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PROGRESS OF RESEARCH ON WATER VAPOR LIDAR1

by

T. D. Wilkerson and U. N. Singh

Atmospheric Lidar Observatory

Institute for Physical Science and Technology

University of Maryland, College Park, MD 20742

ABSTRACT

Research is summarized on applications of stimulated Raman scattering

(SRS) of laser light into near infrared wavelengths suitable for atmospheric

monitoring. Issues addressed are conversion efficiency, spectral purity,

optimization of operating conditions, and amplification techniques.

A Raman cell was developed and built for the laboratory program, and is

now available to NASA-Langley, either as a design or as a completed cell for

laboratory or flight applications. The Raman cell has been approved for

flight in NASA's DC-8 aircraft. The "self-seeding" SRS technique developed

here is suggested as an essential improvement for tunable near-IR DIAL

applications at wavelengths of order I _m or greater.

IA report on research carried out under NCC 1-25 (E. V. Browell, Technical

Monitor), sponsored by NASA-Langley Research Center, for the period ending

July 31, 1989.
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PROGRESS OF RESEARCH ON WATER VAPOR LIDAR

For atmospheric monitoring of water vapor by the DIAL technique when the

abundance of H 0 is low--as in the stratosphere, or in the polar
2

troposphere---efficient lidar operation is required in the 940 nm or 1140 nm

absorption bands of water vapor. Moreover, narrow line optical transmission

-I

is required because of the small H20 linewidth (HWHM ~ O. 1 cm
at sea level,

~ 0.015 cm -I (Doppler) at low atmospheric pressure.

Because these wavelengths are hard to reach by any pulsed laser method,

we have investigated their generation (e.g., 940 nm) by the stimulated Raman

scattering (SRS) technique, using a narrow line tunable laser (~ 676 nm) as

the pump source at shorter wavelength, the beam being single-passed through

-I

high pressure H 2 in which the first Stokes shift is about 4100 cm

Following a preliminary study 2 we have worked on two essential aspects of SRS

applications: optimization of output energy, and suitability of the output

line spectrum for quantitative DIAL measurements in the atmosphere. Results

are given in detail in the reports reproduced in Appendices A & B. For an

especially demanding test of the narrowness of tunable line radiation, we

3
elected to utilize the 0 A-band absorption spectrum, near 760 nm, because

2

-1
the 0 lines have HWHMs ~ .03-.05 cm under ambient conditions. We found

2

that the narrow line character of our tunable laser light near 585 nm was, as

expected, preserved in the SRS process producing output at 760 nm. This

exercise will be repeated for 940 nm in coming months.

Also, we have extended the SRS work to yet longer wavelength, to bracket

2B. E. Grossmann, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson

and E. V. Browell, Appl. Opt. 26, 1617 (1987).

3K. J. Ritter and T. D. Wilkerson, J. Nolec. Spectrosc. 121, 1 (1987).





the wavelength regions (~ 1140 nm) that will ultimately have to be covered

for complete water vapor work in the atmosphere. To do this, we employed the

Nd:YAGfundamental (~ 200 m3at 1.064 _m) as the pumpsource, generating 1.54

pm as the first Stokes output in methane (see Appendices C & D). In so

doing, we first verified that the SRS applications indeed become

significantly more difficult at long wavelength. We devised a way of

overcoming the threshold and conversion efficiency problems--namely to feed

back the ordinarily wasted "backward Raman" radiation as a "seed" for the

forward Raman process. The latter result holds very favorable indications

for near infrared SRS processes generally, and may make a vital difference in

the conversion efficiency from pump radiation at 773 nm (e.g., alexandrite or

Ti:AI 0 ) to 1140 nm using H as the Raman medium. This wavelength region is
23 2

now well bracketed by successful SRS conversion schemes at both shorter and

longer wavelength.

Consistent with the intent of the Cooperative Agreement NCC 1-25, all of

the technology developed in this program is available to the Water Vapor

Lidar program at NASA-Langley Research Center, including a high pressure

4
Raman cell if that is needed for laboratory or flight operations. The

subject grant supported all of the 940 nm work, plus parts of the 1.54 pm

study that were deemed a good investment in researching how to carry out SRS

applications to water vapor measurements beyond I pm wavelength.

All of the 940 nm work reported here was completed by July 31, 1989. The

essentials of the self-seeding SRS work were worked out by that time, and

some of the results and analysis were then refined in August and September.

Details of the research results are given in the journal articles and

4A bonus for the program is that the Raman cell design and construction has

been approved for flight on NASA's DC-8 aircraft, as a part of the

NASA-Goddard aerosol experiment for the GLOBE project.





presentation abstracts included as Appendices A-D to this report. References

for these documents are given below. This completes the current description

of research progress under NCC 1-25.

APPENDICES

A. U. N. Singh, Z. Chu, R. Mahon, and T. D. Wilkerson, "Raman-shifted

Radiation for Lidar Applications", Proc. Conf. on Lasers and Electro-Optics

(CLEO "89), Baltimore, MD (April, 1989).

B. U. N. Singh, Z. Chu, R. Mahon, and T. D. Wilkerson, "Optimization of a

Raman-shifted Dye Laser System for DIAL Applications", submitted to Applied

Optics (May, 1989).

C. Z. Chu, U. N. Singh, and T. D. Wilkerson, "A Self-Seeded SRS System for

the Generation of 1.54 _m Eye-Safe Radiation", to be published in Optics

Communications (1990).

D. U. N. Singh, Z. Chu, and T. D. Wilkerson, "Efficient Near-IR Light Source

for Eye-Safe Lidar Applications", Proc. Optical Remote Sensing of the

Atmosphere (1990), OSA meetings, Incline Village, NV (February 1990).
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Raman-shifted Radiation for Lidar Applications

U.N. Singh, Z. Chu, R. Mahon, and T.D. Wilkerson

University of Maryland

Institute for Physical Science and Technology

College Park, HD 20742-2431

Tel: (301) 454-4760, (301) 454-5401

Abstract

An efficient Raman- shifted dye laser system emitting narrowband

(- 0.03 cm'l), tunable radiation at 765 and 940 nm for DIAL applications, and

a Raman-shifted Nd:YAG laser system at 1.54 pm for eye-safe aerosol lidar

measurements, are described.





