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SUMMARY.

The tip vortex flow field plays a significant role in the performance of a

variety of aerodynamic configurations. The flow field in the tip region is

complex, three-dimensional, and viscous with large secondary velocities. The

large secondary velocities preclude the possibility of using conventional boundary

layer solution techniques to compute the tip vortex flow. On the other hand, a

solution of the full Navier-Stokes equations that adequately resolves the tip

vortex flow field would require formidable computational resources. Therefore, an

approximate set of three-dimensional viscous flow equations which is applicable to

the tip vortex flow field but which does not require the resources needed for the

solution of the full Navier-Stokes equations is sought. The primary/secondary

flow equations represent such a set. These equations contain the physics of

steady state tip vortex generation and can be solved numerically by an efficient

forward marching procedure.

An earlier Phase I effort established the feasibility of computing the tip

flow field in advanced aircraft propellers using a forward-marching computation

procedure. The effort demonstrated the capability of the forward-marching

procedure to compute generation and roll-up of the tip vortex. Further, Phase I

results have shown capability in handling complex geometry of advanced propeller

blades.

The Phase II effort built on the framework established by the Phase I study

for advanced propeller blade tip flow field computations. The objective of the

proposed Phase II study was to provide a computer code capable of predicting the

tip flow field in advanced aircraft propellers.

The Phase II study accomplished the following tasks:

.

.

A procedure was developed for inclusion of potential flow chordwise

pressure gradients into the aircraft propeller analysis. The pressure

field comes from use of the Hess panel code.

The grid generation package was generalized from that used in the Phase

I program to allow specification of more general blade shapes and to

permit specification of grids appropriate for turbulent flow

calculations around advanced propeller blades.



° The generation of a tip vortex on the SR3 advanced aircraft propeller

was calculated at a Reynolds number of i.i x 10 6 and included high

subsonic Mach numbers of approximately 0.8 near the propeller tip. A

series of both laminar and turbulent flow cases were run showing the tip

vortex generation process on the SR3 blade.

. The forward marching procedure was extended to compute flow aft of an

unswept blade trailing edge.

. A parametric study was performed to determine the effect of tip

thickness on vortex intensity. The blade thickness was varied from 2%

of tip chord to 12% of tip chord.

. Flow field computations from the forward marching procedure were

compared with F4 experimental data provided by NASA. Since most of the

data was downstream of the blade, the data comparison could only be

qualitative.

A Users Manual was prepared.

\
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INTRODUCTION

The tip vortex flow field plays a significant role in the performance of a

variety of aerodynamic configurations. Typical examples can be found associated

with advanced aircraft propellers, the wing tip of fixed wing aircraft, and the

helicopter rotor blade. When any of these configurations produce a force normal

to its mean chord line, the flow field is characterized by the surface pressure on

one side exceeding that on the other, thus producing lift and drag. This unequal

pressure distribution must be gradually relieved in the vicinity of the tip, since

at the tip no pressure differential is possible. Thus, at any given chord station

the flow field in the tip region is characterized by a high pressure surface (the

pressure surface) on which the pressure normally decreases as the tip is

approached and a low pressure surface (the suction surface) on which the pressure

normally increases as the tip is approached; at the tip location itself the two

pressures become equal. This general pressure field leads to a secondary flow

outward on the pressure surface, around the tip, and inward on the suction

surface. The secondary flow field generated leads to the development of the tip

vortex. The tip vortex may play a significant role in the drag and noise

characteristics of the configuration. A method of better understanding these

phenomena and helping the design engineer avoid related problems would be a

valuable asset to the aerodynamic community.

The flow field in the tip region is complex, three-dimensional, and viscous

with large secondary velocities. The large secondary velocities preclude the

possibility of using conventional boundary layer solution techniques to compute

the tip vortex flow. On the other hand, a solution of the full Navler-Stokes

equations that adequately resolves the tip vortex flow field would require

formidable computational resources. Therefore, an approximate set of

three-dimenslonal viscous flow equations which is applicable to the tip vortex

flow field but which does not require the resources needed for the solution of the

full Navier-Stokes equations is sought. The parabolized Navier-Stokes equations

represent such a set. These equations contain all the physical processes of

steady state tip vortex generation and can be solved economically by a forward

marching procedure.

The Phase I program proposed a demonstration computation to show feasibility

of computing high subsonic, high Reynolds number flow in the blade tip region of

advanced aircraft propellers. A simple blade tip geometry was proposed for the
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demonstration computation. This objective of the Phase I program has been

successfully accomplished.
The Phase II program extends the Phase I study to provide routine analysis of

the propeller tip vortex generation process for high Reynolds number flows and

advancedaircraft propeller blades. The resulting computer code is designated

PEPSIG/SR3.

MAIN TEXT

OVERVIEW

The Phase I effort has established the feasibility of computing the tip flow

field in advanced aircraft propellers using a forward-marching computation

procedure. The effort has demonstrated the capability of the forward-marching

procedure to compute generation and roll-up of the tip vortex. Further, Phase I

results have demonstrated the capability for handling complex geometries, such as

advanced propeller blades.

The thrust of the Phase II effort is to build on the framework established by

the Phase I study for advanced propeller blade tip flow field computations. The

objective of the proposed Phase II study is to provide a computer code capable of

predicting the tip flow field for advanced aircraft propellers. Such a computer

code will be a valuable tool in the design of advanced propeller blades and the

analysis of propeller performance. In particular, such a code will be valuable in

computing the effects of details of propeller tip geometry on tip vortex

generation and suppression.

The Phase II study accomplished the following tasks:

i. A procedure was developed for inclusion of streamwise pressure gradients

into the aircraft propeller analysis. The procedure uses the Hess panel

method and an interface routine written to interpolate the inviscid

pressure gradients onto the viscous grid. Sample calculations using

this procedure are presented.

. The grid generation package was generalized from that used in the Phase

I program to allow specification of more general blade shapes and to
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.

.

permit specification grids appropriate for turbulent flow calculations

around advanced propeller blades.

The generation of a tip vortex on the SR3 advanced aircraft propeller

was calculated at a Reynolds number of i.i x 106 and included high

subsonic Mach numbers of approximately 0.8. A series of both laminar

and turbulent flow cases were run showing the tip vortex generation

process on the SR3 blade.

