SIMPLIFIED RATE-LAW INTEGRATION FOR REACTANTS WHICH ARE FIRST ORDER IN EACH OF TWO REACTANTS

E. Levin J. G. Eberhart

September 1988

Research Institute for Advanced Computer Science NASA Ames Research Center

RIACS Technical Report 88.23

NASA Cooperative Agreement Number NCC 2-387

Research Institute for Advanced Computer Science

brought to you by

SIMPLIFIED RATE-LAW INTEGRATION FOR REACTANTS WHICH ARE FIRST ORDER IN EACH OF TWO REACTANTS

E. Levin J. G. Eberhart*

Research Institute for Advanced Computer Science NASA Ames Research Center

> RIACS Technical Report 88.23 September 1988

The purpose of this paper is to present a simple procedure for integrating the rate law for chemical reactions which are first order in each of two reactants.

Work reported herein was supported in part by Cooperative Agreement NCC 2-387 between the National Aeronautics and Space Administration (NASA) and the Universities Space Research Association (USRA).

* J. G. Eberhart's address is Department of Chemistry, University of Colorado. Colorado Springs, CO 80933

This paper has been submitted to the Journal of Chemical Education

SIMPLIFIED RATE-LAW INTEGRATION FOR REAC-TIONS WHICH ARE FIRST ORDER IN EACH OF TWO REACTANTS

E. Levin

Research Institute for Advanced Computer Science, Moffett Field, CA 94035

J. G. Eberhart

Department of Chemistry, University of Colorado, Colorado Springs, CO 80933

If a chemical reaction involving two reactants, $aA + bB \rightarrow$ products, is first order in each of its two reactants (and second order overall) then it follows the rate law

$$-\frac{d[\mathbf{A}]}{a\ dt} = -\frac{d[\mathbf{B}]}{b\ dt} = k[\mathbf{A}][\mathbf{B}] \tag{1}$$

where a and b are the stoichiometric coefficients of A and B, [A] and [B] are the concentrations (usually the molarities) of A and B, and k is the reaction rate constant. Eq 1 includes the material balance condition for the chemical reaction, which, upon integration, becomes

$$\frac{[A] - [A]_{o}}{a} = \frac{[B] - [B]_{o}}{b}$$
(2)

where $[A]_o$ and $[B]_o$ are the zero-time concentrations of A and B. Textbook solutions (see, for example, Levine¹ or Atkins²) of this rate law are invariably based on the elimination of [B] from eqs 1 and 2, followed by a rather complicated integration by partial fractions.

The purpose of this paper is to indicate a far simpler procedure by which eq 1 may be integrated. Two forms of this simplified integration will be presented. Both are based on re-arranging the material balance condition to give

$$b[A] - a[B] = b[A]_{o} - a[B]_{o} = C$$
 (3)

and the observation that although [A] and [B] vary with time,

C = b[A] - a[B] is a constant.

<u>Method 1</u>: The first method of integration involves using both of the variables [A] and [B], rather than eliminating one of them. From the first and third members of eq 1 it follows that

$$\frac{d[\mathbf{A}]}{[\mathbf{A}]} = -ak[\mathbf{B}]dt \tag{4}$$

Similarly, from the second and third members of eq 1

$$\frac{d[\mathbf{B}]}{[\mathbf{B}]} = -bk[\mathbf{A}]dt \tag{5}$$

Subtracting eq 5 from eq 4 then yields

$$\frac{d[\mathbf{A}]}{[\mathbf{A}]} - \frac{d[\mathbf{B}]}{[\mathbf{B}]} = k(b[\mathbf{A}] - a[\mathbf{B}])dt$$
(6)

which, from the form of the material balance condition in eq 3, becomes

$$\frac{d[\mathbf{A}]}{[\mathbf{A}]} - \frac{d[\mathbf{B}]}{[\mathbf{B}]} = kCdt \tag{7}$$

Eq 7 is easily integrated from zero time to a later time giving

$$\ln([A]/[A]_{o}) - \ln([B]/[B]_{o}) = kCt$$
 (8)

This solution to eq 1 is more commonly written in the form

$$\ln\left(\frac{[\mathbf{A}]/[\mathbf{B}]}{[\mathbf{A}]_{\mathbf{o}}/[\mathbf{B}]_{\mathbf{o}}}\right) = kCt$$
(9)

<u>Method 2</u>: The second method involves using the concentration ratio X = [A]/[B], rather than either of the concentrations [A] or [B]. From eq 3

$$[\mathbf{A}] = \frac{a[\mathbf{B}] + C}{b} \tag{10}$$

Thus, it follows that

$$X = \frac{[A]}{[B]} = \frac{a}{b} + \frac{C}{b[B]}$$
(11)

Differentiating eq 11 then gives

$$\frac{dX}{dt} = -\frac{C}{[\mathbf{B}]^2} \frac{d[\mathbf{B}]}{b \ dt} \tag{12}$$

Substituting eq 1 into eq 12 then yields

$$\frac{dX}{dt} = \frac{C}{[B]^2} k[A][B] = kCX$$
(13)

Thus, this second order reaction follows "first-order kinetics" in the ratio X. The rate equation is again easily integrated to provide

$$\ln(X/X_{o}) = kCt \tag{14}$$

which is equivalent to eq 9.

In conclusion, then, the integration of the rate law for a reaction which is first order in each of two reactants can be performed using calculus which is no more complicated than that employed in simple first-order reactions.

Literature Cited

1. Levine, I.N., <u>Physical</u> <u>Chemistry</u>, 3rd ed.; McGraw Hill: New York, 1988; pp 519-520.

2. Atkins, P.W., <u>Physical Chemistry.</u> 3rd ed.; Freeman: New York, 1986; p 695

.