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ABSTRACT

The effects on stability of inertial forces arising
from closed-loop activation of mass-unbalanced con-
trol surfaces are studied analytically using inertial en-
ergy approach, similar to the acrodynamic cnergy ap-
proach used for flutter suppression. The limitations
of a single control surface like a leading-edge (L.E.)
control or a trailing-edge (T.E.) control arc demon-
strated and compared to the more powerful combined
L.E.-T.E. mass unbalanced system. It is shown that
a spanwise section for sensor location can be deter-
mined which ensures minimum sensitivity to the mode
shapes of the aircraft. It is shown that an L.E. con-
trol exhibits compatibility between inertial stabiliza-
tion and acrodynamic stabilization, and that a T.E. con-
trol lacks such compatibility. The results of the present
work should prove valuable, when flutter is suppressed
using mass unbalanced control surfaces, or for the sta-
bilization of structural modes of large space structures
by means of inertial forces.

NOMENCLATURE

Qg scalar gains, sce eq. (36)

alw) transfer function defined in eq. (45)

b reference semichord length

bij element 1, j of the [ B.] matrix

br semichord length at the reference
section

by = gg

Cij element 3, j of the real part of [T]

diy element 3, j of the imaginary part
of [T]

e scalar gains, see eqs. (36)

h plunge coordinate, positive down

hg plunge coordinate at the reference
section, positive down

hg = hg/bg

hy = o

M mass of the strip

M, mass of the L.E. control

yGL

YGT

YGL

UGT

Wn

mass of the T.E. control

= ML/M

= Mr/M

number of structural modes
transfer function pole location
number of control

reference length, of the Laplace
variable

ag + ie.-,-
defined in eq. (36)

spanwise coordinate, measured from
the reference section

spanwise distance of L.E. control
surface center of gravity
measured from reference section

spanwise distance of T.E. control
surface center of gravity
measured from reference section

= yGL /b,
= yot/br

pitching angle, positive nosc up

= da

= &
angle of attack at reference section
of activated strip

= ay/aR

leading-edge control deflection,
positive nose down.

trailing-edge control deflection,
positive trailing edge down

cigenvalue
largest cigenvalue of a binary system

smallest eigenvalue of a binary
system

fluid density
frequency

natural frequency



Matrix Notation

[Ar ], [A1]

[Ar 5] [Ars]

[Ar c 1. [A1c]

(B]
[B,)
[Bc]

[Es]

(Ec]

{F}

[Qr], [Qr]

{g}

{a}

{q0}
{gc}
[T}

(U]

real and imaginary parts of acro-
dynamic matrix, respectively,
(ordernx (n+ 1))

real and imaginary parts, respec-
tively, of the aerodynamic
matrix associated with the
structural modes (order n x n)

real and imaginary parts, respec-
tively, of the aecrodynamic matrix
that couples the control surfaces
with the structural modes
(ordern x r)

mass matrix (ordern x (n+ 7))
structural mass matrix (order n X n)

coupling mass matrix, between
structural modes and control
surfaces (order n x r)

stiffness matrix (ordern x (n+ 7))

structural stiffness matrix
(order n x n)

coupling stiffness matrix, between
structural modes and control
surfaces (order n X 7)

column matrix of forces (order n)

real and imaginary parts, respec-
tively, of the energy eigenvectors
(of matrix [Q] (order n x n))

column of structural responsecs
(order n)

column of structural and control
responses of order (n+ 1),
see ¢q. (3)

column of structural response
amplitudes (order n)

column of control surface responses
(order r)

matrix representing control law
transfer functions (order r x n)

encrgy eigenvalue matrix,
see eq. (8) (order n x n)

real and imaginary parts, respec-
tively, of the energy principal
coordinates, sce eq. (12)

