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X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations _'hich have to be performed
with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25,am arc sec 1 corresponding to

focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be sol_ed by the use of

grazing incidence relay optics, We have developed a system which employs externally polished hyperboloid-hyperboloid surfaces to
be used in conjunction with a Wolter-.Schwarzschild primary, The secondary is located in front of the primary focus and provides a

magnification of 4, while the system has a plate scale of 28 ,am arc sec t and a length of 1.9 m. The design, tolerance specification,

fabrication and performance at visible and X-ra> wavelengths of this optical system are described.

i. Introduction

Our understanding of the physical conditions exist-

ing in the solar corona and in particular of the impor-

tance of the interaction between the coronal gas and the

solar magnetic field has increased rapidly during the

past decade. This is a direct result of the technical

achievements in the fabrication of grazing incidence

optics which have enabled the spatial structures of the

corona to be imaged at high resolution in soft X-rays.

The visual identification of a diverse population of

coronal structures has provided both a new framework

for the reformulation of the more classical concepts of

solar physics and an incentive for new ideas, Since

many of the theoretical descriptions describe processes

which occur over very small spatial scales, future ad-

vances will depend on the acquisition of even higher
resolution observations.

In practice resolution is a function both of the intrin-

sic resolution of the optical system and the relationship

of the size of the image to that of the detector pixel. In

the past even images recorded on photographic emul-

sions have been detector limited [1] and the situation is
much worse when solid state detectors are used. How-

ever, for space instruments, electronic imagery has

several advantages over film. It provides better temporal

resolution, it is easier to calibrate, and instrument re-

covery is not required. These are strong incentives for

the development of electronic imaging systems and new

techniques for improving resolution must be found.

When a system is limited by the detector, the two

factors that affect the system angular resolution are the

instrument's focal length and the dimensions of the

* Present address: Itek Optical Systems Division. l_exinglon,
Massachusetts 02173, USA

0167-5087/8,1/$03.00 Elsevier Science Publishers B.V.

(North-Holland Physics Publishing I)ivisionl

detector pixel. Although considerable efforts are being

made to improve the latter, which will undoubtedly

prove fruitful, they are unlikely to surpass the perfor-

mance of photographic film. Therefore, it is essential to

simultaneously explore the alternative of increasing the

focal length of the X-ray telescope.

As a numerical example, if we baseline the pixel

dimensions at 25 ttm, the focal length required to sub-

tend an angle of 1 arc sec across a pixel is in excess of 5

m. Even this modest goal, which corresponds to a

system resolution of order 2.8 arc sec (where we have

defined the system resolution as 2_/c2 pixel size), results

in an instrument size which is sufficiently large to make

it impractical for any but major programs. In normal

incidence systems the solution to this problem would be

to use secondary optics to increase the effective focal

length by magnifying the primary image. Until recently

this approach had not been followed for X-ray imaging

because of the difficulties anticipated in the figuring of

small grazing incidence optical elements and in the loss

of signal to noise associated with the increased scatter-

ing from four reflections instead of the customary two,

However, recent advances in fabrication technology, in

particular in the in-process metrology and in the pre-

paration of low-scatter surfaces, have made their de-

velopment realistic. Consequently, under NASA spon-

sorship, we have designed a grazing incidence magnifier

to be used in conjunction with an existing grazing

incidence primarily to be used for solar studies.

1.1. Design considerations

Two distinct designs [21 for the magnifier are possi-

ble. Their principle of operation is shown in fig. ! in

which the focal distances are based on using an existing

primary and a secondary magnification of 4. In the first
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Fig. 1. Diagrams of the two possible designs for secondary grazing incidence optics. The dimensions refer to systems based on an

existing primary mirror and a magnification of 4.

design the secondary optic acts as a microscope and is

located behind the primary focal plane. It is known as a

converging magnifier and has internally reflecting hy-

perboloid and ellipsoid surfaces. Alternatively the mir-

ror can be placed in front of the focal plane where it

acts as a Barlow lens. This configuration is known as a

diverging magnifier and the mirror has externally re-

flecting hyperboloid-hyperboloid surfaces.

In both cases a considerable reduction in system

length required for a given plate scale is achieved, the

examples shown being roughly one third of the single

mirror equivalent. In the present program, this parame-

Table 1

General properties of the X-ray mirrors

ter is of critical importance as the telescope will be

flown as a sounding rocket payload. Of the two designs,

for a given object distance and magnification, the di-

verging magnifier is the shorter and was selected. An

additional benefit of this design is that the primary

focused X-rays are bent through a smaller angle to

reach the secondary focus, thus minimiz;ng reflection

losses and maximizing collecting area. In principle the

design is fixed by choosing the magnification and the

object distance. In practice increasing magnification

lowers the system's speed, and increasing object dis-

tance, for a given magnification, lengthens the overall

21
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Figure
Material

Principal diameter

Focal length
Geometrical area

On-axis

3 arc min

Plate scale

Field of view

Resolving power

(X-ray)

Wolter-Schwarzschild

fused silica

30.48 cm

144.9 cm

41.5 cm 2

41.1 cm 2

7.0 _tm (arc sec)- i

60 × 60 (arc min) 2

1 arc see

hyperboloid-hyperboloid

nickel coated beryllium
3.15 cm

- 19.4 cm

20.2 cm 2

2.7 cm 2

28.1 ,am (arc sec)- ]

5 x 5 (arc min) 2

1 arc sec
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instrument and also increases the physical size of the

polished area and a compromise has to be made. We

chose a magnification of 4 which provides a plate scale

of 28 gm arc sec-_ while retaining reasonable exposure

times. The object distance, which is the separation be-

tween the principal plane of the diverging magnifier and

the primary focus, is 14.55 cm. This leads to an overall

length for the imaging system of 189 cm which is within

the 2 m limit established for the experiment. The gen-

eral properties of the primary and secondary mirrors are
summarized for reference in table 1.

2. Specification and fabrication

The equations for the external mirror surfaces of the

diverging magnifier are:

1st Hyperboloid:

(_+c) 2 x2
1,

c 2 _ b 2 b 2

2nd Hyperboloid:

(_+2c+I) 2 _,

f2 -- e2 e2

where c=1.726981, b=0.147002, e=0.293203, f=
6.870371.

The constants are defined in fig. 2, which shows the

geometrical properties of the surfaces and their relation

to the primary mirror. The first hyperboloid is located

so that one of its foci is co-spatial with the focus of the

primary mirror. Its second focus is confocal with the

first focus of the second hyperboloid. The second focus

of this last surface forms, in turn, the secondary focus of

the telescope. Since hyperboloids have two loci, small

deviations from the design surface can be compensated

for by axial displacements with no drawbacks other

than a slight change in the overall focal length.

The mirror is fabricated, in two pieces, from optical

grade beryllium. The reflective surfaces are electroless

nickel which is applied to a depth of 0.13 mm over all

the surfaces of the two elements. Each section is sep-

arately mounted to a central plate made of high-strength

stainless steel. It is supported by four fingers which

together intercept less than 3% of the open aperture.

The steel chosen, 17-4PH, heat treated to condition

HlI50, provides a very close thermal match to the

beryllium, which is essential to avoid radial distortions

of the mirror surfaces under changing temperature con-
ditions.

Although the primary mirror is made of uncoated

fused quartz, there appear to be no scientific reasons for

expecting the dissimilar surfaces to adversely affect

performance. It will of course modify the passband of

the instrument. The choice was made primarily for

practical (e.g. cost, manufacturing capabilities of the

local area) rather than scientific considerations. On the

positive side it results in a lighter optic which allows the

supporting fingers to be made narrower than would
otherwise have been the case.

The dimensions of the pieces are shown in table 2,
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Fig. 2. The geometric relationships for hyperboloid-hyperboloid external surface mirrors.
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Table 2

Secondary mirror demensions (Note: dimensions are in inches).

Diameter at front of 1st hyperboloid 1.40804

Diameter at rear of 1st hyperboloid 1.24878

Calculated diameter at mid-plane 1.24000

Diameter at front of 2rid hyperboloid 1.23527

Diameter at rear of 2nd hyperboloid 1.16433
Length of 1st hyperboloid 0.91006

Length of 2nd hyperboloid 0.74605

Gap for center plate 0.10000

and the tolerances placed on the reflecting surfaces are

shown in table 3. The most demanding tolerances that

must be met during the fabrication of the mirror are the

roundness of the elements and the deviation of the local

slope from that predicted by the design curve. The

principal roundness criterion is the variation in the

difference between the forward and aft radii of each

piece as a function of azimuth. This tolerance is referred

to as A(AR) and for this mirror has to be less than 1.5

p,m. This is a tighter specification than usual for grazing

incidence mirrors and is a consequence of their small
size. However, the tolerance was met in the fabrication

of an X-ray microscope [3] which had similar di-

mensions, and depends on the precision of the turning

machine, for which this is not an unreasonable require-

ment. The axial slope error is 0.05 jam per cm. Achieve-

ment of this tolerance depends more on the sensitivity

of the in-process metrology than on the figuring tech-

niques. Recent improvements using laser scanning

instruments make this possible. A typical observation,

after reduction, is shown in fig. 3. The observations are

repeatable and demonstrate the ability to measure the

surface at the nanometer level.

Fabrication [4] of the secondary mirrors takes place

in the following steps. First, the selected beryllium

blanks are diamond turned to the approximate dimen-

sions of the mirror elements. Since the polished area is

relatively small, roll over at the ends will have a major

negative effect. Therefore the blanks are turned and

Table 3

Mirror tolerances (Note: tolerances are in inches).

Optical tolerance Specification

Out ofroundnessAR = (Rma x - Rmin) 40×10 -6

200×10 -6

A(AR) 6x 10 -6

Sagittal depth 3 x 10-6

.4 slope per axial length of one inch 5 X 10 -6

Surface finish rms roughness < 10 ,A

Performance tolerance
Resolution 2 arc sec with a

one arc sec design goal
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Fig. 3. Analyzed data recorded during acceptance testing of an
X-ray microscope [5]. In practice the data are continuous and

deviations from the true surface of 1.0 nm or less are easily
detectable.

lapped with removeable end pieces in place. The ma-

chined blanks are nickel plated and the surfaces are

again diamond turned, lapped and the surface profile

measured in-situ. The work is being performed in a

modified Random [5] machine utilizing linear, air bear-

ing slides to define tangents to the best fit circle. This

circle is used to guide the lathe head which holds the

mirror during turning and lapping. The radii of curva-

ture, which in our case are on the order of 40 m, are

determined with an accuracy of + 2 cm and the location

of the center of curvature with respect to the surface is

known to be better than 1 part in 4000.

The in-process metroiogy uses a laser beam which is

scanned over the surface in a controlled way and the

local slope is determined from the reflected beam using

a position-sensitive detector. The difference between the

slope of the required surface and the best fit circle is

corrected optically before display and the signal can

also be integrated electronically to obtain the sagittal

depth as a function of position. Once a satisfactory

surface has been obtained the end pieces are removed

from the finished mirror and the radial dimensions

measured. Finally, the surfaces are superpolished to

provide a low-scatter finish.

3. Expected pedormance

The design was based on optimizing the resolution

and effective collecting area of the secondary mirror

which are the most important performance parameters.

Resolution depends strongly on off-axis angle, and col-

lecting area is, in addition, a function of wavelength.

The results of ray-tracing calculations are shown in figs.

4 and 5. NOTE: Resolution is defined in this case as the

rms blur cirlce radius which in general underestimates

the practical resolution except for on-axis rays.

Our ray tracing indicated that a trade-off had to be

made between effective area, resolution and field of

view. The design goal was to keep the rms blur circle

!. X-RAY OPTICS
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Fig. 4, The dependence of the effective area and Ibe rms blur

circle radius of the combined mirror system on the deviation

from the optical axis of the incident ray.

I00.

radius below one arc second. This criterion limits the

field of view to about 1 arc rain. From fig. 4 it can be

seen that even this restricted field is vignetted around

the perimeter. The vignetting results in part from our

choice of element length, for not all the primary rays

which can contribute to the image are refocused. How-

ever, the rays that are missed are in fact poorly focused

by the secondary mirror. Therefore, increasing the ele-

ment length to catch these rays, although increasing the

off-axis area, does so only at the expense of greatly

increasing the blur circle radius. We have chosen to

deliberately sacrifice some collecting area and accept

the vignetting in order to maintain the highest image

quality.

Alternatively, the field of view could be defined at

the position where the effective area has dropped to

one-tenth of its maximum value. This occurs a little

beyond 3 arc min from the central axis. In practice solar

active regions, which will typically be the target for this

instrument, occupy areas of order (5 × 5) arc rain2; and

the vignetting at the edge of the field of view will be

about 80%. It remains to be seen how severe an impact

this will have on the observations. However, since re-

cording and display will be performed electronically, if

the system is properly calibrated, it should be possible

to remove the effect of the vignetting during display

processing. The field of view has to be matched to the

physical size of the detector. At the secondary focus, an

angular displacement of 5 arc min corresponds to 0.84

cm which provides a reasonable fit to typical CCDs

suitable for use in the soft X-ray region.

The on-axis effective area of the combined system is

approximately 20 cm 2 which is approximately 50% of

the primary alone. Th_s is a result of the combination of

reflection losses and the limit set on the element lengths

10.
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Fig. 5. The wavelength dependence of the effective area for

on-axis (0 = 0 °) and off-axis (0 = 1 arc rain) rays.

by the resolution criterion. The increase in image size

reduces the secondary image brightness by a further

factor of 16; therefore, the brightness at the center of

the secondary image will be reduced by a factor of 30

from the brightness of the same feature viewed in the

primary image. Since imaging bright solar features on

photographic emulsions requires exposure times of 1-3

s at the primary focus, exposure times up 100 s will be

required at the secondary focus. Although this is possi-

ble, the temporal resolution would be poor and it is

obvious that secondary optics and solid state detectors

make natural partners. The increased sensitivity to soft

X-rays of the latter, which is on the order of 1000, will

allow exposure times of less than one second at the

secondary focus. In this situation, time resolution is

more likely to be limited by the data handling capability

of the telemetry system than by the sensitivity of the

detector.

4. Program status

Although it had been expected that the secondary

optic would have been completed by the time of this

workshop, this has not been the case. At this time

turning and polishing of the first hyperbo[oid has just

started. All the procedures that will be used have been

tested on an aluminum blank and we have a high degree

of confidence that the finished optic will meet our

specifications.

Upon completion of the first hyperboloid the metrol-

ogy will be reviewed and the surface of thc second
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hyperboloid recalculated if necessary. Following final

assembly the spatial resolution of the optic will be

tested in visible light using a USAF 1951 resolution

target placed at the focus of a converging beam with an

f-number of 4.6 and 97% occulted, the acceptance crite-

rion at this stage is 2 arc sec resolution with 1 arc sec as

a design goal,

Upon acceptance the optics performance will be

tested in both visible light and X-rays in conjunction

with the primary. Since the alignment of the two mirrors

will be critical, we have designed a special alignment

and holding mechanism which will be used for both

flight and ground testing. The mechanism permits inde-

pendent translation along three orthogonal axes to-

gether with rotations in pitch and yaw. Adjustment in

increments of 2.54 p,m is possible along the optical axis,

in increments of 25 p,m along the two orthogonal axes
and of 1 arc sec about the two axes of rotation.

X-ray testing will be performed in AS&E's recently

extended 100 m vacuum facility. Parameters measured

will include spatial resolution, collecting area and point

response function, both on- and off-axis and at several

wavelengths including as a minimum 8.3 and 44 A,.

The revised delivery schedule has the optics being

delivered in August 1983. The complete testing program

will take a further six months. The results of these tests

will be reported in a subsequent paper.

It is a pleasure to acknowledge the help of the staff

of the Applied Optics Center where the secondary optic

is being fabricated. We would also like to thank Alan

DeCew who has contributed to the fabrication proce-
dures.

The work is being performed under NASA contract
NAS5-25496.
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Abstract. We compare simultaneous high resolution soft X-ray and 6 cm images of the decay phase of an

M3 X-ray flare in Hale Region 16413. The photographic X-ray images were obtained on an AS & E

sounding rocket flown 7 November, 1979, and the 6 cm observations were made with the VLA. The X-ray

images were converted to arrays of line-of-sight emission integrals and average temperature throughout the

region. The X-ray flare structure consisted of a large loop system of length ~ 1.3 arc min and average

temperature ~ 8 x 106 K. The peak 6 cm emission appeared to come from a region below the X-ray loop.

The predicted 6 cm flux due to thermal bremsstrahlung calculated on the basis ofthe X-ray parameters along

the loop was about an order of magnitude less than observed. We model the loop geometry to examine the

expected gyroresonance absorption along the loop. We find that thermal gyroresonance emission requiring

rather large azimuthal or radial field components, or nonthermal gyrosynchrotron emission involving

continual acceleration of electrons can explain the observations. However, we cannot choose between these

possibilities because of our poor knowledge of the loop magnetic field.

1. Introduction

Recently advances have been made in mapping the microwave emission of both the

flaring (Kundu and Vlahos, 1982) and the quiet (Kundu, 1982) Sun with high temporal

and spatial resolution. While gyrosynchrotron emission from nonthermal electrons

appears to be the obvious radiation mechanism for the flaring case, thermal mechanisms

involving bremsstrahlung and gyroresonance emission at harmonics of the gyro-

frequency are the best candidates in the non-flaring case. In the latter case the

gyroresonance absorption process has been invoked for strong sunspot-associated

magnetic fields and bremsstrahlung for the plage regions of weaker fields (Kundu et al.,

1977; Alissandrakis etal., 1980; Felli etal., 1981).

The combination of simultaneous X-ray observations and microwave maps has

constrained the range of possible microwave emission mechanisms by allowing a
2 dl,determination of the electron thermal temperature Te, linear emission integral S n,

and, perhaps, electron density ne, independently of the microwave observations. Some

observers (Chiuderi-Drago et aL, 1982; Langet aL, 1983; Shibasaki et aL, 1983) have

found good agreement between the combined X-ray and microwave observations and

the accepted radiation mechanisms for quiescent active region features. Others (Webb

et al., 1983; Schmahl et aI., 1982) have found some significant differences between the

detailed locations of the active region X-ray and microwave sources. In cases of high

Solar Physics 92 (1984) 271-281. 0038-0938/84/0922-0271501,65.
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microwave brightness temperature, Tb, but low X-ray brightness, thermal brems-

strahlung is not a viable microwave emission mechanism, and gyroresonance absorption

theory may require unrealistically large magnetic fields.

An interesting long-lasting burst on 19 May, 1979 was mapped at 20 cm by Velusamy

and Kundu (1981). The 20 cm emission occurred in three looplike structures and was

interpreted as either thermal gyroradiation or as nonthermal gyrosynchrotron emission.

Subsequent comparison of these maps with soft X-ray images from the P78-1 satellite

revealed that only one of the three 20 cm sources coincided with an X-ray source,

leading Schmahl et al. (1983) to favor the nonthermal interpretation. The observations
discussed here are similar to that event in that we have simultaneous 6 cm microwave

maps and soft X-ray images during the decay of an M3/IB flare on 7 November, 1979.

We find that the region of peak 6 cm emission is not spatially coincident with the bright

soft X-ray loop responsible for the bulk of the X-ray emission. The mechanism of the

6 cm radiation emitted by the X-ray loop is discussed in detail using gyroresonance

absorption theory and a simple model of the loop magnetic field.

2. Observations and Data Analysis

2.1. SOFT X-RAY DATA

The American Science and Engineering (AS & E)rocket flight of 7 November, 1979 was

the first of two flights to observe the X-ray Sun at solar maximum. The grazing incidence

X-ray telescope payload included a Woiter-Schwarzchild fused quartz mirror and four

different filters. Full-disk images with a spatial resolution of approximately 2 arc sec

were obtained on Kodak SO-212 film between 20:51 and 20:56 UT.

The brightest feature of these images was a flare loop in Hale Region 16413. For our

quantitative analysis of this loop we used two adjacent exposures through a 1/2 rail

beryllium filter and similar exposures through a 1 micron aluminized polypropylene

filter, both obtained at about 20 : 52 UT. The images were converted to arrays Of film

density with pixels of size 2.8 arc see square. The analytic procedure given in Vaiana

et al. (1977) for conversion of film density to effective temperature and linear emission

integral was followed closely. Calibrations of film density to energy flux and point spread

functions at 8.3 _, and 44/_ were used in the analysis of the beryllium and polypropylene

images, respectively. The deconvolved energy flux density image obtained with the

polypropylene filter is shown in Figure 1. Arrays of 4 x 4 pixel averages (11.4 arc sec

square) were used to obtain maps of effective temperatures and linear emission integrals

at points along the loop.

2.2. MICROWAVE DATA

The radio observations were made of Hale Region 16413 at 6 cm with the Very Large

Array (VLA) of the National Radio Astronomy Observatory between 19 : 50 and 20 : 37

and then 20 : 50 and 21 : 18 UT. Seventeen antennas were available during the observa-

tions, providing good u - o coverage. The system was sensitive to structures smaller

than 3 arc min because the shortest spacing used for these maps was 1200 2.
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Fig. I. (a) Deconvolved soft X-ray image of flaring loops in Hale plage region 16413 at 20:52 UT on

7 November, 1979. The original image was obtained on SO-212 film through a 1 micron polypropylene filter

with a passband of 8-39, 44-64 A. (b) Axis of the X-ray loop with every 15 ° positions of angle _tindicated.

6 cm brightness temperature contours are superimposed. The temperature of the lowest contour is 106 K

with successively higher contours separated by levels of l06 K. The radio map is an integration over

20:50-20:55 UT. The 6cm beam resolution is shown; the long axis lies along celestial N-S.

(c) Simultaneous Ha image from the Holloman SOON station. (d) KPNO magnetogram at 19 : 18 UT with

the superimposed 6 cm contours. All images are aligned to within ~ 10 arc sec.

Synthesized maps of total intensity were obtained of a field of view of 7.2 x 7.2 arc min

with a synthesized beam of 19 arc sec by 15 arc sec. The observing procedure, calibra-

tion, and cleaning methods were similar to those discussed by Kundu and Velusamy
(1980).
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2.3. CHROMOSPHERIC AND PHOTOSPHERIC DATA

Hale Region 16413 was a new active region first observed near the east limb at S 15 on

3 November. Over the next several days the plage grew in area and intensity, reaching

an area of 5000 millionths of a solar hemisphere on 7 November (Solar-Geophysical

Data, 1980). Over this same period, the magnetic configuration became more complex;

on 7 November it was a bipolar group with a delta configuration and peak fields

exceeding 2000 G. This region was the brightest feature on the Sun in the 2.0 cm

La Posta daily map.

A 1B Hot flare occurred in region 16413 at S 13 E22 beginning at approximately

20 : 00 UT with a maximum at ~ 20 : 34 UT. The associated GOES 1-8 A X-ray flare

reached a peak flux density of 3 x 10-5 W m-2 (M3) at about the same time. By

20:52 UT, the time of the observations reported here, the 1-8 J_ flux density had

declined to l x 10 -5 W m -2 (M1). The 2.8 GHz Ottawa burst reported for this event

was a gradual rise and fall burst with a peak flux of 14 sfu at 20 : 38 UT. The H_t image

from the Holloman Solar Optical Observatory Network (SOON) station is shown in

Figure I along with the Kitt Peak National Observatory (KPNO) magnetogram

obtained that day. The position of the Hot image and magnetogram relative to the 6 cm

map was found by converting the solar positions of the sunspots to celestial coordinates

and matching those with the radio map. The X-ray, H_t, and magnetogram images were

aligned using sunspots as an intermediary. The resulting H_t and X-ray images,

magnetogram, and radio map are all aligned to within about l0 arc sec.

