1.99915            | 0.64462 | 0.142067           | <b>o</b> c |
| 92       17A       X       4.91748       4.76595       4.24461       3.99914       2.74633       1.33513       0.48938       0.27972       0.000000         93       15A       X       6.10070       6.45461       3.89914       2.74633       1.81276       1.33513       0.48938       0.27972       0.00000         94       14F       X       6.10070       6.45461       3.85914       2.74633       1.617791       1.55703       1.91700       2.00000       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.013729       0.0132146       0.0132146       0.0132146       0.0132146       0.0100000       0.0141761       0.116861<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 616                   | 188        | N.YORSTO                              | 2.78331            | 3.26774            | 3.36942   | 3.20750            | 2.18563 | 1.61880<br>1 45489 | 2.08330<br>0 88782 |         | 0.112221           | 0          |
| 93       16A       X       5.10070       4.54761       3.5386       2.26071       1.66802       1.34666       0.64781       0.128638       0.013729         94       14F       JERRY       5.689825       5.41572       3.5386       2.256071       1.66802       1.34666       0.64781       0.128638       0.013729         95       137       SWOTHWA       1.39050       1.91700       2.00026       1.74791       1.38298       0.99740       0.06663       0.013729       0.0         96       13A       SUMUWAT       5.70948       4.90550       4.04019       2.56680       1.74791       1.38296       0.05712       0.013729       0.0         97       12A       WBUN       1.62910       2.11176       2.27248       2.21660       1.82183       1.37973       0.63719       0.54036       0.057016       0.00000         98       174       WHTEPIN       2.00926       2.36651       2.27248       1.74154       1.37273       0.168929       0.0030146       0.0570146       0.00000         99       177       WHTEPIN       1.00342       1.74675       1.74675       1.37022       0.168929       0.10020146         90       500       2.06998       2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                    | 17.4       | ×                                     | 4.91748            | 4.78595            | 4.28522   | 55975 C            | 1 81276 | 1.33513            | 0.48938            | 0.27972 | 0.000000           | 0          |
| 94       14F       JERRY       5.05954       0.013729       0.013729       0.013729       0.013729         96       13A       SUNTWAT       5.7094       1.75709       1.91700       2.00026       1.74791       1.38298       0.99740       0.066663       0.013729       0         96       13A       SUNTWAT       5.7094       4.90550       4.04019       2.65680       1.73015       1.29256       0.10677       0.00000       0       0         96       13A       WABUN       1.62910       2.11176       2.27248       2.21660       1.82183       1.37973       0.55705       0.00000       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66                    | 15A        | ×                                     | 6.10070<br>5.55555 | 4.54401            | - 1959. 5 | 3.85386            | 2.26071 | 1.56802            | 1.34666            | 0.54781 | 0.128638           | 0          |
| 96       130       SUNNYMAT       1.34240       4.90550       4.04019       2.56680       1.73015       1.29256       0.10677       0.00000       0         96       13A       SUNNYMAT       1.62910       2.11176       2.27248       2.21660       1.82183       1.37973       0.57015       0.000000       0         98       14H       WHTEPIN       2.00926       2.35619       2.35601       2.27248       2.21660       1.82183       1.37973       0.57015       0.000000       0         98       17C       WHELL       0.49390       1.00820       1.16963       1.36164       1.74154       1.37293       0.57015       0.000000       0         99       17C       WHTEPIN       2.06998       1.72740       1.71171       1.71317       1.35126       1.106954       0.73212       0.1002145         99       17C       WHTEPIN       1.00342       1.77740       1.71171       1.71317       1.35126       1.000203       0.00000       0.00000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.000000       0.0000000       0.000000       0.000000       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>4</b> 6            | 14F        | JERRY                                 | 1.0204 t           | 1 75709            | 00119.1   | 2.00026            | 1.74791 | 1.38298            | 0.99740            | 0.06563 | 0.013729           | 0          |
| 97       12,4       WMUN       1.37973       0.92119       0.54036       0.00000       0         97       12,4       WHTEPIN       2.00926       2.35619       2.356051       2.22817       1.74154       1.32849       0.657015       0.000000       0         98       14H       WHTEPIN       2.00926       2.35619       2.356051       2.252817       1.74154       1.32849       0.657015       0.000000       0         99       17C       WHTEPIN       2.00926       2.356051       2.35004       1.50464       1.74154       1.32849       0.657015       0.000000       0         99       17C       WHTEPIN       1.00342       1.745740       1.81151       1.71317       1.35126       1.100283       0.057015       0.000000       0         99       17C       WHTEPIN       1.00342       1.72740       1.81151       1.71317       1.4975       1.49763       0.168929       0       0.00000145       0       0       0.030145       0       0.0100283       0.100283       0.100283       0.100283       0.100283       0.100283       0.100283       0.100283       0.100283       0.100283       0.100283       0.100283       0.227128       0.100283       0.237128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96<br>0               | 130        |                                       | 1.33203            | 4 90550            | 4.04019   | 2.56680            | 1.73015 | 1.29258            | 0.10677            | 0.00000 | 0.00000            | 0          |
| 91       1.74154       1.32849       0.63328       0.637215       0.000000       0         93       171       WHTEPIN       2.00926       2.35619       2.36051       2.22817       1.74154       1.32849       0.63328       0.637015       0.000000         99       171       WHTEPIN       2.00926       2.35619       2.36051       2.22817       1.74154       1.32184       0.637045       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.0000145       0.000000145       0.00000145       0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                     | Ve1        |                                       | 1.62910            | 2.11176            | 2.27248   | 2.21660            | 1.82183 | 1.37973            | 0.92119            | 0.54038 | 0.00000            | 0 0        |
| 99       171       1.24891       0.49390       1.00820       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000148       0.000108       0.000148       0.000101       0.000101001       0.000148       0.0001001001       0.000148       0.000101001       0.000148       0.000148       0.0001001001       0.0000148       0.0001001001       0.0000148       0.0001001001       0.0000148       0.0000148       0.0000148       0.0000148       0.0000148       0.0000148       0.0000148       0.0000148       0.0000148       0.00000148       0.00000148       0.00000148       0.000000148       0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                   | 47T        | WHITEPIN                              | 2.00928            | 2.35619            | 2.36051   | 2.22817            | 1.74154 | 1.32849            | 0.63226            | 0.57015 | 0.0000             | <b>)</b> ( |
| 100       X03       WHITEPIN       1.00342       1.46178       1.72740       1.81151       1.11317       1.45128       1.400244       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.102044       0.10204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0           |            | NTHELL                                | 0.49390            | 1.00820            | 1.16963   | 1.30404            | 1.50454 | 1.24891            | 0.49/31            | 0.18850 | 0.050140           | 0 0        |
| 101       190       X       2.06998       2.45352       2.65590       2.65110       2.06448       1.41176       0.122128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.27128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227128       0.227148       0.220146       0.220146       0.220146       0.220146       0.220146       0.22128       0.122687       0.122687       0.122687       0.122687       0.122687       0.122687       0.122687       0.130129       0.122687       0.130129       0.130129       0.130129       0.130129       0.130129       0.130129       0.130129       0.130129       0.130129       0.130129       0.130129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 <u>6</u>            | EOX        | WHITEPIN                              | 1.00342            | 1.45178            | 1.72740   | 1.81151            | 1.71317 | 07195.1            | 1.10034            | 1.020.0 | 676001 O           | 00         |
| 102 200 X 1.22678 1.64084 1.74968 1.5412 1.54168 1.61249 0.95930 0.53291 0.030145 0<br>103 380 0TTER 5.90220 5.38949 4.97504 4.42410 2.53168 1.61249 0.95930 0.53291 0.030145 0<br>104 38C SILVESTE 2.17399 2.42730 2.558019 2.568337 1.94902 1.36116 0.68823 0.74329 0.122667 0<br>106 37D X 2.68035 2.93041 3.20479 3.33704 2.33791 1.58819 1.22442 0.57015 0.256974 0<br>108 37E X 8.06905 5.37838 5.06307 4.31593 2.50177 1.58619 1.22442 0.57015 0.256974 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101                   | 190        | ×                                     | 2.06998            | 2.45352            | 2.65590   | 2.6/110            | 2.00848 | 1 37705            | 1.41175            | 1 00353 | 0.227128           | 0          |
| 103 380 0TTER 5.90220 5.38949 4.9760 7.56837 1.94902 1.38116 0.68823 0.74329 0.122667 0<br>104 38C SILVESTE 2.17399 2.42730 2.56819 2.56837 1.94902 1.54668 2.23729 0.70233 0.130129 C<br>106 37D X 2.68035 2.93041 3.20479 3.33704 2.33791 1.59868 2.23729 0.70233 0.130129 C<br>108 37E X 8.06905 5.37838 5.06307 4.31593 2.50177 1.58619 1.22442 0.57015 0.256974 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102                   | 20D        | ×                                     | 1.22678            | 1.64064            | 1.13308   | 1.97132            | 1.140 C | 1.81249            | 0.96930            | 0.63291 | 0.030146           | 0          |
| 104 38C 51LYESTE 2.1/337 4.74/30 2.93041 3.20479 3.33704 2.33791 1.59868 2.23729 0.70233 0.130129 0<br>105 37D X 2.88035 2.93041 3.20479 3.33704 2.33791 1.58619 1.22442 0.57015 0.256974 0<br>108 37E X 8.06905 5.37838 5.06307 4.31593 2.50177 1.58619 1.22442 0.57015 0.256974 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103                   | 380        | OTTER                                 | 5.9022U            | 5.38444<br>0 40730 | 5.56819   | 2.58337            | 1.94902 | 1.36116            | 0.68623            | 0.74323 | 0.122667           | 0          |
| 105 370 X 4.00005 4.0001 4.31593 2.50177 1.58619 1.22442 0.57015 0.255974 0<br>108 37E X 8.06905 5.37838 5.06307 4.31593 2.50177 1.58619 1.22442 0.57015 0.255974 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104                   | 380        | SALVESIE<br>V                         | 25011.7<br>25035   | 9 93041            | 3.20479   | 3.33704            | 2.33791 | 1.59868            | 2.23729            | 0.70233 | 0.130129           | 0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>108             | 37E        | < ×                                   | 6.06905            | 6.37838            | 6.06307   | 4.31593            | 2.50177 | 1.58619            | 1.22442            | 0.67015 | 0.258974           | 0          |

-----

•

|       | 2      | , · ,   | ••       | ٠,       |          | •       | . • .      | •        | , r,      | . • .    | , r.    | . •.    | , -       | , ·         | ۰,       | <b>~</b> , |         |
|-------|--------|---------|----------|----------|----------|---------|------------|----------|-----------|----------|---------|---------|-----------|-------------|----------|------------|---------|
|       | NM670  | 0.00621 | 0.2524   | 0.09721  | 0.1137   | 0.00175 | 0.36257    | 0.2268   | 0.000     | 0.1331'  | 0,00001 | 0.09137 | 0.7195"   | 0 0258"     |          | 0.3051     | 0.3764  |
|       | NM640  | 0.70419 | 0.60313  | 0.62600  | 0.25366  | 0.67440 | 0.89222    | 0.75446  | 1.02827   | 0.71536  | 0.69861 | 1.09887 | 2.12839   | O DEG36     |          | 1.18300    | 0.83915 |
| •     | NM610  | 1.06566 | 0.69416  | 0.68465  | 0.23060  | 1.21013 | 1.21966    | 0.63542  | 0.73545   | 0.76720  | 1.22283 | 0.61964 | 2.69610   |             |          | 1.36114    | 0.76850 |
|       | NMEBO  | 1.47489 | 1.31127  | 1.36235  | 1.27630  | 1.56016 | 1.43395    | 1.34448  | 1.37526   | 1.38678  | 1.38624 | 1.24580 | 1.57165   | 1 1 4 4 8 7 | 10111    | 1.35592    | 1.26113 |
| ANE 3 | NMEEO  | 2.18197 | 1.96268  | 1.96581  | 1.80060  | 2.40006 | 2.00248    | 1.99707  | 2.23765   | 2.01386  | 1.93068 | 1.62748 | 2.27190   | 1 2600      | 1.30008  | 1.74081    | 1.54534 |
|       | NM520  | 3.06660 | 2.94264  | 2.81354  | 2.59854  | 3.77462 | 2.64628    | 3.17468  | 3.85609   | 2.96846  | 2.38976 | 1.66773 | 0 92884   |             | 1.0400/  | 1.85784    | 1.44965 |
| Ż     | NM4 90 | 3.21326 | 3.76326  | 3.14004  | 3.31313  | 3.91831 | 2.62501    | 4.04992  | 4 90902   | 3.31906  | 2 27122 | 1 64077 | 5 50200   |             | 0.93433  | 1.37966    | 1.33212 |
|       | NM470  | 3.09218 | 4.12373  | 3.19085  | 3.62640  | 4.10773 | 2.58419    | 4.57306  | 5.40505   | 3.42374  | 1 07484 | 1 42487 | 10404.0   |             | 0.90198  | 1.26989    | 1.10568 |
|       | NM443  | 2.84825 | 4.23478  | 2.97075  | 3.73001  | 1 28329 | 2.18825    | 4.64767  | E BEE74   | 2 20465  | 1 66003 | 12110 0 | 100000 -  | CCC70.1     | 0.34711  | 0.70233    | 0.65631 |
|       | NAME   | LAW DR  | CHINTGUC | CHINIGUC | CHINIGHC | X       | ( <b>X</b> | CHTNTGUC | DOLICHERT | FRENERTO | CENTOR  |         | C TOURCED |             | LAUNDRIE | ×          | ×       |
|       | LAKEID | a A D   | 280      | 360      | 240      | 245     | 2 1 1      | 2.2R     |           |          | 202     |         | 200       | 281         | X01      | 23F        | 22E     |
|       | OBS    | 107     |          |          |          |         | 111        | 10       |           | • •      | 011     |         | /11/      | 118         | 119      | 120        | 121     |

PREDICTED SUBSURFACE REFLECTANCE AT DEPTH = 2 METERS ALL PROBAR LAKES

B-9

\_

DIFFERENCED, CORRECTED PROBAR VALUES FOR ALL LAKES

----- ·
| 200          | 3                   | 00       | <b>)</b> ( | <b>)</b> C | 0           |         | 00       | 0        | 0        | 0          | 0        | 0       | 0       | 0        | 0        | 0       | 0       | 0        | 0       | 0       | 0        | 0       | 0        | 0       | 0                | 0 0                 | 0 (        | 0 (     | 0 0     | <b>&gt;</b> | <b>.</b> | > c      | o c      | 0       | 0         | 0       | 0       | 0       | 0        | 0        | 0 0     | 5 0     | <b>.</b>           | 0 0       | 5 0     | 0 0     | 0 0     | <b>5</b> c    | <b>)</b> כ | 00      | o c      | 0       |
|--------------|---------------------|----------|------------|------------|-------------|---------|----------|----------|----------|------------|----------|---------|---------|----------|----------|---------|---------|----------|---------|---------|----------|---------|----------|---------|------------------|---------------------|------------|---------|---------|-------------|----------|----------|----------|---------|-----------|---------|---------|---------|----------|----------|---------|---------|--------------------|-----------|---------|---------|---------|---------------|------------|---------|----------|---------|
| R670         |                     | 0.00369  | 16800.0    | 0.00574    | 0.00345     | 0.00376 | 0.00396  | 0.00180  | 0.00148  | 0.00623    | 0.00279  | 0.00301 | 0.00324 | 0.00176  | 0.00341  | 0.00337 | 0.00274 | 0.00515  | 0.00310 | 0.00238 | 0.00344  | 0.00268 | 0.00141  | 0.00217 | 0.00391          | 0.00283             | 0.0000     | 0.00208 | 0.000   |             | 0.0010   | 0.00602  | 0.00230  | 0.00591 | 0.00277   | 0.00373 | 0.00257 | 0.00091 | 0.00268  | 0.00191  | 0.00103 | 0.00085 | 11100.0            | 0.00202   | 0.00210 | 0.00249 | 0.0000  | 0.00202       | 0.00069    | 0.00354 | 0.00188  | 0.00351 |
| R640         | 00000               | 0.01005  | 0.00860    | 0.00824    | 0.00411     | 0.00505 | 0.00190  | 0.00438  | 0.00432  | 0.00612    | 0.00386  | 0.00637 | 0.00432 | 0.00369  | 0.00585  | 0.004/9 | 0.0502  | 0.00498  | 0.00/6/ | 15600.0 | 0.00658  | 0.00455 | 0.00433  | 15400.0 | 0.00836          |                     |            |         |         | 0 00163     | 0.00677  | 0.00834  | 0.00630  | 0.00877 | 0.00657   | 0.01125 | 0.00304 | 0.00461 | 0.00605  | 0.00348  |         |         |                    |           |         | 0.00/04 |         | 01200.0       | 0.00688    | 0.00617 | 0.00689  | 0.00581 |
| <b>R</b> 610 | 0 00033             | 0.01966  | 0.02107    | 0.02306    | 0.00903     | 0.00799 | 0.01825  | 0.01678  | 0.01727  | 0.01333    | 0.01269  | 0.01339 | 0.01142 | 0.00/60  | 42510.0  |         |         |          |         |         | 27710.0  |         | 0.01120  |         |                  | 0-01440             | 0.03005    | 0.0061  | 0.01430 | 0.00850     | 0.01628  | 0.01860  | 0.01263  | 0.02233 | 0.01964   | 0.02332 | 0.01138 |         | 0.01663  | 0.00770  | 0 01285 | 01103   | 0.01010            | 0 01400   | O DIASE | 0.01504 |         | 0.01137       | 0.02114    | 0.01478 | 0.01378  | 0.01079 |
| R580         | 0.01016             | 0.02870  | 0.03735    | 0.03882    | 0.01377     | 0.01108 | 0.03577  | 19950.0  | 0.04432  | 0.02010    | 0.03042  |         |         | 0.00050  | 0.01040  | 0 01677 |         | 0.022200 | 0.01935 | 0 01590 | 0 00158  | 0.02503 | 0.02229  | 0.03415 | 0.04656          | 0.03679             | 0.06041    | 0.00838 | 0.02424 | 0.00466     | 0.03131  | 0.02819  | 0.02388  | 0.03689 | 0.03490   | 0.04263 |         | 0.02120 | 0.03618  | 0.01848  | 0.02489 | 0.02111 | 0.01524            | 0.02279   | 0.03358 | 0.02469 | 0.04208 | 0.02352       | 0.04104    | 0.04012 | 0.03191  | 0.01984 |
| REEO         | 0.01133             | 0.02193  | 0.03793    | 4//60.0    | 0.01164     | 0.01034 | 0.04607  |          | 0.05808  | 0.03557    | 0.03597  | 0.0000  | 0.0042  | 0.01833  | 0.01429  | 0.01822 | 0.02368 | 0.03178  | 0.02048 | 0.01917 | 0.02997  | 0.03628 | 0.03352  | 0.04059 | 0.05990          | 0.05179             | 0.07183    | 0.01334 | 0.02272 | 0.00563     | 0.03170  | 0.02861  | 0.02589  | 0.04071 | 0.04016   | 18790.0 |         | 0.05670 | 0.03013  | 0.02921  | 0.03396 | 0.02980 | 0.01752            | 0.02833   | 0.04674 | 0.03007 | 0.07074 | 0.04055       | 0.06070    | 0.06919 | 0.05262  | 0.04074 |
| <b>R</b> 520 | 0.01212             | 0.01518  | 0.03511    | 11990.0    | 1110.0      |         | 0.00404  | 0.06280  | 0.05511  | 0.03730    | 0.04787  | 0.02418 | 0.00978 | 0.01746  | 0.01495  | 0.01775 | 0.02744 | 0.03494  | 0.02224 | 0.01947 | 0.03490  | 0.04315 | 0.04406  | 0.04283 | 0.07800          | 0.06371             | 0.07823    | 0.01272 | 0.02475 | 0.00709     | 0.03562  | 0.02922  | 0.02823  | 0.04236 |           | 0.03390 | 0.04914 | 0.07402 | 0.03238  | 0.04488  | 0.03724 | 0.03750 | 0.01674            | 0.02814   | 0.04745 | 0.03173 | 0.08683 | 0.04603       | 0.06241    | 0.08440 | 0.05631  | 0.05355 |
| R490         | 0.01622             | 0.00921  | 1020 0     |            | 0.00739     | O DAFA3 | 0.04728  | 0.07287  | 0.07605  | 0.03861    | 0.06093  | 0.02430 | 0.00897 | 0.01620  | 0.01561  | 0.01535 | 0.02907 | 0.02941  | 0.01910 | 0.01347 | 0.03859  | 0.04746 | 0.05311  | 0.03833 | 0.10585          | 0.08453             | 0.08980    | 0.01770 | 0.02395 | 0.00728     | 0.04011  | 0.03125  | 0.02503  |         | O ORGEI   | 0.09115 | 0.08439 | 0.10761 | 0.03519  | 0.08538  | 0.04359 | 0.04667 | 0.01753            | 0.03071   | 0.05285 | 0.03100 | 0.10745 | 0.05053       | 0.08582    | 0.00100 | 0.06582  | 0.0/868 |
| R470         | 0.01747             | 0.00621  | 0.02718    | 0.01079    | 0.00880     | 0.08658 | 0.04593  | 0.07083  | 0.08131  | 0.04043    | 0.08415  | 0.02423 | 0.00943 | 0.01590  | 0.02014  | 0.02014 | 0.03466 | 0.03854  | 0.02541 | 0.02318 | 0.04491  | 0.06207 | 0.06826  | 0.04684 | 0.10739          | 0.08481             | 0.09201    | 0.01662 | 0.02752 | 0.00652     | 01/50.0  | 0,050,0  |          | 0.04229 | 0.06868   | 0.10239 | 0.09741 | 0.11701 | 0.03469  | 0.10563  | 0.04287 | 0.04817 | 0.01784            | 0.02782   | 0.05036 | 0.03207 | 0.11642 | 0.04977       | 0.06109    | 0.06173 | 0.00413  | 0.00/24 |
| R443         | 0.02247             | 0.00579  | 0.02567    | 0.01283    | 0.00789     | 0.07258 | 0.04090  | 0.06594  | 0.08581  | 0.03982    | 0.06372  | 0.02502 | 0.00753 | 0.01376  | 0.02363  | 0.02355 | 0.03534 | 0.04302  | 0.02868 | 0.02516 | 0.04857  | 0.06903 | 0.07427  | 0.04972 | 0.08962          | 0.07875             | 0.07827    | 0.01603 | 0.01693 |             |          | 0.02875  | 0.03609  | 0.03697 | 0.05892   | 0.09934 | 0.10281 | 0.11414 | 0.03257  | 0.11434  | 0.03708 | 0.04428 | 0.01558            | 0.02521   | 0.04541 | 0.02944 | 0.11799 | 0.04/38       | 12000.0    | 0.06015 | 0.08641  |         |
| NAME         | WANAPITE<br>PATURIN | MATAGANA | MATAGAMA   | THOWAS     | ×           | OTTER   | SILVESTE | CHINIGUC | DOUGHERT | DOUGHERT   | FREDERIC | CENTRE  | ×       | MUDDING  | LAUNDRIE | × :     | X       | STUDFFER | ×       | X       | CHINIGUC | X       | CHINIGUC |         | PULF<br>Printing | UEMUNET<br>MAR COTE | MARJUKIE   |         | <>      | SOI ACE     | MAGGTE   | PTI GRTM | BLUESUCK | ×       | N. YORSTO | ×       | ×       | JERRY   | SMOOTHWA | SUNNYWAT | WABUN   |         | MLNELL<br>MUTTOTAL | WT IEL TN | < >     |         |         | SILYESIE<br>Y | < ×        | LAWLOR  | CHINIGUC |         |
| LAKEID       | 100                 |          | VGE        | 398        | <b>3</b> 9D | 38D     | 38C      | 350      | 300      | <b>30B</b> | 290      | X02     | 27D     | 26D      |          | 248     | V / 7   | 787      | 780     | 315     | 978      | 946     | 2010     | 0/0     | 5,07             |                     |            |         | 22A     |             | 220      | 220      | 234      | 194     | 188       | 17.4    | 154     | 14F     | 130      | VE1      | 12A     |         | 1.1                |           |         |         |         | 370           | 37E        | 36D     | 380      |         |
| <b>S80</b>   | 55                  | 57       | 68         | 69         | 80          | 61      | 62       | 63       | 64       | 65         | 68       | 67      | 68      | 6 0<br>9 | 2;       |         | 2 1     |          |         | 0 0     | 2        |         | 20       | n ( 0   |                  | 108                 | 7 C<br>0 0 |         |         | 99          | 87       | 88       | 68       | 60      | 91        | 92      | 63      | 40      | 35       |          | 100     |         |                    | 32        | 101     | 102     |         | 105           | 106        | 107     | 108      |         |