{€a}:{¢r}

Superscripts

T transposed matrix

* conjugate

Subscripts

c relates to control surfaces

s relates 10 the main structure of
the system

R relates to the reference section
within the 2-D strip

INTRODUCTION

Studies concerning flutter suppression using ac-
tive controls concentrate on the numerical design of
control laws and their effects on the resulting perfor-
mance of the system (Mukhopadhyay and others 1981,
Newsom 1979, Newsom and others 1980, Nissim and
Abel 1978, Mahesh and others 1981, and Freymann
1987). In these studies, the system is considered to be
fixed, and no attempt is made to investigate the possi-
ble effects of varying some of the aircraft parameters
on the resulting control law and the overall system per-
formance. Even for existing systems, there arc some
parameters that can be readily changed, like the mass
balancing of control surfaces or the control surface ac-
tuator dynamics.

In the following, the effects of control surface
mass unbalance of active control systems on the
closed-loop stability of the systems are studicd. This
problem is relevant because acrodynamic control sur-
faces are naturally unbalanced. The balancing of these
control surfaces requires the addition of non-negligible
masses. Because an investment is made in an active
control surface in terms of the mass of the elements
required to drive the control surface, one is naturally
tempted to avoid adding further masses to balance the
active control surface. An analytic approach to the
problem was adopted so that the results obtained would
be informative regarding genecral systems rather than
for a specific specialized system. For this recason, a
two-dimensional model is considered, representing a



possible strip of a finite wing. To avoid assigning fre-
quencies or mass values to this strip (since continuous
wings have, effectively, an infinite number of frequen-
cies, masses, and mode shapes), an energy approach
was adopted, whereby the work done by the inertial
mass-unbalanced forces per one cycle of oscillation
was evaluated (Nissim 1971 and 1977). If these forces
do a positive work on their surroundings, the system
is dissipative. If, on the other hand, these forces do a
negative work on their surroundings— implying that
a positive work is done on the system—the system
absorbs energy and is unstable. Hence, the sign of
the work done by the unbalanced incrtial forces indi-
cates their potential contribution to ecither stability or
to instability.

The major part of the work presented herein re-
lates to a 2-D rigid strip performing purc pitch—plunge
oscillations. In the final part of this work, the strip is
allowed to twist along its span, to vary its chord length
along the span, and to rotate as a result of the wing’s
bending oscillations. It is shown that this more realis-
tic, generalized strip geometry and motion can be re-
duced for simple geometries and appropriate selection
of reference section to yield results identical to the 2-D
pitch—plunge rigid strip.

INERTIAL ENERGY APPROACH
Basic Equations

Let the n equations

{F}=—w?[B+ npb*s(Ag + iADI{d} + [E1{g}

(D
represent the generalized equations of motion of n
structural modes with r-activated controls, where
at flutter

{F}=0
and
w frequency
[B] mass matrix
[Ag], [Af] real and imaginary parts of aero-

dynamic matrix, respectively

[E] stiffness matrix

o fluid density

s reference length

b reference semichord length
{q} generalized coordinates

All matrices in eq. (1) are of order n.x (n+ r), that is,
n structural modes and r active controls. Equation (1)
can therefore be written as

{F} = <.— w2 [[ Bach] + ‘Kpb48([AR,s|AR,c]

+z‘[AI,,|A1,C1)] . [ESIEC]>{ ! }

c

)

{a}={j€} (3)

Assume a control law of the form

{gc} =(T1{q} (4

where [T] is a » x n matrix representing the transfer
functions of the control law. The matrix [T] is there-
fore, in general, a function of the Laplace variable s.
By substituting eq. (4) into eq. (2), the following equa-
tion is obtained:

where

{F}= (—wz [[ Bl + [BIIT] + mpb*s([ Ag )
+ [ARcIT] +i[Af,]

. i[Ar,c][T])J

+[E,] + [Ec][T]>{q}
(5)

It is shown in Nissim (1971 and 1977) that the
work P done per cycle of oscillation by the system on
its surroundings is given by



mpbtw?s,
p= TR g

X [— ([ Arel + (A1) + [Ar(T]

