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ABSTRACT MT

A/_L
The effects on stability of inertial forces arising

from closed-loop activation of mass-unbalanced con- hT/'7-

trol surfaces are studied analytically using inertial en- n
ergy approach, similar to the aerodynamic energy ap-

proach used for flutter suppression. The limitations Pi

of a single control surface like a leading-edge (L.E.) r

control or a trailing-edge (T.E.) control are demon-

strated and compared to the more powerful combined s

L.E.-T.E. mass unbalanced system. It is shown that

a spanwise section for sensor location can be deter- _,

mined which ensures minimum sensitivity to the mode
shapes of the aircraft. It is shown that an L.E. con- ti#

trol exhibits compatibility between inertial stabilize- y

tion and aerodynamic stabilization, and that a T.E. con-

trol lacks such compatibility. The results of the present
work should prove valuable, when flutter is suppressed YCL

using mass unbalanced control surfaces, or for the sta-

bilization of structural modes of large space structures

by means of inertial forces. YGT

NOMENCLATURE
_GL

a. scalar gains, see eq. (36) 9GT

a(w) transfer function defined in eq. (45)

b reference semichord length
Oty

b_;- element i,j of the [Be] matrix

bn semichord length at the reference
section

_ Ob

element i, j of the real part of [T]

element i, j of the imaginary part
of [T]

scalar gains, see eqs. (36)

plunge coordinate, positive down

plunge coordinate at the reference

section, positive down

= hR/bR

_ Oh
--_

mass of the strip

mass of the L.E. control

by

cij

di]

eli

h

hn

hR

hu

M

ML

#

),t

P

oJ

oJn

mass of the T.E. control

= ML/M

= Mr/M

number of structural modes

transfer function pole location

number of control

reference length, of the Laplace
variable

aii + ieii

defined in eq. (36)

spanwise coordinate, measured from
the reference section

spanwise distance of L.E. control

surface center of gravity
measured from reference section

spanwise distance of T.E. control

surface center of gravity
measured from reference section

= YGL/br

= YGT/br

pitching angle, positive nose up

angle of attack at reference section

of activated strip

= Oly/Ot R

leading-edge control deflection,

positive nose down.

trailing-edge control deflection,

positive trailing edge down

eigenvalue

largest eigenvalue of a binary system

smallest eigenvalue of a binary

system

fluid density

frequency

natural frequency



Matrix Notation

[AR ], [AI ]

JAR ,S], [AI ,s ]

[AR ,C], [AI ,c ]

[B]

[Bs]

[Bc]

[El

[E_]

[Ec]

{F}

[QR], [QI]

{q)

{o}

{qo}

{q_}

[T]

[U]

real and imaginary parts of aero-

dynamic matrix, respectively,

(order n x (n + r))

real and imaginary parts, respec-

tively, of the aerodynamic
matrix associated with the

structural modes (order n x n)

real and imaginary parts, respec-

tively, of the aerodynamic matrix

that couples the control surfaces
with the structural modes

(order n x r)

mass matrix (order n x (n+ r))

structural mass matrix (order n x n)

coupling mass matrix, between
structural modes and control

surfaces (order n × r)

stiffness matrix (order n x ( n + r) )

structural stiffness matrix

(order n x n)

coupling stiffness matrix, between
structural modes and control

surfaces (order n x r)

column matrix of forces (order n)

real and imaginary parts, respec-

tively, of the energy eigenvectors

(of matrix [Q] (order n x n))

column of structural responses

(order n)

column of structural and control

responses of order (n + r),

see eq. (3)

column of structural response

amplitudes (order n)

column of control surface responses

(order r)

matrix representing control law

transfer functions (order r x n)

energy eigenvalue matrix,

see eq. (8) (order n x n)

real and imaginary parts, respec-

tively, of the energy principal

coordinates, see eq. (12)

Superscripts

T transposed matrix

conjugate

Subscripts

C

8

R

relates to control surfaces

relates to the main structure of

the system

relates to the reference section

within the 2-D strip

INTRODUCTION

Studies concerning flutter suppression using ac-

tive controls concentrate on the numerical design of

control laws and their effects on the resulting perfor-

mance of the system (Mukhopadhyay and others 1981,

Newsom 1979, Newsom and others 1980, Nissim and

Abel 1978, Mahesh and others 1981, and Freymann

1987). In these studies, the system is considered to be

fixed, and no attempt is made to investigate the possi-

ble effects of varying some of the aircraft parameters

on the resulting control law and the overall system per-
formance. Even for existing systems, there are some

parameters that can be readily changed, like the mass

balancing of control surfaces or the control surface ac-

tuator dynamics.

In the following, the effects of control surface

mass unbalance of active control systems on the

closed-loop stability of the systems are studied. This

problem is relevant because aerodynamic control sur-

faces are naturally unbalanced. The balancing of these

control surfaces requires the addition of non-negligible
masses. Because an invesUnent is made in an active

control surface in terms of the mass of the elements

required to drive the control surface, one is naturally

tempted to avoid adding further masses to balance the

active control surface. An analytic approach to the

problem was adopted so that the results obtained would

be informative regarding general systems rather than

for a specific specialized system. For this reason, a
two-dimensional model is considered, representing a



possiblestripof afinitewing.Toavoidassigningfre-
quenciesormassvaluestothisstrip(sincecontinuous
wingshave,effectively,aninfinitenumberoffrequen-
cies,masses,andmodeshapes),anenergyapproach
wasadopted,wherebytheworkdoneby theinertial
mass-unbalancedforcesperonecycleof oscillation
wasevaluated(Nissim1971and1977).If theseforces
doapositiveworkon theirsurroundings,thesystem
isdissipative.If, ontheotherhand,theseforcesdoa
negativeworkontheirsurroundings--implyingthat
a positivework is doneon thesystem--thesystem
absorbsenergyandis unstable.Hence,thesignof
theworkdonebytheunbalancedinertialforcesindi-
catestheirpotentialcontributionto eitherstabilityor
to instability.

Themajorpartof theworkpresentedhereinre-
latestoa2-Drigidstripperformingpurepitch-plunge
oscillations.In thefinalpartof thiswork,thestripis
allowedtotwistalongitsspan,tovaryitschordlength
alongthespan,andto rotateasaresultof thewing's
bendingoscillations.It isshownthatthismorerealis-
tic, generalizedstripgeometryandmotioncanbere-
ducedforsimplegeometriesandappropriateselection
ofreferencesectiontoyieldresultsidenticaltothe2-D
pitch-plungerigidstrip.

INERTIAL ENERGY APPROACH

Basic Equations

Let the n equations

{F} = -w2[ B + npb4s(Al_+ iAl) ]{(?} + [E]{_}

(1)

represent the generalized equations of motion of n

structural modes with r-activated controls, where
at flutter

{F} = o

and

O3

[B]

[AR], [AI]

frequency

mass matrix

real and imaginary parts of aero-

dynamic matrix, respectively

[E] stiffness matrix

/9 fluid density

s reference length

b reference semichord length

{q} generalized coordinates

All matrices in eq. (1) are of order n × (n+ r), that is,

n structural modes and r active controls. Equation (1)
can therefore be written as

{F} = _ oa2 [[B, IB_] + 7rpb4s([AR,s[AR,c]

(2)

where

{0) : qc

Assume a control law of the form

(3)

{qc} = [Tl{q} (4)

where [T] is a r x n matrix representing the transfer

functions of the control law. The matrix [T] is there-

fore, in general, a function of the Laplace variable s.