The forward marching procedure was extended to compute flow aft of a

blade trailing edge. This was demonstrated for a NACA-0012 shaped blade

at 6° angle of attack and Reynolds number based on propeller diameter of

approximately 106 . This calculation was used successfully to compute

the flow over the blade tip and downstream of the trailing edge

including the tip vortex. An attempt was made to extend this technique

to blades with swept trailing edges. This extension was unsuccessful

and further development is required for these cases.

. A parametric study was performed to determine the effect of tip

thickness on vortex intensity. The blade thickness was varied from 2%

of tip chord to 12% of tip chord.

. Flow field computations from the forward marching procedure were

compared with F4 experimental data provided by NASA. Since most of the

data was downstream of the blade, the data comparisons could only be

qualitative.

7. A Users Manual was prepared.

An overview of the forward-marching computation procedure developed at SRA is

first presented. Specific tasks that define the Phase II effort are then

identified and discussed in detail.
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ANALYSIS

The Phase II effort is based upon solution of a set of three-dlmensional,

viscous flow, forward-marching equations. The forward marching computation

procedure used for the solution of the parabolic Navier-Stokes equations provides

an economical and accurate method for computing many three-dimenslonal viscous

flow fields. This procedure, initially developed for internal flow fields (Refs.

1-3), has been extended to the computation of the propeller tip flow field. The

governing equations and computational scheme are presented in this section. This

procedure is capable of considering both fixed and rotating coordinate systems.

The rotational terms in the governing equations can be included in the analysis if

the invlscld pressure field includes the effects of rotation. The version of the

Hess code available for this study did not include rotation so the calculations

presented are for non-rotating cases only.

The governing equations are derived through approximations made relative to a

coordinate system fitted to and aligned with the flow geometry under

consideration. To address complex geometries, a smooth reference line is

identified which represents the primary flow directions and thus links the

geometry with the flow approximations. An orthogonal reference line coordinate

system is then derived (Ref. 3) which fits the reference line and its normal

planes and which remains orthogonal even when the reference llne has nonzero

torsion. The flow approximations are made in this orthogonal reference line

coordinate system and the governing equations are then transformed to a body

fitted coordinate system and solved numerically. Transverse coordinate surfaces

must be approximately perpendicular to solid walls or bounding surfaces, since

diffusion is permitted only in these transverse coordinate surfaces.

Equations governing primary flow velocity, Up, and a secondary vorticity, _n,

normal to transverse coordinate surfaces are derived utilizing approximations

which permit solution of the equations as a spatial initial-value problem,

provided reversal of the composite streamwise velocity does not occur. Terms

representing diffusion normal to transverse coordinate surfaces (in the streamwise

direction) are neglected. Secondary flow velocities are determined from scalar

and vector surface potential calculations in transverse coordinate surfaces, once

the primary velocity and secondary vorticity are known.
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Primary-Secondary Velocity Decomposition

In what follows, vectors are denoted by an overbar, and unit vectors by a

caret. The analysis is based on decomposition of the overall velocity vector

field. U, into a primary flow velocity, Up, and a secondary flow velocity, U s.

The overall or composite velocity is determined from the superposition

U = Up + U s

The primary flow velocity is represented as

(I)

Up = Uplp (2)

where ip is a known inviscid primary flow direction determined, for example, from

an a priori potential flow solution for the geometry under consideration. A

streamwise coordinate direction from a body fitted coordinate system could be used

as an approximation to this potential flow direction. The primary velocity, Up,

is determined from a solution of a primary flow momentum equation. The secondary

flow velocity, Us, is derived from scalar and vector surface potentials denoted

and @, respectively. If in denotes the unit vector normal to transverse

coordinate surfaces, if p is density, and if Po is an arbitrary constant reference

density, then U s is defined by

Us " Vs@ + (Po/P)VXin @ + vi (3)

where v i is an imposed velocity vector in the transverse coordinate surface

usually obtained from an Inviscid flow about the blade and V s is the surface

gradient operator defined by

V s - V -- _n(in,V) (4)

It follows that since in • Us = 0, then-U s lies entirely within transverse

coordinate surfaces. Equation (3) is a general form permitting both rotational

and irrotational secondary flows and will lead to governing equations which may be

solved as an initial-boundary value problem. The overall velocity decomposition
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(i) can be written

U = Up_p + Vs_ + (po/P)VX_n_ +vi (5)

Surface Potential Equations

Equations relating _ and @ with Up, p, and the secondary vorticity component,

Qn, can be derived using Eq. (5) as follows: From continuity,

V.pU = 0 = V.pUpSp + V.PVs_ + PoV.VXSn_ + V.p_ i (6)

and from the definition of the vorticity, Qn, based on the secondary flow within

the transverse surfaces

in'VXU " Qn = in'VXUpip + in'VX(Po/P)VXin _ + in'VXVs¢ + in'VXVi

Since the second to last term in each of Eqs. (6) and (7) is zero by vector

identity, Eqs. (6) and (7) can be written as

(7)

v.PVs# = --V.pUp2p -- v.p_ i (8)

in.VX(Po/P)VXin_b = n n -- in.VX_ i -- in.VXUp$ p (9)

Note that the last term in Eq. (9) is identically zero in a coordinate system for

which in and Ip have the sam4 direction, and would be small if in and ip are

approximately aligned. In any event, given a knowledge of Up, Qn and p, the

surface potentials _ and _ can be determined by a two-dimensional elliptic

calculation in transverse coordinate surfaces at each streamwise location. In

turn, U s can be computed from Eq. (3), and the composite velocity U will satisfy

continuity. Equations for Up and Qn are obtained from the equations governing

momentum and vorticity, respectively.

The streamwise momentum equation is given by

+ O'P}/,q= + ip.I 
where P is pressure and pF is force due to viscous stress and terms in F

representing streamwise diffusion are neglected, pR is the additional force due
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to a rotating coordinate system; where R = -- 2_xU -- wx(wxr), and _ is the angular

velocity of the coordinate system and r is the radius vector from the rotation

axis. The pressure term in the streamwise momentum Eq. (I0) can be taken from a

simpler analysis such as an inviscid flow analysis. While this results in a set

of equations which can be solved by forward marching, the surface pressures which

are due to the pressure field imposed upon the flow are the invlscid flow

pressures. Since the actual surface pressures are often of primary interest, a

new estimate of the actual surface pressure which includes viscous and secondary

flow effects can be computed from the resulting velocity field in the following

manner.