+ [T*]T[AI,C]T)

.([BC][T] —(T*1" (BT
+ 1
npb*s

+[Ags] — [AgslT + [Ag I T]

- [T*]T[AR,CJT)} {0}
(6)
where

{a} = {g0}e™" (N

It is also shown in Nissim (1977) that if [U] is defined
to represent the expression within the square brackets
in eq. (6), that is

(U] = [— ([AI,A + [Ar)T + [ALJIT]

. [T*]"{AI,C]T)

.<[Bc][T] — [T B]"
+1
mpb*s

+ [AR,s]

—[ApslT + [AR T
- [T*]T[AR,CJT)} @®
so that

72 pb“w2 s

P= )

lgo*]{UI{qo0} (9)

then, by taking the eigenvalues of [U], that is,
by solving

Mn} = [U){n} (10)

P can be reduced to the form

2 pbtw?s

P2 1 (v €h) + 22 (€ + €2)

+ o A(EE + g}n)]

P=

(1)

where ); is the ith eigenvalue of eq. (10), neces-
sarily real since [U] is Hermitian, and £g and & arc
defined by

{90} = [Qr+iQrI{¢r+ i1} (12)
The columns of the square matrices [QRg] and [Q;]
are the real and imaginary parts of the eigenvectors of
eq. (10). The vector {{g + 3£ 1} contains the general-
ized modal coordinates of the transformation defined
by eq. (12).

It should be noted that if all the As ineq. (11) are
positive, the system is stable (dissipative), irrespective
of the responses represented by the different ¢ values.
If, however, one or more of the As assumes a ncga-
tive value, the system may become unstable if the §
responses are such that P becomes negative. If one
wishes to ensure stability irrespective of the rcsponses
of the system, all the X values must be made positive.

In the following, it is desired to detcrmine the
contribution of the out-of-balance inertial terms inde-
pendent of the acrodynamic terms (which are depen-
dent on the flight configurations), and, therefore, con-
sider the following expression for [U]:

(U] =4[ BJIT] -4 T [BIT  (13)
where the work done by the inertial out-of-balance
terms is given by

2
P =T 165) U1 {g0) (14)

Object of Analytical Work
The object of the following work is threc-fold:

1. To determine a control matrix [T] that will ensure
stability, that is, so that all the X cigenvalucs are
positive.

2. To determine the effect of mass unbalance on the
\s using the aerodynamic encrgy transfer func-
tion matrix [T].

3. To determinc the possible compatibility between
(1) and (2) above.



DETERMINATION OF [T] THAT
ENSURES STABILITY OF MASS-
UNBALANCED CONTROL SYSTEM

Basic Equations

Assume a two-dimensional strip performs pitch—
plunge oscillations with activated L.E.-T.E. con-

trol surfaces.
B\ _ h/b
{8}_[T]{ a} (15)

Let
where 3 is the L.E. rotation, positive nose down, and &
is the T.E. rotation, positive T.E. down. The deforma-
tions h and « indicate plunge (positive down) and pitch
(positive nose up, Fig. 1). The parameter b denotes the
semichord length of the 2-D wing.

Denote
bi2
B.l =
(B [ ,m]

where some detailed derivations for the different b;;
terms can be found in appendixes A and B. Let [T], for
any value of frequency, be given by

(T] = l: ¢y + 1d12 }

c22 + 1d22
Substituting egs. (16) and (17) into eq. (13) one ob-
tains, after some rearrangements, the following equa-
tion for {U]:

2(bydn + bizda1)

{gc} =

bn

oy (16)

cii + 1dn

c21 + 1d21 an

—i(ba1c11 + baaca1 — buiciz — bizen)
+ (baidn + baadar + budiz
+ bind22)

i(baicit + baacar — bricnz — bizc)
+ (bridiz + biad + b21dn
+ bnda1)