By substituting eq. (4) into eq. (2), the following equa-
tion is obtained:

{F} = (-w2 [[ B_] + [ Bc][7"] + npb4 s([ AR,8]

+ [ AR,c] [T] + i[ At,s]

+ i[AL¢][T]) ]

+ [EA + [E_][T]){q}

(5)

It is shown in Nissim (1971 and 1977) that the

work P done per cycle of oscillation by the system on

its surroundings is given by



p- 7rpb4w2s
2 kq;J

x [-([ALs]+[AL_]T+[ALc][T]

+ [T*IT[AI,c] T)

[ Bc][T] - [T*]T[Bc]T+ 7rpb4 s

+ [AR,_] - [AR,_] T + [A&_][T]

--[T*]T[AR,c]T)]{qo}

(6)

where

{q) = {qo)e _:'_t (7)

It is also shown in Nissim (1977) that if [U] is defined

to represent the expression within the square brackets

in eq. (6), that is

[U] =

so that

__ (k [ + [ T + [ [ T]

/

A/,s] AL_] AI,¢]

+ [T*]T[AI,c] T)

i[[ B¢][ T] - [ T*]T [ Bc] T+ \ rcpb4s

-- [AR,s] T + [Aa,_][T]

--[ T*]'r [ AR,c]T)]

+ [ A,_,A

(8)

p- 7r2pb4 w2 s
2 Lqo,J[U]{qo}

then, by taking

by solving

the eigenvalues of [U],

x{_) = [u}{,7}

P can be reduced to the form

(9)

that is,

(10)

p D
_2pb4°j28[_12 ( _21 + _/21) + _2 (_:_2 + _22)

+... + ,kn(,_,_ + ,_2_)] (11)

where hi is the ith eigenvalue of eq. (10), neces-

sarily real since [U] is Hermitian, and _R and (/ are

defined by

{qo } = [ QR + iQ_-I{(R+ _(z} (12)

The columns of the square matrices [QR] and [QI]

are the real and imaginary parts of the eigenvectors of

eq. (10). The vector {_R + i_z} contains the general-
ized modal coordinates of the transformation defined

by eq. (12).

It should be noted that if all the )_s in eq. (II) are

positive, the system is stable (dissipative), irrespective

of the responses represented by the different ( values.

If, however, one or more of the )_s assumes a nega-

tive value, the system may become unstable if the

responses are such that P becomes negative. If one

wishes to ensure stability irrespective of the responses

of the system, all the ), values must be made positive.

In the following, it is desired to determine the
contribution of the out-of-balance inertial terms inde-

pendent of the aerodynamic terms (which are depen-

dent on the flight configurations), and, therefore, con-

sider the following expression for [U]:

[U] = i[ Bcl[TI - i[T*IT[ Bcl T (13)

where the work done by the inertial out-of-balance

terms is given by

'ff_O 2 , .

P= -_--[qoJ[ Ul{qo } (14)

Object of Analytical Work

The object of the following work is three-fold:

. To determine a control matrix [T] that will ensure

stability, that is, so that all the ,k eigenvalues are

positive.

. To determine the effect of mass unbalance on the

)_s using the aerodynamic energy transfer func-

tion matrix [T}.

3. To determine the possible compatibility between
(1) and (2) above.



DETERMINATION OF [T] THAT

ENSURES STABILITY OF MASS-

UNBALANCED CONTROL SYSTEM

Basic Equations

Assume a two-dimensional strip perlorms pitch-

plunge oscillations with activated L.E.-T.E. con-
trol surfaces.

Let

where/3 is the L.E. rotation, positive nose down, and 15

is the T.E. rotation, positive T.E. down. The deforma-

tions h and c_indicate plunge (positive down) and pitch

(positive nose up, Fig. 1). The parameter b denotes the

semichord length of the 2-D wing.

Denote

[bllb'2 I (16)[B_]= b21 b22

where some detailed derivations for the different bq
terms can be found in appendixes A and B. Let [T], for

any value of frequency, be given by

[T] = [ cl' + id'' Cl2 + idl2 I (17)c21 + id21 c22 + id22

Substituting eqs. (16) and (17) into eq. (13) one ob-

tains, after some rearrangements, the following equa-
tion for [U]:

2(blidll + bl2d2t)

[U] = - -i(b21Cll + b22c21 - b11c12 - b12c22)

+ (b21dll + b22d21 + blld12

+ bl2d22)

i(b21Cll + b22c21 - b11c12 - b12c22)

+ (blldl2 + b12d22 + b21dll

+ b22d21)

2(b21d12 + b22d22)
(18)

It should be noted (see eqs. (2) and (15) to (17)) that for

the case of an L.E. control only (that is when 6 -- 0)

b12 = b22 = 0

and also

e2l = d21 = (722 = d22 = 0

Similarly, for the case of a T.E. control only (that is

when 3 = 0)

bll = b2! = 0

and also

Cll --- dll = (712 = d12 = 0

The characteristic equation for the determination of the

eigenvalues 3` of matrix [U], as given by eq. (13), is
obtained from

IX: - c:l : o

That is,

3,2 + 23,(blld11 + b12d21 + b21d12 + b22d22)

+ 4(bll dzj b21d12 + bll dll/922 d22

+ hi2 d21 b21d12 + 612 d21 b22d22 )

- (blldl2 + b12d22 + b21d11 + bz2d21) 2

- (b21cll + b2ac:l - h_cl: - b12c22) 2 =0

(19)

which can be rearranged to yield

3,2 + 23,(bltdtl + b12d21 + b2tdt2 + b22d22)

+ 4( bll dll b22 d22 + hi2 d21 b21 d12 )

- (bi_ d12 - b21 dll )2 _ ( hi2 d22 - b22 d21 )2

-- 2(blld12 + b21d11)(b12d22 + b22d21)

-- (b21Cll + b22c21 - b11c12 - b12c22) 2 =0

(20)

Equation (20) forms the basis for the stability investi-

gations presented in the following sections.

The Case of T.E. Control Only

To simplify the study ofeq. (20), consider first the
case of an activated T.E. only. In this case,

bll = b21 = ell = c12 =dll = d12 = 0 (21)

Substituting eq. (21) into the characteristic eq. (20),
one obtains

3,2 + 2,k,(b12d21 + b22d22)

-(blzd22 -- b22d21) 2 - (b22c21 -- b12C22) 2 = 0

(22)



Rememberingthatif ),1,and),2arethetworootsof
eq.(22),then

)`1 + ),2 = -2(b12d21 + b22d22) (23)

and

),1)`2 = -(b12d22 - b22d21) 2

-(b22c2t - b12c22) 2 (24)

the following conclusions result from eq. (22):

1. Because the constant element (independent of ),)

is always negative (or at best equal to zero), there

will always be a positive root )`l and a negative

root ),2.

