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Abstract

A new, nonoscillatory upwind scheme is devel-
opec] for the multidimensional convection equation.
The scheme consists of an upwind, nonoscillatory in-
terpolation of data to the surfaces of an intermedi-
ate finite volume; a characteristic convection of sur-
face data to a midpoint time level; and a conser-
vative time integration based on the midpoint rule.

This procedure results in a convection scheme capa-
ble of resolving discontinuities neither aligned with,
nor convected along, grid lines.

1. Introduction

The aerospace indnstry's wide acceptance of

computational fluid dynamics is due mainly to the
succesdul calculation of transonic flows. 1'_'s Shock

capturing schemes, both upwind and central differ-
enced, have revolutionised the way discontinuous

flows &re investigated.
In general it is true that an optimally tuned

and gridded central differenced scheme can produce
steady state solutions comparable to those produced
by upwind schemes. It is equally true that upwind
methods are superior in their ability to resolve un-
steady flows because central differenced schemes re-
quire an artificial dissipation term that is usually
tuned for steady state performance.

A number of impressive upwind methods have
been developed for the one-dimensional convection

equation; many of these schemes have found their
way into the numerical solution of the Euler and
Navier-Stokes equations. 4,s Most of these schemes,
with the exception of a few, &re second order accu-
rate in smooth regions and first order accurate at
extremas. Because this first order behavior can ex-

cessively damp unsteady calculations, methods that
are uniformly second order accurate are needed, e'7

In general, one-dimensional upwind schemes &re
only formally extended to multidimensions. The
most common means of extension &re the one-step

Lax-Wendroff, the fractional step, and the multistep
Rung_-Kutta schemes, each with its own benefits
and drawbacks. The one-step Lax-Weudroff scheme,
while remaining conservative, requires the evalua-
tion of cross-derivative terms whose effects on

accuracy and shock capturing have not been fully
understood or exploited. The fractional step
method, by far the most popular means of multi-
dimensional extension, is not strictly time conserva-
tive, since all fluxes &re not evaluated at the same
time level. The multistep Runga-Kutta scheme is
probably the most effcient means of extension but
unfortunately suffers from an inherent dispersion er-
ror that can introduce asymmetric behavior.

The development of true multidimensional up-
wind schemes has only recently received the at-
tention previously afforded to formal extensions.
Davie s has developed a rotated scheme that upwinds
normal to shocks rather than along grid lines, while
Poweil and van Leer ° have recently formulated a
convection scheme that obtains its multidimensional

treatment through a residual distribution step.

The present approach, in the spirit of van Leer's
MUSCL scheme, x° is to insure nonosc_atory be-

havior through an uniformly second order accurate
nonoscillatory interpolation of data to an intermedi-
ate finite volume. A multidimensional treatment is

achieved through a characteristic convection of the
surface data to a midpoint time level. Strict con-
servation is assured through a midpoint rule time
integration.

2. Analysis

To illustrate the potential difficulties associ-
ated with formally extending one-dimensional up-
wind concepts to higher dimensions, it is sufficient
to investigate only the one-dimensional linear con-

vection equation:

Ou Ou
+ = o (11

The convection of various graxllents (ellipse,

top hat, and triangle) are solved numerical]y
on a uniform grid, using a centered Runga-
Kutta scheme with artificial dissipation, a one-step
TVD Lax-Wendroff, and a multistep TVD Lax-
Wendroff/Rungw-Kutta scheme. Each of the gra-
dients &re constructed over a width of twenty mesh



cellsandhavea nondimensional amplitude of one
unit and a length of one half.