SAS

•

| R700         | 00000000000000                                                                                                                                                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R670         | 0.0024700<br>0.0025800<br>0.0018300<br>0.00133300<br>0.0011800<br>0.0011300<br>0.0011300<br>0.0013800<br>0.0013900<br>0.0019900<br>0.0019900<br>0.0013870<br>0.00138670                                               |
| R640         | 0.0084700<br>0.0044700<br>0.004700<br>0.0079000<br>0.0079000<br>0.0086200<br>0.0088600<br>0.0088600<br>0.0088600<br>0.0088600<br>0.0088600<br>0.0034800<br>0.0034800<br>0.0034819                                     |
| R610         | 0.0113600<br>0.0085000<br>0.0146700<br>0.0147300<br>0.0118800<br>0.0118800<br>0.0118800<br>0.0118800<br>0.0118800<br>0.0118800<br>0.0118880<br>0.0118882<br>0.0118882<br>0.0118882                                    |
| R580         | 0.0228700<br>0.0172600<br>0.0382000<br>0.0382000<br>0.0288900<br>0.0246600<br>0.0254100<br>0.0254100<br>0.0254100<br>0.0254100<br>0.0254100<br>0.0254100<br>0.02531338<br>0.015600                                    |
| <b>R</b> 550 | 0.0414200<br>0.0328600<br>0.0839200<br>0.0433200<br>0.0433200<br>0.0433100<br>0.0398000<br>0.0338000<br>0.0238900<br>0.0238900<br>0.0238900<br>0.0237622<br>0.0297622<br>0.0196340                                    |
| R620         | 0.0508500<br>0.0458200<br>0.0458200<br>0.0722400<br>0.0740700<br>0.0587800<br>0.0587800<br>0.0587800<br>0.0587800<br>0.0587800<br>0.0587800<br>0.0587800<br>0.058818100<br>0.0206834<br>0.0200109                     |
| R490         | 0.064090<br>0.068180<br>0.068180<br>0.085590<br>0.085590<br>0.085590<br>0.043560<br>0.043560<br>0.043560<br>0.051140<br>0.011970<br>0.021370                                                                          |
| <b>R4</b> 70 | 0.086950<br>0.076750<br>0.087580<br>0.063300<br>0.053300<br>0.0116770<br>0.012190<br>0.072190<br>0.072190<br>0.072190<br>0.072190<br>0.072190<br>0.072190<br>0.072190<br>0.072190<br>0.027440<br>0.027440<br>0.023728 |
| 6443         | 0.082470<br>0.078860<br>0.078860<br>0.088960<br>0.094730<br>0.094730<br>0.0117110<br>0.088900<br>0.035750<br>0.035750<br>0.012780<br>0.019508                                                                         |
|              | NAME<br>CHINIGUC<br>X<br>CHINIGUC<br>CHINIGUC<br>CHINIGUC<br>CHINIGUC<br>DOUGHERT<br>FREDERIC<br>CENTRE<br>X<br>STOUFFER<br>LAUNDRIE<br>X                                                                             |
|              | LAKEID<br>35<br>35<br>346<br>346<br>346<br>335<br>336<br>338<br>338<br>338<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>226<br>226<br>226                                                                      |
|              | 085<br>1109<br>1111<br>1112<br>1114<br>1115<br>1116<br>1117<br>1119<br>1119<br>1119                                                                                                                                   |

. . . . . .

-----

\_\_\_\_\_

.

SAS



#### APPENDIX C

SUMMARY STATISTICS FOR THE ECO-PHYSICAL POLYGON CLUSTER ANALYSIS

The following table shows the computer mean and standard deviation estimates for the set of Eco-physical polygons within each cluster. Estimates are computed for the total sensitivity rating (STRATRAT), vegetation sensitivity (VEGVAL), bedrock and soil sensitivity (SENSVAL), relief sensitivity (RELVAL), and sulfate deposition sensitivity (SO4VAL).

#### TABLE C-1

-

### SUMMARY STATISTICS ON EACH CLUSTER MAXIMUM LIKELIHOOD CLUSTER ANALYSIS

|         | VARIABLE                                          | MEAN                                 | STANDARD DEVIATION                   |
|---------|---------------------------------------------------|--------------------------------------|--------------------------------------|
| Cluster | -                                                 |                                      |                                      |
|         | STRATRAT<br>SENSVAL<br>VEGVAL<br>RELVAL<br>SO4VAL | 3.13<br>1.42<br>0.38<br>1.30         | 0.71<br>0.69<br>0.12<br>0.24         |
| Cluster | =1                                                |                                      |                                      |
|         | STRATRAT<br>SENSVAL<br>VEGVAL<br>RELVAL<br>SO4VAL | 5.66<br>7.04<br>4.68<br>5.57<br>4.40 | 0.07<br>0.66<br>0.75<br>0.23<br>0.33 |
| Cluster | =2                                                |                                      |                                      |
|         | STRATRAT<br>SENSVAL<br>VEGVAL<br>RELVAL<br>SO4VAL | 6.36<br>8.05<br>4.65<br>5.78<br>5.82 | 0.06<br>0.42<br>0.66<br>0.20<br>0.38 |
| Cluster | =3                                                |                                      |                                      |
|         | STRATRAT<br>SENSVAL<br>VEGVAL<br>RELVAL<br>SO4VAL | 6.74<br>8.16<br>5.83<br>5.28<br>6.00 | 0.09<br>0.32<br>0.64<br>0.22<br>0.36 |
| Cluster | <b>=</b> 4                                        |                                      |                                      |
|         | STRATRAT<br>SENSVAL<br>VEGVAL<br>RELVAL<br>SO4VAL | 6.02<br>7.67<br>4.63<br>5.25<br>5.18 | 0.07<br>0.52<br>0.67<br>0.21<br>0.42 |

#### Cluster=5

\_\_\_\_\_

.....

|        | STRATRAT | 7.41 | 0.06 |
|--------|----------|------|------|
|        | SENSVAL  | 8.47 | 0.20 |
|        | VEGVAL   | 7.13 | 0.47 |
|        | RELVAL   | 5.62 | 0.19 |
|        | SO4VAL   | 6.58 | 0.29 |
| Cluste | r=6      |      |      |
|        | STRATRAT | 3.55 | 0.29 |
|        | SENSVAL  | 3.28 | 0.92 |
|        | VEGVAL   | 2.08 | 0.14 |
|        | RELVAL   | 5.57 | 0.17 |
|        | SO4VAL   | 5.27 | 0.68 |
| Cluste | r=7      |      |      |
|        | STRATRAT | 7.07 | 0.05 |
|        | SENSVAL  | 8.50 | 0.21 |
|        | VEGVAL   | 6.37 | 0.48 |
|        | RELVAL   | 5.36 | 0.22 |
|        | SO4VAL   | 6.10 | 0.32 |
| Cluste | :r=8     |      |      |
|        | STRATRAT | 5.14 | 0.20 |
|        | SENSVAL  | 5.96 | 0.57 |
|        | VEGVAL   | 4.71 | 0.59 |
|        | RELVAL   | 5.46 | 0.22 |
|        | SO4VAL   | 3.97 | 0.33 |
| Cluste | er=9     |      |      |
|        | STRATRAT | 7.83 | 0.20 |
|        | SENSVAL  | 8.72 | 0.22 |
|        | VEGVAL   | 8.53 | 0.49 |
|        | RELVAL   | 5.20 | 0.22 |
|        | SO4VAL   | 6.30 | 0.29 |
| Cluste | er=10    |      |      |
|        | STRATRAT | 4.34 | 0.22 |
|        | SENSVAL  | 5.22 | 0.29 |
|        | VEGVAL   | 3.82 | 0.40 |
|        | RELVAL   | 5.00 | 0.22 |
|        | SO4VAL   | 3.05 | 0.21 |

-

----------. . . . . . . . . . .

M

#### APPENDIX D WATER CHEMISTRY DATA

- Table D.1. August 1986 WQ Data Collected from the Algoma and Sudbury sites
- Table D.2. May June 1987 WQ Data Collected from selected lakes in the Sudbury site

Figure D.1 MER and PROBAR Sampling Stations for the Algoma Site

Figure D.2 MER and PROBAR Sampling Stations for the Sudbury Site

Maps shown in Figures D.1 (80798) and D.2 (80799) were compiled by J. Fortescue and D. Stahl of the Mines and Minerals Division, Ontario Geological Survey, 1987.

Table D.1 August 1986 Water Chemistry ----

| Total<br>Chlorophyll A<br>ug/l | 1.90      | 1.20        | 5.5<br>01 6    |               | 1.20           | 1.20  | 1.20       | 2.10  | 1.20         | 0.60  | 1.90     | 2.60  | 2.5              | 08.1          |       |       | 2 6    | 01.6           | 2           | 60°             | 1.70          | 6.40       | 2.70  | 3.60  | 2.89  | 1.60  | <b>2</b> .00 | 3.60  | 2.60  | 2.80          | 1.70           | 200    | 0.70       | 2.90    | 1.60           | 2.10  | 2.70  | 2.60  | 2.70     | 1.80  | 7.10  | 2.80   | <br>    | 1.80       | 00.1  | 07.1           |       | 1 70  | 06.666    | ) e . e e e |
|--------------------------------|-----------|-------------|----------------|---------------|----------------|-------|------------|-------|--------------|-------|----------|-------|------------------|---------------|-------|-------|--------|----------------|-------------|-----------------|---------------|------------|-------|-------|-------|-------|--------------|-------|-------|---------------|----------------|--------|------------|---------|----------------|-------|-------|-------|----------|-------|-------|--------|---------|------------|-------|----------------|-------|-------|-----------|-------------|
| Conductivity                   | 20        |             | 01             | 2 -           | 11             | 17    | 16         | 18    | 16           | 44    | 17       | 22    | 10 <b>4</b> 1    | 0             | 9;    | - 0 7 | 9 Q    |                |             | 1               | 21            |            | 9     | 17    | 16    | 16    | 18           | 23    | 18    | 16            | 16             | 9      | 91         | 16      | 16             | 18    | 17    | 18    | 16       | 12    |       |        | 9.5     | 1          |       | n (1           | 11    | . 0   | 91        | 2           |
| Dissolved<br>Organic<br>Carbon | 8.3<br>.3 | 0.0         | <b>.</b> .     |               | 9              |       | 4          | 0.0   | 3.1          | 7.6   | 3.6      | 8.7   | 7.6              | 41            | 1.1   | 0.0   | 1.0    |                |             | 0.7             | - 0<br>- 0    |            |       |       | 3.2   | 0.0   | 6.1          | 19.0  | 6.5   | 3.8           | 9.0            | 2 C    | 0 U<br>0 C |         | 1.4            | 4.2   | 5.2   | 6.3   | 3.4      | 2.8   | 9.2   | 4      | 0.0     | 0 4<br>7 4 | 0.4   | р с<br>• ч     | N 6   | n     | • •       | •••         |
| sulfate<br>mg/l                | 4.68      | 3.86        | 0, 40<br>0 0 0 | 8.20<br>02.80 | 3. V2          |       | 4.08       | 4.05  | 4.08         | 4.46  | 4.17     | 3.01  | 4.39             | 3.80          | 10.4  | 3.1/  | 9. S   | 77. T          | ,<br>,<br>, | 5 U T           | 0             |            | 0.34  | 0.0   | 3.66  | 3.16  | 3.67         | 2.29  | 4.00  | 3.83          | 3.89           | 4.30   |            |         | 3.42           | 3.89  | 3.69  | 3.47  | 3.78     | 2.99  | 3.93  | 3.82   | 5.<br>• | 4.10       | 11.6  | 03. m          | 10.01 | 77.4  | 21.0      | ¢). ¢       |
| Hď                             | 6.290     | 6.230       | 5.350<br>- 200 | 6.200         | 6.030<br>6.030 |       | 6.010<br>F | 5.590 | 5.690        | 7.190 | 6.038    | 4.780 | 7.190            | 6.290         | 6.280 | 4.770 | 6.200  | 5.820<br>5.520 | 016.9       | 085.4           | 041.0         | 0//.9      |       |       | 200   | 1,710 | 5.160        | 4.640 | 6.200 | 5.660         | 6.320          | 5.360  | 5.240      |         | 6 120          | 4.980 | 6.190 | 5.740 | 6.650    | 5.470 | 6.230 | 6.170  | 5.320   | 5.240      | 4.850 | 6.4BC          | 5.310 | 092.3 | 028.4     | 5.640       |
| Total<br>Inflection<br>Point   | 1.64      | 0.15        | 0.29           | 0.10          | -0.33          |       |            |       | 0.37         | 14,86 | -0.33    | -0.75 | 14.19            | 0.11          | -0.31 | -0.87 | 0.09   | 0.86           | 0.18        | 0.32            | <b>61.0</b> - | 0.67       |       | 0.27  |       |       | 0.07         | -1.66 | 0.10  | 0.36          | 8.9            | -0.07  | -0.11      | 1.0     |                |       | 90    | 1.04  | 0.37     | 0.10  | 0.10  | -0.13  | -0.02   | -0.05      | -0.59 | 3.27           | 0.22  | -0.21 | -0.64<br> | 0.49        |
| Total<br>Aikalinity<br>mg/i    | 3.47      | 1.97        | 05.886         | 06.999        | 1.64           | 2.30  | 2.70       |       | 20.7<br>20.7 | 16.66 | 1.56     | 1.16  | 16.01            | 2.00          | 1.76  | 1.01  | 988.90 | 2.77           | 2.11        | <b>555</b> . 50 | 1.75          | 2.46       | 1.53  | 2.19  | 14.1  | 1.00  |              | 1.94  | 1.99  | 2.27          | 1.90           | 1.73   | 1.69       | R/ 1    |                | 1.01  | 1.97  | 2.71  | 2.28     | 1.96  | 1.96  | 999.90 | 999.90  | 1.70       | 1.22  | 5.05           | 1.99  | 1.68  | 1.14      | 2.30        |
| 1/8n<br>1/8n                   | 22        | <b>2</b> 00 | 210            | 240           | 260            | 190   | 160        | 33    | 120          | 38    | 310      | 420   | 8                | 190           | 120   | 270   | 190    | 160            | 80<br>80    | 190             | 160           | 96         | 300   | 140   | 085   | 140   |              |       | 950   | 130           | 8              | 87     | 110        |         | 220            | 38    |       | 282   | 120      | 68    | 340   | 260    | 160     | 160        | 310   | 180            | 380   | 150   | 330       | 220         |
| Mn<br>mg/l                     | 11        | 90          | 31             | 32            | 64             | 31    | 38         |       | 2;           | n e   |          | 90    | 4                | 41            | 61    | 32    | 4      | 24             | 48          | 4               | 29            | 24         | 38    | 36    | 37    | 80 L  | <u></u>      | 25    | Υ A   |               | ) <del>(</del> | 63     | 60         | 4       | <del>ç</del> : | 100   |       |       | 46       | 31    | 94    | 36     | 9       | 36         | 28    | 17             | 36    | ¥     | 32        | 38          |
| Suspended<br>Solids<br>mg/l    | -         | . 0         | 0              | 0             | 0              | -1    |            | -•    | - •          | - ,   | -        |       | •                | 1 <b>-</b> -1 |       | 0     | -      | -              | -           | 1               | -             | -          | m     | 7     | 3     |       |              | r4 7  | -  c  | 40            | •              | -      | 1          | 1       | <b>-</b>       | -1 4  |       | 4 -   | 4        | •     | . 0   |        | -       | 1          |       | 8              | 1     | 1     | 7         | 1           |
| Iron<br>mg/l                   | 0.00      |             | 87.0           | 130.0         | 72.0           | 100.0 | 41.0       | 17.0  | 130.0        | 22.0  |          |       |                  | 0.00          | 24.0  | 79.0  | 170.0  | 65.0           | 160.0       | 100.0           | 80.0          | 40.0       | 660.0 | 640.0 | 130.0 | 26.0  | 52.0         | 180.0 |       |               | 100.0          | 61.0   | 26.0       | 19.0    | 93.0           | 87.0  | 6.999 |       |          |       | 0.00  | 58.0   | 67.0    | 58.0       | 66.0  | 140.0          | 110.0 | 32.0  | 92.0      | 130.0       |
| NAME                           | 111011    | STWDIA      | A DOX          | EAST          |                | 66X   | LITTLE A   | MADER | MALLOT       | 66X   | MONTREAL | 66X   | X YY             | YOU           | 007   |       | DYFR   | Xoo            | DYER        | UNION           | 66X           | 66X        | 66X   | 66X   | 86X   | 66X   | 66X          | 66X   | 66X   | 200<br>21 212 | VLVIN          | RARARA | BARBARA    | BARBARA | 66X            | 66X   | BBX   | B6X   |          | VIATA |       | 88V    | HATI FY | 66X        | ROT   | 66X            | 86X   | 66X   | 66X       | BIG PIKE    |
| LAKE_ID                        |           |             |                |               |                | ľ     | ØV         | HY    | BA           | 88    | ß        | 081   | 1<br>1<br>1<br>1 |               | 5 3   | 5 7   |        | ŝ              | 35          | 36              | 9 Ľ           | , L<br>, C | 50    | 3     | IJ    | 3     | S            | ۷d    | 00    | 2             | 2              |        | 200        | На      | 10             | G     | Ð     | 8     | <u>ы</u> | 31    |       |        | בכ      | 5 5        | 1     | ] <del>(</del> | រ៍ជ   | 14    |           | <u>ነ</u> ሮ  |