The momentum equations in the transverse surfaces are:

• vP- -- o

(3.1)

Equation (ii) represents components of the momentum vector in the transverse

surfaces:

The divergence of this vector can be written as a Poisson equation for the

pressure P at each transverse surface:

., OX I

(12)

(13)

where PI is the imposed pressure, Pc is a viscous correction to the pressure field

and x I and x 2 are coordinates in the iI and i2 directions, respectively. Equation

(13) can be solved for the pressure correction, Pc, at each computational station

-9-



using Neuman boundary conditions derived from Eq. (12). The use of Neuman

boundary conditions requires an additional parameter which is only a function of

the normal direction, Pv(x3), in order to set the level of the pressure field.

For external flows, Pv(X3) is set to match the imposed pressure at an appropriate

far field location.

Secondary Vorticity

The equation governing O is obtained by cross differentiating each of the

transverse momentum equations (ii). Eliminating the pressure in the two equations

results in a single equation for the transport of the vorticity normal to the

transverse surface. This equation has the form

U.vO n -- _.VU n = G n + C

where Gn is the normal component of the stress terms

(14)

G = VxF (15)

and C is a collection of curvature terms arising from changes in orientation of

the transverse surface as a function of streamwlse coordinate.

ComDress%bility Relations

The foregoing analysis can be applied to incompressible flows simply be

setting p - Po" Compressibility effects are represented by introducing the

perfect gas equation of state p = pRT in the imposition of streamwlse pressure

gradients. For moderate subsonic Mach numbers, inviscid pressure gradients can be

obtained either from a compressible potential flow calculation or from an

incompressible potential flow corrected for compressibility using, for example,

the Prandtl-Glauert formula. From the state equation and the temperature-enthalpy

relation

U.U
E = CpT + -7- (16)
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where Cp denotes specific heat. The following auxiliary equation relating the
imposedpressure gradients with density, velocity, and total enthalpy is obtained:

where 7 is specific heat ratio and E is total enthalpy.

In manyproblems of interest, it can be assumedthat the total enthalpy is a

constant Eo. This assumption is reasonable for inviscid flow regions with no heat
addition and for boundary layers on adiabatic walls provided the Prandtl number is

unity. To make this assumption, E is replaced by Eo in Eq. (17), and it is then

unnecessary to solve the energy equation, even though the flow is compressible.

Turbulence Model

For tip vortex flow calculation, mixing length models were used in the region

upstream of the trailing edge. An isotropic eddy-viscosity formulation was used

for the Reynolds stresses:

pV.---_. _T aVj- (18)
] ] Re a X i

The effective turbulent viscosity _T is added to the laminar viscosity _.

The turbulent viscosity is related to mean flow variables by means of a mixing

length distribution:

_T C2e: e-]½Re -- p_2 (19)

where _ is the mean flow rate of strain tensor:

e= [CVV]. ] (20)

The mixing length, _, was determined from the empirical relationship of McDonald

and Camarata for equilibrium turbulent boundary layers and the modified Bushnell

wake model, as follows.
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The mixing length by McDonaldand Camaratacan be written:

21 [Y] = 0.09 _btanh [_/[0.09 6b]].D (21)

where 6 b is the local boundary layer thickness on the cross-plane, _ is the yon

Karman constant, taken as 0.43, y is the distance from the trailing edge, and D is

a sublayer damping factor defined by:

D = P½ (y+ -- _+) (22)
a

where P is the normal probability function, y+ = y(r/p)h/(_/p), r is local sheer

stress, y+ = 23, and G = 8.

In the wake region, the wake is due to the wake propagated from the upstream

trailing line. The modified Bushnell wake model is used for evaluating the

turbulent properties for its simplicity and accuracy (Ref. 6). The mixing length

is estimated as follows:

where

= 0.07 rain (d l,d 2)

d I = 0.48 (d O + 0.24x') + 0.15x'

(23)

(24)

d 2 = 0.96 (d o + 0.24x') (25)

do is an estimate of the wake shear layer thickness at the trailing edge

computed from an integral boundary layer calculation and x' is the normal

(helical) distance from the trailing edge to the computational plane.

A mixing length blending region was provided in the wake region near the

trailing edge to insure the smooth transition of the mixing length.

Governing System of Equations

A complete system of five coupled equations governing Up, fin, @, _, and P is

given by Eqs. (8), (9), (I0), (13) and (14). Ancillary relation Eq. (5) is given

for the composite velocity. In Refs. I and 2, these equations are given in

general orthogonal coordinates and in Ref. 3 in nonorthogonal coordinates.
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Numerical Method

Since techniques for obtaining the basic inviscid flow solution are well known

and numerous, they need not be enumerated or discussed here. Instead, the present

development concentrates on describing the numerical method used to solve the

system of governing equations. Streamwise derivative terms in the governing

equations have a form such as u3a ( )ax3, and because the streamwise velocity u 3 is

very small in the viscous dominated region near no-slip walls, it is essential to

use implicit algorithms which are not subject to stringent stability restrictions

unrelated to accuracy requirements. Although it is possible to devise algorithms

for solution of the governing equations as a fully coupled implicit system, such

algorithms would require considerable iteration for the system of equations

treated here, and this would detract from the overall efflcleney. The present

method is semi implicit and seeks to reduce the amount of iteration required and

yet avoid the more severe stability restrictions of explicit algorithms. The

method partitions the system of governing equations into subsystems which govern

the primary flow, the secondary flow, and the turbulence model. The primary-flow

subset of equations contains the streamwise momentum equation. The secondary-flow

subset of equations contains the secondary vorticity equation, the scalar and

vector potential equations and the pressure equation. These subsystems are

decoupled by linearizing the solution variables in the spatial marching direction.

Summary of Algorithm

The governing equations are replaced by finite-difference approximations.

Three-point central difference formulas are used for all transverse spatial

derivatives. Analytical coordinate transformations are employed as a means of

introducing a nonuniform grid in each transverse coordinate direction to

concentrate grid points in the wall boundary layer regions. Second-order accuracy

for the transverse directions is rigorously maintained. Two-point backward

difference approximations are used for streamwise derivatives, although this is

not essential.