2. The elements c21, c22 do not affect the sum ()` l +

)_2), but they do reduce the constant element, thus

implying that while they increase the value of ),1,

they lead to a decrease in )`2 by an equal amount.

3. Because for an unbalanced T.E. control, hi2 and

b22 are both positive (see appendix A), )`1 > -)`2

if d21 or d22 or both are negative so as to cause

(see eq. (23))

bt2dzt + bzzd22 < 0 (25)

4. For the absolute value of ),2 to be as small as

possible while increasing )`1 (to minimize the un-
stable root and maximize the stable one) without

changing the control unbalance, one should aim

at letting (see eq. (24))

6"21 bt2
C21 = 6"22 = 0 or _ =

c22 b22

with d21 < O, d22 < 0 (26)

5. The optimum control law using the above crite-

ria for inertially unbalanced T.E. stability is such

that it satisfies eq. (26) above and als___qsatisfies
the equation

d22 b22
(27)

dzl b12

making ), 1)`2 = 0 (see eq. (24))

6. Equations (26) and (27) ensure that ),l > 0 (thus

is stabilizing) while keeping ),2 = 0 (and there-

fore, ),2 does not contribute to instability). Note
that ),1 in this case assumes the value

)`1 = -2(b12d21 + bzzd22)

or, after substituting eq. (27)

b122 d22 )),! =- 2b22d22+2

)` 1 = -2 b22 d22 1 + b--_-2 / /

The Case of L.E, Control Only

Following the above analysis for the case of the

T.E. control only, a similar analysis will be performed

for the case of L.E. control only. Hence, in this case,
one can write

b12 = b22 = c21 = c22 = d21 = d22 = 0 (29)

Substituting eq. (29) into eq. (20) the following char-

acteristic equation is obtained

),2 + 2k(blldll + b21d12) - (blldl2 - b21dll) 2

-(b21Cll - bllCl2) 2 = 0

(30)

Equation (30) is similar in form to eq. (22), and the

following similar conclusions can be drawn:

1. Because the constant element, which is indepen-

dent of)`, is always negative, there will always be

a positive root ,kl and a negative root ,k2.

2. The elements cn and c12 do not affect the sum

),1 + ),2, but they do reduce the constant element,

thus causing an increase in the value of ,kl while

decreasing ),2 by an equal amount.

3. Because an unbalanced L.E. control yields

(shown in appendix A) positive bll and negative

b21, the value of ,kl will be larger than the abso-

lute value of)`2, that is ),1 > --)`2 ifd12 > 0 or

if dll < 0 (or both conditions), so as to cause

[blldll + b21dt2] < 0 (31)

. For the absolute of )`2 to be as small as possi-

ble, while increasing )_1 (to minimize the unsta-

ble root and maximize the stable one), without

changing the control unbalance, one should aim

at letting

c11=c12=0( °r cl2Cll -- b11b21)

dll < 0,dl2 > 0 (32)



5. Theoptimumcontrollawbasedontheabovecri-
teriaforinertiallyunbalancedL.E.controlshould
havegainsthatsatisfyeq. (32)andalsosatisfy
theequation

dll bll
- (33)

d12 b21

6. Equations (32) and (33) ensure that ),1 > 0 (the

stabilizing root) while keeping ),2 = 0. There-

fore, ),2 does not contribute to instability. Note
that ),1 in this case assumes the value

),1 ---- -2(blldll + b21d12)

or, after substituting eq. (33)

b2__!__
),1 = -2bndll - 2b21dn bn

or

),l = -2b lg11 1+
(34)

The Case of L.E.-T.E. Controls

The characteristic eq. (20) includes terms associ-

ated with L.E. control only, terms associated with T.E.

control only, and also coupling terms between L.E. and

T.E. controls. If the optimum control law conditions

derived earlier for the L.E. (alone) system and T.E.

(alone) system are applied to eq. (20), they ensure that:

1. The sum of(),1 + ),2) > 0 since

(blld11+b12d21+b21d12+b22d22) <0 (35)

. All the negative quadratic terms that appear in the

constant term in eq. (20) vanish, leaving the fol-
lowing coupling terms:

4[ bli dll b22 d22 + b12 d21 b21 d12 I

-- 2(blld12 + b21dll)(b12d22 + b22d21)

Considering eqs. (26) and (32), and remembering

that bn, bl2, and b22 are all positive, while b21

is negative, it follows that both temls within the

square bracket are positive (they add up) and the

product terms end up being positive, thus adding
to the square bracketed term. Also, within each

of the parentheses forming the product, the terms

add up so that the result is positive.

. Based on conclusions (1) and (2) above, it fol-

lows that the optimum L.E. (alone) control law,

and the optimum T.E. (alone) control law, yield

a combined L.E.-T.E. control law with positive

),1 and positive ),2. Hence, the combined L.E.-

T.E. control law will always be stabilizing from

the point of view of inertial unbalance.

There remains to determine at this stage the com-

patibility between the unbalanced inertial stability re-

quirements and those required by the aerodynamic en-

ergy method to stabilize the system as a result of acting

aerodynamic forces.

Summary of Results

The very interesting results obtained so far are re-

iterated before proceeding to deal with their compati-

bility with the aerodynamic control laws:

° Both L.E. alone and T.E. alone mass-unbalanced

control systems always lead to inertial instabili-

ties (or neutral stability at best), irrespective of the

control laws employed. The best control law for

these single control surface systems may reduce

these instabilities to neutrally stable oscillations.

, The combined L.E.-T.E. control system is shown

to be much more powerful than any of its com-

prising components. With a proper control law,
the mass-unbalance terms can be made to con-

tribute to the stability of the system, irrespective
of its characteristics and its responses.

COMPATIBILITY BETWEEN

AERODYNAMIC AND INERTIAL

CONTROL LAWS

Aerodynamic Energy Control Law

The basic aerodynamic energy L.E.-T.E. control

law requires the matrix [T] to assume the form

[tll t12 J[ T] = t21 t22

[T] = [ alj + ien
! a22 + ie22 -1 1 ]1 0.7

(36)



whereaii terms can assume either positive or negative

values, and the eli terms must be positive for aerody-

namic stabilization (Nissim 1977). The constant terms

in the matrix in eq. (36) were obtained in Nissim (1977)

using numerical optimization, maximizing the aerody-

namic energy eigenvalues over a whole range of sub-
sonic Mach numbers. Note that when all = ell =

0, eq. (36) yields a T.E. system, and similarly, when

a22 = e22 = 0, eq. (36) yields an L.E. system. Note

also that ratios tll/tl2 and tz2/t21 are constant. In the

following a comparison is made between the aerody-

namic control law given in eq. (36) and the inertial con-

trol law given in eq. (17), repeated here for the sake

of clarity.