Given the m-stage Runga-Kutta scheme

u(1) = u '_ _ alAtR n

u(2) = u ,_ _ a2AtR(1)

u {m} = u'* - amAtR ('_-1}

Un+l = u( m}

(2)

where al, '*2, etc. are scalar constants and At is the
time step. The spatial difference terra

can be constructed from a central difference approxi-
mation with an added nonlinear artificial dissipation
term 2 or a flux limited approximation

u_+1/2 = _ + 0.5_A+u_ (4)

where the convection speed a > 0 is constant; A+
is a first order forward difference operator; and ¢i is
the TVD lin_ter chosen, most often, to take one of
the following forms

¢= I,i+r
l+r

= max(O, rnin(2r, 1), rain(r, 2)) (5)
2nr

_b= maz(O, (i + I,-I,/,,)-)

r=

_+_

corresponding to van Leer's 11 continous; Roe's 12
Minmod and Superbee; and Liou'8 Is exponential
Limiters, respectively.

These limkers are also used in the construction

of Sweby's x' second-order TVD Lax-Wendroff for-
mulation

,,:,+, = .? _ .A-., - O.Sa-¢(I - (6)

where v = aL%t/A= and 4- is a first order backward
difference operator.

To investigate the performance of these
schemes, a number of test calculations were per-
formed for eighty time steps at a Courant number of
one half. The results from a second order, centered,
four stage Runga-Kutta scheme are clearly oscilla-
tory (Fig. 1) and may be deemed inappropriate for
unsteady calculations. It may be conjectured that

a time dependent artificial dissipation term could
improve this behavior, but at present no such treat-
ment exists.

Results from the one-step TVD La.x-Wendroff
method (Figs. 2-4) axe superior to those obtained
from the centered scheme and illustrate the relative

advaatages of the upwind method.

A popular means of extending these TVD con-
cepts to higher dimensions is through a multistep
scheme, which unfortunately can introduce undesir-
able errors. Figures 5 and 6 show that asymmetry
and oscillation can be introduced even into the one

dimensional problem and thus a formal extension to
higher dimensions may be ill advised.

The asymmetry produced by the Runga-Kutta
scheme occurs because of the effective Limiter cre-

ated by the multi-step formulation. The use of an

identical symmetric limiter in each of the multiple
steps does not insure an overall symmetric behavior.
The multi-stage formulation has the effect of gener-
ating nonlinear, spatially shifted terms of the form
_bi_b__x, which can no longer guarantee a symmetric
behavior. The use of different Umiters in each step
would be an obvious way of addressing this asymme-
try and would introduce, in effect, MacCormack's 15
predictor-corrector philosophy.

The multl-step formulation can also degrade,
with respect to the results from the one-step scheme,
the performance of the flux limiters. Liou's expo-
nential Limiter, which performs well in the one-step
scheme, can be rendered non-TVD and oscillatory
in the multi-step formuiation. This occurs because
the exponential limiter is TVD for

1

r< (2(._x)/__ I)" (7)

which is unconditionally true only for n = 1. As n
increases, the lim]ter has the desirable behavior of
becoming less diffusive but also produces a more re-
strictive TVD condition. While this condition seems

not to be v_oiated in the one-step scheme, it is in
fact compromised in the first step of the multi-step
formulation, thus allowing oscillations to develop. It
again becomes clear that formal extensions to higher
dimensions may be ill advised.

Despite the succeesee achieved in one-
dimension, the development of the 'ultimate' con-
vection scheme has proven elusive. Goodman and
LcVeque 16 have Shown t-hat the desire for accuracy
higher than first order requires sacrificing the TVD
property in two-dimensions. The obvious next step
is to retain a nonoscillatory behavior despite losing
the TVD property. This is the rationale taken for
uniformly second order accurate nonoscillatory one-
dimensional methods.

To illustrate the difficulties associated with the

development of multidimensional schemes, the fol-

lowing categories aye defined:



1) OmnidirectionallyNonoscillatory:Nonew
extremasarecreatedin anyarbitrary direction.

2) Preferred Direction Nonoscilla_ory: No new
extremas are created in a preferred direction.

3) Grid Aligned Nonoscillatory: No new ex-
tremas are created along at least one grid direction.