Table D.1 (Cont.) August 1988 water chemistry

,

| Total<br>Chiorophyll A<br>ug/l | 5        | 10.0     | 1.02     | 1 67       | 2.10     | 00.4      | 2.90  | 2.10       | 1.30         | 1.60           | 1.10      | 1.20       | 1.20     | 10.0   | 2.60 | 1.60        | 2.40     | 2.70               | 2.00 | 1.80       | 1.80     |            | 20.71    | 22. T | 1.90 | 4.60         | 4.40       | 2.60         | 10.00   | 2.30       | 08.4    | 2.40         | 4.10         | 4.30          | 1.40        | 4.4        | 4.30         | 2.70<br>0.70 | 00. a | 2.20        | 1.60           | 1.60 | 1.80      | 3.80       | 2.80         | 3.20         | 2.70   | 20.0             |
|--------------------------------|----------|----------|----------|------------|----------|-----------|-------|------------|--------------|----------------|-----------|------------|----------|--------|------|-------------|----------|--------------------|------|------------|----------|------------|----------|-------|------|--------------|------------|--------------|---------|------------|---------|--------------|--------------|---------------|-------------|------------|--------------|--------------|-------|-------------|----------------|------|-----------|------------|--------------|--------------|--------|------------------|
| Conductivity                   | a t      |          | 16       | 19         | 33       | 16        | 17    | 16         | 19           | 17             | 16        | 18         | 8 T      | 21     | 16   | 18          | 16       | 19                 | 18   | 21         | 9        | 0 0<br>7   | 29       | 16    | 16   | 20           | 19         | 18           | 18      | 22         | 21      | 19           | 24           | 24            | 23          | <b>6</b> : | 11           | 00           | 23    | 18          | 29             | 23   | 26        | 26         | 22           | 36           | 31     | 21               |
| Dissolved<br>Organic<br>Carbon | 0        |          | •        | 3.9        | 6.1      | 3.1       | 7.0   | 4.5        | 2.2          | <b>6</b> .4    |           |            |          | 9.0    | 5.4  | 3.2         | 3.4      | 9°.9               | 8.1  |            |          |            | 5.2      | 4.9   | 5.8  | 8.1          | 5.1        | 7.2          | 9 · 1   | 13.4       | 27 O    | 0.0          | 4.0          | 4.5           | 0.6         | 10.5       |              |              | 4.0   | 0.0         | 6.1            | 3.1  | 3.3       | 0.7        | <b>a</b> (   | <b>D</b> . 0 | D.4    | 9 . <del>0</del> |
| Sulfate<br>mg/l                | 2.32     | 4.04     | 4.10     | 4.62       | 4.38     | 4.18      | 3.24  | 3.31       | 4.68         | 89.89<br>10.80 |           | 4 . 50     | 4.27     | 5      | 3.65 | 4.13        | 4.21     | 0                  | 12.5 | 4 .00      |          | . 23       | 4.06     | 3.85  | 3.02 | 3.12         | 3.53       | 3.13         | 0 0<br> | 51.9<br>10 | 5.4     | 4.68         | 4.13         | 4.16          | C           | 2.//       |              | 1.01         | 3.88  | 3.88        | 4.13           | 4.90 | 4.79      | 3.78       | 2.81         | N0.0         | ••     | 3.61             |
| Hq                             | 4.70     | 6.67     | 5.64     | 6.31       | 7.16     | 4.98      | 4.73  | 6.33       | <b>6</b> .54 | 6.12<br>20     |           | 5.11       | 5.81     | 6.67   | 6.19 | 6.22        | 5.85     | 80 L<br>1 C<br>1 C |      | 01.0<br>10 | 6.37     | 7.07       | 6.71     | 6.47  | 6.68 | 6.07         | 6.94       | 6.92<br>. 30 |         | 5.44       | 6.83    | 6.26         | <b>6</b> .70 | 6.66<br>6     | 0.83        | 20.02      | <b>6</b> .34 | 7.10         | 6.41  | 6.73        | <b>6</b> .92   | 6.79 | 6.69<br>6 | 0.0<br>0.0 | 17.0         |              | 7.20   | 9.34             |
| Total<br>Inflection<br>Point   | -0.97    | 0.33     | 0.30     | 1.98       | 9.63     | -0.48<br> | -0.88 | 0.17       | 2.19         | -0.17          |           | -0.23      | 0.47     | 0.45   | 8.9  | 1.21        | 0.63     |                    |      | 1.33       | 1.32     | 0.7        | 6.83     | 0.30  | 1.09 | 2.88         | 2.31       | 2.03         | 1.6/    | 1.28       | 7.98    | 1.79         | 4.71         | 19.4          | 41.0<br>6   | 2.17       | 4.71         | 7.45         | 4.27  | 0.87        | 8.10           | 3.16 | 11.4      | 40.4       | 90.4<br>10.4 |              | 9.4    | 2.86             |
| Total<br>Alkalinity<br>mg/l    | 0.89     | 2.13     | 2.08     | 3.73       | 11.43    | 1.34      | 0.92  | 8.1        |              | 1.00           | 200       | 1.69       | 2.28     | 999.90 | 1.78 | 3.01        | 2.45     | 17.0               | 4 42 | 3.10       | 3.13     | 8.91       | 8.70     | 2.10  | 2.96 | <b>9</b> .90 | 4.21       | 0. e         |         | 3.14       | 9.84    | 3.69         | 0.54         | 6.61<br>70    | 0.00<br>101 | 3.97       | 6.64         | 9.28         | 6.14  | 2.72        | 9.92<br>1.00   | 80.9 | 01.0      | 10./       | 13 74        | 10.46        | 11.15  | 4.48             |
| I V<br>I V<br>I V<br>I V       | 260      | 170      | 150      | 8/         | 99<br>7  | 011       |       | 042        |              | 150            | 250       | 200<br>200 | 85       | 160    | 260  | 80 (<br>17) | <b>.</b> | 16                 | 20   | 8          | 67       | 30         | 84       | 140   | 230  |              |            |              | 30      | 280        | 74      | 76           | 89 -<br>89 ( |               | 210         | 160        | 110          | 19           | 28    |             | ß              |      | 5         | 36         | 92<br>92     | 53           | 11     | 180              |
| ₩<br>₩<br>₩                    | 18       | 7        | 38       |            | 0        | 1         |       |            | 0 r          | 219            | 36        | 31         | 32       | 8      | 36   | =;          | : :      | 24                 | 54   | 60)        | 8        | 10         | 10       | 38    | 38   | P 7          | + 0<br>N 0 |              | 21      | 21         | 1       | 11           | 1            | <b>1</b><br>1 | 31          | 1          | 18           | 8            | م     | <b>4</b> 1  | ۵ م            | N 0  | • u       |            | 2 10         | 13           | 10     | 18               |
| Suspended<br>Solids<br>mg/i    | •        | 8        |          | -          | -1 ,     |           | n .   |            | • -          | 4              | ) <b></b> | -          |          | 0      | N (  | NC          | 4 0      | • •                |      | -          | -        | 2          | <b>~</b> | -•    | N (  | N •          | - c        | N 67         | ) -1    |            | 1       |              | N 6          | n -           | • 0         | . 0        | 7            | -1           |       |             | -4 -           | 4 -  | • •       | • •        | •            | . 0          | 2      | <b>F</b>         |
| Iron<br>mg/l                   | 210      | 83       | 11       | 5          |          | 4         |       | - a        | ۶<br>۲       | 33             | 220       | 84         | 22       | 62     | 230  |             | 36       | 170                | 92   | 4          | 11       | <b>1</b> 0 | 19       | 12    |      |              | 240        |              | 260     | 270        | 17      | 32           |              |               | 280         | 350        | 120          | 37           | 80    | ,<br>,<br>, | •              | 0 6  | 210       | 150        | 60           | 63           | 39     | 100              |
| NAME                           | 86X      | BIG PIKE | BIG PIKE | RAK        | SHUEFACK |           | A A A | aex<br>Xoo | a d X        | 66X            | 66X       | 66X        | PATTERSO | 66X    |      |             | RUTTED   | 200X               | 66X  | CARPENTE   | CARPENTE | MITCHELL   | MITCHELL | 88X   | BBX  |              | BRX DOX    | 86X          | 66X     | 66X        | 66X     | X99<br>21:17 |              | DUINTET       | TAY         | 86X        | NORTH Mc     | NORTH Mc     | 66X   |             | A88<br>NITNTET |      | 000       | McCOLLOU   | X99          | 66X          | DICK   | 66X              |
| LAKE_ID                        | <b>6</b> |          |          | 9 :<br>L I |          |           | 22    | Ê          |              | 39             | 3         | щ          | с,       | 33     | 52   | 33          | 33       | ਹ ਹ                | Ŧ    | 84         | ЯČ       | 웃          | Ψ        | Ŧ     | 51   |              |            |              | 19      | IE         | IT<br>I | 91           |              |               | 9           | Y          | 9            | щ i          | ¥, 9  | 33          |                | K R  |           | 29         | . W          | L X          | 5<br>X | КН               |

Table D.1 (Cont.) AUGUST 1986 WATER CHEMISTRY

| Total<br>Chlorophyll A<br>ug/l | 4.20     | 1.40     | 2.40  | 4.80         | 2.30        | 4.61       | 1.60     | 6.40<br>04.60 | 0.0          | 3.60 | 0.60           | 0.60    | 0.70     | 1.20        | 4.20   | 9. 'D | 11.4     | 8.00<br>10.6 | 00.6           | 0.90 | 0.60 | 1.60         | 3.80       | 3.30     | 2.42        | 3.62 |      | 80.8<br>15 10 | <b>6</b> .30 | 1.40 | 1.80  | 1.50  | 1.30         |       |              | 80.0       | 07.4         | 1.60    | 1.40  | 1.00  | 06 . 868 | <b>888</b> .90 | 999.90     | 999.90<br>200 00 | 06.998       | 06.666         |           |
|--------------------------------|----------|----------|-------|--------------|-------------|------------|----------|---------------|--------------|------|----------------|---------|----------|-------------|--------|-------|----------|--------------|----------------|------|------|--------------|------------|----------|-------------|------|------|---------------|--------------|------|-------|-------|--------------|-------|--------------|------------|--------------|---------|-------|-------|----------|----------------|------------|------------------|--------------|----------------|-----------|
| Conductivity                   | 19.0     | 23.0     | 32.0  | 41.0         | 33.0        | 32.0       |          | 20.02         |              | 17.0 | 30.0           | 30.0    | 29.0     | 31.0        | 39.0   | 19.0  | 0.15     | 0.15         | 31.0           | 22.0 | 29.0 | 24.0         | 24.0       | 31.0     | 20.0        | 21.0 | 21.0 | 21.0          | 28.0         | 33.0 | 37.0  | 22.0  | 18.0         | 18.0  | 0.00         |            | 0.04         | 40.0    | 33.0  | 44.0  | 8.888    | <b>6</b> .99   | 6.999      | 989.9            | 8.888        | 8 888          | 000       |
| Diasolved<br>Organic<br>Carbon | 0.8<br>• | - 10<br> | 3.8   | 9.2          | 7.1         | 8.0<br>9.9 | 2.       | 0.4           |              | 1    | 3.6            | 2.8     | 2.8      | 13.0        | 8<br>9 |       | 0 4<br>7 |              |                | 4.2  | 2.0  | 3.2          | 3.0        | 2.6      | <b>3.</b> 0 | •••  |      | 1.1           |              | 3.0  | 2.9   | 4.0   | 2.7          |       |              |            |              | 4.4     | 9.7   | 8.4   | 888.8    | 888.8          | 888.8      | 999.9            | 8.888<br>000 | 9.900<br>0.000 | 0000      |
| Sulfate<br>mg/l                | 3.71     | 4.01     | 4.48  | 2.84         | 3.97        | 4.10       |          | 4.UL          |              | 3.77 | 6.07           | 5.04    | 6.11     | 2.38        |        |       | 5.0      | 52           | 5.1            | 4.46 | 6.11 | 6.10         | 4.42       | 6.07     | 4           | 84.4 |      |               | 00.4         | 6.48 | 6.65  | 4.60  | 4.37         |       | 18.4         | 5 01<br>7  | 5.17         | 3.68    | 2.60  | 3.78  | 999.90   | 999.90         | 999.90     | 06.999           | 08.868       | 00 000         |           |
| Hq                             | 5.70     | 6.63     | 7.20  | <b>9</b> .90 | 6.89        | 6.91       |          | 09.0          |              | 6.87 | 7.03           | 7.06    | 6.99     | 61 30<br>91 |        | 10.0  | 12.1     |              |                | 6.47 | 7.05 | <b>6</b> .56 | 6.89       | 7.20     | 6.19        | 0.40 |      |               | 9.95         | 7.28 | 7.38  | 6.18  | 5.83<br>7.93 |       | 20. 6        | 5          | 7.35         | 7.04    | 6.61  | 6.82  | 06.866   | 999.90         | 06.999     | 06.888           | 08.888       | 00 000         |           |
| Total<br>Inflection<br>Point   | 1.33     | 3.17     | 9.42  | 14.95        | <b>60.6</b> | 9.78       | 14.00    | 4. a.         |              | 0.84 | 5.83           | 6.82    | 5.65     | 8.46        | 11.03  |       |          | 06.1         | 7.46           | 2.17 | 6.66 | 2.96         | 4.62       | 7.30     | 1.39        | 2.48 | 48 N | 2.3/<br>14 38 | 61.9<br>9,19 | 8.10 | 9.65  | 2.69  | 6.1          |       |              | 15 31      | 12.14        | 13.16   | 10.61 | 16.07 | 999.90   | 06.999         | 06.666     | 999.90           | 06.868       | 000 000        | 2000 000  |
| Totel<br>Alkalinity<br>mg/l    | 3.23     | 5.02     | 11.32 | 16.66        | 10.87       | 11.62      | 10.3/    | 0.02          | 90.8<br>97.0 | 2.59 | 7.62           | 7.63    | 7.46     | 10.30       | 12.92  | 2.68  | 10.9     | 77.8         | <br>           | 4.61 | 7.64 | 4.87         | 6.44       | 9.22     | 3.28        | 4.38 | 4.81 | 4.30          | 80.8         | 9.93 | 11.39 | 4.61  | 2.95         |       |              | 10.01      | 13.92        | 14.86   | 12.26 | 16.87 | 06.999   | 999.90         | 989.90     | 999.90           | 989.90       | 000 000        | 00 000    |
| NI<br>1/8n                     | 230.0    | 46.0     | 36.0  | 97.0         | 0.83        | 64.0       | 10.0t    | 36.0          |              |      | 21.0           | 23.0    | 30.0     | 110.0       | 34.0   | 230.0 | 19.0     |              | 20.02<br>20.02 |      | 34.0 | 76.0         | 28.0       | 21.0     | 47.0        | 39.0 | 18.0 | 12.0          |              | 36.0 | 29.0  | 150.0 | 200.0        | 130.0 |              |            |              | 84.0    | 97.0  | 60.08 | 999.9    | 999.9          | 939.9      | 888°8            | 999.9<br>900 | 7.788<br>0000  | 8.800     |
| Kn<br>Kn                       | 24.0     |          | 2.0   | 14.0         | 8.0         | 6.0        | 0.8<br>8 | 0.7           |              |      | 0.6            | 3.0     | 1.0      | 13.0        | 11.0   | 27.0  | 0.0      | 20           |                |      |      |              | 0.0        | 4.0      | 6.0         | 11.0 | 0.7  |               |              | 6.0  | 3.0   | 6.0   | 12.0         | 20.0  |              |            |              | 19.0    | 0,0   | 4.0   | 999.9    | 989.9          | 868.9      | 888.8            | 6.999.9      | 988. Y         | h . h h h |
| Suspended<br>Solida<br>mg/l    | 1.0      | 0.0      | 0     | 2.0          | 2.0         | 2.0        | 1.0      | 1.0           |              |      | 0.1            | 1.0     | 1.0      | 1.0         | 2.0    | 2.0   | 1.0      | 0.1          | 0.0            |      |      |              | 0.1        | 2.0      | 1.0         | 1.0  | 1.0  | 1.0           | •            | 0.1  | 1.0   | 1.0   | 1.0          | 1.0   | 0.1          | 0.0<br>N 0 | 200          | ) C     | 0.1   | 1.0   | 6.666    | 939.9          | 8-888      | 999.9            | 8.99.9       | 999.9<br>900   | 7.777     |
| Iron<br>mg/l                   | 130.0    | 30.0     | 13.0  | 120.0        | 38.0        | 48.0       | 0.6      | 36.0          | 17.0         | 22.0 |                | 2.0     | 0.0      | 200.0       | 46.0   | 210.0 | 14.0     | 0.0          | 14.0           | 28.0 |      |              | 14.0       | 13.0     | 16.0        | 37.0 | 28.0 | 20.0<br>200   |              | 14.0 | 10.01 | 68.0  | 30.0         | 48.0  | 67.0<br>22.0 | 0.70       | 0.04<br>0.04 |         | 150.0 | 67.0  | 999.9    | 999.9          | 999.9      | 939.9            | <b>6</b> .98 | 999.9<br>900   | 7.77F     |
| NAME                           | 66X      | 86X      |       | 66X          | 66X         | 88X        | McGOVERN | 66X           | 66X          | 66X  | AUN<br>Coteetn | GRIFFIN | LOWER GR | 66X         | 66X    | 66X   | 66X      | ADELAIDE     | ADELAIDE       | 66X  | X99  | LUNCN GR     | eev<br>Sox | ADELAIDE | 66X         | 66X  | BONE | 66X           | 66X          |      |       | 86X   | 66X          | 66X   | DREW         |            | BBX          | 1 ILLET | 86V   | 86X   | 86X      | 66X            | 66X        | 66X              | 66X          | 66X            | 66X       |
| LAKE_ID                        | КI       | 2        |       |              | 19          | 9          | ٣        | Ľ             | LG<br>L      | 5:   | 11             | ] 2     | ij       | 3           | Z      | ¥     | 81       | ¥            | 2              | ¥!   |      |              |            |          | 2           | W    | Ĩ    | ÖZ            | Ŧ            | z    | 2 ¥   | ž     | Yo           | 80    | 8            | 8          | J<br>J<br>J  | 5       | 33    | 52    | d        | SOI            | 502<br>202 | 503              | <b>S04</b>   | SOB            | 808       |

D-4

.

