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NOTATION
Angular orientation at time t, not necessarily along the most direct rota-
tional path; also used to indicate the body system
Initial angular orientation
Final angular orientation
Angular orientation, for following the most direct rotational path

3x3 element direction cosine matrix (DCM), for transforming a coordinate
of the u-system into the v-system.

Exponent of disturbance function

Unity vector, indicating the direction of the Euler axis for rotation from an
initial system to a final one, expressed in the initial system

4x4 element quaternion matrix of the quaternion for rotation from utov
Transmutated quaternion matrix

Quaternion for rotation from u to v, uniquely describing the orientation of
vintou

Transpose of a matrix; also used to indicate a column vector

Time

Initial time

Final time

Orthogonal right-hand object-body coordinate system; in aeronautical
applications the xb-axis is pointing forward along the aircraft body main
axis, the yb-axis is pointing outward through the right wing, and the
zb-axis is pointing downward

Orthogonal right-hand Earth-based inertial reference system, with the
xl-axis pointing to the north, the yi-axis to the east, and the zi-axis down-

ward, toward the center of Earth; in the experiments the xi-axis coincides
with the direction of the viewing axis
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x97;x92;x83

Vo

R

Like the initial system by, fixed with respect to the inertial system, with
the x90-axis aligned with the Euler axis and the y40-axis in the xb0-0-yb0
plane

Intermediate systems to obtain the plane in which to rotate @b in order to
be disturbed

“Angular distance” between orientation b and by, i.e., the angle of rotation
for the remaining most direct path rotation from b to by

Total angle of rotation for the most direct path rotation from initial orien-
tation bg to final orientation bg

“Rotational deviation” from the most direct path; it is the amount of rota-
tion of the quaternion Aq

Averaged rotational deviation from the most direct path over the interval
tp<t<tf

Azimuth angle and elevation angle, respectively, which specify the orien-
tation of g in the bg-system

Quaternion for the rotational deviation, i.e., for rotation from bgto b

Angle of disturbance; it is the angle over which @b is rotated in order to
be disturbed

Angle of disturbance at time tp

Azimuth angle and elevation angle, respectively, which specify the
orientation of @3¥ in the qp-system

Euler angles for yaw, pitch, and roll, reSpectively, specifying the orienta-
tion of body with respect to the inertial system

Angle of plane in which @, is rotated to be disturbed

Vector of angular rotation, for the most direct rotational path between ori-
entation bg and by, expressed in the bg-system

Constant rotational speed

Disturbed vector of angular rotation; it is the vector of rotation at which
the object proceeds rotating at time t, expressed in the b-system
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Qi ,p=Q

qu

Vector of angular rotation, for the most direct rotational path between ori-
entation bg and by, rotating at reduced angular rate, expressed in the
bp-system

Vector of angular rotation, for the remaining most direct rotational path
between orientation b and by, expressed in the b-system

The vector @b expressed in the qo-system

4x4 element matrix, containing the components of Qg used for comput-
ing the rotational path

4x4 element matrix, containing the components of s, used for
computing the most direct rotational path






AN ALGORITHM FOR THE SYSTEMATIC DISTURBANCE
OF OPTIMAL ROTATIONAL SOLUTIONS

Arthur J. Grunwald! and Mary K. Kaiser

Ames Research Center

SUMMARY

An algorithm for introducing a systematic rotational disturbance into an optimal (i.e., single axis)
rotational trajectory is described. This disturbance introduces a motion vector orthogonal to the
quaternion-defined optimal rotation axis. By altering the magnitude of this vector, the degree of non-
optimality can be controlled. The metric properties of the distortion parameter are described, with
analogies to two-dimensional translational motion.

This algorithm has been implemented in a motion-control program on a three-dimensional graphic
workstation. It supports a series of human performance studies on the detectability of rotational trajec-
tory optimality by naive observers.