Most present day nonosciU_ory schemes meet the
requirements of grid aligned nonoscillatory behavior,
while Davis's s rotated scheme satisfies the definition

of preferred direction nonoscillation. Definitions 2
and 3 are necessary but not suf_cient conditions for
an omnidirectional nonoecillatory behavior, which is
in fact unlikely to be satisfied by anything less than
the convection of the exact solution. This seem-

ingly bold statement can be illustrated by a one-
dimensional convection of a two-dimensional distri-

bution where dissipation along the convection direc-
tion can create new extremas in the cross stream
direction. A variation of Zalesak's lr notched cylin-

der problem can be used to illustrate this point. A
notch, fourteen mesh cells wide and twenty mesh
cells deep, is cut out of a thirty mesh cell diameter

cylinder 0.75 unit wide and 0.5 unit high. This dis-
tribution, Fig.7, can be convected (forty time steps
at a Courant number of one half, on a uniform grid)
along the notch's length-wise direction by a simple
first-order upwind scheme. The two-dimensional dis-
tribution uncouples into a series of one-dimensional
problems, each of which undergoes some amount of
amplitude damping. Since the distribution is two-
dimensional and no information is passed in the cross
convection direction, the amplitude damping cannot
be applied uniformly and thus oscillations are cre-
ated in the cross-convection direction, Fig.8. As a
result, it would seem that even a first order TVD
scheme could be oscillatory in multidimensions, in-
dicating that the strict nonoscillatory property is
more restrictive than the TVD property, which is
the opposite of what is known to be true in one-
dimension. Based on this observation, one might
come to the conclusion that, since anything less than
an exact solution cannot guarantee nonoscilla_ion,
there is little to be gained by trying to develop a

truly multidimensional formulation. However, this
conclusion would be short sighted, since one could
still make significant improvements in the accuracy
of unsteady calculations without having to satisfy
the strict nonoscillatory properties of definition 1.
In other words, the nonoscin_0rY property, like the
TV D property, is not the only measure of accuracy
and may have to be sacrificed, at ]east in practice,
by some other, yet to be established, definition of
'goodness'.

3. Two-DLmensional Formulation

Consider the two-dimensional linear convection

equation:

where

au au au
(s)

a = and b=
This equation can be solved numerically, on a

uniform grid, by a scheme that interpolates grid
point data to the surfaces of an intermediate finite
volume; characteristically convects the surface data
to a midpoint time level; and updates the solution
with a midpoint rule time integration.

To insure the production of a nonoscillatory so-
lution, at least directionaUy, face values must be con-
structed in a nonoscilla_ory manner. To avoid exces-
sive amounts of damping, this interpolation must be
at least uniformly second order accurate.

A second order accurate, nonoscillatory interpo-
lation, which relies heavily upon a geometric inter-
pretation of the standard TVD concepts, has been
recently developed. 7 A one-dimensional interpola-
tion for a positive convection speed can be written:

'_+112 = _ + &Az/2 (0)

where Si is the slope of a piecewise lineardistri-
bution of data over the intermediate finitevolume

around each grid point. The slope associatedwith
the Minmod 12scheme can be definedas the median

of the slopes corresponding to firstorder upwind-

ing,centraldifferencing,and second order Warming-

Beam npwinding. Thus the Minmod slope is

where

Median(O, u_+ l /_ - u_ , u_ - u__ i / 2)

Az/2
(10)

u_+I/_ = 0.5(u_+ ud+1) (11)

while the slope corresponding to Roe's Superbee 12

scheme can be inteRpretedas:

( ° )
0, ui+l/2 -- u,,

Median . e
U_ -- Ui_l/2,

t_ -- U/_I, U_+1 -- Ui
S_ uperbee=

(12)
These schemes axe second order accurate in smooth

regionsand firstorder accurate at extrema. To re-
move this firstorder behavior, Harten and Osher6

developed the uniformly second order accurate
UN02 scheme. This scheme can be written as the