2.4. COMPARISON OF THE X-RAY AND MICROWAVE DATA

The images of Figure 1 show that the peak of the 6 cm emission is displaced from the

X-ray loop by about 20 arc sec. It appears to be associated with a lower-lying compact

Ha flare region on the magnetic inversion line. The earlier radio maps near the peak of

the event also show that the centroid of the emitting region coincides with the peak of

Figure I. The peak 6 cm region appears to have no well defined X-ray counterpart

although the region is not devoid of X-ray emission. Unfortunately, lack of a well defined

X-ray structure has precluded a detailed analysis of that feature. Our interest here is in

using the plasma parameters deduced for the X-ray loop to determine the mechanism

of the 6 cm radiation from the loop. There are three generally accepted candidate

mechanisms: (1)thermal bremsstrahlung; (2)thermal gyroresonance emission; and

(3) nonthermal gyrosynchrotron emission.

The length of the X-ray loop is about 80 arc sec, measured linearly between the

footpoints while its diameter varies between ~ 35-45 arc sec, depending upon where it

is measured. The longest dimensions of the Hot flare regions at each footpoint of the loop

are ~ 35-45 arc sec. Since these are in agreement with the X-ray observations, we have

used an average diameter of 40 arc sec. The temperature distribution of the X-ray loop

is confined to the narrow range Te _ 6.5-8.5 x 106 K. The temperature of the top of

the loop averaged over an area 57 arc sec along the loop by 34 arc sec across the loop

is 7", = 8.2 _+0.2 x 106 K and for the larger region of 120 arc sec by 80 arc sec, encore-



6 CM EMISSION FROM A FLARING X-RAY LOOP 275

passing the entire loop and surrounding area, is T_ = 7.6 +_0.3 × 106 K. The peak linear

emission integral along the line of sight near the axis of the loop is

S n2 dl = 1.4 × 1029 cm- 5. For a loop thickness of 1 = 40 arc sec _ 3 × 109 cm,

ne = 7 × 109 cm- 3

TO estimate the importance of thermal bremsstrahlung to the radio emission, we first

calculate the optical depth at 6 cm using the derived X-ray parameters in the equation

from Kundu (1965),

O. 16 /" 2

?x ,_2 T3/2 ne) dl, (1)

2 dl 1.4 × 1029 cm- 5where v is the frequency of the radio observations. For S n_ =

v=5.0GHz, and a lower limit of Te=6× 106K, we get an upper limit of

% = 6.1 x 10 -2. Therefore, for these conditions the corona is optically thin and

Tb = zxT e = 3.7 × 105 K. This value is about an order of magnitude less than the

observed values along the loop. Thermal bremsstrahlung may therefore make a small

contribution to the observed Tb, but it cannot be the dominant emitting mechanism.
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Fig. 2. Loop electron densities and thermal temperatures required to achieve an optical depth of unity in

the extraordinary modes of the s = 3, 4, and 5 resonant harmonics of the gyrofrequency. The assumed

frequency is 5.0 GHz (6 cm) and the e-folding length of the magnetic field magnitude is 109 cm. The optical

depth scales linearly with both this length and with n,, being less than unity to the left and greater than unity

to the right of each curve. Dashed and solid lines show unity optical depths for values of 8, the angle between

the magnetic field and the line of sight, equal to 30 ° and 60 ° . The magnetic field intensities required for

each harmonic are 600 G for s = 3,450 G for s = 4, and 360 G for s = 5. Vertical line indicates the density

corresponding to the plasma frequency of 5.0 GHz, to the right of which wave propagation does not occur.

The shaded oval corresponds to the range of X-ray loop parameters deduced for the 7 November, 1979 flare.

After Kundu etaL (1980).
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Another obvious candidate for the 6 cm emission mechanism is thermal emission due

to the enhanced absorption at low harmonics of the gyrofrequency vH. Following Kundu

et al. (1980), we show in Figure 2 the loop densities and temperatures required to achieve

an optical depth of _ = 1. We assume, as they did, an e-folding length of 109 cm for the

magnetic field scale length. For the density and temperature range characteristic of the

X-ray loop (shown by the shaded oval) we see that only the fourth and fifth (s -- 4, 5)

harmonics are viable emission mechanism candidates to produce z< 1. These

harmonics require magnetic fields of 450 and 360 G, respectively, which do not seem

unreasonable in view of the fact that the loop footpoints are in the vicinity of the strong

spot fields of the active region.

The optical depth due to gyroresonance absorption is a strong function of 0, the angle

between the magnetic field direction and the line of sight. Using the expression for the

absorption coefficient of the extraordinary mode and the e-folding thickness of the

resonance region of 109 cm given by Takakura and Scalise (1970) and by Kundu et al.

(1980), we have

--0.03o . -,
\moC_-Sj (sin0)2_-2(cl + c2 cos0) vnl (2)

where q_= 10.7 and 63.6 for s = 4 and 5, vH = s- _ x 5.0 GHz, I is the scale length of

the magnetic field, and ct and c2 are functions ofs and 0 given explicitly in Takakura

N

__ E 22 S 13 ._

./'/° /

E / ,o.\. . ./I . ®. /w

$

Fig. 3. Schematic model of the X-ray flare loop shown in Figure I(a). The flare center is taken as E 22 S 13

on the solar disk, but with the loop endpoints assumed to lie in an east-west direction. Curved line is the

semicircular loop axis projected onto the plane of the sky with crosses at every 15 ° increment of _, the angle

subtended to the axis of the loop by the arc length, increasing westward from the eastern footpoint. The

angle given at each cross is that of 0, the angle between the magnetic field direction and the line of sight.

The plane of the loop lies 32 ° south of the line of sight. A similar semicircular loop lying in a plane in the

local solar vertical is shown by the dots; this gave a poor match to the observed loop perspective and was

not used. Points with circles indicate positions where 0 = 90 ° for each loop. The outer line shows

approximate outline of loop edges for loop diameter of 40 arc sec or ~ 3 x 109 cm.
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and Scalise (1970). We can use Equation (2) to calculate zr_ for s = 4 or 5 at any part

of the loop by using the values of ne and Te derived from the X-ray observations,

assuming an I consistent with those observations, and knowing 0.

In order to find 0 at points along the axis of the loop, we have modelled the X-ray

loop as a simple semicircular structure as shown in projection in Figure 3. Since the flare

position was E 22, we assume a 22 ° angle between the line of sight and the meridional

plane bisecting the loop. The flare was 13 ° south of the solar equator, which places it

about 17° south of the Sun-Earth line. We assumed the loop plane to project radially

from Sun center and then calculated the shape of the projected loop axis shown by the

dots of Figure 3. The ratio of the projected loop height to the projected loop length was

far too small to match the values observed for the X-ray loop. A good match was

achieved by letting the plane of the loop be 32 ° south of the plane containing the

Earth-Sun line, which means the loop plane lay 15 _ south of the local solar vertical.

The angle a is defined by the eastern footpoint, the center of curvature of the loop and

the point of interest along the loop. Assuming the B field parallel to the loop axis, we

have calculated the corresponding values of 0 and rre S for 15 ° increments in _ and

plotted them in Figure 4. A value of l = 10 9 cm, about one third of the apparent loop

diameter derived from the X-ray measurement was used. The measured X-ray tempera-

ture was used at each point, and ne = 7 × 109 cm 3 was assumed for all points. It is

known (Kundu, 1965) that the quasi-longitudinal approximation used here is only valid

for sin 4 0 ,_ 4s z cos 20, which limits 0 to values less than ,,, 80 °. A substantial decrease

in r is expected at 0 > 80 °, the region between the dashed lines in Figure 4 (Holman,

private communication). With increasing _, 0 would become greater than 90 ° on the

west side ofthe loop, but we have assumed a polarization change and use 0 --- 180 ° - 0

for the extraordinary mode calculation in that region. The 6 cm polarization maps

obtained at the VLA were too noisy to be used as a test of this assumption.

The observed 6 cm optical depths along the loop axis derived from the radio brightness

temperature maps using Tb = T_ (I - e-_) are compared with the calculated gyro-

resonance optical depths in Figure 4. The s = 5 optical depths are in fair agreement with

the observed values for large angles near the loop top, and the s = 4 depths are in fair

agreement near the footpoints, but neither individual curve matches the relatively flat

distribution of • with 0over the entire loop. Qualitatively, it is conceivable that the loop

magnetic field intensity could be around 450 G at the footpoints, decreasing to around

360G at the top in just such a way that the sum of the s=4 and s=5

tunately, the photospheric magnetic field observations were severely degraded due to

poor observing conditions, so that no quantitative estimates of the magnetic field

intensity along the loop could be made. In addition, since the assumed value of l could

be in error by a factor of 3 or more, this scenario seems unlikely.

The comparisons of Figure 4 are further limited by our lack of detailed knowledge of

the topology of the loop magnetic field. If the ratio of the loop height to the distance

between footpoints is larger or smaller than assumed, the range of O will be somewhat

larger or smaller, respectively, than that shown in Figure 4. However, a lower assumed

loop height would require that the plane of the loop be inclined at more than 15 ° to the
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Fig. 4. Crosses and squares show optical depth z calculated for the fourth and fifth harmonics of the
gyrofrequency as a function of both _ and 0 for the loop model of Figure 3. The quasi-longitudinal
approximationis not valid for 0:_ 80°, the region between the dashed lines; a drop in z is expected there.
A density ofn¢ = 7 × 109cm- 3and a magnetic fieldscale length of/= 109cm was assumed for 5.0 GHz;
temperatureswere then calculated from X-ray measurements for each point along the loop, Filled circles
show the values of _rdeduced from the measured radio brightness temperatures at corresponding points

along the loop,

local solar vertical direction. Another possibility is that the loop field lines are helical,

rather than parallel to the loop axis. If so, a range of 0 would be associated with each

angle _t of Figure 4, resulting in a flatter distribution of z with 0. We calculate that an

angle of about 40 ° between an azimuthal field component B_ and the longitudinal

component B z, both assumed constant throughout the loop, will result in fair agreement

between the s = 5 curve and the observed values of z shown in Figure 4. For example,

in this case the values of z at 0 = 30 ° and 40 ° are 0.13 and 0.21, respectively, which

are only slightly lower than the observed values. Furthermore, the lack of any drop in
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T for 0 > 80 ° is also expected in this model. Because the observed loop is thick, with

L/a = 4, where a is the loop radius and L the loop length, the threshold for the external

kink instability (Spicer and Brown, 1981)

BZ_ln(L/a) > B 2 (3)

is not satisfied, and the loop is stable. A similar range of 0 might also result from a

spreading of the cross section of the loop with height, particularly near the footpoints.

Thus we see that the assumption of large azimuthal or radial field components can result

in much better agreement between the observed and calculated values of z than that

shown in Figure 4.

A final candidate to explain the optical depth of at least part of the loop is

gyrosynchrotron emission. Petrosian (1982) has modelled the gyrosynchrotron emission

expected from a flaring semicircular magnetic loop similar to our model shown in

Figure 3. For loops near the center of the solar disk his uniform trap model, in which

the magnetic field is nearly uniform and the electron pitch angle distribution isotropic,

yields maximum microwave emission near the loop top and a minimum at the

footpoints. In his nonuniform trap model, in which the magnetic field intensity decreases

rapidly with height and the pitch angle distribution is broadest at the footpoints, the

strongest emission arises from the footpoints. The uniform trap model was preferred to

account for the observations (cf., Kundu et al., 1982) of the impulsive phase peak flare

emission at the tops of loops, but in our case, if gyroresonance absorption from either

the s = 4 or s -- 5 harmonic is effective at the loop top as shown in Figure 4, the

nonuniform trap model better fits the data.

Any nonthermal electrons responsible for the 6 cm emission observed at 20 : 52 UT

cannot have been accelerated tens of minutes earlier near the flare maximum. Using the

equation of Kundu and Vlahos (1982) for the collisional deflection time of energetic

electrons,

_D = 2 X 10s E 3/2 (keV) n_- i s, (4)

we find that _D is only 30 s for the derived loop density and for E = 100 keV electrons.

Thus, the gyrosynchrotron explanation for the 6 cm emission from the X-ray loop

requires continuous or continual acceleration of electrons of E >_-I00 keV, the energy

range required for microwave gyrosynchrotron emission (Takakura, 1972).

3. Discussion and Conclusion

We have used the plasma parameters deduced from X-ray observations to infer the 6 cm

radiation mechanisms of the bright flare loop in its decay phase. The apparently simple

geometry of the X-ray loop has allowed us to test gyroresonance absorption theory using

a semicircular loop model to look for the strong dependence of _ on 0. Earlier studies

(e.g., Schmahl et aL, 1982) had invoked gyroresonance harmonics only as high as the

fourth (s = 4) to explain the 6 cm emission from active regions, but in our study the large

values of Te and ne combined with the low 6 cm values of z have made s = 5 harmonic
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emission a possibility. For a uniform axial field we find that no single gyroresonance

harmonic can account for the relatively flat distribution of _ vs 0, but an unlikely

combination of the s = 5 harmonic at the top of the loop and the s = 4 harmonic at the

loop footpoints is consistent with the observations. Magnetic fields in the range of 360

to 450 G are required for these harmonics. We also investigated the effect of non-parallel

field distributions on the gyroresonance model and find that azimuthal or radial field

components at an angle of about 40 ° to the axial field can explain the observations.

We also investigated qualitatively gyrosynchrotron emission from nonthermal

electrons to explain the 6 cm emission mechanism along at least the lower part of the

loop. Gyrosynchrotron emission as an alternative to thermal gyroradiation had earlier

been suggested by Velusamy and Kundu (1981) as the radiation mechanism for 20 cm

postflare loops they observed with the VLA. They used the >2.5 hr lifetime of the

observed burst to infer the loop magnetic field strength on the assumption that this

lifetime was the radiative decay time of mildly relativistic electrons. Their calculation

is valid, however, only if the radiative loss time is shorter than the collisional loss time,

which, in their case, requires ne < l0 s cm - 3. This condition is definitely not fulfilled in

our case, where ne ~ 7 x 109 cm- 3. Thus if the 6 cm emission is nonthermal, it must

be from newly accelerated electrons and not from electrons surviving from the earlier
flare maximum.

Nonthermal emission has also been suggested for some 6 cm quiescent active region

loops by Webb et al. (1983). In their case the 6 cm components were not associated with

any X-ray emission. The low temperatures and/or densities inferred from the X-ray

observations permitted only low harmonics (s -- 2 or 3) with their associated unrealistic-

ally large magnetic fields (900 or 600 G, respectively) as acceptable gyroresonance

absorption mechanisms. Schmahl et al. (1982), faced with essentially the same dilemma

in a similar study, suggested localized current systems to enhance the coronal magnetic

fields and retain the gyroresonance mechanism. In our case the fifth harmonic of

gyroresonance emission requires a field of only 360 G, which is not unreasonable in view

of the presumed strong fields of the flare region. We find that such thermal emission

can explain the observations over the whole loop only if there are rather large azimuthal

or radial field components. Alternatively, the gyrosynchrotron hypothesis can account,

at least in part, for the observations if a continuous supply of energetic electrons is

available. We conclude that one or a combination of these mechanisms is the likely

source of the microwave emission, but that we cannot choose among them because of

our poor knowledge of the loop magnetic field.

This lack of more detailed knowledge of the loop magnetic field intensity and

geometry has been a serious obstacle in our effort to assess the role of gyroresonance

emission as the 6 cm radiation mechanism. Although the X-ray loop was large, with

fairly uniform brightness and well determined longitudinal temperature and density

distributions, important assumptions about the shape and orientation of the loop and

the helicity and scale length of the magnetic field were required to calculate the

gyroresonance optical depth. We find that models based on either gyroresonance or

gyrosynchrotron mechanisms can be made to fit the observations by a suitable choice
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of poorly known parameters. Complete microwave polarization and multi-frequency

observations are required to better infer the coronal magnetic field. Future tests of

gyroresonance theory will benefit greatly from a combination of such high-resolution

microwave observations and X-ray and photospheric magnetogram images, and should

allow us to confirm or elimitate one of these mechanisms from consideration.
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Abstract. To study the formation and development of coronal holes, their association with X-ray bright

points has been investigated. The areal density of X-ray bright points was measured within the boundaries

of coronal holes and was found to increase linearly with time for each of the three, long-lived, equatorial

coronal holes of the Skylab era. Analysis of the data shows that the effect is not the result of global changes

in bright point number and is therefore a property of the restricted longitude region which contains the

coronal hole. The bright point density at the time of the hole's formation was also measured and, although

the result is more uncertain, was found to be similar to the bright point number over the solar surface. No

association was found between bright points and the rate of change of coronal hole area.

1. Introduction

Coronal holes are regions of exceptionally low density in the inner corona, which have

been observed at both soft X-ray and Hel 10830 A wavelengths for over a decade.

However, a definitive explanation of their formation and subsequent evolution is still

missing. For example, X-ray observations exist for the birth of only a single coronal hole

(Soiodyna et al., 1977). In this case the hole developed rapidly, i.e., in less than a day

and with a growth rate three times faster than the long term average of all holes; a result

which is consistent with the He l 10830 A, coronal hole observations (Harvey and

Sheeley, 1979). This behavior led Nolte et aL (1978a) to conclude that the conditions

for coronal hole development are built up over a longer period of time and the actual

birth is triggered by an event (or events) which leads to the rapid opening of field lines.

This hypothesis is supported by the observations of the photospheric magnetic field

beneath the hole which shows little if any change during the period of the hole's rapid

growth (Harvey and Sheeley, 1979).

The subsequent development of coronal holes has been linked to the process of

random walk diffusion, proposed by Leighton (1964) to explain the transport of surface

magnetic fields. This phenomenologieal description is known generically as the model

of locally unbalanced flux (Timothy et al., 1975; Bohlin, 1976; Bohlin and Sheeley,

1978; Broussard et aL, 1978). In it the flux from an emerging bipolar magnetic region

(BMR) reconnects to opposite but pre-existing flux in its immediate environment. The

reconnection results from the separation, through diffusion of the original BMR, and

leads to regions of a single polarity with field lines that are open rather than closed.

Observational support for the model was provided by the results of several studies

(Timothy etaL, 1975; Bohlin, 1977; Nolte etaL, 1978a)which measured the areal

growth and decay rates of coronal holes. They found that on average (dA/dt)_h is

Solar Physics 95 (1985) 73-82. 0038-0938/85,:0q51-0073501.50.
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approximately 1.5 x 10 4 km z s-_. In Leighton's (1964) model for the transport of

surface magnetic fields, this rate can be related to the diffusion coefficient, D, through

the equation (Mosher, 1977)

O =
1L2 1 (d_)4 t 4re

where L 2 is the mean square displacement over the time interval t. The coronal hole

measurements lead to a value for D of 1.2 x 103 km 2 s- l which, although somewhat

larger, is still consistent with Leighton's value of 800 km 2 s - I. However, Mosher (1977),

who repeated Leighton's analysis using more recent observations and analytical tech-

niques, concluded that the most probable value of D is of order 200 km 2 s - J and that

values as high as 1000 km2s-l can definitely be excluded. Thus the coronal hole

observations join the growing body of evidence, e.g., measurements of the supergranule

velocity fields (Worden and Simon, 1976) and the background and large-scale magnetic

fields (Stenflo, 1976; Howard and LaBonte, 1981 ; Topka et al., 1982) which cast doubt

on the general applicability of the random walk process to the transport of surface fields.

Sheeley and Harvey (1981) have interpreted their most recent He I 10830 ,_. observa-

tions of mid-latitude holes in terms of their diffusion and regeneration by the organizing

action of differential rotation. While their model still retains random walk diffusion as

the basic mechanism, apparent growth rates which differ from the canonical value can

be explained. However, differential rotation as an organizing force has obvious limi-

tations when applied to the equatorial coronal holes whose boundaries rotate rigidly

(Timothy et al., 1975; Wagner, 1975).

An alternative approach would be to supplement the Leighton mechanism by

adopting the suggestion of Marsh (1978). He showed that the interaction of ephemeral

regions (ER) with elements of the supergranulation network could increase the apparent

rate of magnetic diffusion, measured over large scales, by superposing large discrete

changes upon the random walk mechanism. The changes have the characteristic length

of the ER pole separation and by integrating over their observed size spectrum Marsh

obtained a value for D of 830 km 2 s - t. This is close to the value required to explain

coronal hole growth and therefore ERs might be expected to play a role in their

development.

Inspection of the X-ray images of the Skylab coronal holes (see, e.g., Zombeck et aL,

1978) suggests that coronal holes are formed with few X-ray bright points (XBP), the

X-ray analogue of an ephemeral region, within their boundaries but that their number

increases on successive appearances of the hole. To quantify this impression and to

amplify our knowledge of the formation and development of coronal holes, we have

sought answers to the following questions. (1) Is the evolution of coronal holes accom-

panied by an increase in the bright point areal density? (2) Do coronal holes form in

regions where the bright point areal density is enhanced? (3) Is the bright point areal

density related to changes in the growth and/or decay of coronal holes?
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2. Analysis and Results

X-ray bright points (XBPs) are tracers of the emergence patterns of small scale activity.

They are clearly identified, discrete sites of emerging magnetic flux with a relatively high

frequency of occurrence. They possess two other characteristics which are important

for a statistical study; namely, they are shortlived with a mean lifetime of 8 hr and they

possess a wide latitude distribution which is not restricted to the active region zone

(Golub et al., 1974). Although a more detailed analysis of the observations suggest that

their latitude distribution during the period of the Skylab studies was bimodal (Golub

et aL, 1975), the current study is restricted to the near-equatorial latitudes over which

their distribution is approximately flat. Consequently, it was not considered necessary

to correct for non-uniformities in the bright point latitude distribution and an equal

weight is attributed to the occurrence of an XBP anywhere within a coronal hole.

The coronal hole set used for the study is based on the Skylab atlas prepared by Nolte

et al. (1976). Six X-ray holes were identified. Of these two have been excluded from the

following analysis because they document only the final stages of the hole's existence.

The excluded holes are, in the standard nomenclature, CH5, which was observed only

during the first rotation, and CH3. The latter, although visible on three rotations,

appeared as a badly fragmented extension of the northern polar hole which is consistent

with its identification by Timothy et al. (1975), using Fexv observations, as the remnant

of a hole formed at least seven rotations before being observed from Skylab. Of the

remaining holes CH 1 also connects, at times, to the northern polar hole. When this
occurs the measurements have been restricted to latitudes below 40 N. The restriction

is designed to remove any influence that the northern polar hole, which was a continuous

but evolving feature during the Skylab period (Bohlin, 1977; Sheeley, 1980), may have

on the data.