1. INTRODUCTION

This paper describes an algorithm for generating kinematically suboptimal (“warped”) rotational
trajectories. First, the basic idea of creating a suboptimal trajectory is demonstrated with a two-
dimensional translatory analogy. Next, the mathematical formulation for describing the rotation of an
object is given for three methods: (1) Euler angles, (2) direction cosine matrix, and (3) quaternions, and
the relation between these methods is discussed. Then, the rotational equivalent of the straight path for
translatory motion is defined and ways for computing the rotational path and the deviation from the
direct path are delineated. Finally, the method used for creating a reproducible “smoothly warped” sub-
optimal trajectory is outlined. This method allows both the shape of the trajectory and the magnitude of
the deviation from the optimal path to be defined by two independent parameters. A flow chart is pre-
sented which summarizes the computations performed to create displays employing this algorithm.

ITechnion, Haifa, Isracl.



2. DEVIATION FROM THE OPTIMAL PATH TRAJECTORY FOR
TRANSLATORY MOTION

2.1 Method for Creating a Suboptimal Trajectory

The basic idea of creating a suboptimal trajectory can best be illustrated with a simple, two-
dimensional translational analogy. Consider two points on a plane as illustrated in figure 1. An object
moves from the initial location by, at time tg, to the final location by, at time tf, at a constant velocity,
Vo. The kinematically optimal trajectory between by and by is a straight line; the traveled distance
along this line is Rq. At time t, the object is at location b, which is not necessarily along this most
direct path. However, the remaining most direct path from b to b¢ is again given by a straight line
which connects these two locations. If the velocity vector, V, points from b to location by, the object
would proceed from t until it reaches tr along this remaining most direct path. However, in order to
produce a remaining suboptimal trajectory, a disturbance is introduced by rotating ¥ over the angle of
disturbance Vv, to obtain the disturbed vector, V4. The angle v is chosen to be a simple exponential
function of the range R between b and by, according to

c
tan v(t) = (%(g—)) tan Vo (1)

where the exponent ¢ determines the characteristics of the disturbance and therefore the trajectory
shape. The parameter Vv, which is the angle of disturbance at tg, determines the magnitude of the
disturbance.

For e > 1, v(t) will reduce to zero quickly, such that the trajectory will be curved mainly at the
beginning and straight toward the end, while for 0 <e <1 the opposite is the case. Typical trajectory
shapes for these two ranges of e are shown in figure 2.

2.2 Measures of “Suboptimality” of Motion

Various measures can be considered for specifying the “degree of suboptimality” of motion. The
first one is the difference between the traveled distance along the nondirect path, and the shortest dis-
tance, Rg. For constant velocity Vo, this is equivalent to the difference between the actual travel time
(tr— to) and the most direct path travel time, Ro/Vo. Since this difference will be small relative to the
total travel distance (or travel time), this measure will be fairly insensitive for trajectories with small
deviations.



A second candidate for a measure of indirectness is the averaged angle of disturbance, computed by

i
vl f v(Odt ?)
t:

(tr — tp) "

This method has the disadvantage that only the disturbance and not the actual deviation from the straight
path is considered. Thus, for a straight trajectory section (like the final section of a trajectory with

e> 1), v is zero and does not add to the measure of indirectness, although the deviation from the most
direct path definitely exists (fig. 2a).

A third measure of indirectness is the averaged deviation from the straight path. The way in which
this score is computed is shown in figure 3. It is assumed that the object travels along the nondirect path
with a constant velocity Vg. At each instance of time t, the distance d(t) between a point on the tra-
jectory b and the equivalent position on the optimal path bg is computed; by is the position on the
optimal path at which the object would arrive at time t when traveling with a reduced speed of
Vs = Ro/(tf — tg) £ Vo. The positions b and bg are computed by solving the differential vector equations