2(b21di2 + b22do2)
(18)
It should be noted (sce egs. (2) and (15) 10 (17)) that for
the case of an L.E. control only (that is when & = 0)

bp =bp2=0

and also

cyp=dy=cp=d2=0

Similarly, for the case of a T.E. control only (that is
when 8= 0)

byy = b1 =0

and also

ep=dn=cz2=di2=0

The characteristic equation for the determination of the
eigenvalues X of matrix [U], as given by eq. (13), is
obtained from

X -U|=0

That is,

A2 + 20(bpdn + bizdz + bardiz + b2dn)
+ 4(biidibardiz + budnbndz
+ biadaibaidiz + brzd2ibo2dn2)
— (bridiz + biadx + bardn + bar da1)?
— (ba1cu1 + baze2r — buenz — brac2)? =0
(19)

which can be rearranged to yicld

A2+ 2M(budyy + biadr + bardiz + b22d22)
+ 4(b11di1 b2 daz + bizdaib21di2)
— (budyz — badi)?* — (br2daz — b da1)?
— 2(biidiz + bardin) (bizda2 + b22d21)
— (bayenn + bzcay — bucrz — brzcn)? =0
(20)

Equation (20) forms the basis for the stability investi-
gations presented in the following sections.

The Case of T.E. Control Only

To simplify the study of eq. (20), consider first the
case of an activated T.E. only. In this case,

by=bu=cn=c2=dn=di2=0 (21

Substituting eq. (21) into the characteristic eq. (20),
one obtains

A2+ 20(biaday + b22d22)
—(bi2d22 — bradn)? — (b2ca — bi2ca2)? =0
(22)



Remembering that if )\, and A2 are the two roots of
eq. (22), then

A+ A2 = =2(biady + bady) (23)
and
M2 = —(bi2dxn — bndy)?
—(bxcat — bipcxy)? (24)

the following conclusions result from eq. (22):

1. Bcecause the constant element (independent of ))
is always negative (or at best equal to zero), there
will always be a positive root \; and a negative
root Az .

2. The elements c31, ¢35 do not affect the sum (A +
A2), but they do reduce the constant element, thus
implying that while they increase the value of A
they lead to a decrease in A\, by an equal amount.

3. Because for an unbalanced TE. control, b1 and
b2z are both positive (see appendix A), A\; > — )\,
if dp1 or dy; or both are negative so as to cause
(see eq. (23))

biada1 + bppdyp < 0 (25)

4. For the absolute value of A2 to be as small as
possible while increasing )| (to minimize the un-
stable root and maximize the stable one) without
changing the control unbalance, one should aim
at letting (sec eq. (24))

©21=¢c2=0or —= %
2 bxn

withdz) < 0, dyp <0 (26)
5. The optimum control law using the above crite-
ria for inertially unbalanced T.E. stability is such
that it satisfies eq. (26) above and also satisfics
the equation
d21 b2
making Ay X; = 0 (sce eq. (24))

(27)

6. Equations (26) and (27) ensure that \; > 0 (thus
1s stabilizing) while keeping A = 0 (and there-
fore, A2 does not contribute to instability). Note
that A1 in this case assumes the value

A= =2(biadyy + by dy)

or, after substituting eq. (27)

2
)\1 = — 2622(122 +2b£ 22
b2

b2
~2bydy (1 + %)
b22

Al (28)

The Case of L.E. Control Only

Following the above analysis for the case of the
T.E. control only, a similar analysis will be performed
for the case of L.E. control only. Hence, in this case,
one can write

biz2=bn=can=cp=dy=dy=0 (29)

Substituting eq. (29) into eq. (20) the following char-
acteristic equation is obtained

A+ 20(bydy; + bardi2) — (biidiz — ba1dyy)?
—(b2ien — bricn)? =0
(30)

Equation (30) is similar in form to €q. (22), and the
following similar conclusions can be drawn:

1. Because the constant element, which is indepen-
dent of , is always negative, there will always be
a positive root A1 and a negative root 2.