CRIGINAL PAGE IS OF POOR QUALITY Table D.1 (Cont.) AUGUST 1986 WATER CHEMISTRY

| Total<br>Chlorophyll A<br>uo/l |   | 0 000  | 0 000         | 000        | 000    |               | 8 . 8 8 8 | 0.000          | 6.666      | 6 666         | 6.66 <b>6</b>                         | 666                                   | 6.666         | 8.888             | 999.9  | 989.9   | 989.9        | 666.6        | 989.9  | 969.9        | 8.888   | A . AAA | 0 000  |         | • •   | 2.2      | 9.0          | 3.0   | 0.4        | 6.2      | <b>9</b> .0 | <b>1.9</b>    | 1.2        |        |      | •••      | 2.1             | 1.0   | 0.3             | 1.9     | 0.8            | <b>•</b> .0  | 0.3    | 0.7           | 0.6     | 0.7            | 0.5   | 6.0<br>, | <b>1</b> .1 |          | 0.6          |
|--------------------------------|---|--------|---------------|------------|--------|---------------|-----------|----------------|------------|---------------|---------------------------------------|---------------------------------------|---------------|-------------------|--------|---------|--------------|--------------|--------|--------------|---------|---------|--------|---------|-------|----------|--------------|-------|------------|----------|-------------|---------------|------------|--------|------|----------|-----------------|-------|-----------------|---------|----------------|--------------|--------|---------------|---------|----------------|-------|----------|-------------|----------|--------------|
| Conductivity                   |   | 999.9  | 0 000         | 0.000      | 0.000  | 000           | 000.00    | 5,665          | 888.9      | 999.9         | 6.666                                 | 8.888                                 | 999.9         | 999.9             | 999.9  | 888.8   | <b>888.9</b> | 888°.        | 888.8  | 8.888<br>000 | A. 444  | 000     | 0.000  | 10.0    | 61.0  | 66.0     | 69.0         | 39.0  | 63.0       | 61.0     | <b>60.0</b> | 124.0         |            | 33.0   | 29.0 | 37.0     | 32.0            | 29.0  | 31.0            | 36.0    | 33.0           | 36.0         | 36.0   | 36.0          | 30.0    | 29.0           | 32.0  | 28.0     | 90.0<br>0   | 0.15     | 31.U<br>29.0 |
| Dissolved<br>Organic<br>Carbon |   | 9,999  | 666.0         | 6.999      | 6,999  | 0.000         | 8,868     | 888.8          | 939.9      | 999.9         | 999.9                                 | 999.9                                 | 999.9         | 999.9             | 888.8  | 888° 8  | 8 8 8 8      | 6.668<br>000 | 5.8AA  |              | 0.000   | 0.000   | 6.666  | 3.7     | 6.1   | 7.9      | 8.8          | 6.7   | 6.7        | 8.0      | 4.<br>01 (  | 10 U          |            | 2.5    | 2.3  | 2.4      | 4.4             | 1.1   | 0.3             | 6.2     | 1.7            | + 0<br>0     | 0.2    | 9.9           | 1.6     | <b>6</b> .     | •     | • •      | • c         | , a      | 2.4          |
| Sulfate<br>mg/l                |   | 999.90 | 999.90        | 999.90     | 08.868 | 08.888        | 06.666    | 08.868         | 988.80     | 999.90        | 999.90                                | 999.90                                | 999.90        | 999.90            | 999.90 | 999.90  | 06.999       | 0.000        |        |              | 06,929  | 06.666  | 06.666 | 3.79    | 6.93  | 5.18     | 4.77         | 4.77  | 4.11       | 4.30     | 8/.4        | 8.28<br>11 70 | 8.73       | 9.64   | 9.73 | 10.60    | 9.40            | 9.32  | 80.8            | 9.07    | 10.90          | 0.01<br>0.01 |        | 10.70<br>0 20 | 25.9    |                |       | 00.0     | 9.41        | 8.71     | 8.12         |
| Hď                             |   | 999.90 | 999.90        | 999.90     | 06.999 | 999.90        | 999.90    | 999.90         | 999.90     | 08.868        | <b>668.80</b>                         | 06.666                                | 989.90        | 888°80            | 06.666 | 08.888  | 08.888       |              |        | 00.000       | 06.999  | 999.90  | 999.90 | 5.33    | 7.44  | 7.44     | 7.44         | 7.30  | 7.41       | 40. N    | 10.1        | 7.69          | 4.66       | 4.65   | 6.19 | 6.89     | 4.73            | 4.03  | 0. <del>•</del> |         | 0.40           |              |        |               | 0 P - 4 |                |       | 4.75     | 5.10        | 5.01     | 4.90         |
| Total<br>Inflection<br>Point   |   | 06.999 | 989.90        | 06.666     | 999.90 | 988.90        | 06.666    | 08.999         | 08.999     | <b>888.80</b> | 988.80                                | 06.666                                | 999.90        | 999.90<br>222 22  | 00.999 |         |              |              | 00,000 | 00.000       | 06.999  | 08.888  | 959.90 | 0.02    | 20.34 | 16.70    | 16.35        | 11.62 | 18.02      | 84.1Z    | 14 05       | 31.92         | -1.10      | -1.10  | 0.83 | 4.19     | <b>8</b>  <br>9 | -0.66 |                 | -2.10   |                |              | AD.1-  |               |         | 3.5            |       | 10.0     | -0.23       | -0.45    | -0.61        |
| Total<br>Aikalinity<br>mg/l    |   | 999.90 | 06.666        | 06.666     | 06.666 | 06.999        | 06.999    | <b>06.</b> 666 | 06.666     | 06.666        | 06.666                                | 06.999.90                             | 999.999       | 988.80<br>000 000 | 00.900 | 000 000 |              |              | 06.666 | 06.666       | 06.666  | 999.90  | 06.999 | 1.93    | 22.16 | 17.44    | 18.07        | 44.01 | 14./3      | 23.20    |             | 33.62         | 0.62       | 0.62   | 2.64 | 6.03     | 0.86            | 1.25  |                 | 3.6     | 07.5<br>0 12 0 |              |        |               |         | 00.000<br>54.0 | 1 08  | 0.89     | 1.61        | 1.45     | 1.24         |
| I/Bn                           |   | 999.9  | <b>8</b> 88.8 | 988.9      | 999.8  | <b>9</b> 99.8 | 8.888     | 6.999          | <b>666</b> | 6.999         | 888.8                                 | 888.8                                 | 8.888         | 5.688<br>6.600    | A. 848 |         |              | 0.000        | 6.992  | 999.9        | 999.9   | 999.9   | 939.9  | 130.0   | 100.0 | 868.8    | 868.8        | 8.888 | A. 888     |          | 0.000       | 999.9         | 260.0      | 290.0  | 40.0 | 31.0     | 320.0           | 220.0 | 130.0           |         |                |              | 230.00 |               | 1 200.0 | 32.0           | 140.0 | 210.0    | 100.0       | 160.0    | 130.0        |
| Mn<br>Mg/1                     |   | 999.9  | 8.999         | 999.9      | 888.8  | 999.9         | 8.888     | 8.988          | 688°.9     | 888.8         | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 6.999.9                               | 9.985         | 8.888<br>0000     |        |         | 0.000        | 0.000        | 9.99.9 | 999.9        | 9.999.9 | 999.9   | 8.88   | 42.0    | 15.0  | 868.8    | 888°.        | 8.888 | 8.888      |          | 0.000       | 6.666         | 64.0       | 78.0   | 39.0 | 12.0     | 0.84            |       |                 |         |                |              | 130.0  | 110.0         |         | 19.0           | 50.0  | 69.0     | 32.0        | 100.0    | 72.0         |
| Suspended<br>Solids<br>mg/l    |   | 888.8  | 838.8         | 888.8      | 8.888  | 999.9         | 6.666     | <b>888.8</b>   | 988°.9     | 6.666<br>     | 888°8                                 | 868.8                                 | 8.888<br>0000 |                   |        | 0.000   | 0.000        | 0.000        | 999.9  | 999.9        | 999.9   | 999.9   | 999.9  | 1.0     | 2.0   | 1.0      | 0.0          | 0.0   | ) (<br>N ( |          | 00          | 1.0           | 1.0        | 1.0    | 1.0  | 1.0      |                 |       |                 |         |                |              |        | 0.1           |         | 0.1            | 1.0   | 1.0      | 1.0         | 1.0      | 1.0          |
| Iron<br>mg/l                   |   | 888.8  | 6.666         | 999.9      | 868.8  | 999.9         | 8.888     | 6.999          | 8.868      | 868.8         | 6.999.9                               | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |               | A. 888            |        | 0.000   | 0 000        | 0.000        | 6.666  | 999.9        | 999.9   | 999.9   | 999.9  | 63.0    | 170.0 | 39.0     |              |       |            |          | 120.0       | 23.0          | 66.0       | 67.0   | 14.0 | 26.0     |                 |       |                 | 16.0    | 32.0           | 28.0         | 49.0   | 36.0          | 27.0    | 17.0           | 62.0  | 64.0     | 30.0        | 32.0     | <b>56</b> .0 |
| NAME                           |   | 66X    | 66X           | 66X        | 66X    | 66X           | 66X       | 66X            | 56X        | 66X           | 66X                                   | 66X                                   |               | AAX               |        | NON Y   | X 00         | 66X          | 66X    | 66X          | 66X     | 66X     | 66X    | GREYOWL | PAINT | CKAYFISH | MEST KAB     |       | L'INC      | KAREN NG | DESOLATT    | PRINCESS      | 66X        | MADDEN | LANY | LADY DUF |                 |       |                 | SMOTHWA | SUNNYAT        | SUNNYWAT     | X99    | WHITEPIN      | MARTNA  | SMOOTHWA       | 86X   | 66X      | LITTLE A    | WHITEPIN | WHIRLIGI     |
|                                | - | 808    | 808           | <b>S10</b> | SII    | <b>S12</b>    | S13       | 514<br>512     | 515        | 010           | 210                                   | 910                                   | A 10          | 070               | 222    | 523     | 204          | S26          | S26    | <b>S27</b>   | S28     | S29     | S30    | BOX     |       |          | 0 <b>1</b> 3 |       |            | 25       | B/M         | 84            | <b>VII</b> | 118    | 110  |          |                 | 128   | 195             | 120     | 134            | 138          | 130    | 130           | 135     | 130            | 13H   | 131      | 144         | 148      | 140          |

.

Table D.1 (Cont.) AUGUST 1988 WATER CHEMISTRY

| LAKE ID    | NAME        | Iron       | Suspended      | Kn<br>K       | V           | Total              | Total               | H            | Sulfate      | Dissolved   | Conductivity   | Total<br>2.     |
|------------|-------------|------------|----------------|---------------|-------------|--------------------|---------------------|--------------|--------------|-------------|----------------|-----------------|
|            |             | i/Bw       | Solids<br>mg/l | /Bu           | l/gu        | Alkalinity<br>mg/l | Inflection<br>Point |              | - / 6w       | Carbon      |                | ug/1<br>ng/1    |
| 27 -       | 1 TTT 6 W   |            | F              | 85            | 47          | 1.86               | -0.07               | 6.44         | 8.46         | 2.0         | 26             | 0.8             |
|            |             | 1 -        | • -            | 80            | 180         | 06.666             | -0.03               | 5.14         | 10.60        | 4.0         | 33             | 0.3             |
|            | SUDDTUWA    | • 4<br>• • | •              | 200           | 36          | 2.46               | 0.66                | 6.18         | 10.70        | 1.4         | 33             | 0.6             |
|            |             | 1 6        | •              | 12            | 160         | 1.37               | -0.49               | 4.97         | 9.27         | 3.1         | 30             | 1.7             |
| 154        | 86X         | 23         |                | 120           | 380         | 1.64               | -0.39               | 8            | 11.40        | 0.3         | 37             | 0.1             |
| 168        | 66X         | 21         | -              | 72            | 540         | 0.63               | -1.24               | 4.64         | 9.86         | a.          | 46             | 0.1             |
| 16C        | 66X         | 12         |                | •             | 1           | 7.42               | 6.47                | 0.70         |              |             | 7 0<br>7 0     | 1.2             |
| 160        | APEX        | 54         | ~ ~            | 10 C          | 29          | 10.1               | 9 0 0<br>0 0        | 84           | 12.80        | 5.1         | 42             | 0.0             |
| 164        | 66X         |            | N 7            | 7 4           |             |                    |                     | 4.39         | 10.90        | 2.8         | : <del>Q</del> | 8.0             |
| 168        | 66X         | 8:         |                | ò             |             |                    | 1.98                | 6.66         | 10.10        | 1.9         | 33             | 0.7             |
| 160        | BBX         | 11         | -              | 9             | 28          | 0.92               | -0.97               | 4.74         | 10.10        | 0.7         | 46             | 0.6             |
| 100        | A A A       | 20         | 4 -            | 106           | 280         | 1.03               | -0.73               | 4.80         | 9.73         | 0.3         | 33             | 0.2             |
| 170        |             | 80         | •              | 82            | 230         | 1.62               | -0.34               | 6.02         | 11.90        | 3.8         | 38             | 1.0             |
| 170        | MIHELL      | 17         | 4              | 11            | 9           | 13.94              | 12.05               | 7.38         | 10.30        | 2.5         | 64             | 1.2             |
| 184        | 66X         | 10         | -              | 79            | <b>5</b> 70 | 0.0                | -2.66               | 4.30         | 10.40        | <b>.</b>    | 4              | 1.3             |
| 168        | NORTH YO    | 47         |                | 82            | 110         | 1.68               | -0.17               | 6.26         | 10.50        | . I<br>. I  | 32             | <del>4</del> .0 |
| 180        | 66X         | 110        | -              | 61            | 720         | 0.0<br>0           | -2.73               | 4.30         | 10.80        | 6.0<br>9    | <b>;</b> ;     | 8 · ·           |
| 180        | 68X         | 69         |                | 11            | 380         | 0.61               | -1.17               | 4.64         | 88 6<br>0    | 0 C         | 90             | •               |
| 18E        | <b>6</b> 6X | <b>6</b> 6 | 7              | 73            | 390         | 0.53               | -1.26               | 10.4         |              | 7.7         | 5              |                 |
| 194        | 66X         | 27         | 4              | 110           | 280         | 1.35               | -0.51               |              |              | - 0         | <b>n</b> c e   |                 |
| 198        | 66X         | 54         | -              | 62            | 8           | 1.84               | 83                  |              | 10.30        |             | 20             |                 |
| <b>19C</b> | 86X         | <b>œ</b>   | <b>-</b> 4     | 8             | 45          | 1./0               |                     |              | 0.00         |             | 9 9            |                 |
| 190        | 66X         | 42         |                |               |             |                    |                     | 39           |              |             | 0 0            |                 |
| 20A        | 66X         | 4          | -              | 73            | 8           | 8.0                |                     |              |              |             |                | • •             |
| 208        | 66X         | 8          |                | 63            |             | 20.0<br>2          |                     |              |              |             | 280            |                 |
| 200        | 86X         | 810        |                | 53<br>1<br>53 | 82          | 3.17               |                     | <br>         |              |             |                |                 |
| 200        | 66X         | 90         | -4 ,           |               |             | 10.1               | -1.27               | 4.68         | 10.60        | 0.2         | 9 00           | 0.9             |
| 217        | 66X         | 69         | - •            | 8;            |             |                    |                     | 5.40         | 8.68         | 2.3         | 28             | 1.5             |
| 218        | PILGRIM     |            | -4 ,           | 10            | 6 F<br>7 G  | 2                  | 0.30                | 6.69         | 10.30        | 2.1         | 31             | 0.7             |
| 210        | 66X         |            | -4 -           |               |             | 2.59               | 0.74                | 5.99         | 11.20        | 2.3         | 40             | 2.1             |
| 210        | ARY COX     |            | •              | 82            | 22          | 2.07               | 0.30                | 5.68         | 9.72         | 2.4         | 31             | 1.1             |
| 228        | 66X         | 99         | ••             | 8             | 27          | 3.24               | 1.58                | 6.26         | 10.40        | 2.6         | 34             | 1.4             |
| 228        | 66X         | a          | 1              | •0            | 9           | 2.46               | 0.77                | 6.07         | 10.50        | 2.3         | 3              | 1.5             |
| 22C        | PILGRIM     | 19         | -1             | 36            | 20          | 1.70               | 0.01                | 6.40         | 8.71         | 2.0         | 12             | 1.1             |
| 220        | MAGGIE      | 31         | -              | <b>60</b> (   | 21          | 4.21               | 2.36                | 20.0         | 10.00        | 7.7<br>8    |                | 4.4             |
| 22E        | 66X         | 58         | -              | 69            | 20          | 0.0                | 2.0                 | 0.00<br>2.00 | 21.0<br>181  |             |                |                 |
| 234        | BLUESUCK    | 82         | 0              | 2             |             |                    | -1.96               | 4.43         | 10.60        | 6.0         | 9              | 1.1             |
| 200        |             | 4 12       | 4              | 12            | 16          | 2.20               | 0.43                | 6.87         | <b>6</b> 0.6 | 2.7         | 29             | 2.3             |
| 220        | A SO        | 110        | . 0            | 46            | 250         | 0.66               | -1.17               | 4.63         | 8.96         | 4.5         | 36             | 2.3             |
| 236        | SOLACE      | 40         | -              | 8             | 36          | 1.98               | 0.25                | 5.70         | 10.40        | 2.4         | 31             | 1.3             |
| 23F        | 66X         | 84         | m              | 32            | <b>6</b> 5  | 2.17               | 0.39                | 6.79         | 9.36         | 4.5         | 30             | 2.5             |
| 244        | 66X         | 8          | m              | 27            | 330         | 2.71               | 0.99                | 6.26         | 8.13         | 16.9        | 40             | 1.6             |
| 248        | 66X         | 42         | 8              | 64            | 46          | 2.07               | 0.25                | 80.9         | 88.6         |             | 90             | 20 ·            |
| 24C        | 66X         | 160        | m              | 61            | 280         | 1.39               | -0.48               | 4.82         |              | 0.0         | 19             | 4               |
| 24D        | 86X         | <u>66</u>  | 1              | 13            | 47          | 3.73               | 1.92                | 87.0         | 01.01        | •           | 4 (<br>)<br>)  |                 |
| 26A        | 66X         | 230        | 1              | 62            | 80          | 4.27               | 2.48                | 0.23         |              | -<br>-      |                | a (             |
| 26B        | NUCK        | 63         | -              | 4             | 91          | 2.61               |                     | 0.0          | 07.9         |             | 10             | 0.4             |
| 26C        | 66X         | 18         | (              | 19            | 3:          | 50.1<br>1          | -0.00<br>85         | 9.68         | 0.13         | 4 10<br>4 4 | - <b>-</b>     | •               |
| 260        | 66X         | 240        | N (            | D 4           |             | 0.00               | 20.0                | 44.6         | 9.15         |             | . 4<br>9       |                 |
| 28A        | 66X         | 220        | 2              | 4             | 2           | 47.8               | 1.40                |              | )            | >           | r<br>•         | •               |

| Cont.) | CHEMISTRY |
|--------|-----------|
| D.1    | WATER     |
| ble    | 1986      |
| Та     | AUGUST    |