N L Ry
Xp() = V4(1) ;5 Xp (D) = G=Ve Vo _ (3)

with initial conditions

xp(to) = Xp (tp) = Xp,,

where

and the distance d(t) is

d@® = Ixp(®) -xp O 4

The averaged deviation from the optimal path over the interval tp <t <t is then computed by

tf
—= 1
d= d(t)d 5

(tr—to) ,LO Bt ®



3. DEVIATION FROM THE OPTIMAL TRAJECTORY FOR ROTATIONS

3.1 Definition of Coordinate Systems and Object Angular Rotation

The description of the angular rotation of an object in space involves rotational transformations
between coordinate systems. Two basic systems are defined: an Earth-based inertial reference system,
i, and an object body coordinate system, b. The Earth-based system, defined according to the aeronauti-
cal convention, is a right-hand system with its xi-axis toward the north, its yl-axis to the east, and its
zi-axis pointing downward toward the center of Earth. In creating displays on the workstation, the
inertial system is chosen to coincide with the observer’s viewing system, with the xi-axis being the
viewing direction. The object is described in the body system. For aerospace applications, for example,
this system is attached to the aircraft body, with the xP-axis pointing forward along the aircraft body
main axis, the yb-axis pointing outward through the right wing, and the zb-axis pointing downward.
(NOTE: Coordinate systems other than the North-East-Down convention are frequently used by non-
aerospace disciplines. However, by means of simple geometrical computations, coordinates expressed
in one system can be transformed to another; the generality of the algorithm presented in this paper is
not affected.)

The angular orientation of the body system with respect to the Earth system can be described in a
variety of ways. The first one is by a set of three Euler angles, which define three successive rotations.
In aerospace applications these angles are the yaw angle W, which sets the heading plane; the pitch
angle 8, which sets the aircraft elevation angle with respect to the horizontal plane; and the roll angle ¢,
in this order (fig. 4). A coordinate defined in the inertial system, xi= (xiy,z1}T, can now be expressed
in the rotated body system, xb = {xb,yb,z0}T by

X0 = [0116] [y] x' = D{y.0,¢ )x' = Dj_,px! (6)
where
cy sy O @ 0 -6 1 0 O
Wi=| -sy cy 0 |; [6]l=| O 1 0 |; [ol=f 0 b so )
0 O 1 s 0 «c6 0 -s¢ co

where cand s denote sine and cosine, respectively, and D is the nine-element direction cosine matrix
(DCM). The superscript T denotes transpose, since a column vector is specified. Likewise, by the
inverse transformation the coordinates of the b-system can be expressed in the i-system by

X =[y1T 01T [T x> =DT(y,0,¢ )xP = Dy _,xP (8)



where the superscript T denotes the transposed matrix and, since D is an orthonormal matrix, trans-
pose and inverse are identical. '

Thus, the second way of expressing the angular orientation of the b-system in the i-system is by
means of the nine-element DCM. A third way is through the use of quaternions. Euler’s theorem states
that, regardless of the initial orientation (defined by the system u) and the final orientation (defined by
the system v), it is always possible to find one axis about which the object can be rotated to bring it
from orientation u to v. The orientation of this axis of rotation, expressed in the initial system u, is
given by the unity vector ¢ = {ex,ey,eZ}T, and the amount of rotation by the angle o. The quaternion
for rotation from u to v, which uniquely describes the orientation of v with respect to u, is given by

— —_ — —_

Q1 cos o/2
qz ey sin o/2
Quov = = . 9)
q3 ey sin o/2
d4 e,sino/2 |
Since ¢ is unity, it follows from equation (9) that
172
gl = qf+q§+q§+qj) =1 », (10)
which is a unique property of the quaternion, and
| 2. 2. 22
lol =2 cos™'qy =2sin"'|q; + g3 + Q4| 0<o<180° (11)

It also follows from equation (9) that the inverse quaternion, for rotation from v to u (i.e., the quaternion
which describes the orientation of the u-system in the v-system), is given by

B ]
—q1
1 92
Qv—>u =y sy = (12)
q3

which simply means that the direction of rotation about the Euler axis is inverted.