To maximize the statistics of each XBP observation, the longest exposure (256 s)

through the long wavelength filter (3-32; 43-54 _x bandpass) was used to count the

bright points. In the following analysis these numbers will be compared with a global

bright point average based on the statistics of Golub etal. (1976) which reflect the

number of XBPs observed on a 4 s exposure. Different exposures are used because of

the difference in visibility of bright points when observed against backgrounds of either

the weakly emitting, large scale structure or emissionless, coronal holes. To remove any

bias introduced by the background, bright points are generally counted using an

exposure which is short enough to suppress the emission from the large scale structure

and which for the Skylab instrument was 4 s. This of course reduces the number of

XBPs which are observed and increases the statistical uncertainty in any single
observation.

In this study we are counting bright points only in coronal holes where the obscu-

ration is negligible and are therefore free to use the longest available exposure to
maximize the number of counts and minimize the statistical variations. When the two

data sets are compared the observations have been normalized following the procedure

of Golub etal. (1974). They demonstrated that as the exposure was lengthened the



76 JOHN M. DAVIS

number of XBP observed increased, asymptotically approaching a value ten times that

on a 4 s exposure at 256 s. This result suggests that all XBPs belong to the same size

distribution and that at the longest exposure all the bright points are being seen.

Therefore the numbers of bright points observed on the 256 s exposures should be the

total number. The numerical values of bright point areal density quoted in this paper

will always refer to this total number. When comparisons are made, the bright point

averages of Golub et al. (1976) have been normalized to correspond to the same total
number.

The simplest procedure for our study would be to straightforwardly count the numbers

of XBPs within each hole. However, since the area of each hole changes considerably

from one rotation to the next, we have instead determined the number of bright points

per unit area. This areal density has been obtained by measuring both the area of the

coronal hole and the average number of XBPs it contains at central meridian passage.

To improve the precision of the areal measurements an average coronal hole area was

derived from nine observations made at approximately 12-hr intervals between _+48 hr

of CMP, when suitable images were available. The bright point average was based on

five counts made over the same period but at 24 rather than 12-hr intervals to allow the

points in the earlier sample to decay below the visibility threshold. The longer interval

between observations is necessary because the bright point lifetime is a function of the

exposure and increases to 15 hr at 256 s. The 24-hr interval between bright point counts

was chosen as a compromise between the need to obtain as many measurements as

possible but to have the measurements statistically independent.

J¢

o_
'o_4.0

J

3.0
D.-

2.0
if)
I,-
Z

_ hO

I I I

CORONAL HOLE 1
MAY - OCTOBER 1973

I I I I

_ / \
BRIGHT POINT _ \_

DENSITY //

_ AREA/'4_t" "- ........e

2O

1So=
0

|

I0 ,,_

t I I 1 I I 1
1600 1601 1602 160:5 1604 1605 1606
- 151 178 206 233 260 287

CARRINGTONROTATIONAND DAYOF CMP
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shown by the broken line.
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Of the questions posed in the introduction, the first, namely, whether there exists an

increase in the bright point areal density within coronal holes as a function of time, is

most easily answered. CH 1 was investigated first and the results are shown in Figure 1.

The open circles show the bright point areal density measured at each central meridian

passage; the error bars represent only the statistical uncertainty in the number of points.

Over the six-month interval the bright point density shows a steady increase with no

apparent correlation with either the area of the hole, which varies considerably from

rotation to rotation (broken line), or its rate of change. A least squares fit to the XBP

data produces the solid line shown which has a correlation coefficient of 0.88.

Of the remaining holes in the data set, two, CH2, and CH4, last for more than 3

rotations. The same analysis was applied to these holes and produced similar results

(Figure 2 and 3). In all three cases as the hole evolves, the bright point areal density,

and therefore the rate of new flux emergence increases linearly, reaching several times

its initial value before the coronal hole loses its identity.

The initial density and rate of increase for the four measured holes are summarized

in Table I. The first observation of CH1 had a measured areal density of

1.6 × 10- _okm - 2. However, CH1 had existed for at least two rotations before it was

observed by Skylab (Bohlin, 1977). Using the least squares fit to extrapolate over these

two rotations, we obtain an estimated value of 1.16 x 10- 10 km - 2 for the initial density.

For CH6, which was the only hole to actually be observed forming on the disk, the initial

density, which is the highest of the four, is the average value measured over the first three

days of its existence.
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points have been corrected by subtracting the globally averaged density from the values measured within

the coronal hole.

TABLE I

X-ray bright point data

Coronal hole Bright point density XBP kin- 2 Rate of increase

identification XBP day - ] km - 2
Initial Global average

CHI* 1.16 x 10- to 0.90 x 10- to 1.14 x |0- t2

CH2 0.41 x 10 -I° 0.95 x 10 -l° 1.17 x 10 -12
CH4 1.43 x 10 -l° 1.14 x 10 -I° 1+67 x 10 -12
CH6 1.65 × 10-io 1.61 x 10-to _

Mean 1.16 + 0.54 x 10- ta 1.15 + 0.32 x 10- to 1.33 + 0.30 x 10- 12

* Values for CHI have been extrapolated back two rotations.

To determine whether holes form in regions which are characterized by an enhanced

bright point areal density, it is necessary to establish a global average for use as a baseline

against which the initial densities can be compared. During Skylab the number of bright

points on the Sun at any instant of time ranged from 400 + 90 to 1200 + 160 (Golub
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et al., 1976). The average is usually taken as 500 corresponding to an areal density of

8.3 x 10- z_ km- 2. However, the bright point statistics suggest an excess within the

equatorial latitudes (Golub et al., 1975). The excess is such that two thirds of the bright

points lie between +30 ° latitude. Consequently, an average areal density of

1.1 x 10- lo km 2is more appropriate for the region containing the equatorial coronal

holes.

To compare the data against a single global average is questionable because it makes

no allowance for the wide variation in the average bright point number over this period.

Therefore, we have attempted to construct a more realistic average which reflects the

temporal variation of the bright point density and allows one to assign a value to the

density existing at the actual time of the formation of the coronal hole. Since the

individual observations are restricted to a single hemisphere, the global average has been

calculated in the form of a 360-degree running mean using the data set of Golub et al.

(1976). They compiled averages of XBP observed between latitudes 30 ° N and 30: S

in 10 ° longitude intervals on 4 s exposures. The data have been normalized as described

earlier and a 36-point or 360 ° running average computed. The eight-month curve is

reproduced in Figure 4. Each point is centered on the position of the CMP of the

particular Carrington longitude interval and the data are displayed as number per unit

area so that they can be compared directly with the results from the earlier analyses.

It can be seen that the temporal variation is aperiodic with a magnitude ranging between

0.72 × 10 - _okm - 2 to 1.71 x 10 - _okm- 2. There are at least two distinct episodes of

enhanced bright point emergence; however, the central meridian passages of the coronal

holes appear to fall randomly across the distribution.

Comparison of the initial bright point density with the corresponding global average

(Table I) shows that they are essentially identical, and one concludes that there is no

evidence for coronal hole formation in regions where the small scale flux emergence is

either enhanced or reduced. This conclusion is based, however, on only four data points
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of which one point (CH 1) is based upon a linear extrapolation of the data. The validity

of this extrapolation is open to question, since the detailed behavior of the XBP

distribution prior to 28 May, 1973 is unknown, with one exception. The exception was

a rocket flight which occurred on 8 March, 1973 (Davis and Krieger, 1982) precisely

three rotations (81 days) before the first observed CMP of CH 1. The corresponding

global bright point density for this observation was 0.95 x 10 - to km - 2 which is similar

to the density observed at the start of the Skylab period. Therefore the data are

consistent with a constant level of XBP emergence over this period, which justifies the

use of the extrapolation.

Finally, by subtracting the global background evaluated at the time of the coronal

hole's CMP, a set of points are obtained which give the density excess above the global

average. These points can be used to repeat the evolutionary study of the areal density.

Apart from an offset, neither the corrected points nor the slopes of the fitted lines exhibit

any but minor differences when compared to the original data (Figure 3). This implies

that a global variation can be ruled out as being responsible for the steady increase in

bright point density found within coronal holes.

3. Conclusions

From a study of the association between X-ray bright points and coronal holes, a linear

relationship has been discovered between coronal hole evolution and the emergence of

small-scale magnetic flux. The relationship has the form of a steady growth in the

emergence of the small scale flux which is maintained throughout the hole's life and

reaches levels 3 to 4 times the global average before the hole disappears. Our analysis

has ruled out global variations in the bright point emergence patterns as an explanation

of this result, which imples that this is a local property of the longitude region which

contains the coronal hole. We also found that the initial appearance of coronal holes

with an apparent absence of bright points within their boundaries is misleading. Instead

the data indicate that coronal holes are born in regions where the XBP density is not

suppressed below the global average. In fact, the data show a very slight excess in the

rate at which the magnetic flux is emerging. The first result supports and extends the

work of Nolte etal. (1978b), who found that the number of XBP located near the

boundaries of coronal holes also increased as the hole aged.

In the introduction the need for modifying Leighton's model of random walk diffusion

in order to explain the rate of growth of coronal holes was described and Marsh's

hypothesis (1978) was identified as a candidate for this role. If his hypothesis is valid,

one would expect to find a relationship between bright point density and the rate of

change of coronal hole area. To test for the latter a comparison between the long term

average rate of change of coronal hole area, defined as the difference in area measured

on subsequent rotations, and the areal density was made. A scatter plot constructed

from the data from all the holes had a random appearance indicating the poor correlation

(r ~ - 0.3) between the two variables. Before dismissing Marsh's hypothesis we should

realize the limitations of the present study. Only time-averaged data have been used, and
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the averaging period is long compared to bright point life times. Although the use of

long-term averages for studying the rate of change of hole area was justified by Nolte

et aL (1978a), who found excellent agreement between short (~ 2 days) and long-term

rates of change, there may be subtleties which have been missed, for instance, perhaps

only bright points close to the boundary influence the growth rate. Unfortunately, the

present data are insufficient to test this hypothesis.

To summarize the answers to the three questions posed in the introduction, we have

found that the evolution of coronal holes is accompanied by a substantial increase in

the bright point density, but this increase is not related to the rates of growth or decay.

The statistical evidence provides only weak support for the formation of coronal holes

in regions of above normal bright point density. Where it is possible to study the

formation of a hole in detail, as in the case of CH6 (see Solodyna et al., 1977, Figure 3),

a bright point is present at, or close to, the birth of the hole. This could be a random

association, and since the subsequent changes in coronal hole area are not directly

coupled to the small-scale flux emergence, our observations suggest that the XBP acts

only as the catalyst which triggers the birth of the coronal hole within a larger region,

in which the conditions for hole formation have been preset by a systematic, widespread

mechanism (Frankenthal and Krieger, 1977; Nolte et al., 1978a).
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Abstract. We measured the average soft X-ray emission from coronal holes observed on images obtained

during AS & E rocket flights from 1974 to 1981. The variation of this emission over the solar cycle was then

compared with photospheric magnetic flux measurements within coronal holes over the same period. We

found that coronal hole soft X-ray emission could be detected and that this emission appeared to increase

with the rise of the sunspot cycle from activity minimum to maximum. Our quantitative results confirmed

previous suggestions that the coronal brightness contrast between holes and large-scale structure decreased

during this period of the cycle, Gas pressures at the hole base were estimated for assumed temperatures

and found to vary from about 0.03 dyne cm - 2 in 1974 to 0.35 dyne cm 2 in 1981. The increase in coronal

hole X-ray emission was accompanied by a similar trend in the surface magnetic flux of near-equatorial holes

between 1975 and 1980 (Harvey etal., 1982).

1. Introduction

Coronal holes were first and most easily identified in soft X-ray and XUV images as

regions of very low brightness in comparison to surrounding active regions or other

large-scale structures. They were first studied in detail during the Skylab period and their

observational characteristics at that phase of the solar cycle were well established. These

characteristics included nearly rigid rotation, large, low-latitude extensions of polar

holes, near-zero X-ray emission and a strong correlation between the low-latitude

portions of holes and high speed solar wind streams (Krieger et al., 1973; Nolte et al.,

1976; Zirker, 1977; Sheeley and Harvey, 1978, 1981). Also during this period a nearly

one-to-one association was established between coronal holes and regions of open field

lines derived from potential magnetic field calculations using observed photospheric

line-of-sight fields (Altschuler and Newkirk, 1969; Levine, 1977, 1982). However, it has

been suggested that these relationships are less clear during other parts of the cycle. For

instance, Levine (1977, 1982) showed that during Skylab and around solar maximum

open fields also emanate from active regions, and Nolte et al. (1977) and Sheeley and

Harvey (1978, 1981) showed that during solar minimum and the rise to maximum of

cycle 21 there were solar wind sources that could not be identified with low-latitude
coronal holes.

Since the Skylab mission, ground-based He I 10 830 A, images have been used (e.g.,

Sheeley and Harvey, 1978, 1981) for determining coronal hole positions and areas and

their relationships to solar wind speeds and geomagnetic activity indices. In addition,

rocket flights have provided us with high resolution, full-disk solar X-ray images at

Solar Physics 102 (1985) 177-190.
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approximately 18-month intervals. At AS & E these images have been used in a program

to study the evolutionary characteristics of coronal holes over the solar cycle, including

the degree of their correspondence to open field configurations. As part of this program,

Kahler et al. (1983) compared coronal hole boundaries determined from both AS & E

X-ray and Kitt Peak 10830 A images. During their study, they found what appeared

to be a decrease in the brightness contrast between the coronal holes and large-scale

coronal structure in the period after 1974. Such a 'weakening' of holes was also observed

in the 10830/_ data alone during 1976-1977 by Sheeley and Harvey (1978). Also,

Levine (1982) determined that the association between predicted open magnetic

structures and 10830 A, coronal holes was less clear after the Skylab period.

Finally, Harvey et aL (1982) found that low-latitude coronal holes contained three

times more flux near sunspot maximum than near minimum even though their areas were

comparable. Taken together, these results suggest that the distinction in terms of open

and closed fields between coronal holes and large-scale structure is not always as clear

as during the declining phase of solar cycle 20.

This paper describes the next phase of our program, the photometric analysis of the

soft X-ray energy flux from coronal holes from 1974 to 1981 and the comparison of this

flux with measurements of photospheric magnetic field strength. We have addressed two

questions: (1) In terms of apparently contradictory results using Skylab X-ray data, is

X-ray emission from coronal holes detectable above background, and if so does it vary

over the solar cycle? (2)Can a change in the plasma conditions within low-contrast

coronal holes explain the difference in visibility, and are these conditions in turn related

to the increased photospheric field strength found in the coronal holes of the new cycle ?

2. Observational Analysis

Our approach to this study involved three phases. First, we selected those X-ray images

which most clearly showed coronal holes for calibration and measurement of hole

emission. The minimum average energy flux within the coronal hole boundaries as

determined by Kahler et al. (1983) was measured and variations in this emission over

the solar cycle were examined. Second, the average magnetic field strength within the

same X-ray coronal hole boundaries was measured. Finally, the X-ray and magnetic flux

measurements were compared to each other and to the magnetic flux measurements of

Harvey etal. (1982).

2.1. CALIBRATION AND ANALYSIS OF THE X-RaY DATA

Since Skylab, full-disk soft X-ray images of the solar corona have been obtained on

seven AS&E rocket flights in 1974, 1976, 1978, 1979, and 1981. Kahler etaL (1983)

provided details on the dates, times, and instrumentation of the flights (except for

17 November, 1976). Images on these flights were obtained with two mirror systems,

a Kanigen metal mirror and a fused silica mirror. To minimize the relative uncertainties

between flights and the background from scattering effects, we restricted our analysis

to images obtained with the fused silica mirror and through aluminized polypropylene
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TABLE I

Selected X-ray images and magnetograms

179

X-ray images Time Carrington CR a Mt. Wilson Kitt Peak

(UT) rot. daily maps b synoptic maps

27 June, 1974 1948 1616 6 26 June; 1456 No

27 June; 1652

28 June; 1715

17 Nov., 1976 1827 1648 32 16 Nov.; 1659 No

17 Nov.; 2243

18 Nov.; 1751

31 Jan., 1978 1841 1664 16 31 Jan. Yes (gap)

1 Feb.; 1846

13 Feb., 1981 1916 1705 41 14 Feb.; 2326 Yes

a The interval in Carrington rotations betwen rocket observations. The 1974 observations occurred six

rotations after Skylab.

b Times are UT at the midpoint of the mapping interval.

TABLE I1

X-ray energy flux in coronal holes

Date Coronal hole PP exposure Average Net intensity

subareas time (s) PDS density (erg cm - : s - _)

27 June, 1974 Large hole: 19.7 21.6 + 1.2 2,2 + 0.8 × 10 3

center 59.2 32.6 _+ 2.2 2.1 +_0.7 × 10 - 3

Large hole: 19.7 19.5 _+0.8 1,7 + 1.3 × 10 3

northwest 59.2 27.8 + 1.9 1.4 + 0.5 × 10 3

North polar hole 19.7 21.0 + 2.1 2.1 + 1.6 × 10 3

59.2 30.3 _+4.1 1.8 + 1.2 × 10- 3

17 Nov., 1976 Equatorial 3.7 13.0 +_0.7 7.5 + 3.3 x l0 -3

extension of SPH 16.5 18.8 + 1.2 5.6 + 2.0 × 10-3

South polar hole 3.7 12.6 + 0.8 6.4 + 3.0 × 10 --_

North polar hole 16.5 17.4 +_ 1.1 4.6 + 1.7 x 10 -3

3.7 13.5 _ 0.8 8.3 + 3.8 × 10 -3

16.5 19.7 _+ 1.3 6.1 + 2.2 × 10 -3

31 Jan., 1978 Southwest hole: 2.6 18.6 + 0.9 1.7 _+0.9 × 10 _2

center 8.7 25.8 + 1.3 1.6 + 0.9 × 10 -_

Southwest hole: 2.6 18.1 + 1.0 1,6 + 0.8 × 10 e

limb 8.7 25.4 +_0.8 1,5 _+ 0.9 × 10 2

13 Feb., 1981 Southern hole: 2.8 24.3 +_ 1.4 1.5 + 1.2 × 10

limb 9.6 39.2 _+ 1.6 1.3 + 1.0 × 10

Southern hole: 2.8 26.6 + 1.7 1.8 + 1.3 × 10

center 9.6 41.8 +.+_1.5 1.5 +_ 1.2 × 10
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Fig. 3. Overall comparison of the magnetic field strength and X-ray flux of coronal holes from 1974 to 1981.

(a) Semi-log plot of magnetic field strengths from Kitt Peak synoptic maps within 10830 A coronal hole

boundaries from 1975 to 1980 (from Table I of Harvey et al., 1982). Points joined by vertical lines represent

measurements of different holes made during the same month. The crosses indicate the averaged Mr. Wilson

measurements for the X-ray equatorward holes (see text). (b) Semi-log plot to the same timescale as (a)

of the X-ray energy fluxes of the Skylab and rocket coronal holes listed in Table II. For each flight all of

the measurements have been averaged together and plotted as a single point. Each error bar is a simple

average of the measurement uncertainties for each flight.
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(PP) and beryllium (BE) filters. The passbands of the PP filters used in these flights are

similar to Filter 3 used with the Skylab S-054 instrument (Vaiana et aL, 1977) to study

coronal holes. Table I lists the dates, times, and Carrington rotations of the X-ray data

from the four rocket flights analyzed for this study*, and the dates and times of the

magnetogram data we used. Representative PP images from the four flights are shown

in Figure 1 and the X-ray coronal hole boundaries from Kahler etal. (1983) are

reproduced in Figure 2 to the same scale. The 17 November, 1976 boundaries, though

not included in their paper, were drawn by Kahler et al. during their analysis. Their 1976

and 1981 boundaries compare favorably with those determined independently by Nolte

et al. (1977) and Webb etal. (1984), respectively.

To determine coronal plasma parameters, the X-ray photographic density images

must be calibrated and reduced to arrays of energy flux deposited on the film plane.

Details of the reduction and calibration of the rocket images are discussed by Davis and

Webb (1985). Since the rocket images were obtained with the same film emulsion,

Eastman Kodak SO°212, used with the AS&E Skylab telescope, we followed the

general calibration procedures developed for the Skylab analysis (Vaiana et al., 1977).

Each flight image was scanned with AS & E's PDS microdensitometer to produce a

digitized density array with 20 micron pixels, equivalent to 2.8 arc sec spatial resolution.

Because of difficulties with laboratory calibration of the wavelength dependence of the

X-ray sensitivity of SO-212 film, we used a synthesized calibration procedure based on

the image data themselves (cf. Maxson and Vaiana, 1977) to provide absolute energy

calibrations for each flight. The uncertainties in the film calibration lead to relatively

large error ranges in the measured coronal hole energy fluxes. However, as we will show,

our results still provide meaningful limits on the cyclical dependence of energy flux from
coronal holes.

Subareas were chosen to encompass areas of minimum brightness in the holes and

are indicated on Figure 2 by the boxes labelled 'C'. These subareas were carefully

chosen to exclude regions of brighter diffuse emission and bright point-like features

within each hole boundary, and to be distant from active regions so as to minimize

scattering effects. Generally the average density and statistical error at at least two

subareas per hole and on two adjacent PP images was measured. The resulting average
X-ray intensities and uncertainties derived for the coronal hole subareas shown in

Figure 2 are listed in Table II.

In Figure 3(b) the X-ray coronal hole flux measurements are presented as a function

of time over nine years of solar cycles 20 and 21. The two 1973 points are averages of
the two sets of published Skylab X-ray measurements of the emission from coronal

holes. The first point is the average of six measurements of two areas in Coronal Hole 1

(CH 1) made in August 1973 using two low-density calibration methods (Maxson and

Vaiana, 1977). The second point is the average of three measurements of the emission

* Although small coronal holes were visible on the day of our rocket flight on 7 November, 1979 (see

Figure 4 in Webb et al., 1984), that data could not be used for this study because scattered radiation from

a flare precluded photometric measurements in faint areas.

w
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from CH 6 shortly after its birth on the disk in October 1973 (Solodyna et al., 1977).

From 1974 to 1981 the X-ray measurements for each rocket flight in Table II have been

averaged together and plotted as a single point. This procedure is justified because the

uncertainties of each point are larger than the variations of the intensities between

exposures or among the different coronal holes observed on each flight.

A clear trend in the X-ray emission is apparent. The coronal hole emission in 1973,

1974, and 1976 was similar and low, but rose to a maximum in 1981. Examining only

the rocket data, average coronal hole emission was lowest in June 1974, a factor of 3

higher in November 1976 near solar minimum, and a factor of 8 higher in January 1978.

The emission from the large southern hole in February 1981 near solar maximum was

an order of magnitude higher than in 1978, although with larger uncertainties due to the

film calibration and possible scattering problems.