| l<br>rophyll A                 | 6.0   | 1.5   | 1.4     | 1.3   | 1.9   | 0.6           | 1.1            | 1.8    | . u       | . u            |          |          | 0     | 3.7        | 0.0        | 1.2  | 1.2   | 0.2      | 0.3       | 3.4   | 1.3          | 3.1   | 4.8       | 2.3       | 1.0           | n. (     |       | 2.7        | 0.8         | 0.7         | 0.3        | 0.3          | 0.3      | 0.8        |       |           |       |       | 4.0   | •.0     | 0.4      | 0.3       | 0.7      | 0.3        | 0.3      | 0.8      | 2.2        | 0.3                | • 0              |
|--------------------------------|-------|-------|---------|-------|-------|---------------|----------------|--------|-----------|----------------|----------|----------|-------|------------|------------|------|-------|----------|-----------|-------|--------------|-------|-----------|-----------|---------------|----------|-------|------------|-------------|-------------|------------|--------------|----------|------------|-------|-----------|-------|-------|-------|---------|----------|-----------|----------|------------|----------|----------|------------|--------------------|------------------|
| / Tota<br>Chloi<br>ug/l        |       |       |         |       |       |               |                |        |           |                |          |          |       |            |            |      |       |          |           |       |              |       |           |           |               |          |       |            |             |             |            |              |          |            |       |           |       |       |       |         |          |           |          |            |          |          |            |                    |                  |
| Conductivity                   | 31    | 64    | 29      | 33    | 36    | 109           | 63             | 50     |           | 50             |          | 32       | 43    | 30         | 41         | 40   | 38    | 44       | 43        | 37    | 30           | 35    | 7         | 40        | 9             |          |       | 33         | 33          | 42          | 41         | 41           | 38       | 99<br>9    | 4     | - 00      |       | 4     | E#    | Q       | 38       | <b>64</b> | 42       | E 4        | 46       | <b>Q</b> | 46         | 42                 | 2                |
| Dissolved<br>Organic<br>Carbon | 10.5  | 7.0   | 3.6     | 1.7   | 4.0   | 1.8           | 0.0<br>0.0     | 0.0    | 0 a       | , a<br>0       |          | 9 T .    | 0.8   | <b>0.4</b> | 0.6        | 2.0  | 6.6   | 0.8      | 0.8       | 2.9   | 2.5          | 6.2   | 2.4       | 9.0<br>77 | <b>8</b> - 6  |          |       | 3.2        | 0.8         | 2.4         | 0.3        | 0.3          | • •      | a.o        |       |           | 1.0   | 0.1   | 0.3   | 0.6     | 0.6      | 0.2       | 4        | 0.3        | 0.2      | 0.0      | а.2<br>÷ : | 0.7<br>0.7         | <b>p</b> .>      |
| Sulfate<br>mg/l                | 7.43  | 9.19  | 9.10    | 11.00 | 10.70 | 29.20         | 9.26           | 8. 4 G | 11.0      |                |          | 10.40    | 12.60 | 6.83       | 12.90      | 8.42 | 11.30 | 13.40    | 13.60     | 10.00 | 10.20        | 11.00 | 10.60     | 11.30     | 10.30         | 12.50    | 11.60 | 10.01      | 10.50       | 14.20       | 12.60      | 12.60        | 12.00    | 10.40      | 12.00 | 200       | 10.20 | 10.60 | 12.00 | 12.60   | 12.00    | 10.30     | 10.40    | 13.10      | 13.50    | 11.30    | 3.5        | 12.90              | 20.41            |
| H                              | 6.07  | 4.5   | 6.82    | 8.9   | 4.77  | 19.7          | - <del>-</del> |        | 40.0      | 10.4           |          | 5.67     | 6.43  | 4.43       | 4.75       | 7.03 | 4.96  | 4.61     | 4.63      | 4.38  | 6.03         | 8°.9  | 1.10      | 2.0       |               | 6.12     | 5.98  | 4.91       | 4.98        | 6.24        | 4.64       | 4 . 64       | 4.86     | 4.98       | 20.4  |           | 9     | 4.40  | 4.41  | 4.73    | 4.84     | 4.30      | 4.28     | 4.69       | 4.60     | 4.61     | 97.4       | 4 .<br>00          | 00. <del>4</del> |
| Total<br>Inflection<br>Point   | 2.79  | 18.48 | 0.43    | 0.44  |       | 18.90         | 17.76          | 9.0    |           | -2 30<br>-2 30 |          | 0.12     | 3.37  | -2.00      | -0.93      | 6.26 | -0.47 | -1.29    | -1.27     | -2.01 | -0.32        | 0.99  | 8.23      | 0.81      | 4.83<br>0 64  | 0.28     | 00.1  | 9.48       | -0.41       | 0.73        | -1.61      | -1.49        | -0.62    | -0.43      | -2.13 |           | -2.00 | -2.14 | -2.04 | -0.93   | -0.71    | -2.74     | -2.84    | -1.30      | -1.26    | -1.54    | 00.E-      | -1.15              | 07.1-            |
| Total<br>Alkalinity<br>mg/l    | 4.65  | 20.26 | 2.20    | 2.22  | 0.87  | 20.83         | 19.64          | 22.20  | 10.17     |                | 1.13     | 1.97     | 6.18  | 0.0        | 0.84       | 7.09 | 1.38  | 0.44     | 0.66      | 0.0   | 06.666       | 2.78  | 98.8<br>9 | 2.4.2     | 0.00<br>9 2 8 | 1.49     | 2,80  | 1.27       | 1.29        | 2.46        | 0.17       | 0.22         | 8.1      | 1.28       | 38    | 32        | 00.0  | 0.0   | 0.0   | 0.81    | 999.90   | 0.0       | 0.0<br>0 | 0.42       | 0.41     | 0.09     | 8.0<br>0   | 0.61               | <b>b</b> 0.0     |
| I/Bn                           | 140   | 30    | 62      | 21    | 210   |               | <b>‡</b>       |        |           | 100            |          | 18       | 88    | 190        | <b>3</b> 8 | 6    | 200   | 260      | 260       | 260   | 130          | 110   | 2:        | 7         | • •           | 170      | 001   | 190        | 180         | 11          | 410        | 430          | 180      |            |       |           | 340   | 440   | 760   | 240     | 140      | 620       | 470      | 60         | 260      | 320      | 470        |                    | 30               |
| Min<br>Min                     | 19    | 36    | 24      | 27    | 89    | ן <b>ני</b> ז | 91             | 0 i    |           | 200            | 2011     | ).<br>16 | 13    | ę          | 180        | 1    | 79    | 220      | 220       | 60    | 89           | 88    | 23        | 12        | 0 0<br>%      | 97       | 38    | 8          | 160         | 29          | 160        | 8            | 160      |            |       | 39        | 110   | 130   | 160   | 150     | 160      | 220       | 73       | 140        | 130      | 130      | 201        | 1/0                |                  |
| Suspended<br>Solids<br>mg/l    | 4     | 61    | -       |       | -     |               | -1 ç           | 2,-    | - 6       |                | 1        | • =•     | 2     | m          | -          | -1   | ••    | 1        | <b>-1</b> | -     | <b>e-1</b> ( | 0     | - •       | -1,       |               | 4        |       | . 4        | 1           | 1           | <b>, 1</b> | <b>e-1</b> ( | -1 ,     | -1,        |       | • -       | • •   | -     | 7     | l       | 7        | 7         | -        | <b>r</b> ( |          | -1 1     | -1 .       |                    | 4                |
| Iron<br>mg/l                   | 340   | 160   | 30      | 11    | 20    | EL            | 160            |        | 3         | 420            |          | 3 61     | 170   | 260        | 24         | 9    | 140   | 89       | 4         | 4     | 69           | 90    | 8:        | <b>7</b>  |               | 57       | 76    | 200        | 67          | 1           | 61         | 4            | 96       | 23         |       | 5         | 38    | 34    | 73    | 33      | 31       | 63        | 220      | 4          | 32       | 80       | 130        | 4 C                | ?<br>r           |
| NAME                           | LIMIT | HAZEL | DNIDONN | 66X   | 66X   | 86X           | STURGEON       |        | STI DOFUN | 2 ON ULCON     | STOUFFER | X99      | 66X   | 86X        | FREDERIC   | 66X  | 66X   | DOUGHERT | DOUGHERT  | 66X   | 66X          | 66X   | ADELAIDE  |           | BOX           | CHINICUC | 66X.  | 66X        | 66X         | LAURA       | CHINIGUC   | CHINIGUC     | CHINIGUC | 66X        | RRY   | CHINICALC | 66X   | 66X   | 66X   | DEWDNEY | CHINIGUC | 68X       | 66X      | FRANKS     | CHINIGUC | LAWLOR   | BBX        | WULF<br>5 TI VESTE | 011110           |
| LAKE_ID                        | 268   | 28C   | 260     | 28E   | 28F   | 27.           | 278            | 270    | 100       | 282<br>880     | 280      | 280      | 294   | 298        | 29C        | 290  | 304   | 308      | 300       | 300   | BOE          | 314   | 316       |           | 016<br>926    | 328      | 320   | <b>32D</b> | <b>3</b> 2E | <b>3</b> 3A | 338        | 33C          | OPE      | 33E<br>011 |       |           | 340   | 34E   | 36A   | 368     | 36C      | 36D       | 364      | 368        | 360      | 36D      | 4/M        | 12/10<br>1.10      | ノンワ              |

Table D.1 (Cont.) AUGUST 1980 WATER CHEMISTRY

< Total Chlorophyll / ug/l 22.45 0000000000 Conductivity Dissolved Organic Carbon  $\begin{smallmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r}$ Sulfate mg/l 83 စ် ပို Ŧ 6.170 6.170 6.170 6.170 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6.164 6. Total Inflection Point -0.25 -1.39 -1.22 -1.22 -1.22 -1.23 -1.23 -1.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 Total Aikalinity mg/i 41 1/97  $\begin{array}{c} 1150.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11300.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.0\\ 11000.$ , ∎a∕i Suspended Solids mg/l Iron mg/l NAME LAKE ID 

Table D.2 Spring 1987 water chemistry

|              | <                   |          |        |               |          |          |            |         |         |         |         |         |           |         |         |         |            |           |           |           |          |          |         |          |          |           |           |          |         |           |           |            |           |      |
|--------------|---------------------|----------|--------|---------------|----------|----------|------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|------------|-----------|-----------|-----------|----------|----------|---------|----------|----------|-----------|-----------|----------|---------|-----------|-----------|------------|-----------|------|
| Tatal        | Chlorophy11<br>ug/1 |          | 0.14   | 0.18          | 0.65     | 1.24     | 1.60       | 0.00    | 0000    |         |         |         | 01.0      |         |         |         |            | 0.30      | 00        | 0.70      | 0.60     | 0.60     | 0.10    | 0.82     | 0.95     | 0.33      | 0.20      | 11.0     |         |           | 0.00      | 0.10       | 0.61      | 0.37 |
| Conductivity |                     |          | •      | •             | •        | •        | 29.0       | 34.0    | 43.0    | 0.04    | 30.0    | 37.0    | 33.0      | 35.0    | 43.0    | 33.0    |            | 0.26      |           | 2 0 0 0   | 30.0     | 33.0     | 37.0    | •        | •        | •         |           | •        |         | •         | •         | •          | •         |      |
| Dissolved    | Organic<br>Carbon   |          |        | - •           | C        | 2.2      | 2.4        | 2.0     | 0.7     | 0.7     | 2.0     | 0.2     | 1.5       | 2.2     | 0.6     | 1.0     |            |           |           | •••       |          | n (      | 0.2     | 2.0      | 2.1      | 0.6       | 0.0       | ••       | 2.2     |           |           | <u>,</u> , | · · •     | 1.2  |
| Turbidity    | Formazin<br>Unite   | 1 21     | 980    |               |          | 20.0     | 1.15       | 0.89    | 0.64    | 0.33    | 0.66    | 0.24    | 0.93      | 0.72    | 0.37    | 0.45    | 0.72       | 0.38      | 0.65      |           |          | 5.00     |         | 1.0G     |          | 0.19      | 0.18      | 0.31     | 0.59    | 0.28      | 0.00      |            |           | 0.32 |
| Sulfate      | / <b>G</b> w        | 12.8     | 12.1   | 101           |          |          |            | 9.7     | 11.6    | 11.3    | 9.1     | 10.0    | 8.8<br>8  | 9.2     | 13.6    | 10.3    | 10.7       | 13.0      | 1.6       | . a       | 3 01     | 11.1     |         |          |          |           | 16.0      | 16.1     | 16.6    | 8.8       | 4.0       |            |           | 0.0  |
| Hq           |                     | 4.890    | 4.810  | <b>6.4</b> 30 | 8 320    |          | FTT-0      | 6.301   | 4.665   | 4.760   | 6.100   | 4.734   | 6.036     | 6.601   | 4.627   | 6.350   | 6.298      | 4.738     | 0.144     | 5.060     | A 155    | 1 738    |         | •        | •        | •         | •         | •        | •       |           |           |            | •         | •    |
| Total        | Inflection<br>Point | 0.10     | 0.10   | 1.31          | 50       |          | 77.0       | 4D.1    | -1.10   | 0.73    | -0.18   | -0.88   | 0.78      | 2.96    | -1.10   | 1.40    | -0.02<br>- | -0.84     | 0.78      | -0.23     | La O     |          |         | •        | •        | •         | •         | •        | •       | •         | -         |            |           | •    |
| Total        | Alkalinity<br>mg/l  | 1.3      | 1.2    | 3.0           | 2.8      | •        | •          | •       | •       | •       |         | •       | •         |         | •       | •       | •          | •         | •         |           | •        |          | •       | •        | •        | •         | •         | •        | •       | •         | •         | •          |           | •    |
| ,<br>Al      | 1/61                | 220      | 280    | 610           | 46       | 000      |            |         |         | 280     | 120     | ŝ       | 4         | 8       | OF I    | 26      | ę          | 8         | 23        | 20        | 34       | 010      | 55      |          | 22       |           |           | 28       | 77      | 25        | 20        | ę          | 80        | ;    |
| E<br>R       | / Bu                | 0.250    | 0.180  | 0.046         | 0.022    |          |            | 10000   | 0.220   | 0.160   | 0.089   | 0.240   | 0.018     | 0.039   | 0.300   | 0.037   | 0.094      | 0.200     | 0.017     | 0.110     | 0.022    | 0.300    | 0.024   | 0.028    | 0.140    |           |           |          | +10.0   | 0.016     | 0.250 2   | 0.093 1    | 0.078 1   |      |
| Iron         | - / 8 m             | 0.033    | 0.056  | 0.062         | 0.036    | 0 097    |            |         |         | 0.043   | 0.089   | 0.032   | 600.0     | 0.110   | 0.100   | 0.029   | 0.100      | 0.043     | 0.014     | 0.069     | 0.013    | 0.073    | 0.008   | 0.029    | 0.018    |           |           |          | 20.0    | 200.0     | 0.024     | 0.047      | 080.0     |      |
| DATE         |                     | 5/5/87   | 6/5/87 | 5/6/87        | 5/5/87   | 6/12/87  | 5/10/01    | 10/77/0 | 10/71/0 | /R/21/9 | 18/21/9 | 10/21/0 | 6/12/87   | 18/21/9 | 0/10/8/ | 6/10/8/ | 6/10/87    | 6/10/87 ( | 6/10/87 ( | 6/10/87 ( | 6/10/87  | 6/10/87  | 6/30/87 | 6/30/87  | 6/30/87  | 6/30/87 ( | 6/30/67 / |          | 10/00/0 | 6/30/8/ C | 6/30/87 ( | 6/30/87 (  | 6/30/87 ( |      |
| NAME         |                     | DOUGHERT | WOLF   | CENTRE        | WHITEPIN | WHITEPIN | CENTDE     |         |         | WULT    |         |         | SMULLINAS |         |         |         | NUKTH YO   | WOLF      | WHITEPIN  | WHITEPIN  | SMOOTHWA | SUNNYWAT | CENTRE  | LAUNDRIE | CHINIGUC | DOUGHERT  |           | MUTTEDTN |         | VANIONS   | SUNNYWAT  | WHITEPIN   | NORTH YO  |      |
| LAKE_ID      |                     | 300      | 378    | X02           | EOX      | 130      | SCX<br>SCX |         | 200     |         | 202     |         | H41       | 200     |         |         | 186        | 378       | 130       | X03       | 14H      | 13A      | X02     | XOI      | 340      | 300       | 378       |          |         |           | VET       | X03        | 188       |      |

...... 



PROBAR Data Collection Station

MER Data Collection Station

FOLDOUT FRAME

ORIGINAL PAGE IS OF POOR QUALITY





Figure D.1. MER and PROBAR Sampling Stations for the Algoma Site

C FOLDOUT FRAME

Of the page is of the quality

D-11

-----

ì

----

\_\_\_\_\_





PROBAR Data Collection Station

MER Data Collection Station

EOLDOUT FRAME

.



Figure D.2. MER and PROBAR Sampling Stations for the Sudbury Site

Z FOLDOUT FRAME

.



-----

#### APPENDIX E

TRANSMISSOMETER DATA DERIVED TRANSMISSION AND ATTENUATION COEFFICIENTS

|               | SEA TECH TR<br>Summer and<br>Dept | ANSMISSOMETER<br>) SPRING DATA<br>14 = 2M |                            |
|---------------|-----------------------------------|-------------------------------------------|----------------------------|
| LAKE          | DATE                              | TRANSMITTED<br>LIGHT                      | ATTENUATION<br>COEFFICIENT |
| ASPREY        | 6/29/87                           | 0.761936                                  | 1.14042                    |
| BARBARA       | 8/13/86                           | 0.844196                                  | 0.67748                    |
| BLUE CHAULK   | 8/25/86                           | 0.818262                                  | 0.80234                    |
| CENTRE        | 8/22/86<br>5/5/95                 | 0.824069                                  | 0.77400                    |
| CENTRE        | 0/0/0/<br>5/10/07                 | 0.904135                                  | 0.87195                    |
| CENTRE        | 6/10/87                           | 0.866169                                  | U. 801/3<br>0 A7697        |
| CENTRE        | 6/30/87                           | 0.813888                                  | 0.82373                    |
| CLEAR         | 6/29/87                           | 0.813284                                  | 0.82670                    |
| CRAYFISH      | 8/20/86                           | 0.770734                                  | 1.04165                    |
| DOUGHERTY     | 8/16/86<br>5/5/04                 | 0.893302                                  | 0.46132                    |
| DOUGHERTY     | 5/12/87                           | 0.859706                                  | 0.40446                    |
| DOUGHERTY     | 6/10/87                           | 0.888233                                  | 0.47409                    |
| DOUGHERTY     | 6/30/87                           | 0.881084                                  | 0.60641                    |
| EAGLE         | 8/24/86                           | 0.776866                                  | 1.01000                    |
| FRU0D         | 6/29/87                           | 0.791837                                  | 0.93360                    |
| LANG          | 0/29/87<br>2/20/07                | 0.816148                                  | 0.81264                    |
|               | 0/30/0/                           | 0.00101                                   | 0.83376<br>0.01002         |
| MAGGIE        | 5/12/87                           | 0.808093                                  | 0.8466/<br>0.86931         |
| NORTH YORSTON | 6/10/87                           | 0.859293                                  | 0.60668                    |
| NORTH_YORSTON | 7/01/87                           | 0.852577                                  | 0.63797                    |
| RAMSEY        | 6/29/87                           | 0.801563                                  | 0.88477                    |
| KED CHAULK    | 8/25/86                           | 0.806377                                  | 0.86082                    |
| SMOOTHWATER   | 8/17/8/<br>8/10/87                | 0.925/34                                  | 0.30867                    |
| SMOOTHWATER   | 7/01/87                           | 0.878723                                  | 0.61714                    |
| SPANISH R     | 6/29/87                           | 0.663725                                  | 1.63965                    |
| SUNNYWATER    | 8/13/86                           | 0.896210                                  | 0.44279                    |
| SUNNYWATER    | 5/12/87<br>5/12/87                | 0.905094                                  | 0.39887                    |
| SUMAYWATER    | 0/ 10/ 8/                         | 0.91/1/2                                  | 0.34684                    |
| WABAGISHIK    | 6/29/87                           | 0.621323                                  | 0.30166<br>9 5961          |
| WHITEPINE 1   | 5/12/87                           | 0.919011                                  | 6.33783<br>0.33783         |
| WHITEPINE 1   | 6/10/87                           | 0.836048                                  | 0.71628                    |
|               | 1/01/87                           | 0.825830                                  | 0.76546                    |
| WHITEPINE 2   | 8/14/86                           | 0.830178                                  | 0.74446                    |
| WILTERINE 2   | 18/9/9                            | 0.775000                                  | 1.01692                    |
| WHITEPINE 2   | 18/21/9                           | 0. / babb6                                | 1.10378                    |
| WHITEPINE 2   | 7 /01 /87                         | 0.997993                                  | 0.63622                    |
| WISHART       | 8/18/86                           | 0.689901                                  | 2.11120                    |
| WOLF          | 8/11/86                           | 0.883426                                  | 0.49679                    |
| WOLF          | 5/5/87                            | 0.911533                                  | 0.37061                    |
| WOLF<br>WOLF  | 5/12/87<br>A/10/97                | 0.863822                                  | 0.68666                    |
| WOLF          | 8/30/87                           | 0.000000                                  | U. 55875<br>0 30307        |
|               |                                   |                                           | 「同時間町、2                    |



#### APPENDIX F

-

MER-SUBSURFACE SPECTRAL RADIOMETER MULTITEMPORAL LAKE REFLECTANCES

| Figure | F.1 | Smoothwater    | Lake |
|--------|-----|----------------|------|
| Figure | F.2 | Whitepine #1   | Lake |
| Figure | F.3 | Sunnywater     | Lake |
| Figure | F.4 | Wolf           | Lake |
| Figure | F.5 | North Yorkston | Lake |
| Figure | F.6 | Whitepine #2   | Lake |
| Figure | F.7 | Dougherty      | Lake |
| Figure | F.8 | Centre         | Lake |



## Smoothwater Lake Mer Data at 2 Meters Multitemporal Mer Reflactance

| _ | Reflectance<br>7/01/87 | 0.0142 | 0.0210 | 0.0303 | 0.0277 | 0.0269 | 0.0233 | 0.0163 | 0.0050 | 0.0041 | 0.0029 | 0.0022 |
|---|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|   | Reflectance<br>8/10/87 | 0.0084 | 0.0116 | 0.0172 | 0.0173 | 0.0173 | 0.0151 | 0.0104 | 0.0030 | 0.0021 | 0.0017 | 0.0015 |
|   | Center<br>Wavelength   | 410    | 441    | 488    | 620    | 540    | 680    | 589    | 625    | 658    | 671    | 694    |

-

.