The primary flow subsystem of viscous equations is solved via a scalar ADI

scheme. In this application this is the streamwise momentum equation. Given the

solution for the primary flow, the secondary flow subsystem can be solved. First,

the scalar potential equation (continuity) is solved using a scalar iterative ADI
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as a fully implicit coupled system and solved using an iterative linearized block

implicit (LBI) scheme (cf. Briley and McDonald, Ref. i). In selecting boundary

conditions for the secondary flow subsystem, care must be taken to ensure that the

final secondary velocity satisfies the no-slip condition accurately. Zero normal

derivatives of _ are specified in the scalar potential equation, and this boundary

condition corresponds to zero normal velocity. It is not possible to

simultaneously specify the tangential velocity, however, and thus the

b-contribution to the secondary velocity will have a nonzero tangential (slip)

component, denoted vt, at solid boundaries. In the coupled vorticity and
vector-potential equations, both normal and tangential velocity componentscan be

specified as boundary conditions, since these equations are solved as a coupled

system. By choosing (a) zero normal velocity, and (b) -vt as the @-contribution
to the tangential velocity, the slip velocity vt arising from the _ calculation is

cancelled, and the composite secondary flow velocity including both _ and
contributions will satisfy the no-sllp condition exactly.

A summaryof the overall algorithm used to advance the solution a single axial

step follows. It is assumedthat the solution is known at the n-level xn and is
desired at xn+l.

(i) The imposed streamwise pressure gradient distribution is determined from

an a priori invlscid potential flow.

(2) The momentum equation is solved using an iterative scalar ADI scheme to

determine un+l .

(3) Using un+l and the imposed pressure, the density is obtained from Eq.

(17).

(4) Using values now available for un+l, the scalar potential equation (8)

is solved using an iterative scalar ADI scheme to obtain sn+l. This

ensures that the continuity equation is satisfied.

(s) The equations for vortlcity (14) and vector potential (9) form a coupled

system for _n+l and _n+l, which is solved as a coupled system using an

iterative LBI scheme.
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(6) Values for the transverse velocities v s and w s are computed from Eq.

(3).

(7) Using the computed velocity field, the transverse pressure field is

computed from Eq. (13) by an iterative scalar ADI scheme.

INCORPORATION OF INVISCID GRADIENT

The three-dimensional viscous primary/secondary flow analysis utilizes

physical approximations which allow economical solution by a spatial marching

algorithm. In the present application to aircraft propeller flows, these

approximations employ computed results obtained from an inviscid panel code

applied to the flow geometry of interest. The inviscid flow results are utilized

in the viscous prlmary/secondary flow analysis in two ways: as part of the

transverse velocity decomposition, and as streamwise pressure gradients imposed in

the streamwise momentum equation. First, the transverse velocity decomposition is

formulated as a correction to the transverse velocity components obtained from the

inviscid panel code. The primary advantage of this technique is that it

facilitates the treatment of far-field boundary conditions. Secondly, the

imposition of streamwise pressure gradients from the panel code incorporates these

potential flow accelerations within the spatial marching approximations.

The motivation for including the panel-code transverse velocity components in

the velocity decomposition is as follows: although the outer (far field)

computational boundary can optionally be located at a large distance from the

blade tip region where the flow is essentially uniform with specified incidence,

there are advantages to locating the outer boundary relatively close to the blade

tip. This reduces the number of grid points needed in the cross-section.

However, as the outer boundary is moved closer to the blade, the effects of

viscous displacement interaction and of velocities induced by the tip vortex will

modify the velocity field at the outer boundary. Consequently, the far field

boundary conditions should be imposed in a way that correctly specifies the angle

of incidence and also allows the velocity field to be perturbed by these effects

of induced velocity and displacement interaction. The panel code transverse

velocity components satisfy the angle of incidence conditions and include the

effect of body surface geometry on the potential flow at the outer boundary. By

expressing the present velocity decomposition as a correction to the panel code
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velocities, these effects are imposeddirectly and the treatment of outer boundary

conditions can focus on the effects of induced velocity and displacement

interaction. The computed velocity correction is decomposed into two vector

components, a scalar potential and a vector potential. The outer boundary

conditions are specified as follows: the scalar potential is set to zero on the

outer boundary, which implies its tangential velocity component is zero, but

allows displacement interaction in its normal component of velocity. The vector

potential is also set to zero on the outer boundary, which implies its normal

velocity component is zero, but allows induced velocity in its tangential

component of velocity.

The viscous spatial marching analysis provides a pressure field consistent

with viscous effects and the tip vortex flow. This pressure field is computed in

each two-dimenslonal cross-section as part of the solution procedure, and these

results are linked together in the streamwise direction to form the

three-dimensional pressure field. This streamwise linking is done by adjusting the

pressure level in each two-dlmensional cross-sectlon to match the panel code

pressure at a single point on the outer boundary, at each cross-section.

The present computer code has been modified to include a capability for

utilizing potential flows computed by the panel code of Hess (Kef. 4). The

procedure for interfacing the two codes is as follows: a coarse grid is generated

using the same reference line and computational domain as that to be used in the

fine mesh vlseous flow calculation. The velocities and pressure on this coarse

grid are computed as off-body points using the Hess panel code, and an output file

containing the potential flow results is saved. A modification is needed in the

region close to the airfoil surface to smooth the panel code results, which are

not accurate when in close proximity to the surface singularities used as the

basis of the panel code computation. This smoothing is accomplished by specifying

the region to be smoothed next to the surface, and then extrapolating the panel

code velocities and pressure from values outside the smoothing region. The

(extrapolated) coarse grid results are then interpolated onto the viscous grid.

The thickness of this region is governed by the transverse distance between grid

points on the blade surface in the potential flow calculation and is typically 10%

to 20% of chord.

The capability of the procedure for interfacing the Hess invlscid panel code

with the viscous spatial marching analysis is demonstrated in SR3 flow

calculations presented in a later section.
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GEOMETRY SPECIFICATION

The SR3 geometry package and the PEPSIG/SR3 interface have been developed to

facilitate the application of the forward marching code PEPSIG to the computation

of viscous flows in the tip region of an advanced aircraft propeller blade such as

the SR3 propeller blade.

Given the propeller blade geometry, PEPSIG/SR3 requires the choice of a

reference line (i.e., a marching direction) and the construction of boundary

conforming computational grids in planes normal to this reference line (the

transverse coordinate planes). Therefore, the SR3 geometry package and the

PEPSIG/SR3 interface must perform the following tasks:

(i)

(ii)

(iii)

(iv)

Define the geometry.