@

Minmod slope described above, but with a u_+i/2

value obtained from a nonoscillatoryquadratic in-

terpolation:



u_+,/2= o.s(u_+ u_+x)- 0.2sD_+x/2 (13)

where

D,+,/. = mi.._od(D,, D,+x) (14)

D_ ffi D_+t - 2D_ + Di-x

and

minmod( a, b) =

son(a)ma_(o, sign(ab)m/n(lal,[hi)) {is}

This geometric redefinitionis rich in extensions

and ha_ led to the development of Huynh'$ SONIC

schemes._'By incorporating this new definitionof

ui¢+,/2into the Superbee slope,one can produce

Huynh's uniformly second order accurate SONIC-
B scheme, which islessdissipativethan the UNO2

scheme. A furtherextensioncan be achievedby first

definingthe slope:

a, 06)

and then using this value to construct a new slope:

S ff°NIc-A = Median(O, S 4', S s°Nrc-B) (17)

This modificationresultsin the SONIC-A scheme,

which isalso uniformly second order accurate but

lessovercompretmivethan the SONIC-B scheme,z

The median of threequantities,required inthe

sonicinterpolations,isevaluated as follows

+m_..,od(=,- _,, _ - =,) (is)
while the median of five quantities is evaluated as

,_di.,,( .-. z., z.,, =,, _5) = ,_d_..( Xx,X2, =6)
(19)

where

X2 = xx + xa + xs + x,i

- maz(zl, z2, zz, z4)

- rnin(zt, z2, z3, z4) - Xt

The SONIC interpolationsare used in each di-
rectionto constructsurfacedata from the gridpoint

valuesat time leveln. The surfacedata isthen ad-

vanced toa midpoint time levelusinga characteristic

convection,which isbased on a bilineardistribution

of data over a quarter ofthe intermediatefinitevol-

ume.

At time leveln + 1/2, the surfacedata iseval-

uated by firstfollowingthe characteristicback to

itsspatiallocationat time leveln and then by con-

structingitsvalue from a bilineardistributionover

the corresponding quadrant's corner values. These

quadrant valuescorrespond tothe intermediatecell's

centered,face,and corner values. For positivecon-
vectionspeeds a and b,the surfacedata attime level

n + 1/2 can be evaluated as:

n+ttt2 n GAt. n n

ui+ll:, ¢ = u_+ 11_,¢ - _ (u_+ _/zy - uij)

bat. ,,

(_'_+1/2,_- u?+l/zs- 1/:)

abAt 2 .u ,_ ,_
+ A--_( _+1/2.y - ui+xl:.y-_/:

- ,.,.".,.,+ u_,_-__/d

where the corner value

(20)

isevaluated as a symmetric product of I_ and I_,

the one dimensionalsonicinterpolationoperatorsin

the z and y directions,respectively.
Once the surfacedata has been convected tothe

time leveln + 1/2, the finitevolume fluxesare eval-
uated and the valuesat the gridpoints are updated

by the midpoint rule:

. F,,+1/2 F,_+t/2
ugtX = ug- At( _+tl2,y- _-tl2,y

Gn+X/_ mn+ll_ \
_,Y+tl_ - "_,Y-Y: _

+ A_ /

(22)

where F = au and G = ha.

4. Results

A series of two-dimensional convection prob-

lems are used to illustratethe scheme's abilityto

resolvediscontinuitiesthat axe neitheralignedwith,

nor convected along,grid lines.
Numerical resultsare obtained for the convec-

tion of a cone, box, and cylinder along arbitrary

flow directionsof 0, 45, and 70 degrees. Calcula-

tionswere performed on a uniform grid of i00x100
mesh cellsfor 100 time steps at a Courant number

of one half. Both the cone and cylinderhave a 10

mesh cellradius of 0.25 unit long and are 4 units

high. The box has a 20 mesh cellsquare base of 0.5

unit wide and isalso 4 units high. The numerical



results using the SONIC-A interpolation, Figures 9
to 20, show that the various corner, edge, and peak
discontinuities can be resolved for various flow an-

gles. The sharp edges associatedwith the box and

cylinderdistributionsare smoothed over a couple of
mesh cellswhile the magnitude ofthe cone'speak is

reduced by about six to ten percent.This damping,

while not unexpected, has been kept to a minimum

on thisrelativelycoarsegrid.These calculationsare

also nonoscillatory in that no trailing, leading, or
image oscillations are observed in any of these test
cases.