Mer Reflectance

# Whitepine\_#1 Lake Mer Data at 2 Metara Multitemporal Data Mer Reflectance

|                      | Ner Ref                | lectance               |                        |
|----------------------|------------------------|------------------------|------------------------|
| Center<br>Wavelength | Reflectance<br>5/12/87 | Reflectance<br>6/10/87 | Reflectance<br>7/01/87 |
| 410                  |                        | 0.0086                 | 0.0396                 |
| 441                  | 0.0050                 | 0.0166                 | 0.0642                 |
| 488                  | 0.0070                 | 0.0314                 | 0.1132                 |
| <b>5</b> 20          | 0.0097                 | 0.0394                 | 0.1307                 |
| 640                  | 0.0114                 | 0.0440                 | 0.1366                 |
| <b>5</b> 60          | 0.0135                 | 0.0460                 | 0.1387                 |
| 683                  | 0.0133                 | 0.0410                 | 0.1143                 |
| 625                  | 0.0084                 | 0.0170                 | 0.0513                 |
| 658                  | 0.0072                 | 0.0132                 | 0.0426                 |
| 671                  | 0.0057                 | 0.0115                 | 0.0382                 |
| 694                  | 0.0056                 | 0.0097                 | 0.0316                 |
|                      |                        |                        |                        |

,

,

-

Figure F.3 Sunnywater Lake

- \$ 5/12/87
  \$ 6/10/87
  \$ 7/01/87
  \$ 8/13/86



### Sunnywater Lake Mer Data at 2 Metera Multitemporal Mer Reflectance

| Center<br>avelength | Reflectance<br>5/12/87 | Reflectance<br>6/10/87 | Reflectance<br>7/01/87 | Reflectance<br>8/13/88 |
|---------------------|------------------------|------------------------|------------------------|------------------------|
| 410                 | 0.0840                 | 0.1192                 | 0.1033                 | 0.067                  |
| 441                 | 0.0740                 | 0.0995                 | 0.0917                 | 0.065                  |
| 488                 | 0.0587                 | 0.0610                 | 0.0637                 | 0.049                  |
| <b>5</b> 20         | 0.0312                 | 0.0287                 | 0.0346                 | 0.027                  |
| 540                 | 0.0222                 | 0.0174                 | 0.0279                 | 0.021                  |
| 560                 | 0.0153                 | 0.0111                 | 0.0196                 | 0.014                  |
| 683                 | 1600.0                 | 0.0066                 | 0.0120                 | 0.008                  |
| 625                 | 0.0013                 | 0.0008                 | 0.0040                 | 0.002                  |
| 656                 | 0.0018                 | 0.0008                 | 0.0030                 | 0.001                  |
| 671                 | 0.0019                 | 0.0008                 | 0.0026                 | 0.001                  |
| 694                 | 0.0233                 | 6000.0                 | 0.0021                 | 0.001                  |
|                     |                        |                        |                        |                        |

-



Figure F.4 Wolf Lake

F-8

### Wolf Lake Mer Data at 2 Meters Multitemporal Mer Reflectance

| Center<br>Wavelength | Reflectance<br>5/05/87 | Reflectance<br>5/12/87 | Reflectance<br>6/10/87 | Reflectance<br>7/01/87 | Reflectance<br>8/11/88 |
|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 410                  | 0.0144                 | 0.0242                 | 0.0275                 | 0.0463                 | 0 02780                |
| 441                  | 0.0206                 | 0.0318                 | 0.0309                 | 0.0547                 | 0.03210                |
| 488                  | 0.0291                 | 0.0427                 | 0.0361                 | 0.0546                 | 0.03355                |
| 620                  | 0.0283                 | 0.0357                 | 0.0236                 | 0.0320                 | 0.02550                |
| 640                  | 0.0240                 | 0.0332                 | 0.0207                 | 0.0266                 | 0.02200                |
| 560                  | 0.0196                 | 0.0267                 | 0.0169                 | 0 0194                 |                        |
| 583                  | 0.0122                 | 0.0180                 | 0.0102                 | 0.0117                 | 0 01060                |
| 625                  | 0.0040                 | 0.0055                 | 0.0030                 | 0.0030                 |                        |
| 658                  | 0.0023                 | 0.0039                 | 0.0020                 | 0.0023                 | 0.00200                |
| 671                  | 0.0023                 | 0.0033                 | 0.0016                 | 0.0021                 |                        |
| 694                  | 0.0019                 | 0.0032                 | 0.0017                 | 0.0019                 | 0.00170                |
|                      |                        |                        |                        |                        |                        |

·

-





F-10

Figure F.5 North Yorkston Lake

**a =** 6/10/87 **4 =** 7/01/87
## North\_Yorston Lake Mer Data at 2 Meters Multitemporal Mer Reflectance

÷

•

|                      | Wer Reflectance        |                       |
|----------------------|------------------------|-----------------------|
| Center<br>Wavelength | Reflectance<br>6/10/87 | Reflectanc<br>7/01/87 |
| 410                  | 0.0293                 | 0.0992                |
| 441                  | 0.0467                 | 0.1104                |
| 488                  | 0.0708                 | 0.1144                |
| 620                  | 0.0792                 | 0.1039                |
| 640                  | 0.0836                 | 0.1016                |
| 560                  | 0.0834                 | 0.0918                |
| 683                  | 0.0726                 | 0.0662                |
| 625                  | 0.0354                 | 0.0221                |
| 656                  | 0.0278                 | 0.0161                |
| 671                  | 0.0254                 | 0.0129                |
| 694                  | 0.0214                 | 0.0077                |



F-12

## Whitepine\_#2 Lake Mer Data at 2 Meters Multitemporal Mer Reflectance

v

| Center<br>Navelength | Reflectance<br>6/05/87 | Reflectance<br>5/12/87 | Reflectance<br>6/10/87 | Reflectance<br>6/30/87 | Reflectance<br>8/14/86 |
|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 410                  | •                      | 0.0021                 | 0.0043                 | 0.0057                 | 0.0032                 |
| 441                  | 0.0040                 | 0.0070                 | 0.0087                 | 1600.0                 | 0.0053                 |
| 488                  | 0.0080                 | - 0.0109               | 0.0118                 | 0.0160                 | 0.0088                 |
| 620                  | 0.0123                 | 0.0151                 | 0.0144                 | <b>B</b> 610.0         | 0.0103                 |
| 540                  | 0.0154                 | 0.0182                 | 0.0169                 | 0.0226                 | 0.0111                 |
| 560                  | 0.0165                 | . 0.0203               | . 0.0169               | 0.0239                 | -0.0118                |
| <b>583</b>           | 0.0132                 | 0.0175                 | 0.0123                 | 0.0196                 | 9600.0                 |
| 625                  | 0.0039                 | 0.0079                 | 0.0044                 | 0.0057                 | 0.0035                 |
| 658                  | 0.0036                 | 0.0059                 | 0.0033                 | 0.0040                 | 0.0025                 |
| 671                  | 0.0028                 | 0.0049                 | 0.0029                 | 0.0033                 | 0.0024                 |
| 694                  | 0.0044                 | 0.0046                 | 0.0024                 | 0.0028                 | 0.0024                 |





Figure F.7 Dougherty Lake

## Dougharty Lake War Data at 2 Meters Multitemporal Mar Reflectance

|                      |                        | Tex rem                | ectance.               |                        |                        |
|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Center<br>Wavelength | Reflectance<br>5/05/87 | Reflectance<br>5/12/87 | Reflectance<br>6/10/87 | Reflectance<br>6/30/87 | Reflectance<br>8/17/86 |
| 410                  | 0.0166                 | 0.0217                 | 0.0529                 | 0.0443                 | 0.0350                 |
| 141                  | 0.0229                 | 0.0261                 | 0.0793                 | 0.0512                 | 0.0385                 |
| 488                  | 0.0299                 | . 0.0340               | -0.1052                | 0.0611                 | · 0 - 0381             |
| 620                  | 0.0249                 | 0.0262                 | 0.0800                 | 0.0483                 | 0.0254                 |
| 640                  | 0.0230                 | 0.0249                 | 0.0714                 | 0.0520                 | 0.0215                 |
| 580                  | 0.0180                 | 0.0185                 | 0.0540                 | 0.0395                 | 0 0181                 |
| 683                  | 0.0110                 | 0.0123                 | 0.0316                 | 0.0258                 | 10000                  |
| 625                  | 0.0032                 | 0.0030                 | 0.0085                 | 0.0049                 | 0 003                  |
| 658                  | 0.0025                 | 0.0017                 | 0.0055                 | 0.0037                 | 0 0014                 |
| 671                  | 0.0020                 | 0.0012                 | 0.0049                 | 0.0032                 |                        |
| <b>8</b> 94          | 0.0018                 | 0.0012                 | 0.0040                 | 0.0026                 | 0.0012                 |
|                      |                        |                        |                        |                        |                        |

.

700 650 600 Wavelength (nm) 5/05/87
5/12/87
6/10/87
6/30/87
8/22/86 550 500 450 Mer Reflectance 400 0.00 0.16 0.02 -0.08 -0.06 0.14 0.04 0.12 0.0

Figure F.8 Centre Lake

•

## Centre Lake Mer Data at 2 Meters Multitemporal Mer Reflectance

| Center<br>Wavelength | Reflectance<br>5/05/87 | Rof lectance<br>6/12/87 | Reflectance<br>6/10/87 | Reflectance<br>6/30/87 | Ref lectance<br>8/22/88 |
|----------------------|------------------------|-------------------------|------------------------|------------------------|-------------------------|
| 410                  | •                      |                         | 0.0038                 | 0.0052                 | 0.00680                 |
| 441                  | 0.0084                 | 0.0060                  | 0.0058                 | 0.0084                 | 0.00970                 |
| 488                  | 0.0164                 | 0.0116                  | 0.0086                 | 0.0142                 | 0.01498                 |
| 520                  | 0.0211                 | 0.0143                  | 0.0097                 | 0.0184                 | 0.01800                 |
| 540                  | 0.0236                 | 0.0162                  | 0.0102                 | 0.0175                 | 0.01850                 |
| 560                  | 0.0283                 | 0.0166                  | 0.0097                 | 0.0185                 | 0.01850                 |
| 589                  | 0.0225                 | 0.0135                  | 0.0073                 | 0.0125                 | 0.01440                 |
| 625                  | 0.0086                 | 0.0051                  | 0.0024                 | 0.0040                 | 0.00500                 |
| 658                  | 0.0081                 | 0.0036                  | 0.0017                 | 0.0028                 | 0.00400                 |
| 671                  | 0.0056                 | 0.0032                  | 0.0015                 | 0.0028                 | 0.00380                 |
| 694                  | 0.0084                 | 0.0010                  | 0.0011                 | 0.0024                 | 0.00360                 |
| -                    |                        |                         |                        |                        |                         |
|                      |                        |                         |                        |                        |                         |

•



### APPENDIX G

LAKE EXTRACTED TM SIGNAL VALUES AND ATMOSPHERIC CORRECTED VALUES

Thematic mapper (TM) signal digital count value for lake extracted samples are listed in the following tables. Also listed are the standard deviation estimates for each sample.

Table G.1. August 13, 1986 (P19,R27) Table G.2. August 18, 1986 (P22,R27) Table G.3. May 12, 1987 (P19,R22) Table G.4. June 13, 1987 (P19,R27)

Atmospherically normalized value are listed in the following tables.

| Table G.5 | . August | 13, 1986 | (P19,R27) |
|-----------|----------|----------|-----------|
| Table G.6 | . August | 18, 1986 | (P22,R27) |
| Table G.7 | . May 12 | , 1987   | (P19,R27) |
| Table G.8 | June 1   | 3, 1987  | (P19,R27) |

-

\_\_\_\_

Table G.1 sudbury quad 3 august 13, 1986 RAW TM SIGNALS AND STANDARD DEVIATIONS

|     |           |        |       |       | Rand A | Band 1 S.D. | Band 2 S.D. | Band 3 S.D. | Band 4 S.D. |
|-----|-----------|--------|-------|-------|--------|-------------|-------------|-------------|-------------|
|     | NAME      | T DUCA |       |       |        |             |             |             |             |
| 114 | 700       | 70.44  | 21.56 | 17.22 | 13.11  | 0.73        | 0.63        | 0.44        | 0.33        |
|     |           | 70.67  | 22.33 | 17.44 | 13.00  | 0.87        | 0.60        | 0.73        | 0.0         |
| 101 | WARIN'    | 72.78  | 21.56 | 15.78 | 12.00  | 1.30        | 0.63        | 0.97        | 0.0         |
| 128 | 200       | 72.68  | 21.22 | 17.00 | 12.22  | 1.69        | 0.44        | 0.0         | 0.44        |
| 124 | SUNNWAT   | 78.00  | 21.78 | 16.89 | 13.00  | 1.68        | 0.67        | 0.78        | 0.00        |
| 120 | WHITEPIN  | 73.00  | 21.22 | 17.00 | 12.67  | 1.22        | 0.44        | 0.0         | 0.60        |
| 121 | MAPTNA    | 72.44  | 22.00 | 17.33 | 12.58  | 1.61        | 0.87        | 0.71        | 0.63        |
| 145 | I TTTE W  | 72.67  | 21.66 | 17.33 | 12.78  | 1.41        | 0.73        | 0.71        | 0.44        |
|     | IFRRY     | 76.89  | 21.56 | 16.33 | 12.00  | 1.62        | 0.63        | 0.87        | 0.0         |
| 14H | SMODTHWA  | 73.44  | 21.11 | 16.78 | 11.00  | 1.88        | 0.33        | 0.44        | 0.0         |
|     | NTHE! !   | 73 33  | 22.44 | 18.89 | 13.89  | 1.22        | 0.88        | 1.62        | 0.33        |
|     | NOPTH YO  | 10.22  | 20.89 | 16.89 | 11.22  | 2.17        | 0.33        | 0.33        | 0.44        |
| 104 | Xoo       | 11.44  | 22.00 | 17.11 | 12.89  | 2.92        | 0.87        | 0.33        | 0.33        |
| 101 | 20X       | 71.22  | 21.11 | 16.89 | 12.00  | 1.72        | 0.33        | 0.33        | 0.0<br>0    |
| 200 | PTI CRTM  | 14.00  | 21.89 | 17.11 | 12.11  | 1.22        | 0.33        | 0.33        | 0.33        |
| 220 | NAGGTE    | 73.66  | 21.67 | 18.22 | 13.00  | 1.81        | 0.60        | 0.83        | 0.00        |
| 122 | BLIESLICK | 70.56  | 21.11 | 17.00 | 11.22  | 1.74        | 0.33        | 0.0         | 0.44        |
|     | STOLEEFR  | 72.33  | 21.33 | 16.66 | 12.00  | 1.00        | 0.60        | 0.88        | 0.00        |
|     | FREDERIC  | 72.78  | 20.89 | 16.67 | 11.00  | 1.39        | 0.33        | 0.71        | 0.00        |
|     | DOUGHERT  | 73.67  | 20.66 | 16.22 | 11.00  | 1.12        | 0.63        | 0.83        | 8.0<br>0    |
| 334 | I AURA    | 67.89  | 20.67 | 16.78 | 11.00  | 0.60        | 0.60        | 0.44        | 0.0<br>0    |
| 330 | CHINIGUC  | 72.44  | 21.00 | 16.00 | 11.00  | 0.88        | 0.0<br>0    | 1.22        | 0.0         |
| 335 | 66X       | 70.22  | 21.33 | 16.55 | 11.11  | 1.09        | 0.71        | 0.73        | 0.33        |
| 348 | 68X       | 75.78  | 22.44 | 17.33 | 13.89  | 1.39        | 0.53        | 0.60        | 0.33        |
| 340 | 88X       | 00.17  | 21.33 | 16.67 | 12.00  | 2.34        | 0.60        | 0.60        | 0.0         |
| 346 | 66X       | 71.89  | 20.89 | 14.89 | 11.11  | 0.33        | 0.33        | 1.36        | 0.33        |
| 364 | 66X       | 73.33  | 20.89 | 16.44 | 00.11  | 1.73        | 0.33        | 0.73        | 0.0<br>0    |
| 358 | DEWDNEY   | 70.67  | 20.89 | 16.78 | 10.89  | 1.60        | 0.93        | 0.97        | 0.33        |
| 360 | 66X       | 73.67  | 21.00 | 16.67 | 11.11  | 1.73        | <b>0</b> .0 | 0.60        | 0.33        |
| 368 | FRANKS    | 70.78  | 20.87 | 16.00 | 11.22  | 1.68        | 0.60        | 1.00        | 0.44        |
| 360 | I AW OR   | 71.00  | 21.33 | 15.58 | 11.11  | 1.66        | 0.60        | 1.01        | 0.33        |
| 37R | WULF      | 72.87  | 20.33 | 15.66 | 11.00  | 0.71        | 0.60        | 1.24        | 0.0         |
| 370 | X99       | 70.25  | 21.00 | 14.44 | 11.44  | 1.49        | 0.0         | 0.88        | 0.63        |
|     | NATAGAMA  | 68.33  | 20.78 | 16.78 | 10.67  | 1.87        | 0.44        | 0.44        | 0.87        |
|     | STI VESTE | 73.11  | 19.89 | 14.67 | 11.00  | 1.90        | 0.78        | 1.22        | 0.0         |
| 380 | OTTER     | 73.11  | 19.89 | 14.67 | 11.00  | 1.90        | 0.78        | 1.22        | 0.0<br>0    |
|     | MATAGAMA  | 70.65  | 21.11 | 16.78 | 10.89  | 1.69        | 0.60        | 0.67        | 0.33        |
|     | CENTRE    | 70.44  | 21.11 | 16.67 | 11.22  | 1.01        | 0.33        | 0.71        | 0.44        |
|     | WHITEPIN  |        | 21.44 | 11.71 | 12.22  | 1.13        | 0.88        | 0.33        | 0.44        |
|     |           |        |       |       |        |             |             |             |             |

| Band 4 S.D. |         | 0.314  | 0.685    | 0.629  | 0.416  | 8.355    | 0.314  | 0.410          | 252.5          | 0.667   | 0.086  | 0.000  |        | 0.314  |        |          | 0.4/1  | 0.00   |          |            | 0 471    | 0.416            | 414 0    | 0.587            | 0.418   | 0.497  | 0.497    | 000.0    | 0.471   | 0.685  | 0.471  | 0.314  | 0.416    | 0.737      | 0.471  | 0.000            | 0.00   | 0.497   | 0.737  | 0.667    | 0.471  | 0.416  | 0.667  | 0./3/  | 0.667    | 01.1    | 1000.1   | 1.165  | 1/4.0  | 0.137  | 0.831    | 10.02F   |
|-------------|---------|--------|----------|--------|--------|----------|--------|----------------|----------------|---------|--------|--------|--------|--------|--------|----------|--------|--------|----------|------------|----------|------------------|----------|------------------|---------|--------|----------|----------|---------|--------|--------|--------|----------|------------|--------|------------------|--------|---------|--------|----------|--------|--------|--------|--------|----------|---------|----------|--------|--------|--------|----------|----------|
| Band 3 S.D. |         | 0.314  | 0.471    | 1.221  | 0.497  |          | 1.120  | 551.1<br>551 1 | 401.1<br>402 C | 00/00   | 1000 T |        | 0.010  | 0.000  |        | 0.800    |        | 1.50   | 1 030    | 1.286      | 0.687    | 0.816            | 0.816    | 1.030            | 0.876   | 0.943  | 1.286    | 1.030    | 0.943   | 0.685  | 0.943  | 1.066  | 1.064    | 0.816      | 0.416  | 0.737            | 1.064  | 0.471   | 0.831  | 1.39/    | 199.0  | 1.100  | 158.0  | 1.241  | 1.051    |         | 0.010    | 0.137  | 0.629  | 1 030  | 1 166    | 1.826    |
| Band 2 S.D. | T. 57 0 | 0.131  |          |        | 470.0  |          | 707.0  | 1.166          | 1.100          | 174 0   |        | 0.817  | 0.447  | 0.407  | 0.440  | 0.471    | 0.440  | 0.620  | 0.471    | 0.876      | 1.030    | 0.629            | 0.497    | 1.166            | 0.471   | 0.629  | 0.831    | 1.133    | 0.416   | 0.817  | 0.497  | 0.667  | 0.416    | 0.629      | 0.416  | 0.685            | 0.786  | 0.667   | 018.0  | 0.001    |        | 1 054  | 1.001  | 100.0  | 10.0     |         | 1 064    |        | 0 727  | 0.587  | 0.685    | 1.414    |
| Band 1 S.D. | 1 166   |        | 400 C    | 1 222  | 0.130  | 1 423    | 1.054  | 1.423          | 1.491          | 0.994   | 2.687  | 0.916  | 1.663  | 2.061  | 1.000  | 1.066    | 0.970  | 0.994  | 1.491    | 1.267      | 2.096    | 0.956            | 1.563    | 1.030            | 0.471   | 0.994  | 0.875    | 0.416    | 1.499   | 1.066  | 0.667  | 0.875  | 1.247    | 1.414      | 0.667  | 11/11            | 1.3/0  |         | 4.063  |          | 1 643  | 1.397  | 1.499  | 1.267  | 1.812    | 1.764   | 0.876    | 1 100  | 1. 707 | 1.764  | 1.700    | 0.994    |
| Band 4      | 11.11   | 10 FER | 10.999   | 11.222 | 14.556 | 10.889   | 10.778 | 12.333         | 10.889         | 10.444  | 11.000 | 10.667 | 10.889 | 11.556 | 11.200 | 11.000   | 11.400 | 11.222 | 11.000   | 12.556     | 11.667   | 11.222           | 11.222   | 11.111           | 10.778  | 10.666 | 11.556   | 11.000   | 11.667  | 11.444 | 11.667 | 11.889 | 11.778   | 688.0I     | 11 200 |                  |        |         | 10.467 | 10 333   | 10.778 | 10.000 | 10.111 | 000.6  | 8.899    | 9.556   | 9.656    | 9.647  | 10.889 | 10.444 | 10.889   | 17.558   |
| Band 3      | 13.889  | 14.667 | 14.222   | 16.444 | 15.444 | 15.889   | 14.778 | 14.778         | 14.778         | 14.222  | 13.556 | 14.000 | 14.444 | 14.667 | 14.000 | 16.556   | 15.700 | 14.556 | 14.778   | 14.889     | 14.667   | 13.667           | 15.333   | 14.222           | 13.889  | 13.667 | 14.889   | 14.222   | 16.333  | 14.558 | 14.333 | *** *1 | 15.333   |            | 13 880 | 200.01<br>222 11 | 13 667 | 14.444  | 14.778 | 13.667   | 14.000 | 14.444 | 15.000 | 14.444 | 14.667   | 14.667  | 13.889   | 14.222 | 16.889 | 14.222 | 15.000   | 17.667   |
| Band 2      | 18.889  | 18.000 | 17.444   | 111.01 | 18.556 | 19.000   | 19.444 | 18.000         | 17.889         | 18.333  | 19.111 | 17.667 | 19.000 | 18.556 | 19.800 | 19.333   | 19.200 | 19.222 | 19.333   | 19.111     | 17.778   | 17.778           | 19.556   | 18.333           | 18.333  | 18.222 | 18.556   | 11.222   | 19.778  | 18.667 | 19.556 | 111.01 | 10 770   | 18 222     | 18.444 | 18 222           | 18.889 | 17.778  | 17.889 | 17.556   | 17.556 | 18.000 | 19.444 | 18.889 | 17.333   | 18.222  | 17.000   | 18.111 | 18.889 | 16.889 | 18.656   | 20.667   |
| Band 1      | 62.333  | 60.778 | 62.222   | 63.000 | 61.778 | 64.444   | 62.333 | 61.444         | 61.000         | 63.111  | 62.668 | 62.222 | 62.667 | 62.558 | 64.100 | 62.444   | 63.200 | 61.889 | 62.667   | 444.68     | 62.222   | 62.556<br>60.000 | 63.000   | 62.778<br>50 207 | 02.00/  | 111.20 | 6887.70  | 01.//B   | 000.000 | 000.20 |        | 111.20 | 07.00/   | A1 333     | 63.444 | 62.889           | 62.222 | 60.111  | 60.222 | 61.222   | 61.000 | 60.778 | 64.444 | 61.556 | 60.222   | 60.333  | 60.889   | 60.889 | 62.444 | 61.333 | 62.333   | 63.111   |
| NAME        | ATOMIC  | EAST   | LITTLE A | MADER  | MALLOT | MONTREAL | 86X    | DYER           | 66X            | BARBARA | 66X    | ALVIN  | HAILEY | ROI    | 66X    | BIG PIKE | 66X    | RAND   | PATTERSO | BUTTER     | MCCOLLOU | ULCK             | MCGUVERN | AW<br>ADTECTU    | CCLTTLN |        | ADELAIDE | ADELAIVE | AVN     |        |        |        | SPECKIED | I TONEL    | HUBERT | CHARLIE          | WEST   | ROTUNDA | DOYLE  | REDCLIFF | UNION  | NOXIO  | SNYDER | VACHER | LITTLE Q | EMERSON | NORTH CH | QUINN  | WATSON | BROWNE | RED PINE | BUTTER T |
| LAKE_ID     | ¥       | ą      | ٩C       | HA     | BA     | BF       | HØ     | 5              | 2              | LO.     | DI     | 8      | EH     | Ŀ      | FA     |          | 3      | 19     | 13       | <b>3</b> ! | 53       | 9 U<br>4 -       | <u>-</u> | د د<br>- ا       | 59      |        | 2        |          |         | 23     | Ĕ      | 38     | 3,~      | ( <b>x</b> | :×     | ×                | ×      | ×       | ×      | ×        | ×      | ×      | ×      | ×      | ×        | ×       | ×        | ×      | ×      | ×      | ×        | ×        |