+ idl2 ]c21 + id21 c22 + id22

It is possible to vary these ratios between the t
terms by changing the first column [-1 lJ 7" in

eq. (36) relative to: the second column. Such a vari-

ation may be considered if one is required to sat-

isfy (or nearly satisfy) the relations in eqs. (24), (25),

(30), and (31). If this is done, aerodynamic per-

formance may be somewhat degraded. Therefore,

relative changes in the first (or second) column of

eq. (36) can be made during the design stage, when
the mass unbalance detrimental effects need be over-

come. In the following, the compatibility between

eq. (36) and eqs. (24), (25), (30), and (31) is studied

for the T.E. control system and for the L.E. control

system. The results pertaining to an L.E.-T.E. con-

trol system follow the results of the preceeding two

separate systems.

Compatibility Between Inertial and

Aerodynamic Damping for a T.E. System

Equations (26) and (27) require that

C22 d22 b22
- - (37)

C21 d21 b12

Eq. (36) indicatcs that the first equality in eq. (37) is

always satisfied, that is

c22 d22
- (38)

c21 d21

irrespective of the relative values between the two

columns in eq. (36). As shown in appendix A,

eq. (A-8)

b22 > 1 (39)
b12

with both b22 and b12 being positive, for unbalanced

T.E. control surfaces. The b22/b12 ratio will be slightly

larger than 1 for completely unbalanced T.E. control
surface and can be made to tend to infinity for a stati-

cally balanced T.E. control (see eq. (A-9)). The stati-

cally balanced T.E. case is of little interest because in

this case blz = 0, and b22 is very small, thus yielding

very small numerical values for k that can be ignored,

considering the structural damping of the system.
It follows from the above discussion that the value

of 0.7 in the second column may need to be increased

(relative to 1 in the first column) to a value somewhat

larger than 1. The actual value can be determined in

the design stage should such a need arise, when con-

sidering a specific numerical system. It can be readily

shown that increasing the 0.7 gain moves the single

sensor for the T.E control system further downstream

(along the chord) than the 65 percent chord point asso-

ciated with the 0.7 relative gain (Mukhopadhyay and

others, 1981).

In eq. (26) both d21 and d22 must be negative.

This requirement corresponds to e22 assuming nega-

tive values, and it therefore relates to the case where

the resulting aerodynamic forces have a detrimental ef-

fect on stability. Hence, at the region of flutter, aerody-

namic and inertial dampings are not compatible. This

is a very important new result. Because flutter occurs

at relatively low structural frequencies, a design should

aim at producing a transfer function that yields:

1. Large positive values of e22 around the flutter fre-

quency (eq. 36)

2. Negative values for e22 at high frequencies

. Value of a22 that tends to zero at high frequen-

cies (unless eqs. (26) and (27) are completely

satisfied)



4. Valueof e22 that tends to zero (with e22 being

negative) at high frequencies, because there is no

desire to control the very high frequency modes.

Compaiibility Between Inertial and

Aerodynamic Damping for an L.E. System

Equations (32) and (33) require that

cll dll bll
- - (40)

C12 dl2 b21

Eq. (36) indicates that the first equality in eq. (40) is

always satisfied, that is

ell rill
- (41)

c12 d12

irrespective of the relative values between the two

columns in eq. (36). As shown in appendix A (see for

example eq. (A-10)),

bll I
b--_lI > 1 (42)

for a mass-unbalanced L.E. control. As the control is

balanced, the above ratio decreases until it reaches the

value of zero for mass-balanced L.E. control. Further-

more, bll is always positive (or zero when balanced),

and b21 is always negative, so that bll/b21 is always

negative. From eq. (36) it can be seen that d11/d12

(and therefore ell/o2 by virtue ofeq. (41)) is equal to

- 1. If the L.E. control is totally unbalanced, it is pos-

sible that the 1 in the second column of eq. (36) needs

to be decreased. If ]bll/b21] < 1 (tora partially bal-

anced L.E. control), then it is possible the above value

of 1 needs to be increased. Here again, the actual value

can be determined later in the design stage, when con-

sidering a specific numerical system.

Equation (32) requires that dll be negative and

d12 be positive. Equation (36) shows thai this require-

merit is fully met when ell is positive. Hence, it can be

seen that there exists a compatibility between the aero-

dynamic damping and the inertial damping. Hence,
the L.E. control surface transfer function should aim

to yield:

1. Positive values of ell over a frequency range that

spans the flutter frequency and extends to very

high frequencies.

2. Value of a11 that tends to zero at high frequen-

cies (unless eqs. (32) and (33) are completely

satisfied).

. Value of ell that tends to zero (with ell being pos-

itive) al high frequencies, because there is no de-

sire to control very high frequency modes.

GENERALIZATION OF RESULTS

FOR A REALISTIC WING STRIP

The analysis in appendix A that yields the matrix

[Bc] essentially assumes a rigid rectangular wing strip,

performing pitch-plunge oscillations. A more realistic

representation of the oscillation of a wing strip would

allow the strip to rotate about its chordwise section,

while perfonning the plunge motion. In addition, vari-

ations in both angle of attack and chord lengths along

the strip always exist and their effects on the [Bc] ma-

trix need to be investigated. This latter investigation

is important because the conclusions reached for con-

trol laws aimed at coping with mass-unbalanced con-

trol surfaces depend heavily on both the signs and rel-

ative sizes of the [Bc] matrix,

The analysis of such a generalized wing strip is

carried out in appendix B. The results yield the fol-

lowing [Bc] matrix (see eq. (B-12)):

[ Bc] = Mb_ _lVIL 1+ c_R

where M is the mass of the wing strip including the

control surfaces (see eq. B-10).

(43)

where ML and My are the masses of the L.E. and T.E.

control surfaces, respectively. Thc paramcters hu, &u,

and bv are defined by

Oh
= _ = const

h_ Oy



6l_ = O(y/bn) - const

Ob
= m = const

by Oy

where bn denotes the strip's reference semichord

length. Suffix n relates to the reference section (see

figure in appendix B), and hn, .OCL, and .OCTdenote

hn = hn/bn

.OGL= YGL/bR

.OGT= YGT/bR

The parameters YGL and YGT denote the spanwise dis-

tances from the reference section of the center of grav-

ity of the L.E. and T.E. control surfaces, respectively.

It should be noted that the effect of the generalized

strip on the [Be] matrix can be large since hv/h R and

6_v/o_n can assume large numerical values, with either

positive or negative signs. It appears, therefore, that

no single control law can stabilize the generalized strip
unless the reference chord is chosen such that

.OGL = .OGT = 0 (44)

When eq. (44) is satisfied, the expression for [Bc]

reduces to the simple 2-D model case except for
the mass ratio terms. Therefore, all the conclu-

sions reached for the 2-D pitch-plunge strip ap-

ply to the generalized strip, provided eq. (44) is

satisfied. Hence, we reach the following very

important conclusions:

. The spanwise reference section of an active strip

should be chosen such that it passes through the

center of gravity of the control surface.

. If both L.E. and T.E. control surfaces are activated

along the same strip, these two control surfaces

should be aligned so that their centers of gravity

lie along the same spanwise reference section.

. If a similar analysis is performed for the aero-

dynamic forces, based on 2-D aerodynamics, the

reference section should pass through the center

of area of the generalized strip.

. For best control of both inertial and aerody-

namic destabilizing forces, the inertial refer-

ence section described in item (2) above should

be made to pass through the center of area

of the wing mentioned in (3) above. Uni-

form wing and control surfaces do yield such

a congmency.