Results for the more difficult case of a rotat-

ing cone and cutout cylinder, is Fig. 21, are also
included to demonstrate the scheme's shock captur-

ing capabilities. Calculations were performed on a
uniform 100xl00 mesh cell grid using the Minmod,

Superbee, SONIC-B, and SONIC-A interpolations.
Both the cone and the cylinder distributions have a
30 mesh cell diameter of 0.75 unit wide and an am-

plitude of 0.5 unit high. The cylinder's notch is 6
mesh cells wide and 24 mesh cells deep. The cen-

ter of rotation is located at the grid center point,

P(50,50), while the cone is located at P(25,50) and
the cylinder is centered at P(75,50). These calcula-
tions were run for one and six complete rotations,

which correspond to 628 and 3768 time steps, re-
spectively. This solid body rotation, characterized
by the velocity field

= (z - z0) 
zo=  (so,so) (23)
yo= y(so,so)
_o----0.I

is an extremely difficult test case since the Courant
number, dispersion, and damping errors vary in
magnitude throughout the domain, making the sym-
metric resolution of a symmetric problem highly un-

likely.
After one complete rotation, the discontinu-

ities are captured extremely well by the Superbee,
SONIC-B, and SONIC-A interpolations. The Min-
rood results, Fig.22, are extremely dissipative and
retain only the gross features of the initial distri-
butions. The Superbee calculation, Fig.23, resolves
the notched cylinder well but shows a slight over-
compression of the cone distribution. The SONIC-B
interpolation, Fig.24, results in a non-TVD steep-
ening of the notched cylinder's narrow bridge but
has not overcompressed the cone. The SONIC-A in-
terpolation produces the best overallresults, Fig.25,
since the discontinuities are captured without an ex-
cessive amount of overcompression or damping.

The results after six complete revolutions are
somewhat less encouraging. The Minmod calcula-

tion, Fig.26, has all but caused the distributions

to disappear. The Superbee interpolation,Fig.27,

again captures the notched cylinderextremely well
but compresses the cone into a cylindricalshape.

The SONIC-B results,Fig.28,are slightlylessover-

compressive than the Superbee calculation,but are

asymmetric in form. The SONIC-A resultsare

greatlydamped and no longerretainthe cylinder's

plateauregion (Fig.29).However, the cone distribu-

tion,albeitdissipated,stillretainsmuch of itsorig-

inalshape.

The performance of the SONIC-A interpolation
isthe most desirablefrom the standpoint of being

ableto retainthe overallshapes ofthe originaldis-

tributions.Since the SONIC-A interpolationisnot

overcompressive,itdoes not transform gentle gra-
dientsinto steep ones, and thus retainsthe most

important featuresofthe originaldistributions.

5. Concluding Remarks

A new upwind scheme, based on a uniformly
second order accurate nonoscillatoryinterpolation,

is developed for the multidimensional convection

equation. Numerical resultsillustratethe scheme's

abilityto resolve,without excessiveamounts ofdis-

persion or damping errors,discontinuitiesneither

alignedwith, nor convected along,gridlines.

It is suggested that the strictnonosclllatory

property in multidimensions isunlikelyto be sat-
isfiedby anything lessthan the convection of the
exactsolutionand ismore restrictivethan the TVD

property.Ifone acceptsthisbelief,itthen becomes

obvious thata more practicaldefinitionof'goodness'
isneeded formultidimensional problems.
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