Raman-shifted Radiation for Lidar Applications*

U.N. Singh, Z. Chu, R. Mahon, and T.D. Wilkerson

University of Maryland

Institute for Physical Science and Technology

College Park, MD 20742-2431

Tel: (301)-454-4760, (301) 454-5401

Summary

D__ifferential Absorption _idar (DIAL) measurements in the water vapor

bands (730 and 940 nm) and the A-band of molecular oxygen (760-770 run) have

been suggested I'3 for profiling atmospheric properties such as humidity,

temperature, pressure, and density. For this purpose, intense pulsed laser

sources of tunable, narrowband radiation in the near infrared are necessary.

Because similar lasers are available in the visible spectrum, stimulated Raman

scattering is one of the most efficient methods for frequency shifting radia-

tion for use in the near infrared. In particular Nd:YAG-pumped dye lasers

perform well in the 560-700 nm range but their efficiency falls off rapidly

above 700 run. Higher energy outputs can be achieved by Raman shifting visible

wavelengths into infrared radiation at the first Stokes frequency. The requi-

site tunability and spectral purity of the output is derived from the dye

laser input. Hydrogen is especially suitable as a Raman conversion medium

because it is characterized by having the largest frequency shift (4155 cm "I)

in a single Stokes order, high gain, and very small collision broadening 4.

An experiment diagram is shown in Fig i. A frequency-doubled, Nd:YAG-

pumped dye laser 4 emitted narrowband radiation (_ 0.02 cm -I) at 577-583 and

676 nm. The first Stokes radiation at 760-770 and 940 nm, respectively, was

generated in a l-meter long, single pass Raman cell containing hydrogen.



Raman-shiftedRadiation

U.N. Slngh, Z. Chu, R. Mahon, T.D. Wilkerson

To carry over the narrow bandwidth of the dye laser to the Raman-shifted

wavelength, we operated the Raman cell at pressures below 14 arm. The first

Stokes conversion was optimized by monitoring the resultant pulse energy for

three pump beam focussing geometries. We attained energy conversion effici-

encies of 45% and 37% at 765 and 940 nm, respectively.

We utilized the P-branch of the oxygen "A-band" to test the spectral

purity of both the dye laser and Raman-shifted dye laser radiation at 760-

770 nm. Optical depth measurements were made at the centers of 25 lines in

the P-branch of the oxygen A-band in air at NTP, contained in a White cell of

60 meter path length. Fig. 2 shows results for 760-770 nm radiation generated

directly in the dye laser (*), and Fig. 3 represents the use of dye laser

light Raman-shifted from - 580 nm (+). The solid line at 45 ° is the calcu-

lated optical depth using line parameters from Ritter and Wilkerson 5 that were

obtained with highly monochromatic light from a CW dye laser. The dotted

lines represent the theoretical optical depth corrected for frequency stabil-

ity and finite linewidth of the pulsed radiation. The data and theoretical

calculations agree, indicating a high degree of spectral purity, and thus the

feasibility of using the Raman-shifted radiation for DIAL measurements.

We are also studying the generation of 1.54 _m radiation by Raman-

shifting the output of a Nd:YAG laser at 1.06 _m in a Raman cell containing

methane (6u - 2987 cm-l). This radiation will be used for aerosol lidar

measurements that are relatively eye-safe. Optimization results will be

presented.



Raman-shiftedRmdiation

U.N. Singh, Z. Chu, R. N_on, T.D. Wilkerson

*Research supported by the University of Maryland, NASA-Langley Research

Center (NCC 1-25), and NASA-Coddard Space Flight Center (P.O. 16735-E).

i. E.V. Browell, T.D. Wilkerson, and T.J. Mcllrath, Appl. Opt., 18,

(1979).

2. T.D. Wilkerson and C.K. Schwemmer, Opt. Eng., 21, 1022 (1982).

3. C.L. Korb and C.Y. Weng, J. Appl. Meteor., 21, 1346 (1982).

4. B.E. Grossmann, U.N. Singh, N.S. Higdon, L.J. Cotnoir, T.D. Wilkerson,

and E.V. Browell, Appl. Opt., 26, 1617 (1987).

5. K. Ritter and T.D. Wilkerson, J. Mol. Spectro., 121, i (1987).
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Fig. i A diagram of the experimental apparatus is shown for the first Stokes

generation of 765 and 940 nm radiation.
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Fig. 2 Optical depth measurements with 760-770 nm rad°iation generated

directly in the dye laser.
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Fig. 3 Optical depth measurements with 760-770 run radiation generated through

Raman-shifting the dye laser radiation.
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OPTIMIZATION OF A RAMAN SHIFTED DYE LASER SYSTEM

FOR DIAL APPLICATIONS

Upendra N. Slngh, Zhlplng Chu, Rita Mahon and Thomas D. Wllkerson

University of Maryland

Institute for Physical Science and Technology

College Park, Maryland 20742-2431

ABSTRACT

We describe an efficient Raman-shlfted dye laser system that generates

-I
tunable radiation at 765 and 940 nm with a bandwidth of 0.03 cm Operating

a Raman cell at hydrogen pressure below 14 arm, we recorded optimum first

Stokes energy conversions of 45% and of 37% at 765 and 940 nm, respectively.

Optical depth measurements made at the centers of 25 absorption lines in the

P-branch of the oxygen A-band imply a high spectral purity for both the laser

and the Raman-shlfted radiation, and thus indicate the feasibility of using

the stimulated Raman-scattered radiation for differential absorption lidar

(DIAL) measurements.





I. INTRODUCTION

In recent years various differential absorption lidar (DIAL) measurements

in the water vapor bands (730 and 940 nm) and the A-band of molecular oxygen

1-8
(750 - 770 nm) have been suggested, and in some cases demonstrated, as a

means of profiling tropospheric and stratospheric variables such as humidity,

temperature, pressure and density. For this purpose, intense laser sources of

pulsed, tunable, and narrow band radiation in the near infrared are necessary.

Existing differential absorption lidar (DIAL) systems for measuring water

I-3
vapor in the troposphere operate at wavelengths near 720 nm. Absorption

lines in this spectral region are strong enough that ambient concentration

levels of water can be measured using DIAL techniques with range resolutions

of the order of 30 meters or more. To extend accurate DIAL operations to the

upper troposphere, as well as the lower stratosphere and the polar regions

where the water vapor content is much reduced, strong absorption bands near

9
940 and 1140 nm must be used. The lines in these bands are, respectively,

about 15 and 35 times stronger than those in the 720 nm band. Lidar systems

working at these longer wavelengths will also be required for space-borne

10
operations.