2. The elements ¢;; and c12 do not affect the sum
At + A2, but they do reduce the constant clement,
thus causing an increase in the value of A1 while
decreasing A, by an equal amount.

3. Because an unbalanced L.E. control yields
(shown in appendix A) positive b11 and negative
b21, the value of X will be larger than the abso-
lute value of )\, , that is A1 > =X ifd;p >0 or
if dj1 < 0 (orboth conditions), so as to cause

[b11din + bardi2] < 0O (31)

4. For the absolute of A2 to be as small as possi-
ble, while increasing Ay (to minimize the unsta-
ble root and maximize the stable one), without
changing the control unbalance, one should aim
at letting

Cll = C12 = 0 <Ol‘
din <0,di2 >0

ciz _ b2]>
cnr by

(32)



5. The optimum control law based on the above cri-
teria for inertially unbalanced L..E. control should
have gains that satisfy eq. (32) and also satisfy

the equation
din b

diz  bu

6. Equations (32) and (33) ensure that Ay > 0 (the

stabilizing root) while keeping A\, = 0. There-

fore, Ay does not contribute to instability. Note
that \; in this case assumes the valuc

(33)

A1 = =2(bndn + b21di2)
or, after substituting ¢q. (33)

b
A = =2budn ~2b21d11£
b1

b3,
—2b11d11 (1 + bT)
11

The Case of L.E.-T.E. Controls

or

A (34)

The characteristic eq. (20) includes terms associ-
ated with L.E. control only, terms associated with T.E.
control only, and also coupling terms between L.E. and
T.E. controls. If the optimum control law conditions
derived earlier for the L.E. (alone) system and T.E.
(alone) system are applied to eq. (20), they ensure that:

1. The sum of (A} + X2) > O since

(bridy + biaday + b21diz + boaday) < 0 (35)

2. All the negative quadratic terms that appear in the
constant term in eq. (20) vanish, leaving the fol-
lowing coupling terms:

4[bndiibaady + biadaibaidiz |
— 2(burdiz2 + bardn) (bizda2 + b day)

Considering egs. (26) and (32), and remembering
that b1y, b1, and by are all positive, while by,
is negative, it follows that both terms within the
square bracket are positive (they add up) and the
product terms end up being positive, thus adding
to the square bracketed term. Also, within cach
of the parentheses forming the product, the terms
add up so that the result is positive.

3. Based on conclusions (1) and (2) above, it fol-
lows that the optimum L.E. (alone) control law,
and the optimum T.E. (alone) control law, yicld
a combined L.E.-T.E. control law with positive
A1 and positive A2. Hence, the combined L.E.—
T.E. control law will always be stabilizing from
the point of view of inertial unbalance.

There remains to determine at this stage the com-
patibility between the unbalanced inertial stability re-
quirements and those required by the acrodynamic en-
crgy mcthod 1o stabilize the system as a result of acting
acrodynamic forces.

Summary of Results

The very interesting results obtained so far are re-
iterated before proceeding to deal with their compati-
bility with the acrodynamic control laws:

1. Both L.E. alone and T.E. alone mass-unbalanced
control systems always lead to inertial instabili-
tics (or ncutral stability at best), irrespective of the
control laws employed. The best control law for
these single control surface systems may reduce
these instabilities to neutrally stable oscillations.

2. The combined L.E.-T.E. control system is shown
to be much more powerful than any of its com-
prising components. With a proper control law,
the mass-unbalance terms can be made to con-
tribute to the stability of the system, irrespective
of its characteristics and its responscs.