It is very useful to find the quaternion for a sequence of rotations. Suppose that the angular orien-
tation of system v with respect to u is given by q,_,, and the orientation of a third system, w, with
respect to v by qy.,y. Then, the orientation of w with respect to u is given by

Quosw = (MyswlQuosy = {(Mysv*qvow (13)
with
q 92 493 Y4 q1 92 43 44
Q2 ' 94 q1 94 9
M= 2 . 4 3 . M¥= 92 ,q 4 QB (14)
Qg3+ 94 9q91 492 B3+ 44 91 9
1 ]
i d4 , 93 92 q | i 44 , 493 92 q i

where M is the quaternion matrix, composed of the elements of g, and M* is the transmutated quater-
nion matrix, obtained by transposing the vector kernel (or minor) of the first element, indicated by the

dotted partition.

By using equation (13) in a sequence of rotations, the quaternion g;_,;, for rotation from inertial
system i to body system b can be found as a function of the Euler angles. Following equation (9) the
quaternions for the yaw, pitch, and roll rotations are given by

[ cyr2 | [ ¢6/2 ] [ co/2 ]
0 0 sG/2 1s)
Qisu =~ > g = > 9 =
Hi—u 0 Hu—v $0/2 Hv—b 0
sy/2 0 0
respectively, where u and v denote the intermediate stages. Then, q;_,, is given by
, Gimsb = {(Myosp} (My v} iy (16)
and after evaluating equation (16) with equations (14) and (15)
[ o2 B2 cw2 + sO/2 $8/2 sy/2 |
s/2 ¢6/2 cy/2 — c¢/2 sB/2 sy/2
Ji—b = (17)

cd/2 sO0/2 cy/2 + s¢/2 c6/2 sy/2
—s0/2 $8/2 cy2 + c6/2 cB6/2 sy/2




The DCM Dj_,;p can be expressed in terms of g;_,p, as follows:

2 2 2 2
qp+d;-9d3-9;  2(Q93+q194)  2(q294 —193)
2 2 2 2
D; ,p=| 2(q293-4194) q; -9, t43-94 29493 + 4192) (18)

2 2 2 2
2(9294 + q193) 2(q493—-9192) 979293+ Y

3.2 Rotational Equivalent of a Translatory Straight Path

It is clear from the definition of the Euler axis that the rotational analogue of a straight path between
two points in the translatory case is a rotation about the Euler axis. This rotation brings the object from
an initial orientation to a final one along the most direct path. The total angle of rotation about this axis
is equivalent to the distance between two points in the translatory case. Equivalently, this means that
the instantaneous axis of rotation (or vector of angular velocity) is fixed in space. This also means that
each coordinate of the object will describe a path, which will be the great-arc of a circle, located in a
plane perpendicular to this fixed axis of rotation. For points of the object located on this axis, the radius
of the circle will be zero. Mathematically, this means that the coordinates of these points are not
affected by the rotational transformation.

In contrast, when the rotation is not proceeding along the optimal trajectory, the instantaneous axis
of rotation will not be fixed in space and will perform a “wobbling” motion, somewhat like the nutation
of a gyroscope.

3.3 Computation of the Rotational Path
Similar to translatory motion, in which the path is obtained by integrating the instantaneous velocity

vector, the rotational path is obtained by integrating the components of the vector of angular velocity.
For the rotational motion of the body system b, this vector is given by

@Y (0 = (04,0y,0,}T (19)

where the subscript i—b indicates the rotation of the b-system with respect to the i-system, and the
superscript b indicates that this vector is expressed in the rotating b-system. The rotational path is then
obtained by solving the differential equation

Gisb® = (QMIGiop0 5 Gissbte) =di-sby (20)

where bg indicates the orientation of b at time to and



0, 0 o, -
Q1) =172 (21

3.4 Computation of the “Deviation” from the Optimal Rotational Trajectory

For the optimal rotational trajectory, the vector Q}) LpD = m}) _p{to) = @ = constant will be fixed in
space and will coincide with the Euler axis. g =lgyl is the constant rotational speed and 0 is the
total angle of rotation, equivalent to the shortest distance, Ry, in the translatory case. The computation
of the “deviation” from the optimal trajectory is analogous to the translatory case (fig. 3). Ateach
instant of time the quaternion for the orientation b, g;_,(t), and the quaternion for the corresponding
orientation along the optimal trajectory bs,q; b, (1), are computed. bg is the orientation on the optimal
trajectory which would be reached at time t when rotating at a reduced angular rate of g = o/(tr — tp)
<wg. The quaternion g; —>bs(t) is obtained by solving the differential equation