Since high power, tunable, laser sources are available in the visible

spectral range, stimulated Raman scattering is one of the most efficient

methods for frequency-shifting radiation for use in the infrared. In

particular, Nd:YAG-pumped dye lasers perform very well in the 560 - 700 nm

range but their efficiency falls off rapidly for wavelengths above 700 nm.

Higher energy outputs can be achieved at these longer wavelengths by

Raman-shifting a visible wavelength laser to generate radiation at the first

2



Stokes frequency. The necessary tunability is inherent in the dye laser used

to pump the Ramancell. In carrying out such experiments, one also learns how

to optimize the "Ramanshifting" processes for other tunable, pulsed lasers

such as titanium-doped sapphire.

The interpretation of DIAL measurementsII generally requires laser

-Ilinewidths having a full width at half maximum(FWHM)of less than 0.03 cm

In order to retain this narrow a linewidth one is restricted to using Raman

media having small collision broadening coefficients such as hydrogen and

12-13
deuterium. Previous experimental studies of the spectral llnewldth of

the first Stokes radiation produced in stimulated Raman scattering (SRS) in

14
hydrogen showed that the linewidth requirement puts an upper limit of 14 atm

on the allowable hydrogen pressure. Here, we describe the experimental

optimization for producing the first Stokes at 765 and 940 nm with the

necessary 0.03 cm -I bandwidth. We also report optical depth measurements made

at the line centers of 25 absorption lines in the P-branch of the oxygen A-

band (760 - 770 nm) that indicate a high degree of spectral purity for both

the dye laser and the Raman-shifted dye laser radiation.

II. EXPERIMENT

A schematic diagram of the experiment is shown in Fig. 1. A frequency-

doubled, Nd:YAG-pumped dye laser 15 generated narrow band radiation of

bandwidth _ 0.02 cm -I tunable between 577 and 583 nm and at 676 nm. The 1st

Stokes radiation was generated in a 1 meter long, single pass Raman cell

containing hydrogen gas. We located the beam waist of the pump beam at the

center of the cell in order to keep the power density on the windows to a

minimum. The linewidth of the dye laser output and the first Stokes radiation



were measured with a Fabry-Perot interferometer, while a wavemeter recorded

the absolute wavelengths. An optical multichannel analyzer and a linear

photodiode array were used for continuous monitoring of the spectral mode

output of the laser and Raman shifted radiation, and were also used to measure

the linewidth. The same arrangement was used to observe the cross section of

the spatial profile of the laser and its Raman-shifted output. The first

Stokes radiation was separated from the pump light, and any higher order

Stokes and anti-Stokes radiation present, by using two dichroic mirrors

together with a colored glass filter and a narrowband interference filter. All

measurements of energy and conversion efficiency were made using two

pyroelectric probes connected to an energy ratiometer.

III. STOKES CONVERSION EFFICIENCY AT 765 AND 940 NM

For optimal conversion of visible dye laser radiation into light at the

first Stokes frequency, a Raman self-generator was operated above the

stimulated Raman threshold and in the regime of finite pump depletion, but

below the threshold for second Stokes generation. Since we needed to preserve

the narrow laser linewidth, there was an upper limit on the gas pressure that

could be used in the Raman cell. It was long accepted that, in the

non-saturated regime, the energy of the generated first Stokes was independent

of the confocal parameter of the pump, so long as the confocal parameter was

smaller than the length of the Raman-active medium. However, the threshold

for Stokes generation was found to depend strongly on the pump confocal

parameter 16 due to the influence of the Stokes and anti-Stokes coupling, the

threshold increasing as the pump confocal parameter decreased.

In order to avoid the gain suppression experienced by the first Stokes

4



radiation, it is necessary to keep the pump beam angles within the phase

matching angle, which is about 5 mrad at 14 arm of hydrogen at 765 nm. In

addition, at pump levels above saturation, it is also necessary to keep the

first Stokes beam within the phase matching angle for producing second Stokes

radiation by four-wave mixing. The second (and higher) order Stokes radiation

can be produced by four-wave mixing of the original pump and the first Stokes

radiation with a conical emission maximized at the phase-matching angle, which

17
is of the order of 5.5 mrad for hydrogen at 14 arm. All of these

considerations indicate that a collimated geometry would result in an

optimised conversion to the first Stokes light. Hence the first Stokes Raman

conversion efficiency was measured as a function of the pump beam confocal

parameter, the pressure of hydrogen, and of the pump energy. Due to the

necessity of retaining the narrow linewidth for DIAL measurements, the first

Stokes conversion efficiency was optimized for a hydrogen pressure of 14 arm.

The conversion efficiency was found to increase as the pump beam confocal

parameter was increased from 0.5 to I0 cm and also showed a linear dependence

on pump energy as the pump energy was increased over the range of 5 to 30 mj.

The first Stokes light generated at 765 nm is seen in Fig. 2(a) to reach

a 45X energy conversion efficiency (58X quantum efficiency). This output was

achieved using 20 mJ of pump energy at 580 nm, focussed into a cell containing

hydrogen at 14 arm, using a 2 meter focal length lens to produce a pump beam

having a confocal parameter of about 10 cm. Likewise, the measurements for

generating 940 nm radiation are shown in Fig. 2(b). The energy conversion

efficiency to 940 nm reaches 37X (53_ quantum efficiency), when 25 mJ of pump

energy at 676 nm are focussed in the same geometry.

Increasing the hydrogen cell pressure gave rise to an increase in the



first Stokes conversion efficiency in both cases. Ascan be seen in figure

2(a) and 2(b), this efficiency at 765 and 940 nm reached values of 52_ and

42_, respectively, for a hydrogen pressure of 28 atm. This higher conversion

efficiency at higher pressure was siEnificant, but linewidth measurements

indicated a linewidth too broad to be useful in DIAL applications. The

decrease in the conversion efficiency at higher wavelength (940 nm) compared

to shorter wavelength (765 nm) is expected due to the wavelength dependence of

the RamanEain coefficient.

The first Stokes energy produced at 765 and at 940 nm is shown in FiE. 3

as a function of pump energy for two pump geometries and a fixed cell pressure

of 17 atm. In general, for a given focussing geometry and at a fixed pressure

of hydrogen, the first Stokes energy increases linearly for increasing pump

energies in the range of I0 to 30 mJ. Measurements at the second Stokes

frequency showed a negligible generation even at the hiEhest pump levels. The

backward Stokes conversion efficiency at 940 nm, is shown in FiE. 4 as a

function of pressure for different pump geometries. The backward Stokes

component increases with increasing pressure, while it decreases with

increased confocal parameter. With a 2 meter focal lenEth lens, the backward

Stokes conversion efficiency was measured to be less than IX at 14 atm of

hydroEen.