We derived gas pressure from the average corona| hole X-ray intensities using the

technique developed by Kahler (1976). This method is applicable over the temperature

range where a single filter's response is temperature insensitive. Therefore, the method

is especially useful when the plasma temperature and density cannot be uniquely

determined, as in our case. For the fused silica mirror the pressure, in dyne cm 2, is

given by:

Pi2 = 3.49 x 10- 14li/L_c '

where I i is the focal plane intensity through filter i in erg cm - 2 s - i, L is the pathlength

in cm, and • is a function of the assumed filtered solar spectrum, corrected for film

speed, and T z. For L we assumed the constant density scale height of 6.5 x 109 cm

derived by Vaiana et al. (1973) for an X-ray coronal hole observed in 1970. Table III

presents the results for the PP images from each rocket flight under two temperature

assumptions. Column 2 shows the hole pressures for an assumed constant temperature

of 1.3 x 106 K, i.e., the barometric temperature for the 1970 coronal hole (Vaiana et al.,

1973). In column 4 are given the pressures derived using an average value of 7 over the

full temperature range over which the PP filter is temperature insensitive to within

+ 33_o (for the rocket PP filter this occurs from 0.7 to 5 x 106 K). Pressures derived

TABLE IJI

Derived coronal hole pressures _

Date P (1.3 × 106 K) b AP (above P ((_(T))) b AP (above

(dyn cm - z) 1974 level) (dyn cm - 2) 1974 level)

Skylab 0.050 1,8 0.029 - 0.081

(0.9 < T6 > 3.0)

1974 0.027 _+0.003 - 0.031 _+0,004 -

1976 0.054 + 0,003 2.0 0.063 _+0.003 2,0

1978 0.078 + 0.008 2.9 0.090 _+0,010 2,9

{981 0.310 +_0,068 ll.5 0.352 +_ 0.072 l{.3

a For an assumed density scale height of 6.5 × 109 cm.

b The uncertainties represent the ranges in pressures due only to the uncertainties in the film calibration.
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by Maxson and Vaiana for Skylab CH 1 are given as a reference. Shown in columns 3

and 5 are the ratios of the hole pressures with respect to 1974, showing a tenfold increase

between activity minimum and maximum.

2 d/ (Vaiana et al., 1977), from theWe also estimated the emission measure, _ ne

average coronal hole intensities. We assumed a constant Te = 1.3 x 106 K and derived

average emission measures ranging from about 4 x 1025 cm -5 in June 1974 to

5 × 1027 cm - 5 in February 1981. The values derived from the average hole intensities

for 1974, 1976, and 1978 are within a factor of 3 of the emission measure at 1.3 × 106 K

for CH 1 of 1.3 x 1026 cm-5 (Maxson and Vaiana, 1977).

Because coronal hole fluxes are very small, an understanding of the X-ray calibration

and reduction procedures is important. Of particular concern in X-ray measurements

are scattering effects arising from surface roughness of the mirrors, which can contribute

an important source of background 'noise'. Thus, our decision to make no corrections

for scattering in our analysis must be justified. In analyzing the Skylab data, Maxson

and Vaiana concluded that CH 1 had significant emission over background. They made

no corrections for scattering, claiming that such effects were minimized by choosing

subareas far from bright sources, and because CH 1 had a large area and cross sections

through the hole revealed flat-bottomed profiles inconsistent with scattering effects. To

the contrary, Solodyna et al. (1977) estimated significant scattering contributions from

individual sources and concluded that the CH 6 emission after its development 'was

consistent with zero within our assessment of the experimental uncertainties'. However,

unlike CH 1, CH 6 at the time of Solodyna et al.'s measurement was a very small hole

surrounded by large-scale structures (LSS) and active regions, and flaring occurred in

a limb region during some of the observations. Like Maxson and Vaiana we attempted

to minimize the effects of scattering by choosing subareas away from bright regions and

checking cross-sectional profiles through the holes. More importantly, we only used

rocket data obtained with the fused silica mirror, which has improved scattering

characteristics compared with the Skylab mirror (Davis et al., 1977). For instance, the

scattering is substantially reduced at shorter wavelengths and is nearly wavelength

TABLE IV

Contrast ratios:

diffuse coronal emission i coronal hole emission

Date Ratio

21 Aug., 1973 _ 8.4 + 1,2 b

27 June, 1974 11.1 +6.8

17 Nov., 1976 5,4 + 3.0

31 Jan., 1978 3,5 + 2.8

13 Feb., 1981 3.0 _+3.2

Skylab from Maxson and Vaiana (1977). The

ratio of the LSS emission from their region 'D'

divided by the emission from CH 1.
b The errors are the statistical errors of the ratios

of the uncertainties discussed in the text.
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independent. It must be emphasized that neither the Skylab nor rocket coronal hole

measurements include the effects of systematic errors which might arise from

uncertainties in the calibration data, including the wavelength dependence of film aging,

and the absolute source spectrum.

We measured average intensities of diffuse background coronal subareas as a means

of comparing the coronal hole flux variations with overall cyclical variations in coronal

plasma conditions and to cross-check the data from each rocket flight. These subareas,

labelled 'Q' in Figure 2, were chosen to include large-scale areas of minimal coronal

emission on the disk away from coronal holes, active regions and bright LS S. For each

image these subareas were averaged together and compared with the averaged coronal

hole fluxes plotted in Figure 3(b). Table IV shows for each date the coronal contrast

ratio between the diffuse emission and the coronal hole emission. This ratio decreased

from 1974 to 1981, thereby quantitatively confirming the previous suggestions from both

X-ray and 10830 A observations that the brightness fiontrast between holes and

large-scale structure decreased during the rise to solar activity maximum.

2.2. ANALYSIS OF THE PHOTOSPHERIC MAGNETIC FIELD STRENGTH DATA

In the next phase of the analysis we compared as a function of time the X-ray emission

and the photospheric magnetic flux density from the coronal holes, using the boundaries

determined by Kahler et al. (1983). For the magnetic field data we used daily averaged

magnetic flux maps from Mt. Wilson Observatory and Kitt Peak synoptic flux maps

constructed For each Carrington rotation (Harvey et al., 1980). Table I lists the dates

and times of the Mt. Wilson magnetograms. Kitt Peak data were not available for long

periods around the dates of the rocket flights in 1974 and 1976, and contained a

three-day gap centered on 31 January, 1978, the date of the third flight. However, the

Mt. Wilson daily maps were available on or within one day of each of the four rocket

flights analyzed. To check For day-to-day variations in the maps, we required maps on

the day of'the flight, the day before and the day after. However, For the 1978 flight only

maps on the day of the flight and the day after were available, and in 1981 only one map

was available on the day after the flight. Fortunately, good Kitt Peak data were obtained

For the 1981 period.

We obtained the Mt. Wilson data in the form of averaged pixels in Gauss integrated

over 34 x 34 equal intervals of sine longitude and sine latitude, therefore representing

large area averages of flux density. The magnetograph measures the longitudinal

component of the photospheric field in the 5250 _, line of Fel. Because of line

weakening, the values measured are on the order of a factor of two too low, although

the magnitude of this effect varies across the disk (Howard and Stenflo, 1972). Our

results were corrected For this effect and for Foreshortening as described below.

We obtained the Kitt Peak synoptic maps in the form of digitized equal-area pixels

in Gauss of one degree longitude by (1/90) unit of sine latitude of the mean field strength.

The data were obtained with the 512-channel magnetograph which measures the

longitudinal field in the 8688/_ line of Fel and requires no correction outside of
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sunspots. Where necessary a cosine weighting function in longitude has been applied

to the synoptic data to merge it across daily data gaps.

We selected rectangular subareas on the magnetic maps that corresponded spatially

with the coronal hole subareas in which the X-ray measurements were made. These

subareas are shown by the dashed outlines on Figure 2. For the 1976 and 1981 data

the subareas coincided with the X-ray subareas, but for 1974 and 1978, we used single

large subareas to increase the statistical accuracy of the measurements. Because of the

large area of the holes in 1974 and 1978 and the coarse spatial resolution of the

Mt. Wilson data, we feel that the integration of the X-ray and magnetic data over

dissimilar areas did not significantly effect the results. The results of our analysis of the

coronal hole magnetic field strengths are given in Table V. The table lists the dates and

subareas measured in terms of the X-ray coronal hole designations used in Table II.

TABLE V

Average magnetic field strength in coronal holes

Date Coronal hole Pola- Obser- Net 0 c

subareas rity vatory Br (G) (deg)

26 June, 1974 Large hole: center + MW daily + 2.87 14.5

27 June, 1974 Large hole: center + MW daily + 3.06 19

28 June, 1974 Large hole: center + MW daily +2.88 31.5

16 Nov., 1976 Equatorial ext. - MW daily -2.51 27.6

17 Nov., 1976 Equatorial ext. - MW daily - 3.23 34.8

17 Nov., 1976 South polar hole - MW daily - 3.68 59.8

17 Nov., 1976 South polar hole + MW daily -0.34 59.8

18 Nov., 1976 Equatorial ext. - MW daily -4.53 44.5

31 Jan., 1978 Southwest hole - KP synoptic - 1.28 (55)"

31 Jan., 1978 Southwest hole - MW daily -2.23 64.6

I Feb., 1978 Southwest hole - MW daily -0.80 68.4

13 Feb., 1981 Southern hole: limb + KP synoptic + 1.55 (58) a

13 Feb., 1981 Southern hole: center + KP synoptic + 5.60 (40) a

14 Feb., 1981 Southern hole: limb + MW daily + 4.50 66.4

14 Feb., 1981 Southern hole: center + MW daily + 5.74 40.1

a The average longitudes for the coronal hole locations on the Kitt Peak maps are estimates only.

Column 3 gives the known polarity of the hole as determined by Ha synoptic charts in

Solar-Geophysical Data and the magnetic field/solar wind observations of Sheeley and

Harvey (1981). With one exception (i.e., the north polar hole on 17 November, 1976)

the measured polarities agreed with the expected ones.

The average longitudinal field strength B,, for each hole subarea was calculated by

computing the algebraic sum of all pixeis within the chosen subarea and dividing by the

number of pixels. The Mt. Wilson data were then corrected for line weakening and

foreshortening by using the form given by Howard (1977) to derive the 'true' field

strength Br :

0.48 + 1.33 cos0
B r = B,,

cos 0

,,,mr
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where 0 is the great-circle distance from Sun center to the center of the subarea. In

Table V the value B, r is given in column 5 and 0in column 6. In addition, the June 1974

Mt. Wilson measurements were increased by 205o to account for a change in the

magnetograph aperture in 1975 (R. Howard, private communication). The Kitt Peak

synoptic data are already corrected for the longitude projection effect, so we applied a

latitude correction of the form B,. = B,,,/cos 0. The Mt. Wilson and Kitt Peak measure-

ments within the February 1981 hole equatorial extension suffer least from fore-
oj.shortening and agree with 3/o.

Harvey et aL (1982) used Kitt Peak synoptic images to determine the magnetic fluxes

in thirty-three 10830,_ coronal holes from 1975 to 1980. They only analyzed holes

below a latitude of 50: and made no corrections for projection effects. In Figure 3(a)

we have plotted their field strength data from their Table I. This plot illustrates their

result that during this phase of solar cycle 21, low-latitude holes contained three times

more flux near activity maximum than at minimum.

The corrected Mt. Wilson flux values (Br) shown in Table V for the days centered

on the rocket flights have been averaged together and plotted as crosses on Figure 3(a).

We included the single Mt. Wilson measurement on 14 February, 1981 the day after the

rocket flight. One of the Harvey etaL measurements (coronal hole No. 18 on

19 October, 1976) was from the southern equatorial extension that we measured one

rotation later on 16-18 November, 1976. Our averaged measurement for this hole of

- 3.4 G agrees favorably with their value of - 2.7 G. In general, our coronal hole fluxes

are consistent with the trend of the Harvey et al. data (note: the 1978 value was subject

to considerable foreshortening).

3. Discussion

We now summarize our observational results in terms of the questions posed in the

Introduction. First, we conclude that the rocket results confirm earlier Skylab results

that detectable X-ray emission arises from coronal holes. In addition we find that this

emission appears to increase as the cycle evolves from activity minimum to maximum.

One can take the view that despite the uncertainties arising from differing calibration

procedures, and the diversity in coronal hole area, location on the disk and evolutionary

characteristics, the four independent data sets from 1973 to 1976 reveal remarkably

consistent X-ray hole emission values varying over this period near sunspot minimum

by only about a factor of three. The 1974 rocket measurements are also consistent with

Solodyna et aL's (1977) measurements of CH 6 made only 8 months earlier. However,

when the data over this entire 9-year period of the solar cycle is examined, the observed

X-ray coronal hole emission appears to vary roughly with the sunspot cycle, reaching

minimum flux in 1974 just before sunspot minimum*, then increasing through 1981,

about one year after sunspot maximum. Finally, because the rate of intensity increase

* We cannot rule out that coronal hole emission in October 1973 (Skylab) and June 1974 (rocket) was below

the detection threshold and, therefore, that these values are upper limits.
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of the X-ray hole flux was greater than that of the background flux (Table IV), our

photometric results confirm the qualitative suggestion of Kahler etal. (1983) and

Sheeley and Harvey ( 1978, 1981) that the brightness contrast between coronal holes and

large-scale structure decreased during the rise to activity maximum.

Figure 3 provides a partial answer to our second question, namely does a relationship

exist between increasing X-ray emission and increasing magnetic field strength from

coronal holes over this period of the cycle? The data of Harvey etal. (1982; our

Figure 3(a)) show an increase of a factor of three in the field strength of near-equatorial

coronal holes between 1975 and 1980. Our calculations of field strength within the X-ray

hole boundaries are sparse but consistent with the Harvey etal. data. The X-ray

emission (Figure 3(b)) shows an increasing trend with the cycle, in general agreement

with the magnetic flux but with greater amplitude. Comparison of these two data sets

over the same time period reveals that they appear to have a power law dependence.

The relationship is such that the coronal hole X-ray intensity, which is proportional to

the gas pressure (Table III), is consistent with being proportional to B 2. Thus, the data

lend support to coronal heating models in which the corona is directly heated by the

dissipation of magnetic energy (e.g., Rosner et al., 1978). We may speculate from our

results that such magnetic heating occurs routinely in coronal holes over the solar cycle.

It is important to attempt to relate the observed change in coronal hole contrast over

the cycle with the degree to which the underlying magnetic fields were open or closed.

We examined two approaches to this question: (1)by directly comparing the location

and contrast of our holes with regions of open fields as deduced from potential field

models, and (2)by examining the interplanetary effects of the low-latitude holes or
extensions of holes observed in our data.

Regarding the first approach, Levine compared regions of open fields with the Skylab

data on coronal holes (e.g., Levine, 1977) and with 10 830 ,_ holes observed in 1975 and

1978-1979 (Levine, 1982). However, his comparisons were made during periods when

we had no rocket observations and, therefore, we are unable to make any direct

comparisons. However, our observation of the southern hole extension in January 1978

could be indirectly compared with Levine's (1982) results starting in May 1978. Levine's

Figures 3-6 confirm that this lobe was detected as a strong open field region of similar

size and shape and persisting through the period of Levine's study.

Concerning the second approach, we decided to examine the interplanetary effects

of our holes because of the well-known, strong correlation during Skylab between

low-latitude holes and, therefore, apparently open field regions, and high speed solar

wind streams. In addition, we sought assurance that our holes were reasonably typical

of each epoch with regard to their evolutionary characteristics and effects on the solar

wind. We compared the locations and timing of our low-latitude holes with the Bartels

displays and discussions of Sheeley and Harvey (1978, 1981).

The large coronal hole in June 1974 was the only one in our data which extended over

the equatorial region. This hole evolved from a separate, small equatorial hole during

Skylab (CH 4) to join with the north polar hole by mid-January 1974 (Solodyna et aL,

1975). The Barteis display shows that in June 1974 this hole was midway through its

v
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lifetime. Through mid-1975 this hole and another of opposite polarity formed a

two-sector structure of strong, recurrent solar wind. These holes, and their associated

wind streams, had a 27-day recurrence period. These characteristics were typical of

equatorial holes observed during Skylab (e.g., Zirker, 1977).

The equatorial extension holes observed on the rocket images on 17 November, 1976

and 31 January, 1978 represented the early development of long-lived, slowly rotating

(28-29 day periods) but weak boles. Sheeley and Harvey (1978) described the 1976 hole

as follows: "Despite its weak appearance, this hole was associated with one of the most

prominent recurrence patterns of high-speed solar wind and enhanced geomagnetic

activity that occurred during 1976-1977." Finally, on 13 February, 1981 the large,

high-latitude coronal hole was embedded in the first new-cycle polarity region (Webb

et al., 1984) and was probably associated with a recurrent wind stream. All of the

near-equatorial X-ray holes were associated with IMF polarity of the same sign (Sheeley

and Harvey, 1981).

Taken together, these facts suggest that these holes were strongly connected with the

interplanetary medium flow by open field lines emanating from the base of the holes.

These indirect comparisons support a general correspondence between open field

regions and the X-ray coronal holes of our study. But the variation of X-ray flux from

coronal holes does not appear to be strongly dependent on the degree of the open field

structures. We hope to extend this inference by directly comparing the X-ray coronal

hole data with open field structures as deduced from potential field calculations.

In conclusion, our limited X-ray results provide evidence for a solar cycle variation

in overall coronal hole emission and gas pressure, which is supported by the qualitative,

but more frequent observations of a 'weakening' or decreased contrast of 10 830 _, holes

and an increase in the surface magnetic flux within holes over the same period. The

variation of the coronal pressure is consistent with being proportional to the square of

the magnetic flux, suggesting the importance of magnetic energy dissipation to heating

at the base of coronal holes.
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Abstract

X-ray astronomy, both solar and celestial, requires long focal length optical systems

to provide high spatial resolution images and to be used as feeds for spectrometers. In

typical experimental situations, the physical size is restricted and grazing angles must

be kept at or below one degree. Grazing incidence secondary optics are an alternative to

long focal length primary mirrors. We have designed, fabricated and tested a system which

employs a secondary with externally polished hyperboloid-hyperboloid surfaces. It is to

be used in conjunction with an existing Wolter-I primary. The system has been designed for

high resolution imaging of the solar corona with the goal of producing images electron-

ically with the same spatial resolution as achieved at the primary focus with film. The

secondary optic is located in front of the primary focus, as in a Galilean telescope, and

provides a magnification of approximately four. The combined system has a plate scale of
26.0 um (arc sec)-, effective focal length 5.4 m, and is contained within an instrument

length of 1.9 m. _he design, tolerance specification and fabrication techniques are de-

scribed. The performance of the system at X-ray wavelengths has been determined experi-

mentally and is compared with theoretical results produced by ray tracing.

Introduction

The field of X-ray astronomy has developed rapidly over the past quarter century spur-

red by technical advances in the fabrication of grazing incidence optics. These optical

systems have allowed the study of X-ray emission mechanisms over a range of astronomical

sources from the coronae of stars, including the sun, to supernovae remnants, galaxies and

quasars. Although the structure of many of the more distant sources remain unresolved,

imaging has revealed a wealth of detail for objects which are relatively close (like the

sun} or extend over a large angular extent (e.g., supernovae remnants}. In general the

structures that are observed reflect the interaction between a high temperature plasma and

a magnetic field. For the solar corona the visual identification of a diverse population

of coronal structures has provided a new framework for the reformulation of the more clas-

sical concepts of solar physics. However, many of the theoretical descriptions involve

processes which occur over very small spatial scales. Therefore, future advances will

require the acquisition of even higher resolution observations.

In practice the resolution in astronomical observations depends on both the intrinsic

resolution of the optical system and the relationship of the size of the imagelto that of
the detector. In the past nearly all X-ray images have been detector limited even when

the recording medium was photographic emulsion. The situation is worse when solid state

detectors are used. However, for most space missions, electronic imaging has to be used

since there is no opportunity to recover film. Consequently there are strong incentives

for the development of imaging systems, optics and detectors, in which the performance of

each element is optimized for maximum system performance.

When the system angular resolution is limited by the detector, the instrument designer

has produced a mismatch between the instrument's focal length and the dimensions of the

detector pixel. Although efforts continue to improve the latter, electronic detectors are

unlikely to surpass the spatial resolution of photographic film. Therefore it is essen-

tial to simultaneously explore the second factor, namely increasing the focal length of

the X-ray telescope.

To quantify these statements, we establish a requirement for a system spatial resolu-

tion of 1 arc second. If features on this scale are to be resolved, they must subtend an

angle greater than 1 pixel, and we use the quantity of 2_/_pixel size to define limiting

resolution. Taking the pixel size as 15 microns, the best that is currently available in

CCDs, the instrument focal length would have to be 8.75 m. This results in an instrument

size which is impractical for any but major programs. The solution to this problem in

normal incidence optical systems would be to use secondary optics to increase the effec-

tive focal length, i.e., magnify the primary image. Until recently this approach had not

* Present Address: NASA/Marshall Space Flight Center, Code ES-52

Huntsville, Alabama 35812
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been followed for X-ray imaging because of the difficulties associated with the figuring

of small grazing incidence optical elements and the increased scattering from four reflec-

tions instead of the customary two. However, recent advances in fabrication technology,

in particular in the in-process metrology and the preparation of low-scatter surfaces,

have combined to make their development possible. Consequently, under NASA sponsorship,

we have designed and fabricated a grazing incidence magnifier to be used in conjunction

with an existing grazing incidence primary for solar studies.

Desiun considerations

Two options for the design of the secondary magnifier are possible. In the first op-

tion the secondary optic acts as a microscope and is located behind the primary focal

plane. It is known as a converging magnifier and has internally reflecting hyperboloid

and ellipsoid surfaces. The second design places the mirror in front of the focal plane

where it acts as a Barlow lens. This configuration is known as a diverging magnifier and
the mirror has externally reflecting hyperboloid-hyperboloid surfaces .

PRIMARY

OPTIC

I-

PRIME FOCUS -1 SECONDARY FOCUS

PLATE SCALE 7 F m (arc sac.) PLATE SCALE -1

CONVERGING

ANGLE _ 12 ° CONVERGING

ANGLE _ 3"

I

, / ,,

\ ,
SECONDARY

OPTIC

1.45m p:

1.85m PI

Figure i. Diagram of the design for the grazing incidence relay optic system.

In the present program, the total length of the system is of critical importance be-

cause the telescope will be flown as a sounding rocket payload. For a given object dis-

tance and magnification, the diverging magnifier (Figure I) is the shorter of the two

designs. It was selected for this project. An additional benefit of this design is that

the primary focused X-rays are bent through a smaller angle to reach the secondary focus,

thus minimizing reflection losses and maximizing collecting area.

The design is fixed by choosing the magnification and the object distance (where object

distance is the separation between the principle plane of the secondary and the primary

focus). In practice increasing magnification lowers the system's speed. Increasing object

distance, for a given magnification, lengthens the overall instrument and also increases

the physical size of the polished area. A compromise design was chosenlwhich has a mag-
nification of 3.7, corresponding to a plate scale of 26 _m (arc sec)- while retaining

reasonable exposure times. The object distance was set at 14.5 cm. This leads to an

overall length for the imaging system of 185 cm which is within the 2 m limit established

for the experiment. The general properties of the primary and secondary mirror design are

summarized Table i.

Table I. Desiun Requirements of the X-Ray Mirrors

EL_ Secondary

Figure

Material

Principal Diameter

Focal Length

Geometrical Area

On-axis

2 arc minutes

Plate Scale

Field of View

Resolving Power (X-Ray)

Wolter Schwarzschild

Fused Silica

30.48 cm

144.9 cm

2

42.4 cm 2
39.6 cm

1

7.0 _m (arc sec)-_
60 x 60 (arc min)

1 arc sec

Hyperboloid Hyperboloid

Nickel Coated Beryllium

3.15 cm

-19.9 cm

2
34.3 cm 2
5.8 cm

26.0 _m (arc sec-l)_

2.5 x 2.5 (arc min)"

1 arc sec
--d
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Figure 2. Photograph of the nickel coated hyperboloid-hyperboloid diverging magnifier.