COMPATIBILITY BETWEEN
AERODYNAMIC AND INERTIAL
CONTROL LAWS

Aerodynamic Energy Control Law

The basic acrodynamic encrgy L.E.-T.E. control
law requires the matrix [T] to assume the form

tn ti2
T =
(7] [tzl tzzJ

_ | a1 +1enn -1 1
[T} = [ a2 + 1€ J [ 1 0.7 }

(36)



where a;; terms can assume either positive or negative
values, and the e;; terms must be positive for aerody-
namic stabilization (Nissim 1977). The constant terms
in the matrix in eq. (36) were obtained in Nissim (1977)
using numerical optimization, maximizing the aerody-
namic energy eigenvalues over a whole range of sub-
sonic Mach numbers. Note that when a; = ey =
0, ¢q. (36) yields a T.E. system, and similarly, when
an = ex = 0, eq. (36) yields an L.E. system. Note
also that ratios ¢1; /t12 and ¢33 /t21 are constant. In the
following a comparison is made between the acrody-
namic control law given in eq. (36) and the inertial con-
trol law given in eq. (17), repeated here for the sake
of clarity.

c12 +id12
cxn + 1d2

¢ +1a;5)
(7= c21 + 1d2
It is possible to vary these ratios between the ¢
terms by changing the first column |—1 1T in
¢q. (36) relative tr. the second column. Such a vari-
ation may be considered if one is required to sat-
isfy (or nearly satisfy) the relations in eqgs. (24), (25),
(30), and (31). If this is done, aecrodynamic per-
formance may be somewhat degraded. Therefore,
relative changes in the first (or second) column of
eq. (36) can be made during the design stage, when
the mass unbalance detrimental effects need be over-
come. In the following, the compatibility between
eq. (36) and egs. (24), (25), (30), and (31) is studied
for the T.E. control system and for the L.E. control
systcm. The results pertaining to an L.E-~T.E. con-
trol system follow the results of the preceeding two
separate systems.

Compatibility Between Inertial and
Aerodynamic Damping for a T.E. System

Equations (26) and (27) require that

2 _dn _bxn

=20z 37
21 da b2 (37)

Eq. (36) indicates that the first equality in eq. (37) is
always satisfied, that is

¢  dn

38
1 da (38)

irrespective of the relative values between the two
columns in eq. (36). As shown in appendix A,
eq- (A-8)

2 o1

bi2
with both by, and by, being positive, for unbalanced
T.E. control surfaces. The bz /b1 ratio will be slightly
larger than 1 for completely unbalanced T.E. control
surface and can be made to tend to infinity for a stati-
cally balanced T.E. control (see eq. (A-9)). The stati-
cally balanced T.E. case is of little interest because in
this case bz = 0, and by, is very small, thus yielding
very small numerical values for X that can be ignored,
considering the structural damping of the system.

It follows from the above discussion that the value
of 0.7 in the second column may need to be increased
(relative to 1 in the first column) to a value somewhat
larger than 1. The actual value can be determined in
the design stage should such a need arise, when con-
sidering a specific numerical system. It can be readily
shown that increasing the 0.7 gain moves the single
sensor for the T.E control system further downstream
(along the chord) than the 65 percent chord point asso-
ciated with the 0.7 relative gain (Mukhopadhyay and
others, 1981).

In eq. (26) both dz; and dz; must be negative.
This requirement corresponds to e; assuming nega-
tive values, and it therefore relates to the case where
the resulting acrodynamic forces have a detrimental ef-
fect on stability. Hence, at the region of flutter, acrody-
namic and inertial dampings are not compatible. This
is a very important new result. Because flutter occurs
atrelatively low structural frequencies, a design should
aim at producing a transfer function that yields:

(39)

1. Large positive values of e2; around the flutter fre-
quency (cq. 36)

2. Negative values for ez at high frequencics

3. Value of a;; that tends to zero at high frequen-
cies (unless eqs. (26) and (27) are completcly
satisfied)



4. Value of ez, that tends to zero (with e2; being
negative) at high frequencies, because there is no
desire to control the very high frequency modes.