NUMERICAL EXAMPLE

AND RESULTS

A mathematical model of the YF-17 aircraft

(Fig. 1) is used to test some of the results obtained in

the present work. The available mathematical model

allows for two activated control surfaces: one leading-

edge control and one trailing-edge control. (Hwang

and others, 1978, gives more details relating to the

mathematical model.) However, no data is available

regarding the alignment of the center of gravity of L.E.

and T.E. controls, and therefore, deviations from some

of the conclusions for the 2-D strip should be expected.

To keep the focus of this work on the effects of mass

unbalance on the stability of an active control sys-

tem, no flutter calculations are made, and the system

is tested for zero dynamic pressure. This means, in

essence, that eq. (1) is solved for the case where

[An+ iAi] = 0 and {F} = 0

The resulting equation reduces, in effect, to a vibration

problem involving elastic and inertia forces only, with

inertial coupling terms between activated control sur-

faces and structural degrees of freedom. This equation

can be brought to the canonical form of an eigenvalue

problem, the solution of which yields the state of sta-

bility of the system. AI____[Ithe eigenvalues presented in

the attached tables relate to the solution ofeq. (1) un-

der the aforementioned conditions. Hence, a negative

real part of an eigenvalue means a stable structural de-

gree of freedom, and a positive real part of an eigen-

value will mean an unstable structural degree of free-

dom. These eigenvalues should not be confused with

the energy eigenvalues discussed earlier in this work.

Table 1 presents the eigenvalues for the 10 elastic

modes, both for the open-loop case and the closed-loop

case, using real transfer functions only (that is, using

real values for gii). It can be seen that a single con-
trol surface is activated each time, and that the effect

of this activation on the stability of the system is abso-

lutely negligible. Table 2 presents similar results per-

taining to the simultaneous activation of both L.E. and
T.E. control surfaces. Hence, it can be concluded that

for the specific example in hand, the real parts of the

10



lransferfunctionhaveanegligibleeffectonthestabil-
ity ofthesystem.Table3presentsresultspertainingto
thecomplextransferfunction

-4s 2 ton
a(w,_)= sZ+4s+ 4 x (s+wn) (45)

where s denotes the Laplace variable. This transfer

function was chosen to simulate the imaginary compo-

nent of tii because the computer program available for

the solution of eq. (1) is constrained to transfer func-

tions where the order of the polynomial in s of the nu-

merator is less or equal to the order of the polynomial

in s in the denominator. The value of w,_ was chosen

to equal 50 to ensure some gain at high frequencies.

It should be noted that a(w,) introduces the positive

values of eli. Similarly, -a(w,O introduces the nega-

tive values of eii. Contributions of the real part of the

transfer function are expected to be small, following

the results presented in Tables 1 and 2. On the basis of

the foregoing analysis, it is expected that the T.E. with

-a(50) and the L.E. with a(50) will each yield the

most stable system in relative terms, as far as mass-
unbalance effects are concerned. Table 3 confirms

the aforementioned expectations. Table 4 presents re-

sults for a combined L.E.-T.E. active system using the

a(50) transfer function. Here again, it can be seen

that the most stable system is the one obtained using

{11 = a(50) and t22 = --a(50), as predicted herein,
where

tii = aii + eli

At this point it should be stressed, once again, that the

results of the present analysis, based on a general 2-D

system, were applied to a YF-17 mathematical model

with no knowledge of the degree of mass unbalance,

control surfaces' center of gravity localions, or span-

wise locations of the control surface centers of gravity.

Nevertheless, the correlation between analysis and re-

sults is indeed impressive.

CONCLUSIONS

The study of the effects of mass-unbalanced con-

trol surfaces on the stability of the closed-loop system
indicates that:

1. A single L.E. or a single T.E. mass-unbalanced

control surface may lead to instability (or neu-

tral stability) arising from inertial forces, irre-

spective of the control law used, because not

all energy eigenvalues can be made to assume

positive values.

. The most efficient single L.E. or T.E. mass-

unbalanced control surface can be made to yield

a zero energy eigenvalue in addition to a positive

eigenvalue, thus indicating the possibility of neu-

tral stability (or an uncontrollable mode).

. A combined L.E.-T.E. mass-unbalanced control

system is shown to permit stabilization, irrespec-

tive of the mode of oscillation of the wing.

. Inertial and aerodynamic control laws can be

made compatible for an L.E. control system. In-

compatibility exists, however, between aerody-
namic and inertial control laws for a T.E. control

system.

. For mass-unbalanced stabilization to be insensi-

tive to mode of oscillation for a continuous sys-

tem like a wing surface, the sensor should be

placed along a streamwise section that passes

through the spanwise center of gravity of the con-
trol surface.

. When two control surfaces are activated on one

strip of the wing (like an L.E.-T.E. control sys-

tem), the two control surfaces should be aligned

so their spanwise centers of gravity lie on the

same streamwise section, with the sensors placed

along this section.

. Results obtained herein suggest that the best

geometrical arrangement for flutter suppression

should aim at aligning the control surfaces' span-

wise centers of gravity (section (6) above) with

the spanwise centroid of the wing strip, where the
control surfaces are located.

. Numerical results relating to a YF-17 mathemat-

ical model appear to agree with the theoretical

predictions based on the analysis made in the

present work.

. Results obtained herein can be used to stabilize

elastic modes of large space structures by means
of inertial forces.
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APPENDIX A

DERIVATION OF CONTROL SURFACE CROSS-INERTIA TERMS

................ __ __ p_ar.c_e_nt th_o_rd- p_oi_nt (x = -O._4b) _

_-Mid chord point (x = O}

x .__XGT__ _

Figure A1. A L.E.-T.E. Control System

The following derivation of control surface cross inertia terms is performed for a general configuration of a

L.E.-T.E. system. Numerical estimates, however, will relate to 20 percent chord control surfaces.

The kinetic energy of the system described in the above sketch is given by:

,f:: ,£;K.E.= _- dm[h+(x+O.4b)&+Cx+-x)_]2 +-_ dra[h+Cx+O.4b)&] 2

1£ dm[ h + (x + 0.4b)& + (z - z7,)6] 2 (A-l)

where aZLand zT (shown in the figure) denote the :r coordinates of the L.E. and T.E. hinge lines, respectively. The

kinetic energy coupling terms with control surface deflections are given by

= _f_L dm[ ( x + 0.4 b) ( :rC -- x) de_ + ( :rr, - x) h_l(K.E.)c

f)+ dm[(a: + 0.4 b)(:r - xr)&_ + (ac - zr)h_l
T

or

(K.E.) c = rn,L:rCL h/) + mr:_GT h8

+ ff[ din( x - XL + XL + 0.4 b) ( XL -- x) &fl

bP

+ / din( x - XT + ZT + 0.4 b) (x - XT) d¢_
.Ix T

where mL is the mass of the L.E. control surface, mT is the mass of thc T.E. control surface, X6L iS the distance

from the hinge line of the ccnter of gravity of the L.E. control, positive if upstream of the hinge line, and XGT is the

distance from the hinge line of the center of gravity of the T.E. control, positive if downstream of the hinge line.