Define the reference line.

Construct the intersection of the propeller blade with a transverse

coordinate plane.

Construct a boundary conforming grid in the transverse coordinate

plane.

The tasks (i), (iii), and (iv) are performed by the SR3 geometry package, the task

(ii) and the link between PEPSIG and the SR3 geometry package are part of the

PEPSIG/SR3 interface.

A description of each of the tasks is given below.

Geometry Definition

The propeller blade geometry is defined by the (Cartesian) coordinates of a

set of points on the blade, ordered such that they can be connected to form a

"surface grid" on the blade. Spanwise ("airfoil") sections are ordered from hub

to tip; points on an airfoil section are ordered from the bottom trailing edge via

the leading edge to the top trailing edge of the section. These points can be

read from an input file, or they can be constructed given information about the

airfoil sections and the radial (spanwise) distribution of section properties

(such as chord, thickness, twist angle, sweep angle, design lift coefficient,

etc.). Figure I shows an example of a propeller geometry constructed in this
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Figure 1. SR3-1ike Propeller.

_ _ \ WAKE

Figure 2. Wing/Wake Configuration.
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manner using information given in NASA CR-3505 (Ref. 5). Here a "hub" and

additional blades have been added for plotting purposes only.

After the geometry has been obtained, the airfoil sections and the points on

each section can be redistributed using splines to get a more desirable surface

grid. This is of importance for the construction of the intersection of a

transverse coordinate plane and the propeller blade, and also for the use of this

surface grid in a potential flow panel code.

In addition, to facilitate the generation of boundary conforming grids in

transverse coordinate planes that intersect the blade trailing edge line, a

geometric wake is constructed that bisects the (sharp) blade trailing edge at the

trailing edge line and that tends to the helical surface determined by the design

advance ratio of the blade at a large distance downstream of the blade. This

(geometric) wake can also be used in the Hess panel code.

Finally, the blade/wake configuration can be transformed into a wing/wake

configuration such that, at the design point, the local angle of incidence of each

wing section is equal to the local angle of incidence of the corresponding

(rotating) propeller blade section. Figure 2 shows the wing/wake configuration.

Qualitatively, the flow about the (non-rotating) wing is similar to the flow

about the rotating propeller blade.

Reference LiDe Definition

Given the propeller blade geometry, an appropriate marching direction

(reference line) can be chosen. Two obvious choices are:

(a) A helix through the tip trailing edge with an advance angle (Arctan (J))

equal to the design advance angle of the blade at the tip.

(b) A straight line through the tip trailing edge parallel to the tip

section chord line or tangent to the tip helix, through the tip

trailing edge.

The PEPSIG/SR3 interface allows either choice of reference line, if a straight

reference line is chosen, its direction can be taken as in (b), or as an input.
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Transverse Plane Intersections

Given the reference line, PEPSIG/SR3 defines a transverse coordinate plane at

each point of this line such that the resulting coordinate system is orthogonal.

Before a boundary-conforming grid can be constructed in a transverse coordinate

plane, it is necessary to construct the intersection of this plane and the

propeller blade/wake (or wlng/wake) configuration. By transforming the

coordinates into a Cartesian coordinate system whose x-axis is tangent to the

reference line at the point under consideration, whose origin coincides with this

point, and whose y- and z- coordinates correspond to the transverse coordinates,

the problem of constructing the intersection can be reformulated to find the

intersection of the blade/wake combination with the plane x = 0. This is done

using spline-fits, under the assumption that each y-coordinate llne intersects the

blade/wake combination at most twice.

This condition is met for the configurations and reference-line coordinate

systems under consideration. To illustrate the intersection generation

capability, Fig. 3 shows intersections of the propeller blade/wake configuration

of Fig. 1 with planes normal to the propeller axis. At the blade tip, the

intersections have been augmented by a "cap", as shown in Fig. 4, to define a

smooth surface with continuous derivatives. Figure 5 shows that intersections

that contain the swept trailing edge of the blade look like airfoil sections.

Figure 6 shows intersections of the tip region of the blade/wake configuration

with transverse coordinate planes that correspond to a straight reference line

through the tip trailing edge, parallel to the tip section chord llne.

Grid Generation

Once the intersection of the transverse coordinate plane and the blade/wake

configuration has been constructed, a boundary-conforming grid can be generated in

the tip region. The grid generation procedure consists of two parts:

(I) Determine the extent of the computational domain.

(2) Construct a grid using an algebraic grid generation technique.
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ADDED "CAP"

BLADE TIP

Figure 4.

Figure 5.

Addition of a Rounded Tip.

I

/// ____
LEADING EDGE

_"q-- TIP

T.£.

............. _ _'._- TIP

GEOMETRIC WAKE I

Types of Intersections of the Blade with Transverse Coordinate Planes.

Figure 6. Intersections in the Tip Region of the SR3-1ike Propeller Blade/Wake

Configurations with Planes Normal to the Tip Section Chord Line.
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The extent of the computational domain is determined by locating an "inboard

boundary" and "outer boundary", as shown in Fig. 7. The outer boundary consists

of a seml-clrcle with center B and radius r and two straight line segments of

length _ that make and angle _ with the z-coordinate line of the transverse

y,z-coordinate system. The inner boundary is a straight line. The point B should

be chosen near the leading edge or tip part of the blade, while the angle

should be a measure of the average angle that the blade makes with the

z-coordinate. These conditions are not necessary, but they facilitate the

construction of a suitable grid. The PEPSIG/SR3 interface provides estimates for

the location of B and the angle _ based on the choice of the reference line and

the blade geometry in the tip region. The radius, r, and the distance, d, should

be chosen sufficiently large so that the flow in the tip region can be computed

without too much interference from the grid boundaries.

The construction of the boundary-conforming grid is governed by the condition

that the resulting grid should be "smooth". Consider the situation shown in Fig.

8. The intersection shown consists of a wake piece and a body piece, and the grid

construction proceeds as follows:

(i) Determine the intersection of the wake piece and the inboard boundary

(coinciding points A and D on the "bottom" and "top" part of the wake).

(2) Spline-fit the "bottom" part of the wake, AB, the body piece, BC, and

the "top" part of the wake, CD, using parameters that retain continuity

across B and CD and generate identical wake parts AB and CD.