IV. LINEWIDTHMEASUREMENT

The llnewldths of the dye laser output and of the first Stokes radiation

were measured with a Fabry-Perot interferometer with a free spectral range of

0.2 cm -I Interferometer plates coated for the appropriate wavelenEths were

used, and the frinEes were imaged on a linear photodiode array and recorded

6



using an optical multlchannel analyzer. A krypton-ion laser-pumped, high

resolution cw dye laser operating between 720 - 760 nm was used to check that

the resolution of the Fabry-Perot plates was sufficient to conduct llnewldth

-1
measurements in the range of O. 02 cm The effective finesse was determined

-1
to be about 50 corresponding to the resolution of the plates belng O. 004 cm

-1
for a free spectral range of 0.2 cm

-1
The dye laser llnewldth at 580 and 676 nm was measured to be O. 02 cm

-I
The first Stokes llnewldth at 765 and 940 nm was measured to be 0.03 cm at

14 atm, and 0.05 cm "1 at 28 atm of hydrogen. The Raman line broadening at

higher hydrogen pressure was the main reason that we had to optimize the Raman

conversion efficiency at 14 arm, for practioal applications of DIAL involving

narrow lines of water vapor in the atmosphere.

V. SPECTRAL PURITY ESTIMATION IN THE OXYGEN A-BAND (760-770 NM)

Electronic transitions in the P-branch of the oxygen A-band [blZ÷(v=O) e

x3Z-(v=O)]were used to estfmate the spectral purity of both the dye laser and

Raman shifted dye laser radiation at 760-770 nm. The very narrow absorption

lines of this band provide a high spectral contrast with which to assess the

spectral purity of the laser or Raman-shifted light. These lines and other

features of the oxygen A-band and B-band have been proposed, and in fact, made

use of in a wide variety of remote sensing methods. 4-7'18

The DIAL measurements of atmospheric pressure are made by measuring the

absorption of the on-llne laser in a trough region between strong absorption

6
lines in the R-branch of the band, whereas atmospheric temperature can be

obtained via the absorption of the on-line laser when centered on a narrow,

5
high excitation line in the P-branch. The width of these lines at sea level



atmospheric pressure is between 0.06 and 0. I cm -I Thus for a ground based

DIAL measurement the laser bandwidth should be small with respect to the

absorption linewidth, e.g. 0.02-0.03 cm -I (or less, for high altitude).

Besides the tunability and linewidth requirements, the DIAL measurements are

extremely sensitive to the presence of any amplified spontaneous emission

(ASE). The ASE, being broad band in nature and outside the nominal laser

bandwidth, results in a non-absorbed component when such a laser is tuned onto

the central frequency of absorption lines. This can be seen from the optical

depth measurement at a specific absorption line by using the differential

principle of the measurement (B/A) where A is the fraction of the input energy

to the absorption cell and B is the output energy from the cell. The optical

depth at the center of the absorption line is given by the Beer-Lambert Law:

((B/A) 1z0 = -:En[CB/A) mln (i)
max

where (B/A)ml n and (B/A)max are ratios of the transmitted energy to the

incident energy both on and off line center. In the presence of any broadband

radiation, such as ASE, in the incident light, the optical depth at line

center will be given by

T
0

[(B/A)mln, _ + (B/A)AsE]

= -._n L (B/A) max, 8 + (B/A) AsEJ
(2)

where 6 indicates a narrowband component and ASE refers to any broadband

component. In the limit of (B/A)AsE( CB/A!ax, 6 = (B/A)max the optical depth

can be approximated by:

T
0

[(B/A)ml n (B/A) AS E ]_' -'ZnL(B/A) x + (B/A) x
(3)

8



broadband, the second term of Eqn (3) contributes slgnlflcantly. The actual

backscattered signal would be twice the expected backscattered signal (I00_

error) for a measurement altitude for which 99_ of the narrowband energy has

been absorbed by the oxygen absorption feature.

The White cell used for measuring the transmission at the line center

consisted of two 30 cm dlameter, hlgh reflectlvlty mirrors, having a 4.8 meter

radius of curvature, and alr-spaced by 1.63 meter. The path length was

typically 60 m and could be adjusted in increments equal to twice the mirror

separation by changing the insertion angle of the beam into the mirror

geometry. The incident laser energy was monitored, and the transmission

through the cell was determined using two pyroelectrlc detector probes

connected to an energy ratlometer. By taking the ratio of the transmission at

the line center to that at the line edge, the differential transmission of

each line was measured.

We measured the transmission at the centers of 25 lines in the P-branch

of the oxygen A-band in air at NTP contained in a White cell of 60 m path

length. The measured optlcal depth,

19
line is given by:

Tj, at the center of the J-th

(B/A)
m|n

where T =
J (B/A)

_M_X

center, and

Tj = -Mn(Tj/Bj) (4)

is the measured optical transmission at the J-th line

B is an averaged base line correction. Measurements shown in
J

Fig. S correspond to the optlcal depths measured using the 760-770 nm dye

laser radiation('), and those presented in Fig. 6 correspond to the use of

Raman-shlfted dye laser radiation.(+)

To ascertain the suitability of these laser and laser/SRS outputs for



DIAL appllcations requiring stable, narrow line radiation, we calculated the

expected optical depth for each of the 25 lines using the 0z llne strength

20
and wldth data from Rltter and Wllkerson. The latter had been obtained

uslng a stablllzed CW dye laser havlng a very narrow frequency spread of

lO-4cm -_ The values calculated In thls way could, in prlnclple, dlffer

greatly from the values measured wlth the pulsed llght sources if the latter

were of slgnlflcantly poorer quality as regards flnlte llnewldth, frequency

jitter arising from the Intracavlty etalon, ampllfled spontaneous emlsslon

In the dye laser output, or frequency redlstrlbutlon in the SRS process.

Wlthout regard to these phenomena, agreement between measured and

expected optlcal depths would appear as a 45 ° llne In Flgures 5 and 6.

However, the approprlate comparisons In these flgures are Indlcated by the

dashed llnes that represent a reallstlc accountlng for the flnlte llnewldth

and the small frequency jltter of the dye laser. Thls correction Is justified

because the measured optlcal depth Is an average of the 0 z llne profile

(Volgt) weighted by the laser frequency dlstrlbutlon.