Qib, (0 = {Qs}qip, (05 Gisp, (t0) = disby (22)

where Qg is fixed and generated according to equation (21) with

ap

v 23
o0 (O] (23)

@ =
The “rotational deviation” from the optimal trajectory (which is equivalent with the deviation d
from the straight path in the translatory case) is given by the amount of rotation [ of the quaternion

AG(O = b p® = (Mip®)g; Ly, © (24)

where gl—_l,b is computed from gi—b, by equation (12) and B is computed with equation (11). The

averaged deviation angle over the rotation interval to <t < tr is then computed by

T
B= f B(t)dt (25)
0 Jyy



3.5 Introduction of the Disturbance

Consider that the b-system rotates from initial orientation bg at time ty to final orientation bg at
time tf, not necessarily along the optimal trajectory. Attime t the orientation of the b-systemis b.
However, analogous to the translational case (in which the direction of the remaining most direct path is
V), in the rotational case the remaining most direct path from time t to tf onward is given by the Euler-
axis rotation from b to br

Qb = MipJqpi(0) = {Mi—)bf}ﬂi_i)b(t) - (26

where q _p 1s computed from gjp by equation (12), gip is computed by solving the differential
equation (eq (20)), and M1—>b is given by the final orientation of bini. For 0 < o < 180°, the orienta-
tion of the Euler axis for rotation from b to by (expressed in the b-system) is specified by

qo/s
2, 2, 22 _
et) =| q3/s ; s=lqy+q3+qy| =sin(a/2) (27)
q4/S b—)bf

and theb ‘angular dlstance from bto b is o =2 sin~1s (eq. (11)). If the instantaneous vector of rota-
tion @;_,, (D=0 B(t) (the subscript i—b is henceforth omitted for clarity) would be chosen along g(t),
the rotation would proceed from t onward until it reaches tf along a remaining most direct path. How-
ever, in order to produce a remaining suboptimal trajectory, a disturbance is introduced to deviate @b(t)
from g(t). As in the translatory case, the deviation of @P(t) from g(t) should be a function of the angu-
lar distance o(t). The vector @b(t) is deviated from e(t) by rotating it over the angle v(t), which is
chosen to be a simple exponential function of «(t) according to

[
tan v(t) = ? tan v (28)

0

where Vg is the disturbance at time tg, and e is an exponent. The parameter Vo determines the aver-
aged deviation from the optimal trajectory and thus the magnitude of the disturbance, and the exponent
e determines the shape of the disturbance. Since b globally approaches by, a(t) will decrease mono-
tonically such that the time-history of v(t) (and thus the shape of the trajectory) will be determined by
the exponent e. For e > 1, v(t) will reduce to zero quickly such that the trajectory will be “warped”
mainly at the beginning. For 0 <e <1, the greatest warping occurs toward the end of the trajectory.

It should be noted that, although the angle of disturbance v(t) is defined, the plane in which @b is
rotated is still undefined. A sequence of rotational transformations is required to choose a plane which
ensures a reproducible, smoothly warped rotational path. The method by which this plane is chosen is
described below.