(3) Determine the grid point distribution on the line ABCD. Clustering will

in general be required near the tip. Use symmetry to ensure that the

grid points on AB coincide with those on CD. Smoothness across B and C

is automatic because the wake and body pieces are treated

simultaneously.

(4) Define the points F and G on the outer boundary such that the line FB is

parallel to the inboard boundary and passes through the trailing edge

point of the intersection (the coinciding points B and C).
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Figure 7. Extent of the Computational Domain in a Transverse Coordinate Plane.
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Figure 8. Construction of a Boundary-Conforming Grid.
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(5) Determine the grid point distributions on the outer boundary pieces EF

and HG by finding the intersection points of these pieces with the lines

parallel to the inboard boundary and through the grid points on AB (or

CD). This procedure guarantees grid base smoothness across the wake

when grid points on the outer boundary are connected to grid points on

the inner boundary (i.e., the boundary ABCD) by straight line segments.

(6) Determine the grid point distribution on the curved part FG on the outer

boundary such that the overall grid point distribution on the outer

boundary is sufficiently smooth; for example, continuity of the first

and second derivatives of the grid point distribution at F and G can be

guaranteed by using a 5-th order polynomial distribution function along

FG. If a 7-th order polynomial distribution function is used, the mesh

spacing at a point midway between F and G can be specified as well.

(7) Connect points on the outer boundary to corresponding points on the

inner boundary by straight lines.

(8) Determine the grid point distribution on a pair of symmetrically located

grid lines, such as PQ and RS in Fig. 8, by using a smooth distribution

versus arc-length for the combined line QPRS (without a gap between P

and R). Clustering can be included near P (or R). This procedure

guarantees a smooth distribution of grid points across the wake piece,

and also a smooth change of the distribution across the lines GB and FC.

The grid contribution procedure outlined above guarantees grid smoothness.

finite (i.e., nonzero) trailing edge angle at B (C) will lead to a grid

singularity at the trailing edge point. Figure 9 shows sample grids for the

cross-sections shown in Fig. 6.

A

SR3 CALCULATIONS AND DISCUSSION

An SR3 advanced aircraft propeller blade generated by the geometry package was

used for the tip vortex flow computation. The advance ratio of the blade was

3.06. Figure i0 shows the plan view of the computational domain. A cross-section

Figure 9
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Figure 9. Coarse Grids in Planes Normal to the Tip Section Chord Line.
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Figure i0. Plan view of blade and computational domain.
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of the blade and the computational grid at a typical streamwise station are shown

in Fig. ii. Both laminar and turbulent flow calculations were performed.
o

A laminar flow solution was computed at 8 angle of attack. The Reynolds

number was 20,000 based on the reference length, R (the propeller radius). The

free stream Mach number was 0.3 and the initial boundary layer thickness was 0.002

R at the initial station. The blade trailing edge was extended aft at zero

thickness. The cross-plane grid was 49 x 49. Seventy-eight streamwise stations

were used for the computation. Grid points were clustered near the propeller

surface and in the tip region, where high flow gradients occurred. The distance

of the first mesh line to the blade surface was about 10 °5 No slip and no

penetration boundary conditions were imposed on this blade extension. The flow

calculation was started at x/R = --.30, on the sloped leading edge of the blade as

shown in Fig. i0. This case was run without a potential pressure field.

The flow development is shown in Figs. 12a through 12h in contour plots of

streamwise velocity and secondary velocity plots in planes normal to the tip

chord. In these planes, the angle of attack causes strong local accelerations at

the tip as seen in the vector plots. Figure 12b shows evidence of the start of a

vortex on the sloped leading edge of the blade. The vortex intensified as the

boundary layer from the pressure side is convected into the vortex. Figures 12a

through 12e are on the sloped leading edge of the blade. The vortex was seen to

be strongly developed before the straight tip of the blade.

The above laminar flow case was also run at an infinite advance ratio. A

perspective view of the blade tip region is shown in Fig. 13. The computational

grid and the cross-section of a typical blade tip at a streamwise location are

shown in Fig. 14. A 69 x 69 cross-plane mesh and three-hundred streamwise

stations were used for the computation. The distance between the blade surface

and the next circumferential grid line was about 3.6 x 10 -6 R. The spanwise

extent of the blade within the computational domain was twice of the previous

case. The rest of the flow parameters remained the same. This case was also run

without a potential flow pressure field.

Figure 15 shows the development of the tip vortex. On the right hand side,

the secondary flow vector plots are presented and on the left hand side, the

corresponding primary velocity contours. A comparison of Figs. 15 and Fig. 12

shows similar flow mechanisms, but different degrees of tip vortex intensity due

to the different advance ratios of the blade. The mechanisms are the transport of

the low momentum fluid from the pressure side boundary layer to the suction side
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Figure ii. Cross-plane _rid and cross-section of
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by the transverse velocity, the accumulation of the low momentum fluid on the

suction side, and the roll-up of the accumulated fluid into the tip vortex.

A turbulent case was computed for a blade with an SR3 plan form and 6%

thickness at the tip. A potential flow solver, the Hess code developed by the

Douglas Aircraft Company, was used to compute the inviscid flow field. The

advance ratio of blade was infinity. A perspective view of this thicker blade tip

geometry is shown in Fig. 16. The inviscid flow field obtained was further

interpolated into the viscous grid and accessed for the viscous tip vortex flow

calculated as described above. A 95 x 95 cross-plane grid and a total of

three-hundred computational stations were used. The radial interval between the

blade surface and the next circumferential grid line was about 2 x 10 .6 . The

Reynolds number was 3 x 105 . The other flow parameters were the same as the

previous case.

A mixing length type algebraic eddy viscosity model detailed above was used

for the effects of turbulence. The computed solution in terms of the primary

velocity contours and the secondary velocity vector plots at four streamwise

stations at x/R =--O.225, --0.150, --0.75, and--O.001 are shown in Fig. 17. Blade

twist and thickness distribution can be seen in these figures. An overview of the

figures shows the development of the tip vortex. At x/R =-0.225 and -0.150, the

streamwise velocity contours show little change of the initial boundary layer on

the blade surface. The boundary layer is thinnest near the tip. The secondary

velocity field around the tip convects low momentum fluid in the boundary layer on

the pressure side around the tip onto the suction side. An indication of this

process can be noted at x/R =-0.075. The thickening of the boundary layer on the

suction side of the tip is due to the accumulation of low momentum fluid from the

pressure side convected by the secondary velocity. The gradual accumulation of

the low momentum fluid on the suction side causes the fluid to roll up into the

tip vortex. This roll-up of the flow into the tip vortex is characterized by the

"bulge" in the streamwise velocity contours on the suction side of the blade tip

at x/R = --0.001. The extent of the bulge in the velocity contours indicates the

core of the tip vortex.