To make thls calculation as accurate as possible, we made frequency

stablllty measurements uslng a wavemeter 21 wlth a hlgh resolutlon Fizeau

-I

wedge that indlcated a frequency stablllty of order 0.007 cm The

llnewldth of the first Stokes output at 760 nm (0.03 cm -I) was slightly

larger than the llnewldth of the dye laser (0.02 cm -I) In the same

wavelength range. No slgnlflcant broadband ouput (l.e., ASE) was

detected. The average optlcal depth at the llne center, _o' Is given by:

_0 = -_n _ G(v-v O) exp[-T(V-Vo)] d(v-v O) (5)

I0



where a Gaussian frequency distribution, G(U-Uo), is assumed.
19

depth distribution T(u-u O) is defined as

The optical

"tCu-_'o) = So L n V(v-v o) (6)

where SO is the line center strength, L is the absorption path length,

is the oxygen number density and V(u-u O) is the absorption line profile

which is a Voigt function. Thus equation (4) can be written as

n

TO = -._n .[ G(v-v o) exp[-S ° L n V(V-Vo)] d(v-v o) (7)
-w

The dotted line in Fig. 5 represents the calculated optical depth, z for
0

the dye laser llnewldth of 0.02 cm-* with a frequency stability of 0.007 cm -I

Likewise, the dotted line in FiE. 6 represents the calculated optical depth,

1

_o' for a Raman shlfted dye laser havlng a llnewldth of about 0.03 cm "I and a

-1

frequency stablllty of 0.007 cm With the approprlate spectral welghtlng,

then, the experimental data and calculations agree, which indicates a high

spectral purity for both the laser and the Raman-shifted radiation, and thus

the feasibility of using the SRS radiation for DIAL measurements.

VI. CONCLUSION

In summary, we have shown that stimulated Raman scattering of dye laser

radiation is an efficient method for generating intense radiation at 765 and

at 940 nm. In addition, the narrow bandwidth of the dye laser output was

shown to be preserved in the scattering process for hydrogen pressures up to

14 atm, indicating that the tunable, infra-red radiation needed for DIAL

measurements can certainly be generated in this manner.

11



UsinE a 2 m focal length lens to focus the pump radiation at the center

of a Ramancell containing 14 arm of hydrogen, we measured a first Stokes

energy conversion efficiency of 45X and 37Z at 765 and 940 nm, respectively.

For this geometry, there was negligible second Stokes light present, and the

efficiency for generatin E first Stokes radiation in the backward direction

was less than IX. Higher conversion efficiencies were recorded as the

pressure was increased to 28 arm, reaching 52Z and 42Z at 765 and at 940 nm
-I

respectively, but with a linewidth greater than 0.05 cm which is too broad

for most atmospheric DIAL applications.

In order to optimize the first Stokes generation at a given pressure of

hydrogen, we needed to ensure that the pumpangles did not extend so far as to

encompass the phase matchin E anEle for gain suppression to occur. Weneeded

to reduce or eliminate the generation of first Stokes in the backward

direction as well as the generation of higher order Stokes and anti-Stokes

orders. The first Stokes radiation generated in the backward direction

increases strongly as the pumpconfocal beamparameter is reduced. In

addition, the generation of second Stokes light, by four-wave mixin E of the

original pumpand the generated first Stokes, is reduced by usin E as

collimated a pumpinE geometry as possible since then the beams are contained

within anEles less than the phase matching angle for the four-wave mixing

process. Since the phase matching angle varies as the square root of the

pressure, the angular requirements are quite stringent in the present narrow

linewidth application where low pressures are a necessity. All of these

considerations indicate that maximumenerEy can be extracted at the first

Stokes frequency by using a pumpEeometry with as large a confocal beam

parameter as possible for the cell length used.

12



The absorptlon measurements made In the oxygen A-band demonstrate the

high spectral purity of the dye laser and, moreover, confirm that the Raman

scatterlng process is capable of retaining the spectral purlty of the pump

radiation up to pressures capable of sustalnlng energy conversion levels of

about 40_. The optlcal depth measurements at the llne centers of 25

transltlons in the oxygen A-band establlsh that Raman-shlfted tunable dye

laser radiation can be used for quantltatlve meteorologlcal lldar

measurements. The efflclent generatlon of radlatlon at 940 nm Is sl_nlflcant

for lldar measurements of stratospheric water vapor. Also, by changing the

pump wavelength to 773 nm, the first Stokes radlatlon at 1140 nm would allow

coverage of the next water vapor band which has lines with strengths twice

those found in the 940 nm band system. Solid state lasers such as

18
alexandrlte, which is tunable from 720 to 780 nm, and Tl:sapphlre, which is

22
tunable from 700 to 920 nm, could be used as pumps for generating near

infrared radiation out to 1500 nm using stimulated Raman scattering in

hydrogen. Further work Is in progress to demonstrate the use of Raman

scattered radlatlon in measurements of water vapor in the near infrared bands.
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FIGURE CAPTIONS

Flff. I. Schematic diagram of the experiment for generating the first Stokes

at 765 nm using a dye laser pump at 580 nm. The first Stokes at 940 nm was

generated in like manner from a 676 nm pump using appropriate dichroics. The

multi-pass White cell is indicated, and A and B designate the pyroelectric

energy probes used to ratio the transmitted to incident energies.

FIg. 2. Energy converslon efflclency as a functlon of pressure when

generating the first Stokes at 765 nm in (a) and at 940 nm in (b). The pump

beam was focussed into the center of the Raman cell with lenses having focal

lengths of: 2 m; 1.5 m; I m; and O.S m. A constant pump energy of 29 mJ at

580 nm was used in (a) while a pump energy of 25 mJ at 676 nm was used in (b).

Flff. 3. Flrst Stokes energles at both 765 nm and at 940 nm as a function of

pump energy for two pump geometries and a hydrogen cell pressure of 14 atm.

Flff. 4. Conversion efficiency for the 940 nm first Stokes radiation

generated in the backward direction as a function of hydrogen pressure for two

pump geometries.