Specification and fabrication

A photograph of the completed diverging magnifier is presented in Figure 2. The

equations for the external mirror surfaces of the diverging magnifier are:

First Hyperboloid:

Second Hyperboloid:

(Z + c)2 X 2

2 b 2 --,/ = i
C - D-

(Z _ 2c _ f) 2 X 2

f - e e

where c = 1.981416 b = 0.167138

e = 0.261239 f = 6.157995

The first hyperboloid is located so that its first focus is co-spatial with the focus

of the primary mirror. Its second focus is made confocal with the first focus of the

second hyperboloid. The second focus of this surface forms, in turn, the secondary focus

of the telescope. Since hyperboloids have two foci, small deviations from the design sur-

face can be compensated for by axial displacements with no drawbacks other than a slight

change in the overall focal length.

The surface profile was measured in-situ using a laser beam which is scanned over the

surface in a controlled way. The local slope is determined from the reflected beam using

a position-sensitive detector. The difference between the slope of the required surface

and the best fit circle is corrected optically before display. In performing this opera-

tion one has to be careful to remember that the geometry established to generate a surface

with a given radius will measure a surface with twice that radius and therefore it is nec-

essary to reconfigure the equipment when changing between a polishing and a measuring

mode. Typically the best fit spheres have radii on the order of several thousand inches.

The error in establishing these radii is on the order of one part in a thousand. This

error is acceptable since it can be accommodated during the assembly of the optic by

adjustment of the spacer. The signal can also be integrated electronically to obtain the

sagittal depth as a function of position. Once a satisfactory surface has been obtained

the end pieces are removed from the finished mirror and the radial dimensions measured.

As a cost savings measure, the end pieces were made from cast iron. This turned out to be

a mistake since it was more difficult to remove this material during polishing. This

caused the surfaces near the edges to roll up and the removal of this effect was both

difficult and time consuming. Finally, the surfaces were superpolished to provide a

low-scatter finish. The mirror was fabricated , in two pieces, from optical grade

beryllium.
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The selected blanks were diamond turned to their approximate dimensions using a numeri-

cally controlled lathe. Since the polished area is relatively small, it is important to

minimize roll over at the ends and the blanks were turned and lapped with removable end

pieces in place. The machined blanks were then nickel plated which was applied to a depth

of 0.13 mm over all the surfaces of the two elements. The nickel reflecting surfaces were

again single point diamond turned and lapped to the required profile. The work was per-
formed on a modified Random machine utilizing linear, air bearing slides to define

tangents to the best fit circle. This circle is used to guide the lathe head which holds

the mirror during both the diamond turning and polishing. The radii of curvature, which

in our case are on the order of 40 m, are determined with an accuracy of 2 cm and the

location of the center of curvature with respect to the surface is known to be better than

1 part in 4000.

Each section is separately mounted to a central plate made of high-strength stainless

steel. The plate is supported by four fingers which together intercept less than 3% of

the open aperture. The steel chosen, 17-4PH, heat treated to condition HI150, provides a

very close thermal match to the beryllium, which is essential to avoid radial distortions

of the mirror surfaces under changing temperature conditions. This central plate, in ad-

dition to providing support for the two hyperbolas, also acts as the spacer. Adjustment

of its thickness allows the two hyperbolas to be made confocal.

The measured dimensions of the individual hyperbolas are compared to the design values

in Table 2. The differences are a result of the sequence of operations followed during

fabrication. As a result of various technical difficulties, the second hyperbola was com-

pleted first. Measurements of the front and back radii were made and the surface profile

derived from the measured differences between the actual surface and the best fit circle.

An updated hyperbola was calculated to fit these data and the first hyperbola modified to

match. The tolerances placed on the reflecting surfaces are shown in Table 3. We identi-

fied as the most demanding tolerances that had to be met during the fabrication of the

mirror as the roundness of the elements and the deviation of the local slope from that

predicted by the design curve. The principal roundness criterion is the variation in the

difference between the forward and aft radii of each piece as a function of azimuth. This

tolerance is referred to as A (AR), and for this mirror we established a goal of 6

micro-inches. This is a tighter specification than usual for grazing incidence

Table 2. Secondary Mirror Dimensions (Note: Dimensions Are in Inches)

Measured

Diameter at front of Ist hyperboloid = 1.40804

Diameter at rear of ist hyperboloid = 1.24878

Calculated diameter at mid-plane = 1.24000

Diameter at front of 2nd hyperboloid = 1.23527

Diameter at rear of 2nd hyperboloid = 1.16433

Length of ist hyperboloid = 0.91006

Length of 2nd hyperboloid = 0.74605

Gap for center plate = 0.10000

1.40846

1.25209

1.23346

1.16485

0.9131

0.7433

0.1400

Optical

Average Radius

Out of Roundness

Variation in AR

Axial Figures

Axial Slope Error

Surface Finish

Table 3. Secondary Mirror Tolerances

Definition

R = Ra - Rd

hR = (Rf - Rfd) - (_r - Rrd)

h(AR) = (Rf_ - _f) - (Rr_ - _r )

Sagittal Depth Deviation

from Design Curve

Specification

(inches or as

stated ) Achieved

200 x 10 -6 I00 x 10 -6

40 x 10 -6 8 x 10 -6

6 x 10 -6 5 x 10 -6

3 x 10 -6 5 x 10 -6

5 x 10 -6 15 x 10 -6

radians radians

5 - 15 A 15 - 20 ARMS Roughness

Subscripts: a = actual f = forward radius

d = design r = rear radius

= angular position around circumference
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mirrors and is a consequence of their small size. [n practice this tolerance depends on

the precision of the spindle used during the diamond turning and figuring processes and

these proved to be more than adequate. The axial slope error was set at five microradians

(i arc second) and this proved difficult to meet. The final figuring was performed manu-

ally and the tendency was to remove material too quickly which, while correcting the

slope, adversely affected the figure (sag). Because of program constraints, this devi-

ation from the design requirement was accepted.

_-[ay testing

All measurements of the grazing incidence relay optic telescope system performance in

the X-ray regime have been conducted in the 89.5 meter vacuum facility at American Science

and Engineering, Inc. An Advanced Metals Research X-ray source provides either a point

source 30 micrometers in diameter (0.07 arc seconds) or a line source 100 micrometers in

width and 1000 micrometers in length (0.2 x 2.3 arc seconds) which can be tilted with

respect to the telescope optical axis to produce a 0.2 x 0.2 arc second spot. Since the

5.4 m effective focal length of the compound telescope is a significant fraction of the

collimation tube length, the approximation of the laboratory source to a point source at

infinity must be evaluated for each quantity measured. The effects of a finite source

distance have significant implications for the point response function.

Telescope resolution on-axis

The point response function (PRF) of an optical system describes the radial dependence

of the focused image of a point source at infinity. Experimentally, the PRF is derived

from an Abel inversion of slit scan data obtained with proportional counters masked by

0.051, 0.254, and 1.270 mm wide slit windows and translated across the image plane. The

counting rate of the image plane counter is normalized by comparison to the simultaneou_
counting rate of a cross-calibrated monitor counter masked with a circular, 0.321 cm

aperture and located directly in front of the telescope mirror.
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The compound telescope PRF of a 44.7 A

44A X-rays (carbon K-alpha) source located on the axis of

] _ _ I ' ] r' _ ' the optical system is presented in Figure 3.

i ,o : For comparisQ_ purposes the PRF of the primary

mirror alone is also plotted in Figure 3.
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4_ optic of I arc second will intersect the image

3 micrometers (corresponding toplane one--

Prima_ and Relay Optic ninth of an arc second) from the optical axis
because the distance from the relay optic to

Combination i the image plane is only 0.61 m. Therefore, at

l J I J. ) the image plane the scatterzng due to the

100 200 300 400 500 600 secondary mirror is completely masked by the

Radius(arc-sec.) scattering due to the primary mirror.

The most significant effect of the addition of

the secondary optic is a reduction in the

overall efficiency of the system. The PRF is

not degraded. In fact, the relative PRF of

the compound telescope becomes more narrow

than the primary mirror alone at radii greater

than 35 arc seconds.

The negligible contribution of scattering

from the secondary to the overall PRF has more

to do with geometrical optics than with the

quality of the secondary. An on-axis ray

which undergoes a net scatter from the primary

mirror of 1 arc second and is then specularly

reflected by the secondary will intersect the

compound telescope image plane 26 micrometers

from the optical axis because the effective

focal length is 5.37 m. An on-axis ray which

is specularly reflected by the primary but

Figure 3. A comparison of the point

response function of the compound tele-

scope and the primary mirror alone at

44.5 A.
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Figure 4. A comparison of the calculated

and observed off-axis decline in energy

throughput of the compound telescope, ex-

pressed as a fraction of the on-axis ef-

fective collecting area, for a 89.5 meter

source distance.
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Primary and GIRO
Combination

Primary Alone

Figure 5. A comparison of the inte-

grated point response function of the

compound telescope and the primary

mirror alone at 44.5 A.

The apparent narrowing of the compound telescope PRF at large scattering angles is due

to vignetting of off-axis rays by the relay optic. The length of the hyperboloid mirrors

of the relay optic were chosen to maximize on-axis resolution. Many off-axis rays which

are reflected by the primary miss the reflecting surfaces of the secondary. A plot of the

relative decrease in effective area with off-axis angle is presented in Figure 4. The

solid line is a theoretical curve which is obtained from a ray tracing program which does

not include scattering. The measured data points are obtained by removing the slit mask

on the image plane proportional counter and rotating the optical bench of the telescope

relative to the source. If the field of view is defined as the position where the effec-

tive area is 10% of its on-axis value, then the field of view of the compound telescope is
restricted to a radius of 2.5 arc minutes.

Integration of the PRF in Figure 3 which yields the percent of total energy in the

focal plane within a given radius of the optical axis is presented in Figure 5. The im-

provement in percent encircled energy of the compound telescope relative to the primary is

due to vignetting of off-axis rays by the relay optic. Because of vignetting, rays at

large scattering angles are lost so that a higher fraction of the rays that do reach the

focal plane are close to the image center.

Vignetting of off-axis rays by the relay optic reduces the total energy throughput of

the compound telescope relative to the primary alone. If the energy in the secondary

focus image plane within a given radius of the image center were plotted as a fraction of

the total energy in the Drime _Qcus image plane, each point of the Primary and GIRO Combi-

nation curve in Figure 5 would be reduced by a factor of 2.6 and the curve would asymptot-

ically approach the value of 38.5%. Therefore, the improvement in the percent encircled

energy of the compound telescope is achieved with a reduction in total energy throughput.

..W

=
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At shorter wavelengths, the PRF of the

primary _irror is distinguished from its PRF

at 44.7 A _y an increase in the large angle
scattering . Because these scattered off-

axis rays miss the relay optic, the 8.3

(aluminum K-alpha) PRF of the compound tele-

scope presented in Figure 6 is similar to

the 44.7 A PRF of the compound telescope.

Integration of PRFs of the compound tele-

scope at both 44.7 A and 8.3 A yield 50%

encircled energy radii at 17 arc seconds.

In contrast, the 50% encircled energy radii

of the prime focus are 18 arc seconds at

44.7 A and 31 arc seconds at 8.3 _.

Photographs of a pinhole array illumi-

nated by a diffuse source provide another

indication of the on-axis resolution of the

compound telescope. A pinhole array with 1

arc second diameter pinholes on 2 arc second

centers was illuminated with 44.7 _ X-rays

from the defocused AMR source. The 6 pin-

holes which were illuminated are resolved.

Although detailed film calibration and

densitometry have not been conducted for

these photographs, the film developing and

printing were conducted in a manner consis-

tent with that used in previous rocket

flights.

Figure 6. A comparison of the point response

function of the compound telescope and the

primary mirror alone at 8.3 _.

Finite source distance effects and off-axis resolution

Geometrical ray tracing (without scattering) of the compound telescope image blur

diameter for an on-axis point source as a function of source distance is presented in

Figure 7. Because the optical elements of the relay optic were shortened to maximize

resolution, the energy throughput of the compound telescope is very sensitive to the

position of the relay optic. The calculations displayed in Figure 7 are constrained to

maximize the energy throughput of the system by adjustment of the relay optic position.

At object distances less than 600 m, the goals of zero blur diameter and maximum energy

throughput become mutually exclusive and at object distances less than 100 m, it is im-

possible to achieve zero blur diameter with any relay optic position. Even at infinite

source distance, the relay optic position for maximum energy throughput is slightly dif-

ferent from that for zero blur diameter although the resulting blur is small compared to

the effect of scattering. While it has not been possible to experiment with different

vacuum tube lengths to test these calculations, the experimentally determined relay optic

position for maximum energy throughput in the 89.5 m facility corresponds to the 21 mm

displacement from infinity focus position predicted by the calculations. The 1 arc second

RMS blur diameter predicted by ray tracing for a 89.5 m source distance is significant in

comparison to the 1 arc second half width-half maximum of the observed PRF.

All off-axis images of the compound telescope have some level of geometrical blurring

which is greater in the direction perpendicular to the displacement of image from the

on-axis point. The degree of the blur in the X and Y secondary focal plane directions for

an image which is displaced in the X direction from the on-axis point is shown by the

geometrical ray trace calculation presented in Figure 8. This aberration is independent

of scattering and will limit the practical field of view for high resolution imaging to a

1.25 arc minute radius.
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Figure 7. Ray trace calculation of the

position of the secondary optic which

maximizes the on-axis energy throughput

and the resulting blur (not including

scatter) for a range of source distances.

Figure 9. Photograph of X-ray source imaged

by the compound telescope for the off-axis

displacements (from left to right) of 0 arc

seconds, 30 arc seconds, and 60 arc seconds.

Figure 8. Ray trace calculations of blur

(not including scattering) in the two di-

mensions of the compound telescope image

plane for a point source off-axis in the

in the X direction

Since the off-axis blur is not a circular

intensity pattern, a slit scan along one

axis is not sufficient to determine the

response function. Accordingly, we used

photographic X-ray photometry to measure

the two-dimensional structure of the

off-axis blur. A composite photograph of

three exposures of a 44 A X-ray source

taken at the on-axis point, 30 arc sec-

onds off axis, and 60 arc seconds off

axis is presented in Figure 9. Although

the tasks of film calibration and densi-

tomet_y have not been completed at the

time of this writing, the three exposures

were taken on the same roll of film to

the same level of monitor counts at the

entrance aperture of the telescope and

printed as a negative "sandwich" to

eliminate any relative enhancements.

Although the line souLce was utilized to

generate a counting rate sufficient for

reasonable exposures, the ratios of the

height to width in the photograph agree

with the ray trace calculation. The

elongated geometrical blurring pattern

is not obscured by scatter because the

majority of the scatter seen in the image

plane is due to scatter of the primary
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(see above). Since the scattering angle is small (50% in less than 18 arc seconds), the

rays scattered by the primary are subject to approximately the same aberration as those

not scattered-yielding an overall X-Y asymmetry in the total blur.

Conclusion

The goal of increasing the plate scale of a soft X-ray solar telescope over that of

previous optical systems while retaining a physical size less than 2 meters has been

achieved with the use of a grazing incidence relay optic. The design and fabrication of

the relay optic produced a system with on-axis resolution equal to that of the primary

alone. However, the drawback of the compound telescope system is an increase in

geometrical aberration and decrease in effective area with off-axis angle. Limits in

field of view are 1.25 arc minutes in radius for 1 arc second resolution and 2.5 arc

minutes in radius for acceptable effective area. Use of a CCD detector instead of

photographic film reduces the problem of effective area because of the higher quantum

efficiency of CCDs. Additionally, the larger plate scale of the compound telescope

compensates for the larger pixel size of CCDs. It is anticipated that this system will

provide a useful tool to study small scale structure in the solar corona.

Acknowledgements

It is a pleasure to acknowledge the help of the staffs of the Applied Optics Center

and of Research Optics and Development, Inc., who participated in the fabrication of the

secondary optic. We would also like to thank Alan DeCew who as both a consultant and as

President of Research Optics and Development contributed to the development of the fabri-

cation procedures. Tireless effort in gathering X-ray performance data was contributed by

Daniel O'Mara of AS&E. The work was performed under NASA contract NAS5-25496.

References

i. J.M. Davis, A.S. Krieger, J.K. Silk and R.C. Chase, Proc. soc. Photo-Opt.lnstrum. Eng.

184 (1979) 96.

2. R.C. Chase, A.S. Krieger and J.H. Underwood, Appl. Opt. 21 (1982) 4446.

3. Fabrication was started at the Applied Optics Center, Burlington, MA 01803 USA. When

the Burlington facility was closed, the work was transferred to Research Optics and

Development, Inc., Waltham, MA 02154 USA.

4. Random Devices Inc., Newbury, Massachusetts 01950, USA.

146 / SPIE VoL 691 X-Ray Imaging II (1986)





4.17 The Plasma and Magnetic Field Properties of Coronal Loops Observed at

Hish Spatial Resolution

D,F° Webb

American Science and Ensineering, Inc.

Cambridge, Massachusetts 02139

and

Emmanuel College

Boston, Massachusetts

G.D. Holman

Laboratory for Astronomy and Solar Physics

NASA/Goddard SpaceFlight Center

Greenbelt, Maryland 20771

J.M. Davis

American Science and Engineering, Inc.

Cambridge. Massachusetts 02139

and

NASAIMarsha11 Space Fli_ht Center

Huntsville, Alabama 35812

and

M.R. Kundu and R.K. Shevgaonkar

Astronomy Program

University of Maryland

College Park, Maryland 20771

l_ POOR (_ALtTY

4-204



w



t 19,_7 [hc Amc_l_,tn _[/'IIIOITID2d] _),_C1_'11._hl rlgh_ rcs_,r_<_] Pnnted it: _ _ -;

THE PLASMA AND MAGNETIC FIELD PROPERTIES OF CORONAL LOOPS ()BSERVEI) AT

HIGH SPATIAL RESOLUTION

D. F. W_m3

American Sczence and Engineering, lnc.. C'arabridge,/'qassachusetts : and t!mmanuel College, Bost_n. MassachuscUs

G. D. HOtMAN

Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight ('enter, Greenbelt. Mar_d:md

J. M. DAws

American Science and Engineering, Inc.; and NASA Marshall Space Flighl Center, Hunts,, die. Alahama

AND

M. R. KuN'r)u AND R. K. SHEVGAONKAR I

Astronomy Program, University of Maryland, College Park

Recelrvd 1986 Ma_ 22' accepted 1986 O, tohcr 6

ABSTRACT

We compare coordinated, high spatial resolution observations obtained in 1979 and 1981 in soft X-rays in

microwaves at 1.45 GHz (20 cm) and 4.9 GHz (6 cm) and with photospheric magnetograms, of six coronal

loops. The loops were found to have plasma parameters typical of quiescent active rcgion loops. Each loop

had a compact microwave source with "F_= 1--2.5 × I0 _ K cospatial with or near the loop apex. Contrary to

some interpretations, no complete loops {as determined by the X-ray observations) were imaged in micro-

waves. Model loops using the derived observational plasma and magnetic parameters are constructcd, and the

predicted distribution of thermal microwave emission compared with observations. The loop emission

observed at 4.9 GHz is best described by fourth harmonic gyroresonance emission from a dipole loop model.

but with less field variation along the loop than in the models of Holman and Kundu. The 1.45 GHz emission

is likely to be free-free, since the X-ray loops are optically thick to free-free emission. Thc modeling results

require the existence of an external plasma around the X-ray loops with a temperature of - l0 s K or less. We

are also able to deduce or place constraints on the magnetic field strengths within and their wmations along

the loops.

Subject headin#_: plasmas Sun: corona Sun: magnetic fields Sun: radio radiation Sun: X-rays

1. INTRODUCTION

High spatial resolution observations over more than a

decade have revolutionized studies of active regions and

coronal loops. In particular, microwavc observations have

revealed broad, diffuse areas coincident with plage emission

and small, intense components associated with sunspot pen-

umbrae and satellite spots, transverse fields over neutral lines

or filaments (Kundu et al. 1977; Kundu, Schmahl, and

Gerassimenko 1980), and emerging flux regions (Kundu and

Velusamy 1980). Observations with the Very t, arge Array

(VLA) have revealed looplike structures reminiscent of those

observed in soft X-rays and EUV (e.g., Lang, Willson, and

Rayrole 1982; Lang and Willson 1983; Kundu and Velusamy

1980), suggesting that some of this microwave emission arises

in individual coronal loops.

Most of the coronal plasma in an active region is at high

temperature (i.e., T_ > 106 K) and has its dominant emission in

the soft X-ray regime (e.g., Webb 1981). In the radio regime, the

slowly varying component of emission over active regions has

a spectral maximum at centimeter wavelengths. Therefore,

coordinated high-resolution observations in X-rays and micro-

waves can provide physical insights into coronal loop struc-

tures. The X-ray observations provide information on the

three-dimensional distribution of plasma and the overall

topology of the coronal magnetic field in a loop. The micro-

wave observations provide details on the scale height, strength,

Also Indian Institute of Astrophysics, Bangalore.
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and direction of the loop magnetic field and the relative contri-

bution of magnetic and gas pressure, while photospheric mag-

netograms measure the strength of the field in the feet of the

loop.

At low spatial resolution {-015), quiescent active region

microwave emission has been interpreted as either thermal,

low-harmonic gyroresonance (gr) emission associated with

strong sunspot fields, or thermal bremsstrahlung from plage

regions. Recent combined, high-resolution X-ray and micro-

wave obscrvations reveal a more complicated picture. Some

observers (Chiuderi-Drago et ul. 1982; Lang, Willson, and Gai-

zaukas 1983; Shibasaki et al. 1983; Strong, Alissandrakis, and

Kundu 1984) have found good agreement between the X-ray

and microwave observations and the accepted emission

mcchanisms for quiescent features. Others (Schmahl et al.

1982; Webb et al. 1983, hereafter Paper I; Kahler et al. 1984,

hereafter Paper !I) have observed significant differences
between the detailed locations of these sources. We will empha-

size that the detailed correspondence in activc regions between

X-ray and microwave emission is poor, and that a major

problem with interpreting loop microwave emission is that this

emission is often compact and restricted to the loop top.

Comparisons between models and observations of active

region loops have been inconclusive because of the lack of high

spatial resolution data at different wavelengths and informa-

tion on the three-dimensional structure of the magnetic field in

the corona. Recently, comparisons have been attempted

between X-ray, EUV, and radio observations of loops and



CORONAL

static loop models, but these suffered from either a lack of

high-resolution radio data (e.g., Pallavicini, Sakurai, and

Vaiana 1981) or a lack of simultaneous X-ray or EUV and

microwave data (e.g., McConnell and Kundu 1983). Our

results demonstrate the importance of simultaneous high

spatial resolution microwave and soft X-ray (and EUV) obser-

vations for the testing and refinement of coronal magnetic loop
models.