As a comparison, the same turbulent case was computed using the potential flow

pressure field. Figure 18 shows the streamwise contour plots and the secondary

vector plots at two streamwise stations at x/R = --0.75 and --0.001. The flow

pattern shows very little difference with respect to the case accessing the

potential flow field. The tip vortex flow calculation without inviscid flow
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field possess qualitatively similar characteristics as the calculation with the

potential flow field. Finer resolution is suggested for the above turbulent

cases, especially near the tip, since the local secondary velocities are very

large near the tip for turbulent flow.

An additional series of test cases was performed at a Reynolds number based on

propeller diameter of i.I x 106 . The flow in the tip region accelerates to

produce a significantly higher velocity than the freestream. As the freestream

Mach number was increased, the local Mach number in the region of the tip also

increased. When the freestreamMach number was .35, the Math number in the

vicinity of the tip was approximately 0.8. Higher freestream Mach numbers were

tried for turbulent flow; however, local supersonic flow near the tip caused these

calculations to abort.

CALCULATIONS DOWNSTREAM OF THE BLADE TRAILING EDGE

The generalization of the PEPSIG/SR3 code to model the tip vortex flow

configuration in the region of the trailing edge and downstream wake region

represents a new capability. Modifications were made in the grid generation,

equations and matrix inversion sections of the PEPSIG code. These modifications

enable tip vortex calculations to be continued downstream of the blade trailing

edge if the trailing edge is straight and unswept. An attempt was made to extend

this capability to swept trailing edges, but further work is required to include

this capability in the analysis. An explanation of the modifications to the code

and a sample calculation follow.

Special consideration has to be given to the tip vortex flow computation in

the region of the trailing edge since the zero thickness of the trailing edge

presents a coordinate singularity problem at the rounded part of the tip (see

Figs. 19 and 20). By keeping a very small thickness at the trailing edge, the

above-mentioned problem can be avoided. Care has to be taken to ensure the smooth

variation of the grid space near the rounded part of the tip.

In order to compute the wake downstream of the tip trailing edge, special

treatment is provided along the downstream extension of the blade surface since

the nonslip boundary condition no longer applies. To avoid the aforementioned

coordinate singularity, a small thickness is maintained at the blade trailing

edge. Governing equations are written along the two sides of the blade extension.

That is, the volume between the blade extensions is now included in the
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in the computational domain and points on the blade extensions are treated as

interior points in the flow calculation. The two ADI solvers (scalar and coupled

solvers) were modified for this flow region. At the blade extension boundaries,

the boundary conditions were changed to write governing equations for the

streamwise momentum equation, scalar potential equation and

streamfunction-vorticity.

On the blade, the turbulence model used is the algebraic model presented in

the previous section of this report. In the wake region, the modified Bushnell

wake model is used for evaluating the turbulent properties. The mixing length is

estimated as follows:

where

----0.07 rain (dl,d2)

d I = 0.48 (d o + 0.24x') + 0.15x'

d 2 = 0.96 (d o + 0.24x')

d o is an estimate of the wake shear layer thickness at the thickness edge

computed from an integral boundary layer calculation and x' is the normal

(helical) distance from the trailing edge to the computational plane.

A turbulent flow calculation was performed for the computation of the tip

vortex flow field in the region of the trailing edge and downstream of the

trailing edge. A NACA0012 wing tip region was used with a round tip (see Fig.

19). The cross-section of the blade tip and the computational grid at the initial

station and at the trailing edge station are shown in Fig. 20. Grid points were

clustered in the regions of large velocity gradients such as near the blade

surface and the tip region.

The Reynolds number based on the tip chord length (the reference length

for this series of calculations) C, was 50,000 and the Mach number was 0.24. The

angle of attack was 6.2 ° producing a velocity normal to the blade surface of about

11% of the freestream velocity. The initial boundary layer thickness was 0.01 C.

The calculation was started from about 20% of the chord length, carried

downstream to the trailing edge and further into the wake, to a distance 2.14

chords downstream of the blade trailing edge.

Figure 21 shows the development of the tip vortex in terms of the streamwise

velocity contours and the secondary flow pattern. The computational results at

three streamwise stations (x/C = 0.432, 0.862, and 1.000) were chosen to display
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the development of the tip vortex on the blade. Note that in these

calculations, the leading edge is at x = 0 and the wake is in the region x/c >

1.0. As the flow developed downstream toward the trailing edge the boundary

layer on the suction side of the blade became thicker than on the pressure side

due to the transport of the low momentum fluid from the pressure side boundary

layer around the tip to the suction side. The same flow process was seen in the

secondary flow pattern as a transport of vorticity around the tip. The

accumulation of the low momentum fluid on the suction side of the tip region as

the flow developed towards the trailing edge is characterized by the bulge of the

primary velocity contours and the large transverse velocities around the tip. The

vortex generation is a result of the secondary flow separation.

The development of the tip vortex into the wake is shown in Fig. 22. The

overall picture of the process shows that the magnitude of the secondary flow

velocity components which form the vortex persists with little change as the

trailing vortex develops downstream.

Three stations in the wake were chosen to display the vortex characteristics

of the blade (x/C = 1.005, 1.722, and 3.139). At x/C = 1.005, right after the

trailing edge, the blade disappeared and the secondary flow was pushed from the

high momentum region towards the low momentum region. As the wake developed

further from the trailing edge, the shear layer became thicker and thicker due to

diffusion of the wake. The attenuation of the wake can be seen from the

thickening of the shear layer and from the increasing of the mlnimumprimary

velocity in the wake indicated as nondimenslonalized by freestream velocity

adjacent to each wake contour plot in Fig. 22. This mechanism also caused the

enlargement and weakening of the vortex. At x/C = 3.139, the vortex moved upwards

and to the right due to the angle of attack and the transfer of the momentum from

high momentum region to the low momentum region.