The first rotational transformation that is required to introduce the disturbance involves a trans-
formation to the gg-system. Like the bg-system, the go-system is also fixed with respect to the inertial
system, but it has the x90-axis aligned with the @o-axis, and the y40-axis in the x%0-0-yP0 plane
(fig. 5). Since the orientation of o in the bg-system is given by its azimuth angle ¥ and elevation
angle 3, the fixed DCM for rotation from by to g is obtained by a successive yaw rotation by the
angle 7 and a pitch rotation by the angle §, following equations (6) and (7), according to

cd 0 -sb cy sy O cdcy cdsy  -sd
Dp,sqp=| 0 1 0 sy ¢y 0 |=| -sy cy 0 (29)
& 0 ¢d 0 0 1 sdcy  sdsy cd

First, @P(t) = wge(t) for the remaining most direct path from time t until tf, as computed by equa-
tion (27), is transformed from the b-system into the qo-system by

@%(1) = [Dp_yq 10°®) (30)

where

[Db—-)qo] = [Dbo——)q()] [Di—)bO] [Db—)i] (3 1)

The first two matrices on the right-hand side of equation (31) can be precomputed before starting the
motion-control program, and the third matrix is computed from gp_; = g;.r b DY solving equation (20)
and using equation (18).

The orientation of @40 in the qg-system is shown in figure 6. If the rotation were totally along the
optimal trajectory, @99 would coincide with @y and thus with the x90-axis. However, its deviation

from this axis can be expressed in the qo-system by the azimuth angle X and the elevation angle E. A
system q) is now defined, with the xdl-axis along @0 and the ydi-axis in the x40-0-y40 horizontal
plane. Similar to equation (29), the DCM for rotation from qo to qi is given by

cgey cEsy —s§
Dgjsq =| X X O (32)
sEcy s&sy c§

Since

10



@10 = {o,,0,,0,)T; 1%l =, (33)

it follows from the geometry of figure 6 that

cos Y =y/d; cos&=dmg

(34)
siny =wy/d; sin§=-0,/u)
where
172
a=[0}+ o) (35)
Substituting these expressions in equation (32) yields
[ o/0g wy/og 0,/0)
Dgy—q, = ~-0y/d ®,/d 0 (36)
~0,0,/(dwg) ~0,0,/(doy) d/mg

uations (35) and (36) show that D can be computed simply from the components of @40 in the
. G
qo-system.

Next, the gz-system is defined now rotated about the x941-axis by the angle ¢q4 (fig. 7). This angle
is randomly chosen from a look-up table, but remains fixed throughout a trajectory calculation. The
DCM for rotation from qj to q7 is then given by

1 0 0
Dgxg,=| 0 cbg sbg 37)
0 -sdg cog

The plane x92-0-y42 is the required plane in which the vector @ is rotated to be disturbed (fig. 7).
Last, the system q3 is defined, rotated about the z92-axis by the angle of disturbance v(t), and com-
puted by equation (28) (fig. 7). The DCM for rotation from gy to q3 is then given by

11



¢tV sV 0
Dg,sq3=| —sv ¢cv 0 (38)
0 0 1

With the DCMs previously computed with equations (31) and (36)-(38), the DCM for rotation from
b to q3 can be computed according to

[Db—)q3] = [qu—xh] [Dql—-)qzl [qu—)q]HDb—)qO] 39)

- . . . . 1 » b . .
The x43-axis is now aligned with the direction of the “disturbed” vector @4. This vector, expressed in
the b-system, is then computed by

@ = [Dpsq,]"0® (40)

where

@B =[0(,0,0]T (41)

2.5 Computer Implementation

The motion-control program involves (1) precomputation of matrices, vectors, and quaternions,
which remain constant for all created trajectories, and (2) real-time computations for realizing the rota-
tional path and computation of the deviations from the most direct path. This motion-control program is
incorporated into an experimental control program for psychophysical studies of human observers’ sen-
sitivity for trajectory optimality. This experimental control program presents the motion stimuli, records
observers’ responses, and performs post-experiment data reduction. ‘

A chart of the sequence of computations performed during the presentation of a rotational trajectory
stimulus in a typical psychophysical experiment is shown in figure 8. The prerun computations are
shown in bold blocks and the relevant input parameters for each stimulus are shown in the circles. For
each stimulus, the initial orientation by with respect to the inertial system i, the direction and mag-
nitude of the most direct path vector of rotation @y, and the total angle of rotation Vo are specified.