F_!g_. S. Optical depths of lines in the A-band of molecular oxygen, as

measured using the 760-770 nm dye laser radiation, compared with the

17



-I
calculated optical depth for the dye laser linewidth of 0.02 cm with a

-I
frequency stability of 0.007 cm

Fi__. 6_.=. Optical depths of lines in the A-band of molecular oxygen, as

measured using the 760-770 nm Raman-shifted dye laser radiation, compared

-I
with the calculated optical depth for the dye laser linewidth of 0.03 cm

-I
with a frequency stability of 0.007 cm
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A SELF-SEEDED,SRS SYSTEMFOR THE GENERATION

OF 1.54 _. EYE-SAFERADIATION

Z. CHU, U. N. SINGH, and T. D. WILKERSON

University of Maryland

Institute for Physical Science and Technology

College Park, MD 20742-2431

Abstract

We report experiments on the generation of infrared radiationat 1.54 _m.

by means of stimulated Raman scattering in CH gas pumped by a Nd:YAG laser
4

at 1.06 /am. A compact, self-seeded system using the backward first Stokes

radiation as the seed has been developed to improve the forward first Stokes

conversion efficiency. Output pulse energy of 25 mJ at 1.54 _m is obtained

for a pump energy of 140 mJ at I0 Hz, and the beam divergence is measured to

be less than I mrad. The first Stokes conversion efficiency and the spatial

beam quality of the output were found to depend strongly on the pump laser

repetition rate. Higher pump repetition rate creates a thermal gradient at

the interaction region affecting the conversion efficiency and spatial beam

quality adversely. The optimized results demonstrate the applicability of

this radiation for eye-safe lidar measurements.





1. Introduction

The most commonly used LIDAR (light detection and £anging) systems are

not eye-safe and pose potential risk of eye damage especially in the case of

downward pointing airborne lidar systems. Laser radiation of wavelength

greater than 1.4 _nn is considered eye-safe at least as regards to retinal

damage. A short wavelength lidar capable of operating in nominally eye-safe

spectral regions is needed for cloud and aerosol studies [1,2]. A

Raman-shifted Nd:YAG laser capable of generating 1.54 pm radiation can be

developed to qualify as an eye-safe lidar [3,4]. The eye-safety criterion set

by the American National Standard Institute (ANSI) for a single pulse

exposure is: I J/cm 2 at 1.54 pm, which is specified to be about 400,000 times

safer, for eye exposure, than the Nd:YAG laser (1.06 _m) [3].

Stimulated Raman scattering (SRS) has been widely used to generate laser

wavelengths in spectral regions where conventional laser sources are not

available. This is one of the most efficient methods for frequency-shifting

radiation from the visible or near-infrared to the infrared. The technique is

attractive because of its simplicity and its low activation threshold, which

is readily reached with conventional lasers. Light at 1.54 _m wavelength can

be generated as first Stokes radiation by passing 1.064 _m radiation, from a

Nd:YAG laser, through compressed methane. Optimization techniques are very

useful for increasing SRS conversion efficiency in the infrared because the

Raman gain decreases with increasing wavelength.

In this paper, we report results of a study of SRS in CH using 1.06 _m
4

pump radiation and employing a backward Stokes seeding scheme in a single

pass Raman cell. We also describe the different experimental optimization

techniques employed and advantages of backward Stokes seeded SRS. We point

out advantages and difficulties encountered in using CH as a Raman shifting
4



gas, and discuss several solutions and recommendations about this SRS

technique.

2. Experimental arrangement

The experimental arrangement is indicated in fig. l. The pump laser is a

Nd:YAG laser (Quantel YAG 581-10) which generates randomly polarized

radiation at 1.06 Hm with pulse width of I0 ns and beam diameter of 0.6 cm.

The pump beam was focused by lens L I at the middle of a I meter long Raman

cell containing methane gas.
o

The 45 dichroic mirror M I was highly

transparent to 1.06 _m and reflective at 1.54 /.lm, and used for separating the

backward Stokes seed from the pump radiation and for monitoring the energy of

the pump pulse. The first Stokes radiation at 1.54 ;Jm was generated in both

forward and backward directions. The forward first Stokes light was

collimated by L3, separated by the 45 ° dichroic mirror M3 (identical to M I)

and colored glass filters, and measured by a pyroelectric detector. In

absence of any injection seeding, this configuration constituted a

single-pass, self-generated SRS system.

The injection seeding was achieved by means of dichroic mirror M
1

(k ax=l.54 _m / ATmax=l.06 _m, 8=45"), lens L2 (focal length 50 cm), and

dichroic mirror M2 (Al_ax=l.54 gm/ ATmax=l.06 _, O=O°). The backward first
ii i!

Stokes light was used as a seed and separated from the pump beam by M . The
1

beamsplitter BS was used for monitoring the seed puIse energy. The dichroic

mirror M2 was placed at 75 cm from the center of the Raman cell. The seed

beam became collimated when it first passed through L2; then it was reflected

back by M 2 and refocused into the Raman cell by L2. This injected seed was

amplified by the rest of the pump pulse in the same cell. In this

configuration, the Raman cell acts as an amplifier.



For a SRS amplifier, there are two important factors directly related to

the amplifying efficiency: the temporal and spatial overlaps between the

seed and pump waves. The temporal overlap between the seed and pump can be

estimated by assuming that the backward first Stokes is generated at the

focus of the pump radiation during the first pass through the Raman cell. The

time delay T of the seed relative to the pump is T=2L/c) where L is the

distance between the dichroic mirror M and the focus of the pump beam, and c
2

is the speed of the light. The temporal overlap may be maximized by

minimizing L. Unfortunately L cannot be zero and, at a minimum, is equal to

half the cell length. In this experiment, T turned out to be about 5 ns,

which is half of the pump laser pulse width. Separating seed from pump

increased the delay time but provided the advantage of focusing the pump and

seed beams independently, and consequently obtaining a good spatial overlap

between them for increased amplifying efficiency. The other advantage of this

configuration, which was important for maximizing the first Stokes conversion

efficiency, was the ease with which the spatial overlap between the pump and

seed can be established by means of the two alignment mirrors ( M & M ) in
I 2

the seed line. For a fixed temporal overlap, the best alignment of the

spatial overlap was judged by monitoring the spatial beam quality and energy

of the net forward first Stokes radiation at 1.54 _m.

3. Experimental results and discussion

Readings were recorded from three energy meters monitoring the pump

energy, the backward first Stokes (seed) energy and the amplified,

injection-seeded forward first Stokes energy. For optimization of the first

Stokes conversion efficiency, lenses of different focal length (50, 75, I00,

150, and 200 cm) were tried at different cell pressures of CH . The results
4
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indicate that focusing the pump energy with a iO0 ca focal length lens

provides the optimum conversion efficiency and reasonable beam quality. We

also attempted to use a beam reduction telescope (2x, 2.5x, 3x, and 3.5x) to

increase the confocal parameter by sending a uniformly focused beam in the

Raman cell. In all cases the pump levels were either below or barely above

the threshold for first Stokes generation. Thus all the subsequent studies

and optimization were conducted using a I00 ca focal length lens to focus the

main pump beam in the Raman cell. The results are summarized in fig.2 through

fig.5.