The above equation can be integrated to yield the following form:

zGL .2 h • zc,v .2 h.
(K.E.)¢ = mL----g--o --£fl+ mT'--'_-O if6+ [16+ (XT+ 0.4 b)mTXGV ]&;

+ [--I_ + (XL + O.4b)mLxGL]&fl (A-2)

12



where

b
h = (z - zr)Zdm

T

f2I_ = (z - zL)2dm

and IZ and/_ arc thc moment of inertia, about thc control surface hinge line of the L.E. and T.E. controls, rcspcctivcly.

Equation (A-2) can further be reduced to the following form:

(K.E.)c = mLYCGLb 2 _+ mTxc;yb2-_6 + mTbZ[(_'g6 + 5:27) + (iT + 0.4)5:6Tld_6

+ mLbZ[--(_'2t] + Z_L) + (_:r + 0.4)_:_L]&/3 (A-3)

where _c6 and _'GZ are the normalized radii of gyration (normalized with respect to the semichord length b), of

the T.E. and L.E. control surfaces, respectively, about their respective control surface center of gravity points. The

bar above the parameters 2;GL, 2:GT, 2;L, and zT indicates that the parameters are normalized with respect to the

scmichord length b.

The expression for the kinetic energy in cq. (A-3) is now differentiated as required by Lagrange's equations, to

obtain the inertia terms, that is

d ( = b2 + b2

dt \ _ = m7 "b2 (÷_6 + 5:_v) + (5:T + 0.4)5:GT

[+ raLb 2 -(_ + XGL) + (5:6 + 0.4)5:CL (A-4)

Equation (A-4) yields the following coupling mass matrix (with the h/b and oL degrees of freedom):

[ B_] =
mLb 5:GI.mLb2[_(f.2 + 5:2L) + (5:L + 0.4)5:GL] mrb 2 5:GT ]mTb2[(__8 + 2;2T) + (-TT + 0.4)5:GT ]

which can be reduced to

[ Bc] = mb2 [ #ZLS:GL tiZTS:GT 1mL[--(_'2fl + 5:2L) + (5:L + 0.4)5;GL ] r=O,T[ (_'2_-I-. 5:2T) + (5:T + 0.4)SCGT]

where m is the mass of the two-dimcnsiona] section, mL and mT are given by

mL
f-nL =

m

mT

m

(A-5)

(A-6)

Note: It should be noted that if [B_] is denoted by

[ B_] =
bHb2!

(A-7)

13



then cq. (A-5) indicates that bll and b12 are always positive for mass unbalanced L.E. and T.E. control surfaces. For

a 20 percent chord T.E. control, _:7"= 0.6 thus yielding positive values for b22 (which will be positive for all T.E.

control surfaces of sizes less than 70 percent chord--that is for xT > -0.4--namely for all practical cases). Note

also that b2e/b12 will always be larger than 1, that is

b22
> 1 (A-8)

b12

For a 20 percent L.E. control surface _L = --0.6, thus yielding a negative value for b21 (which will remain

negative for L.E. control surfaces of sizes less than 30 percent chord--that is for _[, < -0.4 --namely again--for

all practical cases).

Numerical Example

To get some insight into the different values of the bq terms, the following example is presented. Consider

20 percent control surfaces (i.e., SL = -0.6, xr = 0.6) yielding the following values for [Be], (see eq. (A-5)):

[ 'IZO,L _;GL
[ Bc] = rab 2

"SZL[--(_'2 3 + 5:2L) -- 0.2 _GL]

Note that in this case

?n'T3;GT ]'_r[(_'28 + ff52T) + _GT]

b2.._2 _ 1 + _26 + _gT (A-9)

btz Z_T

and

bll ._GL

b21 --0.2eeL -- _a -- e_L (A-10)

Assume also that the airfoil and control surfaces can be approximated to the homogeneous cross section shown below.

I
'_20-percent leading

edgecontrol

20-percenttrailing
edgecontrol

9030

Figure A2. Schematic Approximation of L.E.-T.E. System

Under these conditions, it can be readily shown that

_L = 0.22

_GL = 0.2

_2 3 = 0.0133

rhT = 0.11

•_GT = 0.133

f_ = 0.00889

14



Hence,

or

[ Be] = mb 2 [

0.22 x 0.2

0.22[ -(0.0133 + 0.04) - 0.2 x 0.2]

0.11 x0.133 ]

J0.1110.00889+ 0.0178 + 0.133[

0.044 0.01463 1[ Bc] = mb 2 -0.0205 0.01757
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APPENDIX B

DERIVATION OF CROSS-INERTIA TERMS FOR A GENERALIZED WING

STRIP WITH CONTROL SURFACES

Reference

d

Y = al_..

V

Generalized
wing strip r

Y Y =a 2 ---y

9031

Figure B 1. Generalized wing strip

Consider the wing strip shown above. An attempt will now be made to generalize the results obtained in ap-

pendix A to nonrectangular wing strips which exhibit spanwise deformation in twist, together with rotation (about a

chordwise axis) which results from the bending of the wing. This implies that the plunge h at the 30 percent chord

location, the local angle of attack oLand the local semichord length b along the strip of the wing can be allowed to

vary along the span of the strip. It will now be assumed the above variation to be linear and having small derivatives

(with respect to the spanwise coordinate y). That is, let

h = hR + h_y

OL= OLR+ OLyy

b = bn + b_y ; by << 1 (B-l)

where

ah

h_- Oy -

Ooe

_Y = a--_ =

Ob

bu- ay-

const along the strip

const along the strip

const along the strip (B-2)

and where suffix n relates to the reference section indicated in the sketch above.

Equation (A-3) can be made to bc applicable to an infinitesimal strip. Assume that mL and mT in cq, (A-3)

now denote local masses per unit span of the L.E. and T.E. control surfaces, respcctivcly. Hence, the infinitesimal

strip masscs will bc given by mLdy and mrdy, and eq. (A-3) will now assume the following form (for the spanwisc

integration of thc kinetic encrgy), that is
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2 :2
(K.E.)c = mL(y)5:aL bh_dy + rnT(y)_GTb]_Sdy

1 1

fo2+ mT(y)b2[(_'2_+ 5;2 T) + (5;T+ O.g)xG'rl&_dy
1

f o2+ mc(y)b2[-(_ + 5C2L)
1

+ ( _L + 0.4) _:GL]a,_dy (B-3)

Assumc also that thc local control surfaccs chords, relative to the wing chord arc indcpendent of thc spanwise

coordinatc y, and that the control surface satisfies the following rclations (see appcndix A)

-TL = const

5;7- = const

•_GL =const

5:GT = cons[

_G 6 = const

fG_ =const (B-4)

Subslimting eq. (B-l) into eq. (B-3) yiclds

If? ] 7? 1(K.E.)c = mL(y)(bR+ b_y)(hR+ h_y)dy XGL/3+ mr(y)(bR+ b_y)(hR+ h_y)dy _cc,'l'5
l 1