.

# Table G.2 (Cont.) Algoma quad 4 August 18, 1986 RAW TM SIGNALS AND STANDARD DEVIATIONS

| LAKE_ID | NAME           | Band 1 | Band 2 | Band 3      | Band 4 | Band 1 S.D. | Band 2 S.D. | Band 3 S.D. | Band 4 S.D. |
|---------|----------------|--------|--------|-------------|--------|-------------|-------------|-------------|-------------|
| ×       | HANES          | 61.667 | 17.444 | 13.667      | 10.222 | 1.491       | 1.066       | 0.667       | 0.416       |
| :×      | PRIVATE        | 61.444 | 18.333 | 16.889      | 11.000 | 0.685       | 0.667       | 1.100       | 0.00        |
| : ×     | COWIE          | 62.000 | 18.666 | 16.333      | 11.000 | 0.817       | 0.497       | 1.247       | 0.00        |
| : >     | MORRISON       | 61.778 | 111.91 | 15.556      | 11.000 | 0.786       | 0.737       | 0.956       | 0.667       |
| :>      | TEPEE          | 61.667 | 18.444 | 14.111      | 11.667 | 1.700       | 1.066       | 0.737       | 0.471       |
| . >     | CHUBB          | 62.000 | 19.444 | 16.111      | 19.222 | 1.247       | 2.061       | 3.348       | 17.106      |
| ~       | POINT          | 61.222 | 16.667 | 14.333      | 9.444  | 1.685       | 0.817       | 1.247       | 0.966       |
| .×      | GRAHAM         | 61.666 | 17.667 | 14.667      | 11.111 | 1.571       | 1.064       | 0.943       | 0.314       |
| ×       | LIMERICK       | 60.778 | 17.667 | 14.222      | 10.889 | 1.685       | 1.155       | 0.916       | 0.737       |
| ×       | PATTERSO       | 0.000  | 0.00   | 0.00        | 0.00   | 0.00        | 0.000       | 0.00        | 0.00        |
| ×       | GOULAIS        | 0.000  | 0.00   | 0.00        | 0.00   | 000.0       | 0.000       | 0.00        | 0.00        |
| × ×     | GULL           | 0.00   | 0.000  | 0.000       | 0.00   | 0.000       | 0.000       | 0.000       | 0.00        |
| . ×     | MIRROR         | 0.000  | 0.000  | 0.00        | 0.00   | 0.00        | 0.000       | 0.00        | 0.00        |
| : >     | SPOOK          | 0.00   | 0.00   | 0.00        | 0.00   | 0.00        | 0.000       | 0.000       | 0.000       |
| : ×     | WELCOME        | 0.00   | 0.00   | 0.00        | 00.00  | 0.00        | 0.00        | 0.00        | 0.00        |
| ×       | ARMOUR         | 0.00   | 0.00   | 0.00        | 0.00   | 0.00        | 0.000       | 0.00        | 0.00        |
| ×       | SOUTH BR       | 000.0  | 0.00   | 0.00        | 0.00   | 0.000       | 00000       | 0.000       | 0.00        |
| :×      | TUJAK          | 0.00   | 0.00   | 0.00        | 0.000  | 0.00        | 0.00        | 0.00        | 0.00        |
| ×       | LAC CHER       | 0.000  | 0.00   | 0.00        | 0.00   | 0.00        | 0.00        | 0.00        | 0.00        |
| ×       | ANNIBAL        | 61.558 | 18.000 | 14.778      | 10.667 | 0.966       | 0.943       | 1.227       | 0.471       |
| ×       | NEGICK         | 63.333 | 18.333 | 14.889      | 12.000 | 1.247       | 0.667       | 0.994       | 0.00        |
| ×       | TRIM           | 64.111 | 19.558 | 16.111      | 11.667 | 1.852       | 0.497       | 0.314       | 0.471       |
| ×       | S.TILLEY       | 63.778 | 20.556 | 16.222      | 11.222 | 1.315       | 0.956       | 0.629       | 0.416       |
| ×       | MEENACH        | 62.111 | 18.111 | 14.444      | 10.666 | 0.314       | 0.737       | 0.685       | 0.685       |
| ×       | EAST           | 61.778 | 18.656 | 14.556      | 11.778 | 1.133       | 0.956       | 0.966       | 0.629       |
| : ×     | DILL           | 62.556 | 18.111 | 13.668      | 11.444 | 1.165       | 0.567       | 0.685       | 0.497       |
| ×       | TURTLE         | 62.444 | 18.778 | 16.778      | 11.556 | 0.832       | 0.629       | 1.030       | 0.497       |
| ×       | TROUT          | 61.556 | 18.000 | 14.000      | 11.333 | 0.685       | 1.054       | 1.155       | 0.471       |
| ×       | LILY PAD       | 61.556 | 10.111 | 14.778      | 11.556 | 1.499       | 0.314       | 1.315       | 0.497       |
| ×       | ALVA           | 62.556 | 17.889 | 14.222      | 10.778 | 1.342       | 0.994       | 1.030       | 0.416       |
| ×       | ALGOCEN        | 61.778 | 18.444 | 14.222      | 11.333 | 1.685       | 0.631       | 0.786       | 0.816       |
| ×       | CURRY          | 62.667 | 19.000 | 14.889      | 13.000 | 1.054       | 0.667       | 1.285       | 2.261       |
| ×       | ELMER          | 61.889 | 17.889 | 14,000      | 11.444 | 1.663       | 0.737       | 0.816       | 0.497       |
| ×       | GAVOR          | 61.444 | 18.111 | 14.111      |        | 0.085       | 0.007       | 0.667       | 1.100       |
| ×       | NIHSVNM        | 61.667 | 18.778 | 16.667      | 13.666 | 1.033       | 1.421       | 1.054       |             |
| ×       | GUYATT         | 61.111 | 17.444 | +++ +  <br> |        | 781.1       | 0.000       | 107.1       |             |
| ×       | SPRUCE         | 61.655 | 17.222 |             |        |             | 177.7       | 100.0       | O. ABE      |
| ×       | MUNGUUSE       | 777.10 | 11.000 | 14. AAA     | 0 007  | 1.166       | 0.867       | 0.958       | 0.471       |
| ×3      | WAKI<br>MADITU | 100.10 |        | 14 222      | 11 222 | 1.197       | 0.667       | 0.629       | 0.416       |
| < >     | TOTODI C       | A7 778 | 10 778 | 16.558      | 10.444 | 0.628       | 0.916       | 0.831       | 0.685       |
| <>      | I TTTI F H     | A1.333 | 17.333 | 14.889      | 10.778 | 1.054       | 0.816       | 0.994       | 0.416       |
| < >     | UASTEN         | 61.889 | 16.333 | 14.111      | 10.222 | 1.623       | 0.667       | 0.737       | 0.916       |
| ~       | RAINE          | 60.666 | 18.333 | 13.889      | 10.222 | 1.771       | 0.943       | 0.314       | 0.416       |
| : >     | LOGAN          | 61.444 | 18.000 | 15.222      | 10.444 | 1.066       | 0.000       | 1.133       | 0.497       |
| : ×     | OLD WOMA       | 60.444 | 18.778 | 14.111      | 12.889 | 0.956       | 0.786       | 1.370       | 2.131       |
| ×       | LAKE SUP       | 0.00   | 0.00   | 0.00        | 0.00   | 0.000       | 0.00        | 0.000       | 0.00        |
| ×       | HARRYS         | 63.333 | 18.667 | 14.222      | 10.667 | 1.064       | 0.817       | 0.786       | 0.471       |
| ×       | FIRST          | 62.444 | 17.889 | 16.778      | 12.000 | 1.257       | 0.567       | 1.030       | 0.00        |
| ×       | WAGON WH       | 63.000 | 18.111 | 15.778      | 18.333 | 2.867       | 1.3/0       | 1.030       | 8./08       |
| ×       | BLACK BE       | 64.883 | 19.222 | 14.000      | 10.444 | 1.100       | 0.629       | 0.843       | 0.0880      |
| ×       | HOWLING        | 63.444 | 19.444 | 15.66/      | 10.888 | 0.800       | 184.0       | C. 445      | 0.131       |
| ×       | WELLS          | 62.111 | 19.000 | 14.444      | 11.333 | 1.023       | 0.001       | 1.631       | 114.0       |

Table G.2 (Cont.)

4

## ALGOMA QUAD 4 AUGUST 18, 1986 RAW TM SIGNALS AND STANDARD DEVIATIONS

| Band 4 S.D. | 0.314<br>0.816<br>0.667<br>0.667<br>0.667<br>0.416<br>0.416<br>0.786<br>0.786<br>0.314                                |
|-------------|-----------------------------------------------------------------------------------------------------------------------|
| Band 3 S.D. | 0.875<br>0.816<br>0.667<br>0.665<br>1.064<br>1.064<br>1.315<br>1.333<br>1.333                                         |
| Band 2 S.D. | 0.686<br>0.686<br>0.786<br>0.786<br>0.497<br>0.471<br>0.471<br>0.471<br>0.629<br>0.816                                |
| Band 1 S.D. | 1.633<br>1.064<br>1.064<br>1.267<br>1.267<br>1.267<br>1.064<br>1.865<br>1.316                                         |
| Band 4      | 11.111<br>11.333<br>11.668<br>11.668<br>11.000<br>12.000<br>11.222<br>11.222<br>11.333<br>9.889                       |
| Band 3      | 16.111<br>14.000<br>18.000<br>14.444<br>14.444<br>15.333<br>16.333<br>16.222<br>16.000<br>14.000                      |
| Band 2      | 19.444<br>18.666<br>19.222<br>18.778<br>18.333<br>19.667<br>19.222<br>18.222<br>18.333                                |
| Band 1      | 63.000<br>62.667<br>63.111<br>63.667<br>62.666<br>62.333<br>64.111<br>64.222<br>61.222<br>61.222<br>61.222            |
| NAME        | SPECKLED<br>STAN<br>FRATER<br>FRATER<br>DOTTIE<br>LOST<br>LOST<br>MACGREGO<br>KENNY<br>MUDHOLE<br>CRESCENT<br>GREYOML |
| LAKE_ID     | 。<br>*********                                                                                                        |

Table G.3 sudbury quad 3 way 12, 1987 RAW TH SIGNALS AND STANDARD DEVIATIONS

.

| Band 4 S.D  | 0.0   | 8.0<br>0 | 0 <sup>.0</sup> | 0.63  | 0.0      | 0.60     | 0.0    | 0.44  | 0.60  | 0.60    | 0.0    | 0.73     | 0.0   | 0.00  | 0.0     | 0.87   | 0.63     | <u>.</u> 8 | 8.0      | 8.0      | 0.33     | 8.0   | 0.0      | 0.44  | 0.60  | 0.60  | 0.68  | 0.60  | 0.33    | 8.5   | 0.00   | 44.0   | 0.33  | 0.71        | 0.78     | 0.63  | 0.0      | 0.60   | 0.44     | 0.00        |
|-------------|-------|----------|-----------------|-------|----------|----------|--------|-------|-------|---------|--------|----------|-------|-------|---------|--------|----------|------------|----------|----------|----------|-------|----------|-------|-------|-------|-------|-------|---------|-------|--------|--------|-------|-------------|----------|-------|----------|--------|----------|-------------|
| Band 3 S.D. | 1.760 | 1.220    | 0.600           | 0.600 | 0.870    | 0.970    | 1.000  | 1.410 | 1.010 | 0.780   | 0.600  | 1.360    | 1.000 | 0.330 | 0.780   | 1.00   | 1.600    | 1.420      | 0.601    | 0.00     | 0.440    | 0.500 | 0.500    | 1.320 | 0.600 | 0.670 | 0.530 | 0.880 | 1.480   | 021.1 | 0.440  | 0.001  | 0.970 | 0.710       | 1.580    | 0.630 | 1.500    | 0.780  | 0.600    | 0.710       |
| Band 2 S.D. | 0.630 | 0.630    | 0.730           | 0.870 | 0.440    | 1.000    | 0.440  | 0.870 | 0.500 | 0.000   | 0.000  | 0.730    | 0.500 | 0.630 | 0.600   | 0.830  | 0.330    | 0.780      | 0.330    | 0.440    | 0.600    | 0.440 | 0.600    | 0.530 | 0.880 | 0.330 | 0.880 | 0.8/0 | 0./10   | 00    | 0/1.1  | 0.780  | 0.500 | 0.670       | 1.000    | 0.110 | 0.600    | 0.601  | 1.060    | 0.330       |
| Band 1 S.D. | 1.64  | 2.03     | 1.27            | 1.12  | 1.05     | 2.12     | 1.60   | 1.64  | 2.18  | 1.86    | 0.71   | 1.69     | 1.41  | 2.17  | 1.05    | 1.00   | 1.73     | 0.88       | 1.22     | 1.69     | 1.05     | 1.40  | 1.30     | 1.61  | 1.13  | 1.39  | 1.71  | 2.12  | 0.88    | 1.30  | 0.87   | 8.1    | 1.60  | 1.22        | 1.8      | 0.83  | 0.97     | 1.60   | 1.32     | 1.36        |
| Band 4      | 13.00 | 12.00    | 12.00           | 12.44 | 12.00    | 13.11    | 12.00  | 12.78 | 12.30 | 11.67   | 12.00  | 12.44    | 12.00 | 12.00 | 12.00   | 12.70  | 12.40    | 12.00      | 12.00    | 12.00    | 11.89    | 12.00 | 12.00    | 12.20 | 13.10 | 12.30 | 12.40 | 12.30 | 12.10   | 12.00 | 12.30  | 12.20  | 12.10 | 12.67       | 12.89    | 12.40 | 12.00    | 11.33  | 11.78    | 12.00       |
| Band 3      | 20.11 | 19.00    | 18.00           | 19.33 | 17.67    | 20.22    | 17.67  | 20.67 | 18.60 | 18.11   | 17.89  | 19.89    | 18.33 | 17.89 | 18.11   | 20.00  | 19.20    | 18.50      | 17.89    | 18.00    | 17.22    | 17.30 | 17.70    | 19.00 | 17.89 | 18.20 | 17.60 | 18.40 | 18.80   | 18.67 | 18.20  | 18.10  | 17.20 | 17.67       | 19.33    | 17.60 | 20.55    | 18.11  | 17.89    | 18.00       |
| Band 2      | 22.44 | 22.44    | 22.66           | 22.67 | 21.78    | 23.00    | 21.78  | 23.67 | 22.33 | 22.00   | 22.00  | 22.66    | 22.33 | 22.44 | 22.00   | 23.20  | 22.89    | 22.10      | 21.89    | 22.20    | 21.67    | 21.80 | 22.30    | 22.50 | 23.40 | 22.90 | 22.60 | 23.00 | 24.00   | 22.00 | 23.10  | 24.10  | 21.70 | 23.20       | 24.30    | 22.30 | 22.67    | 22.10  | 22.89    | 21.10       |
| Band 1      | 74.22 | 76 89    | 74.89           | 74.00 | BO. 89   | 76.00    | 73.67  | 76.89 | 76.50 | 74.80   | 73.30  | 74.44    | 73.00 | 74.78 | 74.11   | 76.30  | 76.00    | 75.50      | 73.30    | 76.40    | 74.89    | 74.40 | 78.40    | 76.50 | 78.40 | 79.20 | 78.80 | 78.00 | 77.60   | 74.80 | 76.30  | 77.00  | 76.90 | 76.70       | 76.70    | 80.20 | 74.80    | 74.30  | 75.00    | 72.90       |
| NAME        | 700   | 1 AUV    | WARIN           | X00   | SINAYWAT | WHITEPIN | MARTNA |       |       | SUDTHWA | MTHELI | NORTH YO | 799   | 66X   | PILGRIM | MAGGIE | BLUESUCK | 66X        | STOUFFER | FREDERIC | DOUGHERT | LAURA | CHINIGUC | 66X   | 66X   | 66X   | 66X   | 66X   | DEWDNEY | 66X   | FRANKS | LAWLOR | WOLF  | <b>6</b> 6X | MATAGAMA | OTTER | MATAGAMA | CENTRE | WHITEPIN | THEODORE    |
| LAKE_ID     | 111   |          | 124             | 101   | 121      |          | 135    | 141   | 111   | HT      |        | 18R      | 194   | 190   | 220     | 220    | 234      | 27.4       | 280      | 290      |          | 33A   | 330      | 33E   | 348   | 340   | 34E   | 35A   | 368     | 36D   | 368    | 36D    | 378   | 370         | 388      | 38D   | 404      | X02    | EOX      | <b>9</b> 0X |