Fig.2 shows the conversion efficiencies of the pump laser to a) the

backward first Stokes seed wave, and b) the injection-seeded forward first

Stokes wave for different cell pressures. All the data were corrected for

losses in the optics. It can be seen that the threshold pump energy for

injection-seeded, forward first Stokes is lower than the backward first

Stokes; for example, at 14 atm the threshold pump energy for the forward and

backward cases is 84 and 112 mJ, respectively. As soon as the pump laser

energy exceeded the thresholds, both backward Stokes seed and

injection-seeded forward first Stokes rose rapidly and reached the maximum of

2M and IBM, respectively, for a pump energy of 126 mJ. When the pump energy

was increased further, the forward Stokes conversion efficiency attained

saturation while the backward Stokes seed slowly dropped. With 140 mJ pump

energy, the backward Stokes efficiency dropped to 1.6M but forward Stokes

efficiency remained at IBZ.

The pressure dependence of the SRS gain in compressed methane in the

forward direction can be written as [5,6]

gs =k P / ( 0.32 + 0.012 P ) (I)

where k is a constant, and P is the pressure in arm. The gain coefficient,



when calculated with eq.(1), indicates that in the pressure range 0 - 25 atm,

g does not deviate much from the linear range; this agrees with the
S

previous measurement [7]. Figure 3 explicitly indicates the pressure

dependence of the injection-seeded first Stokes conversion efficiency, as

observed in our experiment. For a pump energy above 112 mJ, the conversion

efficiency reaches saturation at a pressure around 14 atm. This downward

shift of saturation pressure, as the pump energy is increased, could be

caused by higher order Stokes generation or by some other competing nonlinear

processes in the Raman cell. This would lead to pump depletion at higher

pressure and limit the SRS conversion efficiency.

Second Stokes generation in the forward direction is possibly the main

reason for the phenomenon of the down shift of the pressure saturation

observed in our experiment and depicted in Fig.3. The second Stokes light is

generated either by four wave mixing of the pump, first Stokes, and first

anti-Stokes radiation, or by the Raman cascade effect when the first Stokes

radiation is strong enough to drive the second Stokes process. The build-up

of second Stokes intensity will decrease the first Stokes field no matter how

it originates. Unfortunately, we could not make a quantitative measurement of

the second Stokes intensity because the output windows of the Raman cell were

made of fused silica or BK7, both of which materials have transmissionof

less than 5_ at the second Stokes wavelength of 2.8 _m. For the pump energy

levels used in our experiment, the generation of the third and other higher

order Stokes can be considered negligible [8].

In our experiment, stimulated Brillouin scattering (SBS) was observed to

be one of the nonlinear processes competing with the SRS in compressed

methane. At 140 mJ of pump energy and 20 atm pressure, 7_ of the pump energy

was converted to the backward SBS component and was found to increase with

6



pressure. This depletion in pump enerEy due to SBS could possibly explain the

drop in the first Stokes conversion efficiency, as shown in fig 2(b), when

the CH pressure was increased from 14 to 20 and 34 atm.
4

A process that, in effect limits the SRS conversion efficiency is gas

breakdown. When hiEh enerEy pump pulses were focused tiEhtly using a short

focal lenEth lens (e.E.,50 cm) at I0 Hz repetition rate, the power at the

focal point in the Raman cell exceeded the breakdown threshold of methane.

Solid carbon particles were Eenerated in the Eas breakdown. These particles

were found stickinE to the inside window surface occasionally and would burn

when hit by the laser beam, causing severe damaEe to the inside surface of

the coated window. The multiple burn inhibited further operation and resulted

in decreased conversion efficiency and deEraded output beam quality. To

circumvent this problem we constrained ourselves to use only uncoated

windows, to avoid tiEht focusinE by usinE lonEer focal length lenses, and to

employ moderate pump energy levels.

Measurements were undertaken to demonstrate the advantage of injection

seeding over the unseeded SRS process. The unseeded forward first Stokes

conversion efficiency was measured simply by blockin E the M2 mirror. In the

injection-seeded case we also simultaneously monitored the backward first

Stokes seed enerEy throuEh the beamsplitter BS. The results are shown in fig.

4, where the backward first Stokes seed, unseeded and injection-seeded

forward first Stokes conversion efficiency is plotted as a function of pump

energy for a cell pressure of 14 arm. The injection seedin E results in lower

threshold for Stokes Eeneration; and for a pump enerEy above threshold the

efficiency increases considerably. For a pump energy of 140 mJ, the

injection-seeded forward first Stokes efficiency reaches three times-than the

unseeded Stokes efficiency, with an output energy of 25 mJ. The spatial beam

7



concave moon. It was found during the experiment that the half moondiameter

was proportional to the laser repetition rate, the pump energy and the gas

pressure. The beam quality improved considerably at the lower laser

repetition rate. At 3 Hz the half moon was almost flat at the top. This

improvement in the laser beam quality and higher first Stokes energy at the

lower laser repetition rate indicates that a thermal gradient, is established

at the interaction region at hiEher repetition rate, with not enough time

between the successive pulses to dissipate the heat, thus resulting in a beam

blow-up and lower conversion efficiency. Work is in progress for developing

techniques to dissipate the heat between the successive pulses, and thus to

operate the Raman cell possibly at 50 Hz /or improved lidar data acquisition

and better signal-to-noise ratio.

Studies were also conducted to estimate the divergence of the first

Stokes output at 1.54 _m. Initial measurements indicated that by operating

at a cell pressure of 14 atm and using a lens of focal length of 100 cm to

focus the pump beam and a lens of focal length 75 cm to collimate the forward

Stokes beam, the divergence of injection-seeded first Stokes beam was around

I mrad, which happens to be well suited for the lidar measurements intended.

Detail studies using distant solid target are needed for establishing exact

divergence.

4. Conclusions

We have investigated the performance of a self-injection-seeded SRS

system, using methane gas as the Raman medium, and have optimized the SRS

conversion to the first Stokes radiation at 1.54 _m. Compared to the single

pass self-generated SRS system, the conversion efficiency tripled and

approached 18M at a pressure of 14 atm and a pump energy of 140 mJ at I0 Hz.