The orientation of by in i is specified by the azimuth angle W, the elevation angle 6, and the roll
angle ¢ (fig. 4). The direction of @y is specified with respect to the bg-system by the azimuth angle y
and the elevation angle 8 (fig. 5). The magnitude of @g is the specified rotational speed, wg. For each
presentation the valuesof ,0,¢ and y,6 are picked at random and without replacement from a look-up
table.

12



First, the quaternion 9i—b, is precomputed with y, 8, and ¢, using equation (17). The DCM Dip,
is computed simply with equation (18). Next, following the geometry of figure 5, from yand 9, the
components of @ in the bg-system can be precomputed according to

cycd '
Wy = | sYcd (42)
-sd

Since @8 = g coincides with the Euler axis for rotation from bg to bg and thus has the same direction,
the fixed quaternion for rotation from b to bg follows from equations (42) and (9):

ca0/2_|
cycdsog/2
Tog—be = sYcdsoy/2
—s3s01y/2

(43)

and the corresponding quaternion matrix Mb0—>b£ is computed with equation (14). The latter one,
together with the quaternion of the initial orientation Qi—b, can be used to precompute the quaternion
of the final orientation

Qi—sbe = (MpybJdiob, (44)

and the corresponding quaternion matrix Mi—>bf is computed with equation (14).

Last, Db0 0 is precomputed with <y and §, using equation (29); Dy 14 with ¢4, using equa-
tion (37) where 04 is picked at random from a table; and ®93 is defined with equation (41). The
matrix Qg is computed using equation (21), with @ computed with equation (23), and @q is
computed with equation (42).

The on-line computations during stimulus presentation are aimed at computing the “disturbed” vec-
tor of angular rotation @ 4(t) with equation (40), which constitutes the vector of rotation at which the
object proceeds rotating at time t. This requires the computation of wb(t) = ope(t) with equations (26)
and (27), which is the undisturbed vector of rotation for the remaining most direct path between orienta-
tion b and by, and the computation of various DCMs for transfc rmations between the b-, i-, qo-, q1-,
qo-, and g3-systems. It also requires the computation of the “ar gular distance” from b to by, a(t) with
equation (11). With a(t), the angle of disturbance v(t) is com;'uted with equation (28). The disturbed
vector of rotation is used to compute (1) with equation (21), v/hich in its turn, is used to compute the
rotational path, described by the quaternion gj_,p(t) by solving the differential equation of equation
(20).

13



It can be shown that the averaged rotational deviation from the most direct path, B, and the duration
of the rotation, normalized with respect to the duration of the most direct path, (ty — to)wg/oy, depend on
the parameters Vo, €, and 0¢ only, and are not affected by the initial orientation, the orientation of the
Euler axis, or the angle of the plane of disturbance, ¢4. Hence these values can be precomputed and
tabulated. For each set of v, €, and o, the rotational path is preexecuted twice: the first time to com-
pute the time interval (tr— to) and the second time, using this interval, to compute the averaged devia-
tion, B.

_Atrun time the relevant parameter for specifying the magnitude of distortion of the rotational path is
B rather than vg. Therefore, before starting the run, the value of vo for realizing the trajectory with
the specified B is computed by linear interpolation from the tabulated values. In order to verify that the
specified trajectory was executed, the actual rotational deviation [ is computed on line, and at the end
of the presentation of the rotational path, the averaged value is compared with the specified one.

4. CONCLUSION

This report has presented a systematic method for creating suboptimal rotational trajectories. Two
parameters of the distortion metric, vg and e, independently control the magnitude of the distortion and
its “shape” (i.e., how the distortion is distributed over the time course of the trajectory). These sys-
tematic disturbances can be introduced into a motion-control program to examine human observers’ sen-
sitivity to rotational trajectory optimality. In addition, this algorithm can be used in other applications
requiring systematic and reproducible disturbances of rotational trajectories.
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Figure 5. Definition of the qp-system.
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