This paper is the third of a series studying the detailed

plasma and magnetic field properties of active region loops,
with the goal of constraining models of the structure and

heating of active regions. The first two papers (Paper I and

Paper II) described combined soft X-ray rocket and 6 cm VLA

observations on 1979 November 16 and 7 respectively and

were primarily observational, in this paper we first describe

new results from the comparison of a third set of X-ray rocket

and 20 cm VLA observations of an active region on 1981

February 13, and then analyze six loops from these data sets

observed to have significant cospatial soft X-ray and micro-

wave emission. Based on this set of observations and the dipole
loop models of Holman and Kundu [1985), we then construct

model loops and compare the predicted distribution of thermal
microwave emission with observations.

In the next section we describe the comparative analysis of

the 1981 February 13 observations of Hale region 454 and

briefly review the analysis and results from Paper i of the two
active regions observed on 1979 November 16. In § Ill we

discuss the derivation of the plasma and magnetic properties of

the six loops observed on these two dates to have cospatial soft

X-ray emission and microwave sources. Comparison of these

dal.a with the loop models are described in ._ IV, and the results
are summarized and discussed in the last section.

II. COMPARATIVE ANAI.YSIS OF ACTIVE REGIONS

a) 1981 February 13 Observations and Results

ij Obserl:att,,nal Data

Instrumental details of the AS&E rocket payloads have

appeared in Kahler, Davis, and Harvey (1983) and Webb and

Davis (1985). The 1981 February 13 flight payload utilized the

fused-quartz grazing-incidence mirror, four different filters

(with bandpasses over the range 8-65 _,), a moderate-speed

film emulsion (SO-212), and a fine-grain emulsion (SO-253).

Full-disk X-ray coronal images with an on-axis spatial
resolution of _2" were obtained between 1916 and 1921 UT.

Examples of these images are shown in the aforementioned

papers.
Radio observations were made with the VLA of the Nation-

al Radio Astronomy Observatory" between 1600 and 2330

UT. Twenty-six antennas were available in the B-configuration

during the observations, providing good UV coverage. The

system was sensitive to structures smaller than 1_5 because the

shortest spacing used for these maps was _2000).. Observa-

tions were obtained at 4.9 GHz (6.1 cm) and 1.45 GHz (20.75

cm), and the phase center for continuous tracking was

NI1W37 at 1915 UT. This was centered on one of the leading

sunspots in Hale region 454. A reliable synthesized map of

total intensity at 1.45 GHz was produced with a synthesized

beam of 4':7 × 4"7. Unfortunately, reliable 5 GHz maps and

polarization data at both wavelengths were not obtained

2 NRAO is operated by Asst,ciated Umverslties, Inc.. under conlract with

the National Science I- oundatkm
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because the sources were not bright enough at 5 (iFtz. Fhc

observing procedure, calibration, and clcaning methods _crc

similar to that of McConnell and Kundu (1983))

A full-disk photospheric magnetogram v, as obtained at the

National Solar Observatory '_ {NSO} Kitt Peak at 1507 UT.

and a video magnetogram at Big Bear Solar Observator_

(BBSO_ at 2(_,)9 UT. lit was cloudy at BBSO earlier in the da.,,.)

We obtained contour plots and printouts of the NSO magnc-

togram for use in the analysis. A high-resolution H;_ image of

H454 was obtained at BBSO al 2008 tit A cinc version ofthc

daily full-disk H:_ patrol iilm from 1428 to _20t)O UT was

obtained from NSO-Sacramento Peak Observator)and used

to study the evolution of the active ccntcrs on this da,,.

The X-ray and visible light images, the microwa,,c map, and

the magnetogram were co-aligned and compared in the same

manner as discussed in Papers I and 11. Briefl3, the major

sunspots in H454 were used to co-align the X-ra} image, the 20

cm map and the magnctograms. The alignment accuracy v, as
witin _ 10".

tI) ('omparatit'e R_'_u/t_

Since we are interested in studying only the quiescent fea-

tures of the active region corona, each radio map _'as s)nthe-
sized from several hours of observations which e_clt,dcd

periods with fluctuations exceeding - I0';. of the total inten-

sity signal (i.e., burstsl. Therefore. flarelike periods acre

excluded, but not necessarily slower or evolutionary changes in
the active region. In addition, the 145 GHz beam included

nearly the full Sun, so that contributions to the signal from

activity in distant regions were possible.

For the two active regions studied on 1979 November 16

lPaper I), wc are confident that the data were obtained during

a quiescent period. However, this was not the case on 1981

February 13, when there were three main active region com-

plexes on the Sun: H454 in the northwest. H461/67 in the

northeast, and H465 in the southeast. All these regions were

active during the VLA observing period, with flares sometimes

occurring nearly simultaneously in two or three of the regions.

To aid in identifying this activity, we examined Sagamore Hill

Radio Observatory fixed-frequency records from 1600 to 2000

LIT, NOAA GOES plots and lists of X-ray events, and Solar
Geophysical Data {SGD} lists of H_ flares and radio bursts

[SGD 19811.

The evolution of !-!454 is important to an understanding of

the X-ray observations. H454 was a new region that appeared

at the east limb on February 4 on the trailing side of H391. it

grew steadily in area and complexity. On February 13 it had

roughly equal areas of east-west plage and contained 41 sun-

spots balanced between polarities (SGD 19,81). There were

three large spots: two separate symmetrical, positive-polarity

spots, and one large negative spot complex. This large spot had

peak fields exceeding 2100 G and an area of IO00 millionths of

a solar hemisphere.

Radio Interferometric observatnons of 1"'1454 v, ere ab, o obtained at O_en,,

Valley Radio Obser_ator} IOVRO) at IO.6 GHz 12.8 cmt [tlurford 1986_ A

single strong, unresol',ed sou roe 17_ _ It1 _ K ) v, as detected at a h_cation of 137

north and 542" west of Sun center m celestial coordinates [he source _as

50% circularl_ polarized and cospatial v, tth the largest _unspot m H454. lus

high polarization, unlensity, and posmon o_er the strong ',pol fields arc consis-

tent wilh Iov, harmorll_'. _r elmssion Because this s:_tlrc¢ v,,a-, not detected at

1.45 GHz nor associated ,Ailh X-ra 3 cmissi_m. _e _ill nol dir, cuss it further

_" NSO is a facilit? of Nauonal Optical Astronom) Ob',er',atories. which t',

operated b3, the Association _f | m_crsmes for Rc',carch m .'_,,trt,nom_,. Ira_.

under contract _ith the National Science l-i_undation

.it
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FIG. l.--Co-aligned, high-resolution images (a) in soft X-rays and (b) at 1.45 GHz (20 cm) of active region H454 on 1981 February 13. The X-ray image is an

"edge-enhanced" digitized image of a 20 s exposure on Kodak SO-253 emulsion obtained at 1920 UT. The edge-enhancement program, described in the Appendix
of Kahler, Webb, and Moore (1981), essentially filters out low spatial frequencies, yielding enhanced images of coronal structures. Solar north is to the upper right

parallel to the border of the X-ray image, and east is to the upper left. The 1.45 GHz VLA map is oriented with celestial north up and east to the left. The scale unit is
100". The map is in total intensity with a synthesized clean beam of477 × 4"7. The phase center (0, 0l of the map was at 661" west and 87"north of disk center at 1915
UT. The lowest contour and the contour interval are 1.72 x 10 _ K. The plusses (circled on the schematic) denote the centroids of six major sunspots (Fig. 4b). The

cross marks the location of the single slrong source observed at 10.6 GHz (see text). (c) An overlay of the X-ray and radio images, id) A schematic drawing of the
salient features from co-aligned X-ray, 20 cm radio, photospheric magnetogram, and H:_ images. The brightest X-ray loops are denoted by numbers. The five 1.45
GHz sources with two or more contours are cross-hatched and denoted by letters. The thin solid and dashed lines are our estimate of the positions of the

photospheric inversion lines sepa rating opposite magnetic field polarities. We have drawn the outline of a long Ha filament bordering the region to the northwest.
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Figure 1 shows for H454 (a) a high-resolution, digitally

enhanced soft X-ray image, (h) the 7½ hr synthesis 1.45 GHz

VLA map in total intensity, (c} the overlay of these two images,

and td) a schematic diagram relating the salient features from

all the observations. The pluses on the 20 cm map and the
circled pluses on the schematic denote the centroids of six

major sunspots in the region (see Fig. 3b below--the large

negative spot had a double umbra}. The schematic drawing

compares the locations of the brightest 1.45 GHz {and single

10.6 GHz) sources with the brightest X-ray loop, our estimate

of the location of the photospheric inversion line, s), and the

photospheric magnetic field polarities, both from the Kitt Peak

magnetogram at 1507 UT.

As observed in Figure la, the dominant X-ray emission was

confined to generally east-west-directed loops spanning the

negative (east) and positive (west) bright plage areas between

the eastern negative and middle positive spots (Fig. ld). The

northern loop systems, including the shorter, bright loop

systems 1 and 2 in the center of the region, did not change

during the rocket observations. However, the long southern

loops, labeled '"3 ""and "4" in Figure ld, did evolve during this

period. Since these loops are the subject of our comparison
with 1.45 GHz emission in the next section, we examine this

evolution more closely.

Figure 2 shows the NOAA GOES 1-8 /_ and 0.5_1 A soft

X-ray flux plots around the period of the rocket flight. Two

major events are evident starting at 1910 and 1933 UT. The

first event involved a compact H:_ flare and surge in H454 that

was homologous with an earlier Ha event at _ 1700 UT. it

occurred in the northern penumbra of the large spot. This

subflare appeared in the rocket images during its decay as a

small, bright X-ray kernel which faded at 1918 UT. The images

used in our quantitative analysis were obtained at about 1917

and 1919 UT and were not affected by this tiny flare.

After about 1920 UT, nearly simultaneous events occurred

in the southeast region H465 and in H454. The relatively long

duration GOES X-ray signature commencing at 1933 UT was

probably dominated by an H:_ flare and mass ejection from

H465. However, the SGD only listed a IN flare in H454 with
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an onset at 1929 UT and a maximum at 1938 UT. The Ha

movie revealed that the flare commenced about 1920 UT in the

plage at the feet of the large southern X-ray loops 3 and 4. The

X-ray image in Figure la was obtained at 1920 UT and shows

the west foot of loop 3 brightening. This area did not appear in

the earlier images that were used in our analysis. Therefore, we

believe that the results of our X-ray analysis of those loops are

representative of a fairly quiescent but preflare state of the
loops.

To improve our understanding of the plasma and magnetic

field properties of coronal structures, we need to identify emis-

sion at both X-ray and microwave wavelengths arising from
the same volume of a coronal structure. However, as in the

only previous studies involving simultaneous X-ray and micro-

wave (5 GHz) observations at high spatial resolution (Paper I
and Paper II), we find that the X-ray emission was generally
not associated with the 1.45 GHz microwave sources. Only one
of the five 1.45 GHz sources (source A. Fig. 1) was cospatial

with X-ray emission.

Table I lists the brightest 1.45 GHz sources as designated on
Figure Id in decreasing order of peak brightness temperature

T_. To be considered, a source had to contain at least two

contours; the other features on the map may be noise or arti-
facts of the CLEANing process. For each source in Table 1 we

TABLE 1

BrI(IHXI_Sr1.45 GHz SOUR__Sl_ A(trvF Rltilo_ H454

Peak 7_,
Source tl0 _ K) Size' Association

A ....... 8.6 10.3 22" 38" Top of coronal loop arcade:
photospheric neutral line

B .... 8.6 22 32 Large sunspot umbra or penumbra :
near feel of coronal loops

C ........ 86 20 35 Photospheric neutral
lines'filament ; sunspot

D .......... 5.2-69 15 30 ? (Faint H_ plage)
E .......... 3.4 5 30 ?

' The approximate FWHM dimensions of the total intensity along Ihe short
and h_ng axis of each source. These are uncorrected for the beam shape.
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FIG. 3.---Contour map of the photospheric magnetic field in active region H454 at 1507 UT on 1981 February 13, Contours of _+ 200, 350 and 500 G are shown.

Negative fields are shaded : fields less than - 50 G are shown without contours, The numbered arrows point to the locations of the footpoints of X-ray loops 3 and 4

(see Fig. I ). The cross denotes the posilion of the peak 1.45 GHz emission from source A. (b) Co-aligned white light continuum contour map showing locations of the

sunspots in H454 So_ar north is up and east to the left. The horizontal dimension of the boxes is 8:5. Data courtesy of J. Harvey, NSO _Kii! Peak).
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also list its size and possible physical association in the manner

of Paper !.

Source A was one of the brightest and largest 1.45 GHz

sources and was positioned at or near the apex of the bright

sourthern X-ray loops (Fig. It). Source A also overlaid an area

of moderate Ha plage and was near a bend in the photospheric

inversion line. But this area of the photosphere generally had

magnetic fields of low strength and low gradients. Figure 3

presents Kitt Peak contour maps of (a) the photospheric mag-

netic field and (b) sunspots in H454 on 1981 February 13. The

"X" in Figure 3a denotes the center of source A, and the

arrows point to the locations of the feet of X-ray loops 3 and 4.

Source B was a strong, circular source lying near the eastern

foot of loop 4. It overlaid an area of weak negative polariU,

field without bright H_t emission. The center of the source was

only 25"-30" from the southern umbra of the large spot. Given

the alignment uncertainty and the possibility of projection

effects, it might have been associated with the corona above

this umbra or with lhe penumbra.

The elongated source C lay 40" west of the westernmost

positive spot in an area of no Ha activity and moderate mag-

netic field strength. The source straddled the inversion line, an

area of high field gradients, and the southern end of a long-

curving filament which formed the region to the west. ProJec-

tion effects would be significant for this coronal source. Both

sources D and E lay in areas of weak negative polarity field,

with only faint Ha plage and no activity. No magnetic pores or

spots existed in these areas (see Fig. 3b). The reality of source E
was questionable.

Finally, we note that 1.45 GHz emission was not detected

over regions where we might have expected it based on pre-

vious results. With the possible exception of source B, no emis-

sion was detected near sunspots or other strong fields where gr

emission might be expected. And other than source A, no 1.45

GHz emission was associated with the X-ray loops, the flare-

active area to the northeast, nor any bright Ha plage regions.

Such associations have been emphasized by Lang, Willson.

and Rayrole (1982), Lang, Willson and Gaizaukas 11983), and

Chuideri-Drago et al. (1982), based on the expected dominance

of bremsstrahlung radiation at 1.45 GHz. But even the associ-

ated source A did not resemble the size or shape of the X-ray

loops.

b) Review of 1979 November 16 Results

Here we briefly review the main results of Paper I to provide

the background necessary for the derivation of loop param-

eters in the next section. That study was based on a determi-

nation of the spatial correspondence in two active regions of

the most intense sources of 5 GHz emission to coronal loop

structures, sunspots, chromospheric structures, and photo-

spheric magnetic fields. Some of the fanter microwave com-

ponents were associated with X-ray (bandpass of 3 _60 A)
loops, but the brighter components were not. Also, most of the

bright 6 GHz sources were not associated with sunspots. In

both Paper I and Paper I1, the X-ray and magnetic field obser-

vations were used to constrain possible mechanisms for the
centimeter radio emission.

Those authors found that free-free emission did not provide

sufficient opacity to explain the 5 GHz sources (for which Tb >

106 K). Gyroresonance absorption at the third or fourth har-

monic (requiring magnetic fields of 450 or 600 G; Paper I) or at

the fourth or fifth harmonic (fields of 360 or 450 G, Paper II)

could explain some but not all of the emission. However, in
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both studies, a nonthermal mechanism was proposed to

explain sources of intense emission {not associated with

sunspots). This result suggests that discrete regions of contin-

uous particle acceleration might be common in active regions,

an unexpected result with potential importance to theories of

loop heating.

On 1979 November 16 about one-third of the 5 GHz sources

in both active regions were cospatial with the feet or upper

parts of coronal loops of lengths 5 x 104 km or less. These

loops were either inferred from the geometry of the magnetic

field or detected directly in soft X-rays. Howcvcr, only fi_ur of

the loops had both cospatial X-ray and 5 GHz emission from

near the top of the loop. These are summarized in Table I1 of

Paper I and are shown here schematically in Figure 4 super-

posed on the VLA intensity maps. Only the microwave sources

cospatial with the four X-ray loops and the sunspot locations

are labeled on Figure 4. Such emission clearh' arises from the

lower corona. Based on the assumption that the emission in

the tv,o wavebands arises from the same volume, direct tests of

microwave emission mechanisms and derivation of loop

parameters, such as temperature gradients and magnetic field
structure, can be made.

The two loops of interest in region H421 are shown in

Figure 4a. The weak source E' was cospatial with the top of a

short, bright X-ray loop. This loop bridged the main inversion

line of the region in an area of high field gradient near a large

sunspot (the plus). The western foot ended in or near the spot

penumbra and the eastern foot was cospatial with strong
fl_, _ 4.8 × 106 K) source E. Because source E was compact

and cospatial with a magnetically complex area, we could not

unambiguously associate it with the X-ray loop and will not
discuss it further. The length of(_2 × 104 km), shape, and

location of the X-ray loop were typical of penumbral coronal

loops tWebb and Zirin 1981). North of the spot lay a classic

arcade structure with X-ray loops joining opposite polarity
plage divided by a weak H:_ filament. The X-ray loop drawn on
Figure 4a was the largest diffuse arch forming the northern
limit of the arcade. Cospatial with or just above the arch was

the microwave source H This source _as bipolar and weakly
polarized with a peak T b _ 2.5 × 10 _ K. There were no micro-
wave sources at the feet of the X-ray arch.

The two loops of interest in region H419 are shown in

Figure 4b. The most interesting was a long, thin X-ray loop

whose top was apparently fainter than its feet. Cospatial with
the loop top was source M, a broad, weak microwave source

with moderate polarization. Again there were no sources at the
footpoints. Finally, just south of the largest sunspot in H419

lay a bright, triangular-shaped area of X-ray emission associ-

ated with H_ fibrils and multiple, elongated sources, all of
which were labeled source J. The north-south orientation of

the radio emission, the X-ray structure, and the Ha fibrils sug-
gested that the emission was associated with an arcade of low-

lying loops crossing the inversion line with their northern feet

possibly in the penumbra. This source also showed significant
polarization.

lit. DERIVATION f)F I.(X)P PARAMFI[:RS

In this section we derive the pertinent coronal plasma

parameters for the six X-ray loops observed _on the rocket

images of 1979 November 16 and 1981 February 131 to have

cospatial microwave sources at the loop top. We then use these

parameters to interpret the microwave emission in terms of the

thermal emission mechanisms Ifrce-frce or gr emissiont. For

w
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the two flights, pairs of adjacent exposures through beryllium

and aluminized polypropylene filters were converted to digi-
tized arrays of film density• These arrays were obtained at

1702-1703 UT on 1979 November 16 and 1917- 1919 UT on

1981 February 13. To determine plasma parameters of the

(a) ,',
kJ !1 ':

66-ft
(b)

......7'_ _ "_ "_/-r_ ":?--,

M
• <_: f,r. J

78 0 84

Fi(;. 4--VLA intensity maps at 5 GHz (6 cm) of actr.'e regions (a) H421
and (hi H419 on 1979 November 16. The size of the synthesized beam was
6" x 3". shown in the upper right. Celestial north is at the top and east to the
left. The phase centers 10, 01 of the two maps were NIOW23 and N32W33
heliocentric for H421 and H419 respectively, at 00 UT. The scale units are in
arcseconds. On both maps the lowest contour and the contour interval are
8 x l0 * K Large sunspot locations are denoted by plusses. The four X-ray
loops with associated 5 GHz sources are oserlaid and cross-hatched on the
maps, and the microwave sources are labeled with letters. See text for details.
This figure was adapted from Figs. 1-3 of Paper I.
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X-ray loops, the density array_ _'erc calibrated and reduced to

arrays of energy flux at the film plane follov,ing procedures
discussed by Vaiana et al. (1977) and modfl_ed by Davis and
Webb (1985) for the rocket data. For the 1979 data we used the
same laboratory calibrations at 8.3 and 44 A of the SO-212 film

used in Paper 11, whereas for ]981 we used the modified pro-
cedure discussed by Davis and Webb I 19851.

The X-ray images on the tv,'o flights were obtained with tv, o

different mirror systems, a Kanigan metal mirror on 1979
November 16 and the fused silica mirror in 1981. These

mirrors have different characteristics, but both yield image-

plane pixel sizes of _ 3". The mirrors also have different scat-
tering characteristics. This scattering is characterized by point
spread functions which are used to produce deconvolved

energy flux arrays. These arrays were then used to obtain maps
of electron temperature and linear emission measure, both

integrated along the line of sight.

Table 2 summarizes the derived X-ray, microwave, and

photospheric magnetic data for the six X-ray loops. Columns

(3F_6) list the plasma quantities of the loops derived from the

X-ray arrays. The listed errors are those duc to film calibration

and do not directly include errors due to deconvolution of the

spread functions. This latter factor might yield uncertainties in

absolute values as great as 50%, especially for the 1979 data.

Because of apparent brightness differences along each loop,

these parameters were averaged over the eastern and western

parts of the 1981 loops, and in 1979 over the bright loop cores

near their apices and along the entire loops. Despite the bright-

ness gradients, we see that within loop segments the actual

differences in emission measure, density, and temperature were

small The electron temperatures and densities all lay within

ranges typical of quiescent coronal active region loops {e.g.,

Webb 1981). For each flight the brightness differences between

loops were due mostly to density differences, not temperature

differences, as also reported before (e.g, Davis et _tl. 1975:

Cheng 1980). Within the uncertainties each loop was isobaric

and isothermal, at least along their axes.

Following Papers I and II, we can use the X-ray loop

parameters to estimate the importance of thermal brems-

strahlung to the microwave emission The free-free optical

depth is (cf. Lang 1980)

rrr= 9.8 x 10 z .TT_TInv_t47_ x 10_°T,> _1 j n_d/ .

where _ is the frequency of radio observations, and the electron

parameters are obtained from the X-ray measurements• For

these conditions at 4.9 GHz (1979 data), the corona is optically

thin (rrr _ 0.01-0.06) and 7_,(ff) = zff T,.. The calculated T_{ff)

lcol. [7]) is factors of l t_50 too low to account for the observed

7_, at the loop top (col. [811. At 1.45 GHz 11981 data), the

corona is optically thick (r_f _ 2.8-4.5) and T_,lff)= T,,{I-

e _"_. For these conditions the calculated T, Iff) is about a

factor of 2.5 _trearer than the observed T_ for source A, and

optically thick bremsstrahlung is a _iable emission mechanism.