[I? ]+ ,_r(u)(bR+b_)2(SR+a,u)d_ [(_ge + _gT) + (5:r + 0 4)_c,T] _
1

[/? ]+ mL(Y)(bR + buy)2(&R + Suy)dy [--(_2Gf_ + 5:2i.) + (5:L + 0.4)5:GEl D (B-5)
l

Expanding cq. (B-5) and ignoring second ordcr tcrms in bu, one obtains

](K.E.)_ = rnL(Y)(bRhR+ bRhuy+ buhRy+ buhuu2)dy _CL_
l

+ [fai2 mT(y)(bRhR+ bRhyY+ byhR,+ byhyy2)dyJs:GT5

[fo+ mTfy)(b2R + 2 bRb_y)(&R + &uy) dy
1

x 1(÷2 + _2T) + (5:7" + 0.4)5:OT1;

[i ]+ mL(y)(b2+ 2bRbuy)(&R+ &.vy)dy
1

-z 0.4) 5:c,L ] f)× [--(r(-3B + 2:GL) + (5:L +

which can bc rcduccd to

2 " -
(K.E-)c = [ MLbRhR + MLbRhyYGL + Mt, b_YGL]_R + Mnrynb_hy]xGL_

+ [ MTbRhR + MTbRhyYGT + MTbyYGThR + Mrr2Tb_h_l_CC, T6
2 * • ")

+ [ MTb2&R + MTbRO_yYGT + 2 MTbRbu&RYGT + 2 MrbRb_ce_.r_T]

x [(f(z + _T) + (5:T + 0.4)26vl$ + [MLbZR&R + ML 2 • ._ •b1_a_yC;L + 2 MLbRby&RYGL + ,- MLb_b_c_r_L]
-2

× [_(_2 + XGL) + (_:L+ 0.4) 5;Gl, lf) (B-6)
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where Mc and MT" denote the masses of the L.E. and T.E. control surfaces, respectively, and r_L, rvT denote the
radii of inertia about the reference streamwise section of the L.E. and T.E. control surfaces, respectively. Without

affecting the generality of the results, assume that a relationship exists between h_ and h_, c_ and o_R (like the

relationship existing during a modal oscillation), such that

hy_ h_

hR hR

&_ - % (B-7)
&R _R

so that cq. (B-6) can be written in the form

2(K'E')c= MLb2[ 1+ (h_) yGL+ (_-_R) yGL+by(ryL_'b_R] (h_)l _GL _ _

MT"b_[1 (_)YGT+(_-_R)YOT+ Vk, bR j -_R

+ MT'b_ 1 + _ YGT + 2 g YGT + 2 bRb u -_R \_,/ ]

×[(_,+_) +(_ +0.4)_o_]..,

[ (_y) (bu) (oLy) (ryL_ 2 ]+ MLb_ l+ -_R YoL+2 _ YrL+2bRb, -_R k,-'_R/ J

(B-8)

Assuming (,rut, ,_z (r_'_z
\'b'R-R/ << 1 ; \b__.] << 1

one can neglect the second order terms in eq. (B-8) involving b_ (_) and bu . Differentiating eq. (B-8), as

specified by Lagrange's equations (see appendix A), one obtains the following [Be] matrix

[Be] = Mb_ h3/L[1 + (-_R)yOL + 2 (_) yGL] X

[_¢_ +_) +<_+o.4)_o_] [(r2G8 + 5:_T) + (-_r + 0.4) 5_GT]

(B-9)

where M is the mass of the strip and

-QL = M____.L_L
M

-h_/'T= MT (B-10)
M

The element inside the square matrix can be nondimensionalized by normalizing with respect to the reference chord,

in the following manner:

18



Lct
t_ot

-hR = -hR/bR

tJGL = YGL/bR

YGT = YGT/517

Thcn eq. (B-9) can be written in the following form:

/_/'L 1+ 7_-_ _GL+b_YGL XGL i Mr 1+ 7_-_ YGT+by'_GT _;GT

............ "_..... -_- 2 b_cv] x
I

[--(_2#+_;2L)+(5_L+0.4)._GL] ', [(r2,+X2GT)+(XT+0-4)XGT]

(B-11)

(B-12)
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TABLE 1. Variation With Single Control Mass Unbalance of

Complex Eigenvalues ), Using Real Transfer Function

RI0 Rll RI2 R13

)'Rea] ,k Imagina_ )_Read _ Imaginary, _Rcal _lmaginar_ _Real _ Itratginar_

R14

_kl_ld _ lrn=glnary

-0.1563E-12 0.3893E+03 -0.47ff'/E- 12 0.3884E+ 03 0.11366E- 12 0.3906E+ 03 --0.2132E-13 0.3899E+03 -0.3055E-12 0.3888E+03

-0.1421E--- ] 2 0.3168E+03 -0.2842E-.- 13 0,3094E+ 0'3 0.1847E- 12 0.32A.9E+ 03 --0.5365E- 12 0.3213E+03 0.7105B-13 0,3129E+03

-0.1137E- 12 0.2671E+ 03 -0.3197E--13 0.2668E+ 03 0.4263E- 13 0.2673E+ 03 0.3104E--12 0,2691E+03 -0.9948E- 13 0.2649E÷03

-0.3126E-12 0,2277E+03 -0.1616E--12 0.22.77E+ 03 0.11T2E- 12 0.22T/E+ 03 0.2034E--12 0.2278E+ 03 0.2558E- 12 0,2.276E+ 03

-0.2132E- 12 0.1613E+03 --0,1279E- 12 0.1613E+03 0.5258E-- 12 0.1613E+03 0.2842E- 13 0.1613E÷ 03 -0.5684E-13 0.1613E+03

0.1705E--12 0,1203E÷03 0.1030E-12 0.1203E+03 0.2416E- 12 0.1203E÷03 -0.4832E- 12 0.t203E÷03 -0.1634E--12 0.1203E÷03

-0.341 IE- 12 0.9351E÷02 0.1151E-II 0,9319E+02 0.3439E-11 0.9384E+ 02 0.3979E-12 0.9357E+02 -0.6928E- t2 0.9345E÷02

0.9948E-13 0.8416E+02 0,1265E-11 0.8404E÷ 02 -0,5471E- 12 0.8427E* if2 -0.3268E-11 0.8419E+ 02 0.2721E- 11 0.8413E+02

0.1705E-12 0.4515"E÷ 02 0.4062E- 11 0.4514E+ if2 0.5826E- 12 0.4516E+02 -0,4952E- 11 0ASITE+02 0.6297E--12 0.4513E+02

0,2842E-13 0.2908E+02 -0,5912_-11 0.2903E÷ _ -0.4743E- 11 0.2913E÷02 --0,8630E- 11 0.2909E+ 0"2 - 0.9603E- 11 0.29ffTE+02

RI 0--Open lx_p

R11-T.E. Only; t22 = 4

RI2-T.E, Only;, t22 = -4

RI 3-L-E. Only; 111 =4

R14-L.E. Only; tll= -4
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TABLE2. VariationWithL.E.-T.E.MassUnbalanceof
ComplexEigenvalues),UsingRealTransfer Function