Since no experimental data for the above cases was known to the authors to

validate this study, the comparison was not made. The above analysis was computed

without accessing the potential flow by potential flow solver. For non-stralght

blades, the potential flow may be necessary for estimating the streamwise pressure

gradients.
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downstream of a NACA0012 win_ tip. Re = 50,000.
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PARAMETRIC STUDY

A parametric study was performed to investigate the effect of blade tip

thickness on the strength of the tip vortex. The study was performed on a blade

with the SR3 planform operating at an advance ratio, J = zV_/Vti p 3.06 The

Reynolds number based on diameter was 40000 based on propeller diameter and the

free stream Mach number was 0.24.

A sequence of calculations was performed at a range of blade tip thicknesses

in 2% intervals from 2% thick to 12% thick. The calculations were started at

x/D = --.30 where D is the diameter of the propeller and x is the tip chord whose

origin is placed at the tip trailing edge. The calculations were performed from

x/D = --.30, which is on the swept leading edge, to x/D = --.036 just upstream of

the tip trailing edge. Figure 23 shows the secondary flow pattern for the 2%

thick blade at x/D = --.036. The predominant crossflow is from the left (pressure

side) to the right around the blade tip. A tip vortex has formed on the right

side of the blade. The vortex center in Fig. 23 is a distance of approximately

10% of tip chord to the right (suction side) of the blade.

Between the blade and the center of the vortex, the flow runs outward along

the blade. This outward flow is induced by the vortex and runs counter to the

general pattern of clockwise flow around the blade. For the thicker blades

studied the qualitative nature of the flow remains the same with the center of the

vortex remaining approximately as shown in Fig. 23. However, for the thicker

blades studied the maximum magnitude of the outward directed flow between the

vortex center and the blade decreases. Since this outward flow is induced by the

vortex, the maximum magnitude of this outward flow is used as a measure of vortex

intensity. A plot of the magnitude of the vortex induced outward velocity is

presented in Fig. 24 as a function of blade thickness. Thinner blades are seen to

give more intense vortices. In the range of 8% to 12%, the vortex intensity is

seen to be relatively insensitive to blade thickness.

COMPARISON WITH DATA AND DISCUSSION

A test case was run to compare the PEPSIG tip vortex calculation with the F4

propeller data supplied by NASA Lewis Research Center. The data was taken in

planes normal to the propeller axis and was provided by NASA in a fixed frame of

reference. Under the subject study SRA transformed the data to the rotating
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propeller frame with one axis aligned with the blade tip chord and a second axis

aligned through the propeller axis of rotation. The third axis was orthogonal to

the first two axes.

A calculation of the flow over the F4 blade tip was performed. The

calculation was run at an inflow Mach number of .24 and a Reynolds number of

0.6 x 106 . The design advance ratio was 2.80. The calculation proceeded from

just aft of the tip leading edge to just before the tip trailing edge. The

intense tip vortex usually seen in the calculations was not evident in the F4

calculation. The reduced intensity of the tip vortex formation may be due to the

blade shape and reduced geometric angle of attack at the tip.

Swirl of the flow is induced by lift of the blade. Computed swirl angles just

upstream of the blade trailing edge were compared with measured swirl angles in

the first measuring plane downstream of the blade. These swirl angles are

compared in the rotating frame. Figure 25 presents a comparison of measured and

computed swirl angles approximately 0.I chord from the suction surface and the

pressure surface of the blade. The test data was at axial station #2 (1.99 inches

downstream of the stacking axis) and was for the first and last points in the

blade-to-blade data tables. The magnitude and shape of the curves are both fairly

well predicted, except for the sharpness of the drop in swirl just inboard of the

tip.
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Figure 23. Secondary Flow Vectors at X/D - -0.036, 2% Thick Blade.
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Figure 24. Maximum Velocity Induced by Tip Vortex

as a Function of Blade Thickness.
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CONCLUDING RF/I_RKS

A study has been performed to analyze the generation of propeller tip vortices

and the resulting flow field for advanced aircraft propellers. A computer code

capable of predicting'propeller tip flow fields has been developed.

The flow field in the tip region is complex, three-dimensional, and viscous

with large secondary velocities. The large secondary velocities preclude the

possibility of using conventional boundary layer solution techniques to compute

the tip vortex flow. On the other hand, a solution of the full Navier-Stokes

equations that adequately resolves the tip vortex flow field would require

formidable computational resources. Therefore, an approximate set of

three-dlmenslonal viscous flow equations which is applicable to the tip vortex

flow field but which does not require the resources needed for the solution of the

full Navier-Stokes equations is sought. The parabolic Navier-Stokes equations

represent such a set. These equations contain the physical processes of tip

vortex generation and can be solved economically by a forward marching procedure.

The subject study accomplished the following tasks:

. A procedure was developed for inclusion of streamwise pressure gradients

into the aircraft propeller analysis. The procedure uses the Hess panel

method and interface routine written to interpolate the inviscid

pressure gradients onto the viscous grid. Sample calculations using

this procedure are presented.

, The grid generation package was generalized from that used in the Phase

I program to allow specification of more general blade shapes and to

permit specification grids appropriate for turbulent flow calculations

around advanced propeller blades.

. The generation of a tip vortex on the SR3 advanced aircraft propeller

was calculated at a Reynolds number of i.i x 106 and included high

subsonic Mach numbers of approximately 0.8 in the tip region. A series

of both laminar and turbulent flow cases were run showing the tip vortex

process on the SR3 blade.
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The forward marching procedure was extended to compute flow aft of a

blade trailing edge. This was demonstrated for a NACA-0012 shaped blade

at 6° angle of attack and Reynolds number based on propeller diameter of

approximately 106 . This calculation was used successfully to compute

the flow over the blade tip and downstream of the trailing edge

including the tip vortex. An attempt was made to extend this technique

to blades with swept trailing edges. This extension was unsuccessful

and further development is required for these cases.

A parametric study was performed to determine the effect of tip

thickness on vortex intensity. The blade thickness was varied from 2%

of tip chord to 12% of tip chord. The vortex strength decreased with

increasing blade thickness.

Flow field computations from the forward marching procedure were

compared with F4 experimental data provided by NASA. Since most of the

data was downstream of the blade, the data comparison could only be

qualitative.

A Users Manual was prepared.
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