Average values for the photospheric magnetic field at the

loop footpoints estimated from the NSO contour maps are

given in the last column of Table 2. The X-ray loops cospatial

with sources H421-E' and H419-J each might have had one

foot in a spot penumbra where kG fields are possible. Thus

significant longitudinal field gradients were possible in these

loops; indeed, these loops were among the brightest in their

respective active regions. The fields at the other loop feet (a few

hundred GI are typical of plage fields.
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TABLE 2

DERIVED PAKAME_'ERS FOR X-RAY LooPs WITH MICROWAVE SOURCES

Source S N_ dP AIb N,,' T_a Tblff)' Peak Tb(obs}_ Percent Footpoint B h
or Loop Region 110:8 cm _) 1108 cm) (109 cm) 110¢' K) (10_' K) (106 K) Polarity f Polarity B (G)

II) (2) (3) i4) t5) (6) 17) 18) 19) (10) (l I)

1979 November 16

H421-E' . .... Core 3.9 + 03 6.5 7.8 _+ 0.2 3.0 + 02 ill5 1.5 L ... 50-200 East

Loop 3.6 +_ 0.3 6.0 ___0.8 78 _ 0.8 2.9 ± 0.3 0.15 < 1000 West

H421-H ..... Core 4.2 + 0.4 8.7 6.9 _+ 0.3 2.8 + 0.2 0.17 2.5 R 33% 350 500

Loop 3.4 + 0.2 13 _,_+4.2 5.4 + 1.1 2.9 + 0.2 0.14

H419-M ..... Top 0,74 _+ 0.06 7.0 + 1.8 3.4 + 0.6 2.9 + 0.2 0.03 1.5 R _0 50 200

H419-J ...... Core 2.5 + 0.2 (10) (5.0 ___0.2) 3.0 + 0.2 0.10 1.5 2.5 R 33 100 > 500

Loops 2.2 +_ 0.2 (10} 14,7 + 0.2) 3.0 +_ 0,2 009 < lO00

1981 February 13

3 ............. East 21 _+ 8.8 7,0 17 + 3.8 2.5 2.5 09-1.0 ...... 300

West 20 _+ 8.4 3.5 23 + 5.2 2.4 2.4 .....

4 ............ Easl 14 + 6.0 8,7 13 + 2.8 2.6 2.4 ......... 250

West 15+6.4 (121 (11 _+2.4} 2.4 23 ......

• Integral emission measure along the line of sight (LOS). Errors are uncertainties due to the film calibration.

_' Loop thickness along the LOS estimated from the loop widlh on the fine-grain SO-253 film. Quantities in parentheses are less reliable.

Eleclron density derived by dividing the emission measure by al.

a Electron temperature along the LOS from two-falter method. Errors are uncertainties due to the film calibration.

• For 1979 values, average brightness temperature due to optically thin thermal bremsstrahlung calculated from X-ray parameters; for _' = 4.9 GHz. For 1981

values, T_ = T_ {1 - e '"1 because at 1.45 GHz and with these X-ray parameters corona is optically thick.

From Paper I, Table II.

J From Paper I, Table I.

h Average photospheric magnetic field strength estimated from magnetogram contour maps {e.g., Fig. 3).

Following Kundu, Schmahl, and Gerassimenko (1980) and

Papers I and II, curves of unit optical depth are plotted in

Figure 5. Figure 5a is for an observation frequency of 4.9 GHz,

and Figure 5b is for 1.45 GHz. The pairs of curves running

from upper left to lower right are for second to fifth harmonic,

extraordinary mode gr absorption. The lower (dashed) curve of

each pair is for an angle 0 = 60' between the line of sight and

the magnetic field, while the upper (solidi curve is for an angle

of 30 °. The curves are computed from the absorption coeffi-

cients given by Takakura and Scalise (1970).

In computing the optical depth, the scale length for variation

of the magnetic field, LB = B/(dB/dl), was assumed to be

1 × 10 '_ cm. This is consistent with estimates from magnetic

field models (Kundu, Schmahl, and Gerassimenko 1980;

Schmahl et al. 1982; McConnell and Kundu 1983) and with

the sizes of observed X-ray loops. The curves vary as L_ _¢I _J

where s is the harmonic number, and, therefore, the higher

harmonics are not very sensitive to small changes in the value

of L B. The short-dashed curves represent unit optical depth for

free-free absorption when the density scale length (or loop

thickness) is 1 x 10 '_ cm. A source is optically thick to gr

absorption if it lies above and to the right of the appropriate

curve, and to free-free absorption if it lies below and to the

right of the dotted curve. Also shown are the electron densities

corresponding to the plasma frequency (vertical line). Gyrore-

sonance emission is suppressed in the vicinity of and to the

right of the plasma frequency line.

The small rectangles in Figures 5a and 5b encompass the

range of electron temperatures and densities deduced from the

X-ray observations for the six loops. Free-free emission should

be an important contributor to the microwave emission of the

loops observed at 1.45 GHz, since the X-ray loops are optically

thick to free-free absorption. Gyroresonance emission may

also have contributed to the 1.45 GHz source, but it is likely

7, IX \ \, \- ,"-'" '

tO 8 "N
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N e [cm-'gJ

N, "4, _ ' --_r- , N, ;
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FI(;. 5.--Curves of unit optical depth as a function of plasma temperature
and density for the observation frequencies of (a} 4.9 GHz and {b) 1.45 GHz.
The pairs of diagonal curves are for thermal gyroemission at the second
through fifth harmonics. The lower (dashed) curve is for 0 = 60 and the upper
Isolid) curve is for 0 = 30. The short-dashed curves show unit optical depth for
thermal bremsstrahtung, and the solid vertical lines show the electron densities
corresponding to the plasma frequency. The box shows the range of tem-
peratures and densities of the colonal loops determined from the X-ray data
for {a11979 November 16 and (b) 198t February 13.
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that the observed emission was predominantly free-free. At 5

GHz free-free emission is not important and the loop sources

are probably gr emission or, possibly, gyrosynchrotron emis-

sion from a more energetic population of electrons. Since the

observed brightness temperatures were on the order of or

slightly less than the electron temperatures, it is likely that the

5 GHz sources arose from low harmonic gr emission. The

highest optically thick harmonic is the fourth, corresponding

to a magnetic field strength of 440 G. Such a field strength is

consistent with that found in the photosphere at the loop feet,

except possibly for source H419-M. This source is consistent

with fourth harmonic gr emission and the observed photo-

spheric field strength only if either the photospheric field is

directed at a high angle (60 °) to the line of sight or if the

photospheric field is concentrated in small, unresolved areas.

Because the solar atmosphere cannot be modeled by a

simple plane parallel atmosphere, the microwave emission
could have arisen from harmonic emission lower than the

fourth (see Holman and Kundu 1985). The polarization data

can be used to test this possibility. Following Takakura and

Scalise (1970), in Figure 6 we have plotted the polarization as a

function of the angle 0 for the second through the fourth har-

monics at 4.9 GHz (a polarization of 1.0 corresponds to 100%

polarization in the extraordinary mode). Based on the X-ray

data, we assumed the magnetic scale length to be 1 × 109 cm

and the loop temperature and density to be 3 × 106 K and

5 x 109 cm-3. All the 4.9 GHz sources showed some polariz-

ation, and three of the four showed polarizations of 33% or

more {see Table 2). If the emitting region was essentially iso-

thermal, as assumed, this would limit the emission to the third

or fourth harmonic. Since the observations revealed single

compact sources near the X-ray loop tops, high values of 0 are

likely, which favors fourth-harmonic emission Wig. 6).

IV. COMPARISON WITH MICROWAVE LOOP MODELS

In the previous section we concluded that the most likely
source of the microwave emission at ! .45 GHz (I 981 February)

was thermal bremsstrahlung, and at ,1.9 GHz (1979 November)

was fourth-harmonic gr emission. Now we would expect the

bremsstrahlung microwave emission to be cospatial with the

entire X-ray loop, since, to first order, they are isothermal and

isobaric. Computations of the thermal gr emission from iso-
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FIG. @--Fractional polarization (thermal gr emission in the extraordinary

mode) as a function of 0, the angle between the line of sight and magnetic field,

for lhe second, third and fourth harmonics of the gyrofrequency at 4.9 GHz.

Plasma parameters consistent with the X-ray observations are assumed (see

text).

thermal, two-dimensional dipole magnetic loop models have

been made by Holman and Kundu (1985). In these dipole

models the variation of the magnetic field strength along the

length of the loop is such that several harmonics will contrib-

ute to the loop emission. However, contrary to our expecta-

tions for the thermal mechanisms, in most of the X-ray loops in

our observations the microwave source appeared as a single,

fairly compact region near the top of the loop. Therefore, we
were forced to consider alternative models for both the 1.45

and 4.9 GHz observations.

a) 4.9GHz: 1979 Not_ember 16

At least two of the X-ray loops observed on 1979 November

16, namely H421-H and H419-M, had a single isolated micro-

wave source near the loop top. In the simple isothermal dipole

models, it is difficult to have fourth or even third gr harmonic

emission from near the top of the loop without also detecting

lower harmonic emission from the legs of the loop. Source

H419-J could be consistent with the dipole model if the multi-

ple microwave peaks arose from a single east-west loop.

However, the authors of Paper I interpreted the X-ray and Ha

data as indicating an arcade of north-south directed loops.

Source H421-E' could be consistent with a large variation in

field strength along an asymmetric loop if H421-E were also

associated with the western side of the X-ray loop. A difficulty

with such an interpretation in this case, however, is that the

peak brightness temperature of source E was greater than the

electron temperature deduced from the X-ray observations.

Thus, for these latter two sources, direct application of the

dipole models of Holman and Kundu does not seem appropri-
ate. (We note that both 419-M and 421-E' were weak sources.

The observations, however, reveal three cases of similar micro-

wave structures coincident with X-ray loop tops, a situation

unlikely to be due to chance.)
Therefore, we have examined two alternative models. In the

first, the magnetic field is held constant along the loop, while in

the second the field varies along the loop, though not as much

as in the Holman and Kundu (1985) dipole models, and a

limited temperature gradient exists in the loop. To obtain a

model in which the magnetic field strength does not vary along

the length of the loop, we use, instead of a dipole field, the field

generated by a line current (B sc r- J). If the current is taken to

be at the solar "surface" and hot (3 x l0 t' KI plasma is present

only along field lines with B _ 4(X)-500 G, a semicircular loop

{or arcadel might be observed in X-rays. At 4.9 GHz only

fourth-harmonic emission would be observed. If the loop were

observed from a direction perpendicular to the plane contain-

ing the loop, 0 = 90' and the entire loop would be detected at
4.9 GHz. If the observer looked directly down upon the loop,

however, 0 would vary from 90 at the top to 0 _ at the foot-

points. Since, for the observed densities and temperatures, the

fourth harmonic is only optically thick at high values of 0, only

the upper part of the loop would be observed. A computation

of the 4.9 GHz brightness temperature (extraordinary mode) as

a function of position .,co along such a loop with average elec-

tron temperature and density is shown in Figure 7. The mag-

netic field strength of 440 G, corresponding to the fourth
harmonic, is taken to be constant at the loop radius of

r = 2 x 109 cm. The scan is for the observer in the plane of the

loop with the line of sight perpendicular to the surface

(_/_= 90_). Some corresponding values of 0 are also shown

(cos 0 = xo/r).

The lowest brightness temperature plotted in Figure 7
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FK;. 7.--Computed 4.9 Gltz brightness temperature (extraordinary model
as a function of position for a scan along the projected length of a model
semicircular loop with a constant field strength of 440 G (fourth-harmonic
emissionl at the loop radius of 2 × 109cm. The loop electron temperature and
density are taken to be 3 × 10_'K and 5 x 109cm- 3.The angle tbbetween the
line of sight and the solar surface is 90 Representative values of t? are also
shown.

(8 x 10 _ K) corresponds to the lowest intensity contour on the

microwave maps (Fig. 4). An important conclusion is that

although part of the loop is not expected to be observed, the

predicted microwave emission is still too extended to explain

the compactness of the observed sources. Since the line-of-sight

component of the loop magnetic field changes direction at

0 = 90 _, the observed microwave polarization should change

sign where the brightness temperature is greatest. It is inter-

esting that source H421-H did show evidence for such a

polarization reversal (percentage polarization: 33%), and the

lowest contour was elongated along the axis of the X-ray loop

(Fig. 4 and Paper I, Fig. I). However, the region of left-hand

polarization was less intense and the total intensity contours

not as elongated as predicted by this model. On the other

hand, source H419-M showed neither evidence for a polariz-

ation rcversal nor significant elongation along the X-ray loop.

It appears that, at least for source M, some variation in field

strength along the loop would be required, although not as

much as in the simple dipole model.

Sources such as H421-H and H419-M can most easily be

explained by a temperature gradient along the loop, with the

hottest region in the upper part of the loop as in the model

considered by McConnell and Kundu (1983). However, as is

typical (e.g., Webb 1981), the X-ray observations revealed the

loops to be essentially isothermal along their length. Such a

gradient is consistent with these observations if the hot, X-ray

emitting plasma is limited to an extended region in the upper

part of the loop, with a thin transition zone at the ends of the

hot region. For fourth-harmonic emission, the transition zone

must occur above the 580 G level within thc loop, so that
emission from the lower harmonics is not observed.

Detailed models of the observational results are beyond the

scope of this paper. Full three-dimensional loop models are

presently in preparation (Holman and Brosius 1986). In Figure

8 we demonstrate how the observed 4.9 GHz loop properties

can be obtained from a modified dipole loop model, in the

figure the third and fourth harmonic levels are shown in a

model dipole loop with a minimum magnetic field strength of

425 G (at the top of the loop where y = 10.4 x 10 9 cm)(cf. Fig.

1 of Holman and Kundu 1985). The y-coordinate is measured

from the position of the dipole. The transition zone must occur
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F_(_, 8. -(a) A model dipole magnetic loop with a minimum magnetic field strength of 425 G at y = 10.4 x 10_ cm. The third- and fourth-harmonic thermal gr
emission levels for an observalion frequency of 4.9 GHz are shown. The )-axis coordinates are measured from the position of 1he dipole. (b) Same geometry, with a
minimum magnetic field strength of 375 G at y = 10.4 x 109 cm Lines of sight with an inclination of _ = 45 are shown at the edges of the fourth-harmonic level,
and corresponding values of# are shown
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at or above the y = 9.4 × 10 '_ cm level so that third harmonic

emission is not observed. The level at which fourth harmonic

emission occurs (B = 440 G) is near the top of the loop, so that

only a single microwave source at the top would be observed.

If the observer looked down on the loop to5 = 90% a polariz-

ation reversal would be expected, as for the line-current model.

A slight inclination of the line of sight at 4_ = 75 ° or less,

however, will give a source of uniform polarization. An inclina-

tion angle somewhat larger than 75:' may in fact explain the

polarization structure of source H421-H. The line of sight

might also have an inclination out of the plane of the loop, as

in the actual observations, without changing these basic fea-
tures.

It seems unlikely that the 440 G level typically will appear

just at the apex of a magnetic loop. Figure 8b shows a model

loop for which the fourth-harmonic level is somewhat lower, so

that it is separated into a region in each leg of the loop. The

field strength at the top [y = 10.4 x 10 '_ cmJ of this loop is 375

G, and the third harmonic level is just below the x,, axis. If the

observer looked directb down on the loop (q5 = 90 I, a micro-

wave source would be observed in each leg. These _,ources arc
identical if r_5=-_)I) rexcepl for sign of polarizalionk For

smaller values of ,,'_ they differ, since the range of 0 is no longer

the same for the two regions. As an example, in Figure 8b lines

of sight wKh an inclination of 05 = 45 are shown. The values of

0 for the fourth-harmonic source in the left leg of the loop

range from 60 to 75. In the right leg. however, 0 ranges from

15' to 30. For the parameters of this model, the fourth harmo-

nic is not optically thick at these small angles, and the

maximum brightness temperature of the region in the right leg

of the loop would be sufficiently low to be unobservable

Hence. once again, only a single, relatively compact microwave

source would be observed near the top of the projected image

of the loop. The same results can be obtained for an observer

outside the plane of the loop, as tong as 0 < 30 for the rcgion

in the right leg of the loop.

An alternative to requiring that the transition zone occur

abo',e the third harmonic level might be to have free-free

absorption in the plasma external It) the Iot)p mask microwave

emission from the lower parts of the loop. In the pre_ious

section the free-free optical depth at 4.9 GHz lor the X-ray

loops was determined to be rtt _-0,01 .006 If the external

medium had a similar emission measure but a temperature an

order of magnitude smaller than in the loop. rtf _ 03 1.6 for

the external plasma. Thus, this mechanism is a possibility, par-

ticularly if the density scale length is larger than the thickness

of the X-ray loop. However, if the density scale length of thc

external plasma is determined by gravity, it will decrease _ith

decrcasing temperature, cg., I = I :, 10 '_ cm for a 3 x 10 _ K

plasma. Also, if the external plasma density is much lower than

the loop density, the free-free optical depth will be It,,> .small for

absorption to occur.

b) 1.45 GFIz: 1981 l-chruary 13

We found earlier that free-free absorption was important for

the loop emission at 1.45 GHz. The X-ray loops were opticall,,

thick, but, as at 4,9 GHz, only a single, compact microwave

source was observed [Fig. 1). Hence, both the failure t,_ dctcct

in emission the entire X-ray loops or any of the other observed

X-ray structures, and the compactness of the associated micro-

wave source, must be explained. That most of the loops were

not observed at 1.45 GHz suggests that absorption b_ an exter-

nal plasma might be important. If we assume that microwave
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I it.. ') Brlghlnc,,s temperature at 14'; GHz as a function of position
;flong the loop for a ,,can It0 = 90 t of a model semicircular loop embedded in
I × t0 _ K ambient plasma v, ith densit._ decreasing exponenttall_ with heighl.

The,rater and inner radn oflhe loop are 3 × 10 '_[lhe sides of the box) and
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._,',mned h_ hc 2 5 , 10" K and 1.5 ,' I0 _° cm 3. The microv, ave emission is

Ihe;nr;d biems,,trahhmg See text for details

source A was directly associated _ith X-ray loops 3 or 4 or

both (Fig 1/, we can esttmate the characteristics of the external

plasma needed to detect the loop top but mask the emission

from the sides of these loops. A plot of the free-free emission

from a model demonstrating how this can occur is shown in

Figure 9. The model consists of a semicircular loop with an
outer radius of 3 x 10 '_ cm ,md an inner radius of 2.5 x 1O'_

cm. The loop has a uniform temperature and densi D of

25 × ]0 6 K and 1.5 x 10 _° cm ', like those of the observed

X-ray loops. The loop is surrounded by a plasma with a

uniform temperature of 1 x 10 _ K. Thc external plasma

density falls off exponentially with a scale height of 3.3 x 10 s

cm, the gravitational scale height for a plasma of this tem-

perature The external plasma density at the top of the loop

(height := 3 x 10"_cm)isl.6 x 10'_cm '.t. igure9showsaplot

,;f 145 GHz bnghmess temperature as a function of position

along the loop (05 = 90 ). The _sidth and peak brightness tcm-

perature of the resulting source arc comparable to the

observed ;alues, as desired. I Note that thc Io_,e,q contour on

the 1.45 GHz map was 1.7 x" I0" K [Fig 1] In computing the

brightness temperature for Figure 9, a small contribution from

lhe index of refraction has been neglected t

Although the model used m Figure 9 treat:, the external

plasma as a uniform, plane-pc_rallel atmosphere, it could, for

example, also be a more locahzed sheath surrounding the

X-ray loop. This model is preliminary and intcnded only to bc

illustrative; it is less reliable at lower heights, which are unob-
servablc at 1.45 GHz. The model does suffice to demonstrate

ho,x the observed structure can be obtained and indicates what

properties of the external plasma are required to explain the

nhservational results. More detailed models are in preparation

(Brosius and Holman 19861. An external temperature of < IO s

K woukl be required to avoid observable emission at 1.45

GHz. A temperature of the plasma this low Iwith its corre-

sponding scale height) is also required to produce a microwave

source that is sufficiently compact. Lower temperatures and

scale heights produce more compact sources. The requircd
emission measure of the 10 _ K plasma is estimated for the

model to be _ 102_ cm s. This value is two orders of magni-

tude smaller than the emission measure of the hot {> l0 t' K)

loop plasma but an order of magnitude larger than observed in

active regions vdth the Harvard EUV Spectrometer on Skvlah
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(Noyes et al. 1985). _ The emission measure could be an order of

magnitude smaller if the plasma temperature were closer to
10 4 K.

An alternative model that does not require such a large

emission measure is to have the external absorption be gyrore-

sonance rather than free-free. Third-harmonic absorption with

T _ l0 s K requires a plasma density on the order of that

required for free-free absorption (see Fig. 5b), so the absorption

is likely to be at the second harmonic level. In this case the

magnetic field strength at the absorbing level would be 260 G,

and the emission measure of the 105 K plasma could be as low

as _ 10 :l cm _ (cf. Fig. 5b). The compact microwave source

could be reproduced if the second harmonic level either grazed

the 2.5 × 106 K loop plasma or cut through a transition zone

around the loop. In this case the microwave source would

likely arise from a combination ofgr and free-free emission.

A third alternative is that the entire X-ray loop was masked

by either second harmonic gr or free-free absorption, and the

microwave source arose from gr emission from a higher, cooler

(< 1 × 10 _' K)loop. Such a loop might be part of an arcade of

coronal loops, with only the lower ones being sufficiently dense

or hot to be detected in X-rays. The source would likely be
third harmonic emission with B = 170 G. Such a model is

similar to that discussed for the 4.9 GHz emission, since only a

single, compact source was observed. Whichever model is

correct, however, one conclusion remains: the X-ray loops

must have been enveloped by cooler plasma with a tem-

perature < 105 K.

V. DISCUSSION

We have analyzed two data sets in order to improve our
understanding of the plasma and magnetic field properties of

active region coronal loops. Each of these sets consisted of
co-aligned, high spatial resolution soft X-ray, microwave and

magnetogram images that were used to compare observations

of coronal loops and their feet in the photosphere and to con-

strain possible microwave emission mechanisms. Each of the

VLA observations was at a single frequency; the 1979 observa-

tion was at 5 GHz (6 cm) and had suitable polarization data

(Paper I}, and the 1981 observation was at 1.45 GHz (20 cm)

with no polarization information. Many microwave sources

were detected at 5 GHz (Paper it, whereas only a few sources of

lower Tb were observed at 1.45 GHz. At both frequencies the

correspondence between the X-ray and microwave emission

was poor. However, within the three active regions analyzed,

there were six X-ray loops with cospatial microwave sources

near the loop top. The plasma parameters of these loops were

typical of quiescent active region loops. The microwave loop

top sources had Tb= 1 2.5 × 10 _' K, and three of the four 5

GHz sources were significantly polarized.

Using these results, we constructed model coronal loops and

compared the predicted distribution of thermal microwave

emission with the observations. At the higher frequency (4.9

GHz; 6 cm), simple isothermal, dipole loop models (i.e.,

Holman and Kundu 1985) do not fit the observations. The

loop emission is best fitted by fourth-harmonic gr emission

from a dipole loop {Fig. 8) with a magnetic field of _440 G

.s The portion of the active rcgmn discussed here is distant from sunspots

and, therefore, is unlikely to be effected by so-called "sunspot plumes." which

can have enhanced emission at 7". _ 2 6 × 107 K te.g., Foukal er at 1974;

Webb 1981_
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near the loop top and with the transition zone at or above the

_580 G level to suppress lower harmonic emission, This

model has less longitudinal field variation than the models of

Holman and Kundu (1985L Alternalive possibilities, such as a

model where the field is generated by a line current and

remains constant along the loop, or one combining gr emission

from the loop top and free-free absorption from an external

plasma, were considered less likely. We also found that brems-

strahlung alone could not provide sufficient opacity to explain

the 5 GHz sources {for which T_, > 10 _ KI.