RI5 R]6 RI7 R1B

_'P.¢ al _l_,in._ )`Real k [rma_llnar 7 )'Rgal )'lmagin=_ )'Real _'Imal_irutr_

0.1497,E-- 12 0.3889E+03 --0.2700E-- 12 0.3880E* 03 -0.284212-13 0,3914E+03 0.5542E,-- 12 0.3899E+ 03

-0A690E- 12 0,3140E+03 - 0A263E--- 13 0.3055E+03 0.7816E-12 0.3292E+03 - 0.5087E,- 11 0.3211E+03

--0.44)50E-- 12 0.2687E+03 -0.1137E- 12 0`2648E+ 03 0.2842E--13 0.2695E+03 -0.692_E- 12 0.2650E+ 03

0.3979E-- 12 0.2278E+03 0.618_ 12 0.2277E+ 03 -0.7105E- 13 0.22'77E+ 03 -0.2380E--12 0.2276E÷03

-0.2387E- 11 0.1613E+03 -0.8100E- 12 0.1613E+03 0.7319E-12 0.1613E÷03 -0.39"/9E-- 12 0.1613E+03

--0.1279E-- 12 0.1203E+03 0.8527E- 13 0.1203E+03 0.I243E-It 0.1205E÷03 -0.51t6E- 12 0,1203E+03

-03,984E- t2 0.9325E+02 -0.254013-12 0,9313E+ 02 -0.4849E--12 0.9391E+02 0.3126E--12 0.9377E+ 02

0.1580E-10 0.8407E+02 0.5329E-11 0.8g0IE+ (_ -0.1023E- 10 0.843(E+ 02 0.23231_-- 10 0,8425E+(_

--0.1696E-- 11 0.4517E+02 0.424t5E-- 11 0.4512E+ 02 -0.3924E-12 0.4518E+02 0.5677E-- 11 0.4513E÷ C0,

-0.2756E--1D 0.2904E+02 03519E.--11 0.2902E+02 -0A$O2E-IO 0 "_91 a-E+ 02 -0,62101_- 11 0.297,2E+ 02

R15-LJL-TJE.;ill =4,i2_ =4

R16-L.H.-T.E.;ill =-4,t22 =4

RI'?-LJL-T.E.; i t I = 4. t_ = --4

RIS-L.E,-T,E.;_ll =-4.t22 =-4

TABLE 3. Variation With Single Control Mass Unbalance of

Complex Eigenvalues ), Using Complex Transfer Function

RS0 R5 l R52 R53

•_Real )' Ir_.sginary )_Real "_[mttglnlry )'P4_al )" Imagin_y )'Real g lm=gxruwy

0.1333E+ 00 0.3893E+ 03

0.1190E+ 01 0.3170E+ 03

0.3996E-01 0.2671E+ 03

- 0.947"/E- G2 0 3.2"T'/E+ 03

0.2788E-(_ 0.1613E+03

--0.1761E-03 0.1203E+ 0"3

0.1332E+ 00 0.9359E+ I/2

0.4911E-01 0.8419E÷ 02

0.2276E-- 02 0.4515E+ 02

0.1686E-01 0.2912E+ Ct2

-0.1318E+00 0.3893E+03 -0.6984E-01 0.3893E+ 03 0,7040E-01 0.3893E+03

-0.1188E÷ 01 0.3166E+ 03 -0.6363E+ 00 0.3167E+03 0.1M00E+ 00 0.31691/+03

-0._067,E- OI 0.2671E+ 03 -0.3842E+ 00 0.2670E+03 03g0gE+ 00 0.2672E+ 03

0,9560E-- 02 0.2277E÷ 03 -0,1189F,--01 02277E÷03 0.1173E-01 0.2277E+03

- 0.2789E-- 02 0.1613E+ (Y3 -0.8265E-02 0.1613E+03 0.8"219E-02 0.1613E+ 03

0.1741E-03 OA203E÷03 0.1721E-03 0.1203E+03 --0.1718E-03 0,120"3E+ 03

-0.1313E+00 0.9343E+1_ -0.2617E-OI O.9M9E+O2 0,2619E-01 0.9353E+ 0P,

- 0.5072E- 0I 0.g413E* 02 -0.II38E-01 0.8415E÷02 0,1129E-01 0,8417E+0_

- 0`2266E--02 0.4515E+ 02 - 0.9934E- (T2 0.4514E÷02 0.9931E-(_ 0.4516E+ (/2

-0.1678E-01 0,2904E+ Q2 -0.2896E-02 0.290"/E+ 02 0.2988E-(_ 0.29_9E+02

RS0.-T.E, Only;, i22 = 0(50)

R51-T.E. Only; J22 = -=(50)

R52-L,E. Only; t_l 1 = a(50)

R53-L.E. Only; tll = -a(50)

0(w) is defined in eXl. (45)
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TABLE4. VariationWithL.E.-T.E.MassUnbalanceof
ComplexEigenvalues),UsingComplexTransferFunction

R54 R55

)'Real glmagln_ )`Real

-0.2010E+ 00 0.3893E+03 0.20,42.E+00

-0.182_E÷ 01 0.3165E÷ 03 0.182"/E+ 01

-0,4229E+ 00 0.2670E+ 03 0.4226E+ 00

-0.2363E-02 0.2277E+ 03 0.2213E---02

-0.11(_E-01 0.1613E+03 0.1104E-01

0.3482E-03 0A203E+ 03 -0.3460E.--03

-0.1568E+ 00 0.9342E+02 0.1601E+00

-0,6237E-01 0.8412E+ 02 0.6014E-01

-0.1222E-01 0.4513E+0g 0.1219E--01

-0.1964E-01 0.2903E+Q2 0.1978E-01

R56 R57

)` lrnaginarff... "kRaal "klmagi_ )'Real "kImaglnary

03893E+03 0.6289E--01 0.3893E+03 -0.6206E--01 0.3893E+ 03

0_171E+ 03 0.5563E+ 00 0.3169E+03 - 0_5454E÷ 00 0.3167E+03

0.2672E÷ 03 -0.3462E+ O0 0.2670E÷03 0.3385E+ 00 0.2672E+03

02277E* 03 -02133E-01 0.2277E+03 0.2133E--01 0.2277E+ 03

0A613E+ 03 --0.5514E-02 0.1613E÷03 0.5393E--02 0.1613E+03

0.1203E+ 03 -0.5942E-05 0.1203E+03 0.3435E-06 0,1203E+ 03

0.9360E+ 02 0.1064E+ 00 0.9357E+02 -0.1055E+ 00 0,9345E+ 02

0.8420E+ 02 0.3798E-01 0.ggI9E+02 --0.3918E-01 0.g413E+ 0_2

0.45 I"/E+ 02 --0.7639E,-- 02 0.4514E÷02 0.7684E-02 0.4516E+ 02

0.2913E+ 02 0.1393E--01 0.2911E+02 --0.1393E-01 0.2905E+ 02

R54--L.E.-T.E4 tl 1 = a(.50),t2_ = -0(50)

R55_L.E._T.E.;il 1 = _a(50),t22 = a(50)

R56_L.E._T.E.;_ll = a(50),t2. _ = a(50)

R57_L.E._T.E.IiH = _a(50),t22 =-a(50)

a(ta) is defined in ¢.q. (45)
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