PRECEDING PAGE BLANK NOT FILMED
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The conversion efficiency is further improved by operating the system at

lower repetition rate (e.g., 5 or 3 Hz). The enhanced conversion efficiency

supports the feasibility of using 1.54 _m eye-safe radiation for

multiwavelenEth lidar measurements. Further work is in progress to run the

system at higher repetition frequency with enhanced conversion efficiency.
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FIGURE CAPTIONS

Fig. i. Experimental setup.

Fig. 2. Energy conversion efficiency as a function of pump energy

to (a) the backward first Stokes seed, and (b) the

injection-seeded forward first Stokes for different gas pressures:

Q , i0 atm; •, 14 atm; A , 20 atm; O , 34 atm.

Fig. 3. Conversion efficiency to the injection-seeded first

Stokes as a function of gas pressure for different pump energy:

• , 140 mJ; _, 112 mJ; • , 84 mJ; O, 70 mJ.

Fig. 4. Conversion efficiency for the injection-seeded first

Stokes ( • ) as a function of pump energy for a gas pressure of 14

atm. As a comparison, the conversion efficiency for the backward

first Stokes seed ( O ) and the forward first Stokes in the

unseeded case( • ) are also shown.

Fig. 5. Conversion efficiency for the injection-seeded first

Stokes as a function of pump energy for two different focusing

geometries and gas pressures: £], 14 atm & FL= 1 m; O, 14 atm &

FL,= 0.75 m; 1, 34 atm & FL,= 1 m; •, 34 atm & FL,= 0.75 m.
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EFFICIENT NEAR-IR LIGHT SOURCE FOR

EYE-SAFE LIDAR APPLICATIONS

U. N. SINGH, Z.CHU, and T. D. WILKERSON
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Institute for Physical Science and Technology

University of Maryland

College Park, MD 20742-2431

Abstract

A light source for efficient, 1.54 _m eyesafe aerosol lidar operation is

described, using Nd:YAG output (1.06 _m) Raman-shifted (amplified) in

methane.





EFFICIENTNEAR-IRLIGHT SOURCE FOR

EYE-SAFE LIDAR APPLICATIONS [1]

U. N. SINGH, Z.CHU, and T. D. WILKERSON

Atmospheric Lidar Observatory

Institute for Physical Science and Technology

University of Maryland

College Park, MD 20742-2431

The most commonly used lidar (I__iht detection and ranging) systems are

not eye-safe and pose potential risk of eye damage especially in the case of

downward pointing airborne lidar systems. A short wavelength lidar capable

of operating in nominally eye-safe spectral regions (1.54 _m) is needed for

cloud and aerosol studies [2,3]. A Raman-shifted Nd:YAG laser capable of

generating 1.54 _m radiation can be developed to qualify as an eye-safe lidar

[4,5,6]. The eye-safety criterion set by the American National Standard

Institute (ANSI) for a single pulse exposure is: I J/cm 2 at 1.54 pm, which is

specified to be about 400,000 times safer, for eye exposure, than Nd:YAG

laser radiation at 1.06 _m [4].

In this paper, we report results of a study of stimulated Raman

scattering (SRS) in compressed methane using 1.06 _m as the pump radiation and

employing a backward Stokes seeding scheme in a single pass Raman cell for

improving the forward Stokes conversion efficiency at 1.54 _m. Optimization

techniques and limitations involved are also described.

The experimental arrangement is indicated in Fig. I. The pump

radiation at 1.06 pa has a pulse width of I0 ns, beam diameter of 0.6 cm and

divergence of 0.6 mrad. The pump beam was focused by lens L at the middle of
I

a i meter lone Raman cell containing methane gas. The first Stokes radiation

at 1.54 _m was generated in both forward and backward directions. The

injection seeding was achieved by means of dichroic mirror M I (Aamax=l.54 _m
o

/ A =1.06 pm, 8=45 ), lens L (focal length 50 cm), and dichroic mirror M
Tmax 2 2

(_Rmax=1.54 pm / _Tmax=1.06 _m, 0=0°). The backward first Stokes light was
n ii

used as a seed and separated from the pump beam by M . The seed beam became
1

collimated when it first passed through L2; then it was reflected back by M 2

and refocused into the Raman cell by L2.. This injected radiation was

amplified by the rest of the pump pulse in the same cell. In this

configuration, the Raman cell acts as an amplifier.



Readings were recorded from three energy meters monitoring the pump

energy, the backward first Stokes (seed) energy and the amplified,
injection-seeded forward first Stokes energy. For optimization of the first

Stokes conversion efficiency, lenses of different focal length (50, 75, I00,
150, and 200 cm) were used at different cell pressures of CH . The results4
indicated that focusing the pumpenergy with a 100 cm focal length lens

provides the optimum conversion efficiency and reasonable beam quality. The

results are summarized in Fig.2 through Fig.4.

Figure 2 shows the conversion efficiencies of the pump laser to the

injection-seeded forward first Stokes wave for different cell pressures.

Figure 3 explicitly indicates the pressure dependence of the injection-seeded

first Stokes conversion efficiency, as observed in our experiment. From these

two results it can be easily seen that for a pump energy above 112 mJ, the

conversion efficiency reaches saturation at a pressure around 14 arm. This

downward shift of saturation pressure, as the pump energy is increased, may

be caused by higher order Stokes generation or some other competing nonlinear

processes in the Raman cell. This would lead to pump depletion at higher

pressure and limit the SRS conversion efficiency.

Figure 4 shows the conversion efficiencies of the backward first Stokes,

injection-seeded and unseeded forward first Stokes as a function of pump

energy for a cell pressure of 14 atm. Advantages of injection seeding are

quite evident. Injection seeding results in lower threshold for Stokes

generation; and for a pump energy above threshold the efficiency increases

considerably. For a pump energy of 140 mJ, the injection-seeded forward first

Stokes efficiency reaches three times than the unseeded Stokes efficiency.

The spatial beam quality of the seeded Stokes beam was also found to be much

better than the unseeded Stokes beam.

We observed two limiting factors on the SRS conversion efficiency. One is

gas breakdown, which occurs when high energy pump pulses are focussed by a

short focal length lens (e.g., SO cm.). Another is the repetition rate of the

pump laser. The conversion efficiency increased considerably at lower

repetition rate (5 and 3 Hz). The spatial beam quality of both the

transmitted pump and the Stokes radiation was also found to be

(inversely)related to the laser repetition frequency, because of refractive

index gradients set up in the methane by virtue of the energy deposited in the

gas by the Raman process. Work is in progress to run the system at higher

repetition frequency with enhanced conversion efficiency.
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