At the lower frequency (1.45 GHz: 20 cm), the loops are

optically thick to free-free emission. In order to explain the

restriction of the 1.45 GHz emission to the top of occasional

loops, it is necessary to invoke absorption by cooler material

(T_ < 10 _ K) existing either as a sheath around the loops or as

part of an external medium. A possible model iFig. 9) suggests

that the loop field strength would have It) be below 260 G, so

that the loop top emission would not be masked by second-

harmonic absorption in the external medium. Other pos-

sibilities we considered include loop emission from both

free-free and second harmonic gr, or third harmonic emission

with B _ 170 G from a higher, cooler loop invisible in X-rays.

The important result is that an external plasma of 7I. < 10 _ K is

required in all of these models to explain the combined obser-
vations at 1.45 GHz.

In several recent studies, researchers have claimed detection

of neutral hydrogen and helium in absorption over active

regions (see Webb 1981 for a review). Schmahl and Orrall

(1979) found column densities of such cool N H > 10 _ cm 2

And Foukal (19811 discussed EUV observations of opaque

coronal material at 2 > 912 /_ that was most likely due to

absorption by the neutral carbon continuum. Sufficient

amounts of such cool material could easily absorb the free-free

microwave emission from all or portions of corohal loops and

explain the general absence of emission from the X-ray loops.

However, white-light and X-ray observations during solar

eclipses suggest that any material between coronal loops must

be at a pressure at least 3--6 times less than in the loops (e.g.,

Krieger 1977).

It has been argued from recent observations that entire,

large coronal loops at 5 GHz iKundu and Velusamy 1980;

Shibasaki ef a/. 1983) and at t.45 GHz (Lang, Willson, and

Rayrole 1982; Lang and Willson 1983. 1984) are being

observed. In fact, Lang and Willson (1983) have suggested that

such 20 cm coronal loops, whose dominant emission should be

bremsstrahlung, are the radio-wavelength counterparts of

X-ray coronal loops. However, none of these observations

were supported by simultaneous spatially resolved X-ray

imagery. In studies such as ours, where resolved X-ray and

microwave images have been compared, the detailed corre-

spondence of the emission at both wavelengths has been poor.

Specifically, we have found no cases of cospatial X-ray and

microwave emission outlining entire loops and therefore

cannot support the interpretation that complete magnetic

loops filled with coronal plasma will be imaged at any single

microwave frequency.

However, although our 1.45 GHz source A was roughly

circular, elongated or curvilinear microwave structures have

apparently been observed by others. This suggests that at least

portions of coronal loops are being detected. For instance,

McConnell and Kundu (1983) observed a looplike structure at

1.45 GHz and, using both 1.45 and 5 GHz observations and
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the Rosner, Tucker, and Vaiana (19781 loop model, they con-

cluded that their data were most consistent with bremsstrah-

lung emission from the loop feet and gr emission from the loop

top. They disputed the claims that at 20 cm the entire loop

emission could be attributed to thermal bremsstrahlung, Other

recent modeling results (e.g., Paper II; this paper; Strong,

Alissandrakis, and Kundu 1984: Holman and Kundu 1985)

support this view and imply that, at any given radio frequency,

the emission from a quiescent coronal loop will be patchy and

may be dominated by different mechanisms at different layers

tor heightsl of the loop. And our results suggest that external

absorption may play a significant role in microwave loop emis-

sion. Taken together, these studies demonstrate that the physi-

cal interpretation of coronal loops requires an appropriate

combination of high spatial resolution observations at several

wavelengths with mature loop models.

Our observational and modeling re,_;ults have revealed

important differences in interpretation with other results based

primarily on observations at a single microwave frequency.

Further substantial progress in this field will require simulta-

neous imaging of coronal structures in soft X-rays, the EUV,

and microwaves at several frequencies, and of the photospheric

field for comparison with improved theoretical models of

coronal loops.
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ERRATUM

In the paper "Neutrino Flows in Collapsing Stars: A Two-Fluid Model" by J. Cooperstein, L. J. van den Horn, and E. A. Baron

(Ap. J., 309, 653 [1986"1), equations (4.30) and (4.33) erroneously contain the coefficient pertaining to neutrino-proton scattering (cf.
eqs. [4.31] and [4.34])and should be corrected to read

,_ = - (z) 3n--_ + _ g,_ n_ T_ F4t_, ) , 14.30)

_/_ = - (z) --_ +_0_ n, e_,T,, m_.. {4.331
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Abstract

The new AS&E Ultrahigh Resolution Soft X-Ray Solar Research Rocket Payload has been

successfully flown twice on Black Brant IX Sounding Rockets from White Sands Missile

Range. These flights, conducted on 15 August 1987 and II December 1987, provided the

first test of the new payload which consists of 3.8X magnifying hyperboloid-hyperboloid

grazing incidence relay optic used in conjunction with an existing Wolter-I primary

mirror. An RCA SID 500 series CCD detector was utilized in a thinned, back-illuminated

configuration for recording the images. The 5.4 m effective focal length of the compound

optics system resulted in a plate scale of 1 arc second per pixel which is comparable to

the inherent resolution of the primary mirror. These flights represent the first use in

X-ray astronomy of either of these two new technologies. These observations are presented

with comparison to laboratory measurements and theoretical expectations of the instrument

performance.

Introduction

The scientific objective of the new AS&E Ultrahigh Resolution Soft X-Ray Solar

Research Rocket Payload is high spatial resolution observations with short integration

(exposure) times in order to search for fine scale transient coronal phenomena. The

motivation for this search arises from the current interest in observations of coronal

waves or nanoflares which may be associated with active region heating (e.g., Parker,

1988) 1 . These observations require several arc second spatial resolution with temporal

resolution of the order of a second. Such observations have not been previously

available.

In order to address this observational goal of simultaneous high temporal and spatial

resolution, two emerging technologies were combined each having individual applications to

X-ray astronomy. X-ray sensitive CCD detector technology provides high detection effi-

ciency so that short integration times become possible. CCD detectors also provide

accurate and consistent measurement of X-ray energy deposit which is straight forward to

model and calibrate. Grazing incidence relay optic technology provides the means in the

soft X-ray regime (<40 Angstroms) to match a variety of focal plane instruments to the

same primary mirror. The combination of a CCD detector with a magnifying grazing inci-

dence relay optic provided a match of the plate scale of the AS&E high resolution rocket

borne X-ray mirror to the spatial resolution of the CCD detector so that the high temporal

resolution available with the CCD detector could be obtained with the high spatial reso-

lution of the existing X-ray optics.

Extensive modeling and laboratory testing was conducted to determine the performance

in the X-ray regime of both the compound grazing incidence optical system and the CCD

detector. Flight tests of the compound telescope/CCD detector system were conducted on 15

August 1987 and ii December 1987 as an ancillary experiment during the 1967 X-ray Bright

Point Observing Campaign. A proof of the design principle was established during these

flights, but initial analysis of the observations indicates a level of performance below

expectation in both sensitivity and spatial resolution. The reasons for this apparent

lack of performance are not understood and further research is required to explore these

questions.

Instrumentation

Grazing Incidence Relay Optics Compound Telescope

The compound X-ray optics system consists of a Wolter Schwarzschild primary mirror

coupled with a diverging magnifier relay optic as illustrated in Figure I. The relay

22 / SPIE VoL 982 X-Ray Instrumentation in Astronomy II (1988)
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Figure I. Diagram of the design for the grazing incidence relay optics system.

optic is an externally reflecting mirror with two hyperboloidal segments. This configur-

ation is analogous to the well-known Barlow lens magnifier and the specific design

considerations of such a grazing incidence mirror are described by Chase et al (1982) z.

The relay optic manufactured for this payload has a magnification of 3.7 which produces

the desired plate scale of 26 microns (arc sec)-l. Although the effective focal length is

5.4 m, the actual length of the imaging system is 1.85 m thereby fitting within the 2 m

envelope available in the sounding rocket payload. The magnified plate scale matches the

pixel size of the CCD used in this payload to the inherent resolution of the X-ray optical

system. Table 1 summarizes the design of the primary and secondary mirrors.

The new AS&E Solar Research Rocket payload is constructed to obtain observations at

both the prime focus and the secondary focus during a single flight. The secondary optic

is mounted on a translation stage that can be inserted into or removed from the optical

path upon command of the experiment computer. A film camera is also mounted on a separate

translation stage that can be inserted into or removed from the prime focus upon computer

command. At take off, the secondary optic is stowed out of the optical path and the film

camera is positioned in the prime focus to accomplish the primary mission of these flights

acquisition of full disk photographic images of the solar X-ray corona. Following the

completion of the primary mission, the film camera is retracted from the optical path and

the relay optic inserted into the optical path to form a magnified image at the secondary

focus where the CCD camera image plane is located.

The performance of compound telescope in the X-ray regime has been measured utilizing

the 89.5 meter vacuum collimator long-tube facility (LTF) at AS&E. A report on these

measurements was made by Moses et al. (1986) 3 . The on-axis performance of the compound

telescope was found to be comparable with the one arc-second level resolution of the

primary mirror alone as reported earlier by Davis et al. (1979) 4 . Since the distance from

the relay optic to the image plane is 0.61 m while the effective focal length of the

primary mirror is 5.4 m, the plate scale for scattering from the relay optic (from figure

error or surface roughness) is much smaller than the equivalent scattering from the prim-

ary mirror projected onto the focal plane. The off-axis performance of the compound

telescope was found to be much worse than the primary mirror alone. Because the off-axis

Table I. Design Requirements of the X-Ra_ Mirrors

Primar__ Secondary

Wolter Schwarzschild

Fused Silica

30.48 cm

144.9 cm

42.4 cm 2

39.6 cm 2

7.0 microns (arc sec) -I

60 x 60 (arc min) 2

1 arc sec

Hyperboloid Hyperboloid

Nickel Coated Beryllium

3.15 cm

-19.9 cm

34.3 cm 2

5.8 cm 2

26.0 microns (arc sec) -I

2.5 x 2.5 (arc min) 2

i arc sec

Figure

Material

Principal Diameter

Focal Length

Geometrical Area

On-axis

2 arc minutes

Plate Scale

Field of View

Resolving Power (X-Ray)

SP/E VoL 982 X-Ray Instrumentation in Astronomy II (1988) / 23



ORIGINAL PAGE

BLACK AND WHITE PFK)TOGRAPH

performance of the compound telescope so

strongly influences the appearance of the

flight images, the previously reported off- 100

axis measurements will be summarized.

The relay optic design was optimized
t..

for maximum on-axis resolution. The _ 80

resulting lengths of the relay optic
hyperboloid mirrors are insufficient to

reflect much of the off-axis flux. Figure

2 illustrates the consequent vignetting of _-

off-axis rays by the relay optic both as _ 60

predicted by ray trace calculation and as bl

measured in the 89.5 m LTF. The restric- "_

tion of the vignetted field of view to a <¢,

circle of radius 2.5 arc minutes is essen- _ 40
tially the same for both the 89.5 m and

infinite source distance. The compound O

telescope also suffers from a form of

astigmatism. The off-axis image blur due

to geometric optics (no scattering) is _ 20

greater in the direction perpendicular to
h.

the displacement of the image from the on-

axis point. A ray trace calculation of the

rms blur of a point source displaced in the

X direction from the on-axis point is

presented in Figure 3. To express the

asymmetric character of the off-axis
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Figure 2. Ray trace calculation and

observed off-axis decline in energy

throughput of the compound telescope for a

89.5 m source distance.

$
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Figure 4. Photograph of X-ray source

imaged by the compound telescope for the

off-axis displacements (from left to right)

of 0 arc seconds, 30 arc seconds, and 60

arc seconds.
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aberration, the blur in the X and Y directions are plotted separately. For off-axis

angles less than 2 arc min, the ray trace calculation predicts a different blur pattern

for a 89.5 m and an infinite object distance, so both functions are plotted in Figure 3.

This aberration is obvious in the photograph presented in Figure 4 of an X-ray point

source in the AS&E 89.5 m LTF for off-axis displacements of 0, 30, and 60 arc seconds.

Further, it can be seen in Figure 4 that the wings of the point response function (which

are due to scattering and figure errors) clearly demonstrate the asymmetric off-axis

aberration predicted by the ray trace calculations for the unscattered rays in the core of

the point response function. Therefore, the net effect on the image is much greater than

the several arc second blur indicated by the ray trace. A practical limit on the field of

view is difficult to establish since the ray trace without scattering provides only a

qualitative guide to the off-axis aberration, although a 30 arc sec radius field of view

appears likely to be distortion free.

X-Ray Sensitive Charge Coupled Device Detector

The CCD detector is an RCA SID 500 series device operated in a back-side illuminated

mode for soft X-ray sensitivity. This required thinning the device to a thickness of

approximately I0 microns. This is a low noise, three-phase frame transfer device with 30

micron square pixels. The pixels are arranged in a 320 (H) by 256 (V) format. The CCD

camera converts the X-ray imaged focussed on the CCD device into a 256 x 256 pixel array

with each pixel magnitude represented by a digital word. As each pixel is sequentially

clocked out of the CCD, it is analyzed, incorporated into the telemetry bit stream format,

transmitted to a ground station receiver, and recorded.

The video chain of the X-ray CCD camera consists of a preamplifier, a correlated

double sample and hold and an analog to digital converter (ADC) . Ancillary circuits

include a clock driver which provides the regulated analog clock voltages required by the

CCD. It receives timing signals from a clock generator which is synchronized to the basic

frequency of the PCM modulator. The clock driver also provides the digital control

signals required by the correlated double sample and hold and the ADC. The preamplifier,

which amplifies the analog video signal, is designed to operate with a CCD which has an

on-chip source follower transistor. It is a linear amplifier with a gain of eleven, and

it provides the sample and hold circuit with a low impedance source.

The correlated double sample and hold samples the difference between the video pulse

generated by the CCD and a correlated null reference pulse and passes this difference

signal for processing by the ADC. The reference or "background" level signal is gene-

rated, before transferring out the next pixel charge, by discharging the previous pixel

charge at the CCD output transistor through a switching transistor. After the transient

caused by this discharge has decayed, the output level is an indication of the "black"

level of the CCD. This output level is not exactly equal to the pixel black level because

of the leakage charge transferred by the switching transistor control signal. The

resulting differential does not change because it depends only on the control signal

voltage, which is well regulated, and the geometry of the switching transistor, which is

extremely stable. It can therefore be accurately cancelled by an externally introduced

offset signal. This signal is generated in the video offset control from a series of

analog switches in the control register.

The circuits in the clock generator and clock driver generate the wave forms that are

used to move the exposed image from the image area to the storage area in the CCD. The

stored image is then moved, line by line, to a readout register and then, pixel by pixel,

to the output transistor. Additional features of these circuits include:

Raster limit feature which allows blanking of the beginning and the end of each line

to reduce the line from 320 to 256 pixels.

* Line blanking, for the blanking of entire lines.

The combination of "dummy" readouts with line blanking which allows the CCD to be

partially or totally cleared without undesirable and time-consuming digital readout.

The sounding rocket telemetry clock has a basic frequency (frame rate) of 1024 Hz.

Since no provision is made for on-board data storage other than the storage area of the

CCD, the telemetry rate determines the timing for the CCD. The minimum time for a frame

transfer of a complete image into the storage area with this clock is 15.6 msec. Since it

is anticipated that exposure as short as 20 msec will be required, electronic shuttering

is insufficient. A mechanical shutter system was fabricated utilizing an iris shutter in

combination with a feedback controlled chopper wheel.

The total time for telemetry of a complete image is approximately 10 sec (8 image

pixels are contained in a frame of image data). Exposure times on the order of tens of

SPIE Vo/, 982 X-Ray Instrumentation in Astronomy II (1988) / 25
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seconds may also be required for some

applications. Therefore, it is necessary

for the CCD to be cooled to reduce thermal

noise. An -80°C operating temperature is

obtained through a cold strap connection to

a liquid nitrogen reservoir. Active tem-

perature control is achieved by electric

heaters and a feedback circuit. The CCD

and the CCD head electronics board (con-

taining the preamplifier and logic-level

clocks) are mounted inside the vacuum

jacket of the LN2 dewar to prevent conden-

sation on the CCD. A window in the dewar

is opened when the payload reaches ob-

serving altitude.

A qualitative indication of the per-

formance of the CCD camera in the X-ray

regime can be seen in the shadowgraph image

presented in Figure 5. Edges are clearly

resolved at the 3 pixel level in this

photograph with a finite mask to CCD

distance. The 6-minute exposure time also

indicates the high level of background

suppression obtained with the cooled

device.

Detailed, quantitative measurements of

the quantum efficiency (QE) of the CCD have

been made. The QE is defined here as the

ratio of the charge at the output gate of

the device to the charge which would have

been collected in a pixel if all the

radiation incident on that pixel had been

converted into electron-hole pairs (3.6 eV

per electron-hole pair). The CCD camera

with flight electronics was coupled to a

test vacuum chamber with filtered electron

bombardment sources of either carbon or

aluminum K-alpha X-rays. Dosimetry was

determined with cross calibrated gas flow

proportional counters. An average ADC

value over a 50 x 50 pixel array was

computed by the GSE computer for each

exposure.

100%

In order to determine a charge at the

CCD output gate from the ADC value, two

quantities must be well known: the _ 80
capacitance of the CCD output floating e_

diffusion charge collector and the total n_

electronic gain between the output gate and
o_6o

the ADC. The value of the output gate z
capacitance is taken from the calibration _w

reports provided by RCA when the device was o_

purchased. A value of 0.19 pF was obtained _
40

by measuring the output transistor

discharge current during video rate readout

of white light exposure. The gains of the o

various stages of the video chain are: _ 20
UJ

Q

Sample and Hold Post Amplifier: 5.01

Sample and Hold Preamplifier: 3.55

Sample to Hold Switching: 0.90

Camera Head Preamplifier: 11.0

CCD Output: 0.99

Total 174.3

The QE for the A1 source (1.49 keY) and

C source (0.278 keV) are plotted in Figure

6. Also plotted in Figure 6 is the theo-

retical efficiency of a backside illumi-
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Figure 5. A shadowgraph taken at 44 Ang-

stroms with the CCD camera. The exposure

time was 6 minutes.
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Figure 6. Measurements of the detector

efficiency of the RCA SID 500 CCD detector

and theoretical efficiency curve for a

back-illuminated CCD thinned to I0 microns.



nated device I0 microns thick with a i000 angstrom dead layer. Perfect charge collection

and transfer are assumed. The low energy efficiency is determined by the filtering effect

of the dead layer. The high energy efficiency is determined by the X-ray transmission of

the 10 micron thick sensitive region. Error bars on the QE observations are representa-

tive of 10% uncertainty in output gate capacitance and electronic gains.

Fli@ht Observations

X-ray images of the solar corona obtained during AS&E Solar Research Rocket flights on

15 August 1987 and Ii December 1987 are presented in Figures 7 and 8, respectively. The

top image in each figure is a full disk photograph taken at the prime focus of the tele-

scope. The lower image in each figure is a CCD image taken at the secondary focus of the

telescope. All images are filtered through 1 micron of polypropylene and 3500 A of alu-

minum. The circles drawn on the full disk photographic images are 2 arc minutes in dia-

meter and centered on the target region of the CCD exposure. The circles drawn on the CCD

images are 2 arc minutes in diameter and centered on the region of maximum compound tele-

scope throughput. Although the optical axis of the CCD/compound telescope system cannot

currently be determined after final assembly, the CCD optical axis implied by the tech-

nique utilized in Figures 7 and 8 approximately agree with the optical axis last deter-

mined before final assembly. Review of the rapid decline in throughput with off-axis

angle, as illustrated in Figure 2, instills confidence in this method of locating the

optical axis of the CCD system for an image of any active region larger than 2 x 2 (arc
min) 2 .

The first impression created by the CCD images is the lack of resolved spatial struc-

ture. The on-axis resolution of the compound telescope as measured in the laboratory

leads one to expect a high resolution core to the CCD image. While the off-axis aberra-

tions illustrated in Figures 3 and 4 could combine in a non-intuitive way with the source

image, the tentative conclusion on the spatial resolution of the flight images is that

they do not match that obtained in the laboratory.

A second surprise is the lack of sensitivity of the flight observations. Calculations

based on a typical 2.5 x 106 OK active region emission measure of 2 x 1029 cm -5 and the

measured CCD and telescope performance indicates CCD saturation should be obtained with a

0.5 second exposure. Flight measurements imply that CCD saturation by the observed active

region requires approximately an order of magnitude greater exposure!

The CCD X-ray response is found to increase linearly exactly as expected. For the CCD

images with pixel values significantly above background, the histograms of pixel intensity

are found to map into each other simply by the factor of exposure time. Therefore, the

value of the CCD detector as a calorimeter has been established in these flight tests.

Conclusions

One possible explanation for the apparent lack of both spatial resolution and system

throughput of the flight observations relative to the laboratory measurements is a misa-

lignment of the relay optic. There are several ways in which such a misalignment could

occur, including a deformation of the relay optic translation stage due to launch loads,

extreme sensitivity to thermally induced changes in the optical bench, and a discrepancy

between the ground-based white-light alignment technique and the in-flight, free-fall

X-ray observation configuration. Pre-flight environmental testing was conducted on the

relay optic translation stage to determine its sensitivity to launch loads. Damage to the

translation stage during the reentry and recovery phase of both flights preclude a post-

flight investigation of unexpected deformation of the stage during launch.

However, at the present level of analysis, it is premature to draw many conclusions.

Two calculations are in progress which will address the question of whether the discrep-

ancy between flight observations and laboratory measurements is real or illusory: (I)

Since the rocket flights occurred near solar minimum, the observed active regions may have

lower emission measures than typical active regions. Quantitative analysis is underway

on the film images from these flights using standard techniques in order to determine the

emission measures of the target regions. (2) The true convolution of the target active

region emission with the point response function and geometrical aberration of the com-

pound telescope as measured in the laboratory may result in the observed secondary focal

plane image. It is possible that the narrow compound telescope field of view will only be

useful for observing bright points and isolated active regions less than an arc minute in

size. The calculation required to test this possibility is a deconvolution of the prime

focus photographic image followed by a convolution of that image utilizing both the point

response function and geometrical off-axis aberration of the compound telescope.

Finally, since two new systems were combined in the same observation, there remains an

uncertainty as to which component did not perform in flight as it did in the lab. The CCD
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Figure 7. 15 August 1987 X-ray images of the solar corona through aluminized polypropy-

lene filters. Both circles are 2 arc min diameter. Top: Full disk photographic image

obtained at prime focus. Bottom: 0.280 second exposure CCD detector image obtained at

secondary focus.
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Figure 8. ii December 1987 X-ray images of the solaz corona through aluminized polypropy-

lene filters. Both circles are 2 arc min diameter. Top: Full disk photographic image

obtained at prime focus. Bottom: ].0 second exposure CCD detector image obtained at
secondary focus.
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detector will be isolated with proven systems in the next planned flight of the AS&E Solar

Research Rocket Payload. The payload will be configured with the CCD detector at the

prime focus of the Wolter Schwarzschild mirror to obtain high precision calorimetry of

large scale coronal structure. In this configuration the linearity and sensitivity (even

in the worse case interpretation of the 1987 flight data as 10% of the laboratory effi-

ciency) of the CCD detector will provide new and useful measurements of faint large scale

coronal structures such as coronal holes and helmet streamers in which a 5 arc minute

spatial resolution is useful. The insights gained from this flight on CCD performance can

then be applied to the 1987 flight data.
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