# Table G.4 sudbury quad 3 June 13, 1987 RAW TW SIGNALS AND STANDARD DEVIATIONS

-

| Band 4 S.D. | 0.71       | 0.60  | 0.0   | 0.87  | 0.00     | 0.60     | 0.73   | 0.60     | 0.71  | 0.44     | 0.44   | 0.60     | 0.33  | 0.0         | 0.0     | 0.60   | 0.00     | 0.60   | 0.60  | 0.63     | 0.50     | 0.73     | 0.60  | 0.67     | 0.60  | 0.44  | 0.71  | 0.88  | 0.44  | 0.83    | 0.44  | 0.87   | 0.78   | 0.60  | 0.78  | 0.60     | 1.00  | 0.0      | 0.44   | 0.0<br>0 | 0.0      |
|-------------|------------|-------|-------|-------|----------|----------|--------|----------|-------|----------|--------|----------|-------|-------------|---------|--------|----------|--------|-------|----------|----------|----------|-------|----------|-------|-------|-------|-------|-------|---------|-------|--------|--------|-------|-------|----------|-------|----------|--------|----------|----------|
| Band 3 S.D. | 0.60       | 1.06. | 0.67  | 0.44  | 1.01     | 1.00     | 0.33   | 0.73     | 0.44  | 1.00     | 0.60   | 0.93     | 0.00  | 1.01        | 0.44    | 0.44   | 0.71     | 0.00   | 1.10  | 0.63     | 0.44     | 1.20     | 0.60  | 0.0      | 0.60  | 0.33  | 1.12  | 0.83  | 0.60  | 0.33    | 0.73  | 0.44   | 0.78   | 0.60  | 1.48  | 0.73     | 0.33  | 1.69     | 0.97   | 0.0<br>0 | 0.78     |
| Band 2 S.D. | 0.71       | 0.60  | 0.71  | 0.00  | 0.60     | 0.60     | 0.88   | 0.71     | 0.60  | 0.60     | 0.88   | 0.60     | 0.33  | 0.60        | 0.44    | 0.93   | 1.01     | 0.83   | 1.06  | 0.60     | 0.44     | 0.60     | 0.0   | 0.63     | 0.78  | 0.78  | 1.01  | 0.60  | 0.71  | 1.30    | 1.00  | 0.73   | 0.63   | 1.17  | 0.63  | 0.63     | 0.87  | 0.60     | 0.33   | 0.73     | 0.33     |
| Band 1 S.D. | 1.59       | 1.32  | 1.64  | 1.22  | 1.32     | 1.64     | 0.93   | 1.22     | 1.73  | 2.02     | 1.72   | 0.67     | 1.66  | 1.48        | 1.01    | 0.83   | 0.97     | 1.69   | 1.40  | 1.05     | 1.66     | 1.30     | 1.17  | 0.71     | 1.30  | 0.44  | 2.05  | 2.24  | 1.68  | 1.42    | 2.44  | 1.60   | 1.36   | 1.83  | 1.72  | 1.87     | 2.09  | 1.55     | 1.0    | 1.27     | 2.39     |
| Band 4      | 13.00      | 12.67 | 12.00 | 13.00 | 12.00    | 12.33    | 11.65  | 12.67    | 11.67 | 10.78    | 10.78  | 13.11    | 11.89 | 12.00       | 11.00   | 11.33  | 11.00    | 11.67  | 11.67 | 10.55    | 11.00    | 10.44    | 12.11 | 10.78    | 11.67 | 12.22 | 12.67 | 11.55 | 11.22 | 11.78   | 12.22 | 12.33  | 11.89  | 11.33 | 12.89 | 11.67    | 11.67 | 12.00    | 10.78  | 11.00    | 11.00    |
| Band 3      | 17.90      | 16.11 | 17.22 | 16.78 | 16.65    | 16.33    | 16.89  | 17.44    | 16.78 | 16.33    | 17.00  | 17.90    | 17.00 | 17.55       | 16.78   | 17.22  | 17.00    | 17.00  | 16.78 | 16.44    | 16.20    | 15.00    | 17.33 | 17.00    | 16.89 | 16.89 | 18.00 | 17.22 | 17.00 | 16.89   | 17.44 | 17.78  | 16.89  | 17.11 | 18.75 | 17.66    | 17.11 | 18.89    | 16.22  | 17.00    | 10.11    |
| Band 2      | 22.00      | 21.67 | 22.67 | 22.00 | 21.67    | 21.67    | 22.66  | 21.67    | 21.67 | 21.00    | 21.66  | 22.00    | 21.89 | 22.33       | 21.22   | 21.89  | 21.66    | 22.22  | 21.89 | 20.89    | 21.22    | 20.89    | 21.00 | 21.44    | 21.89 | 24.11 | 24.44 | 22.11 | 22.33 | 23.22   | 22.33 | 22.66  | 22.44  | 22.11 | 24.55 | 23.55    | 22.00 | 23.11    | 20.89  | 21.44    | 19.89    |
| Band 1      | 71.66      | 73.67 | 76.11 | 76.33 | 81.00    | 73.78    | 73.11  | 74.33    | 76.33 | 73.89    | 70.80  | 75.20    | 74.33 | 76.22       | 72.44   | 72.22  | 73.78    | 74.44  | 73.89 | 71.89    | 76.00    | 76.30    | 73.11 | 72.33    | 73.22 | 79.22 | 78.22 | 77.66 | 78.00 | 77.65   | 73.78 | 76.33  | 76.11  | 78.11 | 77.22 | 77.33    | 77.89 | 74.78    | 71.67  | 71.89    | 69.22    |
| NAME        | 66X        | LANY  | WABUN | 66X   | SCNNYWAT | WHITEPIN | MARINA | LITTLE W | JERRY | SMOOTHWA | MIHELL | NORTH YO | 66X   | 66X         | PILGRIM | MAGGIE | BLUESUCK | SOLACE | 66X   | STOUFFER | FREDERIC | DOUGHERT | LAURA | CHINIGUC | 66X   | 66X   | 66X   | 66X   | 66X   | DEWONEY | 66X   | FRANKS | LAWLOR | WOLF  | 66X   | SILVESTE | OTTER | MATAGAMA | CENTRE | WHITEPIN | THEODORE |
| LAKE_ID     | <b>A11</b> | 11C   | 12A   | 128   | 134      | 130      | 13E    | 14E      | 14F   | 14H      | 17C    | 188      | 194   | <b>1</b> 9C | 22C     | 22D    | 23A      | 23E    | 27A   | 28C      | 29C      | 300      | 33A   | 33D      | 33E   | 348   | 340   | 34E   | 35A   | 358     | 360   | 368    | 360    | 37B   | 370   | 3BC      | 380   | 404      | X02    | EOX      | 80X      |

-

Table G.5

SUDBURY QUAD 3 August 13, 1986 Corrected TM Signals and Standard Deviations

ġ ŝ + Band 3 S.D. Band s.D. 0 Band s.D. Band 1  $\begin{array}{c} 16.8597\\ 16.7149\\ 114.3893\\ 114.3893\\ 114.3893\\ 114.3893\\ 115.7149\\ 115.7149\\ 115.7149\\ 115.7149\\ 115.7149\\ 115.7149\\ 114.3993\\ 13.37149\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 113.0818\\ 1$ 4 Band 19.6342 19.6342 19.9223 19.9223 19.9223 19.9382 19.9382 19.9382 20.1714 19.3562 20.9344 20.93463 20.93463 20.93463 20.93463 20.93463 19.6468 19.6468 19.6408 19.6500 19.6500 19.6500 19.6500 19.6500 19.6500 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 19.6200 10.7393 10.6200 10.7393 10.6200 10.7393 10.6200 10.7393 10.6200 10.7393 10.6200 10.7393 10.6200 10.7393 10.7393 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 10.7303 1 6021 1861 m Band õ õ 2 Band 88.7465 89.1746 92.6511 92.6511 92.6511 92.6511 92.6511 92.6511 92.6511 92.6511 92.6511 91.6630 91.6630 91.6630 91.6662 91.6662 91.6662 91.6662 91.6662 91.6662 91.6663 91.6663 91.6663 91.6616 91.6714 92.4968 92.4968 92.4968 92.4968 93.7824 93.77824 93.77824 94.6665 94.6665 94.6665 94.6665 94.6665 94.6665 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.6645 94.664594.6645 94.664594.6645 94.664594.6645 94.664594.6645 94.664594.6645 94.664594.664594.6645 94.664594.664594.6 .4194 .8988 .0765 -Band MATAGAMA SILVESTE OTTER MATAGAMA CENTRE WHITEPIN X99 LAMY WABUN X99 Sunnywat Whitepin Marina Little W Little W Little W Marina North Y0 X99 X99 NAME 66X LAKE ID 

Table G.G Algoma quad 4 August 18, 1986 Corrected tm Signals and Standard deviations

|             | D'S + Dues |         | 011 0   |           | 0.418   |         | 0.416   |         | 000.0     | 0.530    |         |                | 0.497   |         | 0.416          | 0.471    |         | 0.416   | 0.685   |         | 1/4/0   | 0.314   |         | <b>m</b> | 0.471   | 0.00    | 670.0   | 0.416   | 101 0     | 184.0    | 8.355     | 0.314 |
|-------------|------------|---------|---------|-----------|---------|---------|---------|---------|-----------|----------|---------|----------------|---------|---------|----------------|----------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|-----------|----------|-----------|-------|
| Band 3 5 D  |            |         | 0.860   |           | 0.497   | 1 123   | 551.I   | 1.030   |           | 1.300    | 1.286   |                | 0.843   | O R7K   |                | 0.943    | 0 818   |         | 0.685   | 0 014   |         | 0.685   | 0.497   |          | 0.843   | 1.227   |         | 0.816   | 0.471     |          | 1.066     | 1.100 |
| Band 2 S.D. |            |         | 0.440   | 0 314     | +10.0   | 0.497   |         | 1.4.0   | 0 110     |          | 0.831   | 0.400          |         | 0.471   | 101 0          |          | 0.497   |         | 119.0   | 0.817   |         | 0.001   | 0.567   |          | 014-0   | 0.966   | 0 820   |         | 0.497     | 1 1 4 5  | 1.100     | 0.66/ |
| Band 1 S.D. |            | •••••   | ····    | 1,333     |         | 1.054   |         | FRA . 0 | 0.970     |          | 0.010   | 0.994          |         | 124.0   | 0.887          |          | I. 603  |         |         | 0.416   | 1 EA3   |         | 189.2   | 987.1    |         | 080.2   | 0.958   |         | 100.2     | 2.439    | 1 403     |       |
| Band 4      |            | 1E 0720 |         | 16.1016   |         | 1400.41 | 14 OFAR |         | 16.3411   | IS SELL  |         | 14.2054        | 14 EAU  |         | 15.7004        | 16 1014  | 0101.01 | 16.4003 | 14 2547 |         | 14.8635 |         |         | 15.7004  | 13 7660 |         | 16.1016 | 15 5611 |           | 19.5882  | 14 . 6636 |       |
| Band 3      |            | 6.7824  |         | 0/ to. of | B 7837  |         | 7.8950  | 01.00   |           | 7.6966   |         | 9/20.1         | 7.0873  |         | <b>6</b> .7278 | A KEOA   |         | 7.2679  | 7. 36AD |         | 7.7147  | 8.4002  |         | U.0/36   | 8.1340  |         | 0.0100  | 7.2967  |           | 9711.Q   | 9.6693    |       |
| Band 2      |            | 17.1498 | 18 2030 | 8007 · 07 | 17.0285 |         | 15.8166 | 14 1700 | 0717.04   | 15.1739  | 15 5700 | 7710.07        | 15.5334 | 1004 01 | 10.47PD        | 16.8028  |         | 2014.01 | 14.7312 |         | 10.000  | 16.3921 | 1. 7010 | 747/.01  | 14.8084 | 14 4101 |         | 16.1739 | 10 4905   | 0000.27  | 16.3369   |       |
| Band 1      |            | 00.000/ | 65.1479 |           | 66.0270 | 20 0100 | 6800.00 | 65,1056 |           | 64.4142  | 66.11A7 |                | 00.4/05 | A4 8175 |                | 65.1479  | A4 1820 | 0707.10 | 66.0719 | RE 0003 | 6707.00 | 64.9388 | AK 117A |          | 66.8504 | 64,5504 |         | 03.9661 | 67 . 670A |          | 01.0131   |       |
| NAME        | VOO        |         | MADER   | 002       |         | RARRARA |         | 66X     | ACC: ATOC | AUELAIUE | 66X     | <b>NDTEETN</b> | NTLITUT | TURKEY  |                | NEWADOUM |         |         | VIAIN   | HATLEY  |         | RAY     | 66X     |          |         | DICK    | 201     | 704     | MALLOT    | MONTOS M |           |       |
| LAKE_ID     | E A        |         | HK      | μų        | 50      | 55      |         | و       | LL<br>L   |          | BW      | 1              | 5       | ž       | Ľ              |          | Z       |         | 3       | H       | ŀC      |         | IN      | ŬŦ       |         | U<br>X  | - 4     | 23      | RA        | BE       | 5         |       |

-

Table G.7 subbury quab a

|        | DEVIATIONS   |
|--------|--------------|
| JOAT 7 | AND STANDARD |
| T IYM  | N SIGNALS /  |
|        | CORRECTED T  |

| Band 4 S.D. | 0.00  | 5        | 8       | 0.0     | 0.0        | 0.0                                                                                     | 0.63     | 0.60    | 0.0      | 0.73    |          |         | 0.0     |         | 50°0    | 8.8     | 8.0     | 8.0     | 0.0     | 0.44    | 0.33    | 0.60     | 0.50     | 0.44                                    | 0.00       | 0.78    | 0.00     | 0.71    | 0.60    | 0.60    | 0.44    | 00.0    | 0.44     | 0.33    |         |         | 65.00   | 0.60    | BH ()   |         | ~ · >    | 0.63        | 0.0     |           |
|-------------|-------|----------|---------|---------|------------|-----------------------------------------------------------------------------------------|----------|---------|----------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|-----------------------------------------|------------|---------|----------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|----------|-------------|---------|-----------|
| Band 3 S.D. | 0.710 |          |         | 1./60   | 0.600      | 0.601                                                                                   | 0.600    | 0.970   | 1,000    | 1 360   | 0 780    |         | 2       |         |         | 0.330   | 1.120   | 1.500   | 0.500   | 1.410   | 0.440   | 0.780    | 0.780    | 0.500                                   | 1.420      | 1.580   | 1.220    | 0.710   | 0.440   | 1.010   | 1.320   | 0.00    | 0.601    | 0.970   |         |         | 1.480   | 0.880   | 0.630   | 0.600   | 0.670    | 0.630       | 0.870   |           |
| Band 2 S.D. | 025.0 | 0.5.0    | 0.900   | 0.630   | 0.000      | 0.330                                                                                   | 0.870    | 1.000   | 0 440    | 0110    | 0.500    |         | 0.000   | 0.830   | 0.330   | 0.630   | 0.000   | 0.500   | 0.730   | 0.870   | 0.600   | 0.601    | 0.000    | 1.060                                   | 0.780      | 1.000   | 0.630    | 0.670   | 1 170   | 0.500   | 0.630   | 0.440   |          |         | 0.000   | 0.880   | 0.710   | 0.870   | 0.880   | 0.600   | 0.330    | 0.710       |         | ) r r · > |
| Band 1 S.D. |       | 1.30     | 1.41    | 1.64    | 0.71       | 1.22                                                                                    | 1 19     |         |          | 0       | A        | 00.1    | 1.40    | 8       | 1.73    | 2.17    | 1.30    | 0.97    | 1.27    | 1.54    | 1.06    | 1.60     | 1.86     | 1.32                                    | 0.88       | 89      | 0.0      | 1 22    | 10.0    |         | 13 1    | 10.1    |          | 39      | 1.60    | 1.13    | 0.88    | 2.12    | 1.71    | 1.30    | 1.30     | 0.83        | 20.0    | 1.00      |
| Band 4      |       | 13.6256  | 13.6255 | 14.8778 | 13 8258    | 12 8258                                                                                 | 8871 A1  |         |          | 13.0200 | 14.1/66  | 13.6256 | 13.6256 | 14.6021 | 14.1265 | 13.6256 | 13.6256 | 13.6266 | 13.6256 | 14.6023 | 13.4879 | 12.7867  | 13.2124  | 13 3502                                 | 13 8258    | 11.7400 | 12 8958  | 12.0200 |         |         |         | 10/0.01 | 13.0200  | 10/0.51 | 13.7609 | 16.0030 | 13.7509 | 14.0013 | 14.1265 | 13.6256 |          | 11 1046     | 0071.F1 | 13.0200   |
| Band 3      |       | 19.8325  | 20.2467 | 20.9812 | 10 8047    | 10.4047                                                                                 | 10000 00 | 20.0320 | 20. 4324 | 18.4183 | 21.6331  | 19.9702 | 18.9560 | 21.2774 | 20.7297 | 19.6947 | 20.6714 | 23.0264 | 19.8326 | 21.9963 | 19.0223 | 20.9841  | 20.04696 | 20.0017                                 | 20.04 AEBE |         | 0101.02  | 21.0640 |         | 19.0289 | 20.046  | 20.7819 | 19.8326  | 19.6550 | 18.6794 | 18.0301 | 20.6829 | 19.8793 | 18.6011 | 10 AFAR |          | 1100 01     | 1100.81 | 18.4183   |
| Band 2      |       | 24.1140  | 26.6641 | 94 K091 |            | 20 - 7 - 0 2<br>0 - 7 - 0 2 | 201.02   | 25.5124 | 25.0615  | 24.9854 | 26.3621  | 26.2409 | 24.9905 | 26.8407 | 25.8394 | 26.7918 | 26.2409 | 26.0798 | 25 029A | 28 3280 | ACROACE | 24 2202  | 20.2.02  |                                         | 20.000 PS  | 2002.02 | 20.9/30  | 25./218 | 58/8.9Z | 26.2313 | 25.26/2 | 25.6090 | 26.4913  | 27.6124 | 24.7363 | 25.6762 | 27.6162 | 24 1061 | 26 3611 | DE BIAS | 0010.07  | ZD. 4004    | 26.100/ | 24.9654   |
| Band 1      |       | 88.5940  | R8 7192 | 2011120 |            | 8480.88                                                                                 | 880.0848 | 69.3102 | 89.5557  | 89.6682 | 89.8812  | 90.1091 | 90.4722 | 90.5474 | 00 A225 | 00.9480 | 00 0731 | 00 0731 |         |         | 1110 10 | 1107.18  | 1000.TR  | A 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1100.18    | 91.8486 | 92.0149  | 92.3379 | 92.3454 | 92.4006 | 92.6609 | 92.8012 | 92.9765  | 93.4273 | 93.4523 | 93.8280 | 94.2036 | 04 5001 |         |         | 809-4808 | 96.031/     | 97.1336 | 98.5986   |
| NAME        |       | THEODORE |         |         |            | MIHELL                                                                                  | STOUFFER | 66X     | WHITEPIN | MARINA  | NORTH YO | PTLGRIM | A LIRA  | MAGGTE  |         | VOO     |         |         |         |         |         | DUUGHERI | CENTRE   | SMOOTHWA                                | WHITEPIN   | 66X     | MATAGAMA | LAMY    | 66X     | FRANKS  | JERRY   | 66X     | FREDERIC | LAWLOR  | WULF    | XOD     | DEWDNEY |         | R R K   | RAX     | CHINIGUC | <b>6</b> 6X | OTTER   | SUNNYWAT  |
| LAKE ID     | 1     | ACX      |         |         | <b>VII</b> | 17C                                                                                     | 28C      | 128     | 130      | 136     | 188      | 305     | ) - C C | 200     | 777     | × 57    |         | 360     | 404     | 124     | 146     | 300      | X02      | 14H                                     | EOX        | 27A     | 388      | 110     | 37D     | 368     | 145     | 33E     | 29C      | 360     | 37R     |         |         | 305     | 354     | 34E     | 33D      | 34D         | 380     | 134       |

SLUDBURY QUAD 3 JUNE 13, 1987 SIGNALS AND STANDARD DEVIATIONS Table G.8

### Band 4 S.D. Band 3 S.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Band 2 S.D. Band 1 S.D. Band 4 CORRECTED TN 19.6676 117.7492 119.6113 118.7124 118.7124 118.7124 119.2027 119.2026 119.2026 119.2026 119.2026 119.2026 119.2026 119.2026 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119.2019 119. 20.7530 20.1208 19.5962 21.5026 19.1176 19.8424 ŋ Band Band 2 81.8247 84.8023 85.6248 86.3319 94.4554 94.4554 95.3358 95.3358 85.5592 86.6510 87.9569 86.5592 87.9569 88.7559 88.7559 88.7559 88.7559 88.7559 88.7559 88.7559 88.7559 88.7559 88.7659 88.7559 88.7659 88.7659 88.7659 88.7659 88.7659 88.7659 88.7659 88.7659 88.7669 88.7669 88.7669 88.7669 88.7332 88.7332 88.7332 88.7353 88.7353 88.7353 88.7353 88.7353 88.7353 88.7353 88.7353 88.7353 <td -Band SILVESTE OTTER Matagama Centre Whitepin Theodore VANE -AKE\_ID

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00