Compaiibility Between Inertial and
Aerodynamic Damping for an L.E. System
Equations (32) and (33) require that

cu _du _bu

ci2  diz by

Eq. (36) indicates that the first equality in eq. (40) is
always satisficd, that is

(40)

e di (41)
crz di
irrespective of the relative values between the two
columns in eq. (36). As shown in appendix A (sce for

cxample eq. (A-10)),

by
b21

for a mass-unbalanced L.E. control. As the control is
balanced, the above ratio decreases until it reaches the
value of zero for mass-balanced L.E. control. Further-
more, by is always positive (or zero when balanced),
and by; is always negative, so that bi1/ba1 is always
ncgative. From eq. (36) it can be seen that di1 /di2
(and therefore c1y /cy2 by virtue of eq. (41)) iscqual to
—1. If the L.E. control is totally unbalanced, it is pos-
siblc that the 1 in the second column of cq. (36) needs
to be decreased. If (b1 /by | < 1 (fora partially bal-
anced L.E. control), then it is possible the above value
of 1 needs to be increased. Here again, the actual value
can be determined later in the design stage, when con-
sidering a specific numerical system.

Equation (32) requires that d;; be negative and
d12 be positive. Equation (36) shows that this require-
ment is fully met when ey is positive. Hence, it can be
scen that there exists a compatibility between the acro-
dynamic damping and the incrtial damping. Hence,
the L.E. control surface transfer function should aim
to yield:

> 1 (42)

1. Positive values of eg; overa frequency range that
spans the flutter frequency and cxtends to very
high frequencics.

2. Value of aj; that tends to zero at high frequen-
cics (unless eqs. (32) and (33) arc completely
satisficd).

3. Valucofej that tends to zero (with ey being pos-
itive) at high frequencies, becausc there is no de-
sire to control very high frequency modes.

GENERALIZATION OF RESULTS
FOR A REALISTIC WING STRIP

The analysis in appendix A that yields the matrix
[B.] essentially assumes a rigid rectangular wing strip,
performing pitch—plunge oscillations. A more realistic
representation of the oscillation of a wing strip would
allow the strip to rotate about its chordwise section,
while performing the plunge motion. In addition, vari-
ations in both angle of attack and chord lengths along
the strip always exist and their effccts on the [B.] ma-
trix need to be investigated. This latter investigation
is important because the conclusions reached for con-
trol laws aimed at coping with mass-unbalanced con-
trol surfaces depend heavily on both the signs and rel-
ative sizes of the [ B,] matrix.

The analysis of such a generalized wing strip is
carried out in appendix B. The results yield the fol-
lowing [B.] matrix (sce eq. (B-12)):

- 2 _ A
[B:] = Mby M; [1 + (%) JoL + Zby!}GL] v

[ (R + 280) + (21+ 0 HzaL |

Mr [1 + (%) yoT + 2bngT} X

[(r&s + 2&r) + (27 + 0 ) 367)
where M is the mass of the wing strip including the
control surfaces (sce eq. B-10).

=
oy
where M|, and M7 are the masses of the L.E. and TE.

control surfaces, respectively. The parameters hy, &y,
and b, arc defined by

(43)

Q
&

hy = = const

dy



Sa

Gty = ———— = const
T 3(y/br)
by = 5% = const

where bg denotes the strip’s reference semichord
length. Suffix g rclates to the reference section (see
figure in appendix B), and hp, yL. and ygr denote

hg = hp/bg
YoL = YL /bR
yot = yor/br

The parameters ygr, and ygr denote the spanwise dis-
tances from the reference section of the center of grav-
ity of the L.E. and T.E. control surfaces, respectively.
It should be noted that the effect of the generalized
strip on the [B,] matrix can be large since h,/hg and
&,/ g can assume large numerical values, with either
positive or negative signs. It appears, therefore, that
no single control law can stabilize the gencralized strip
unless the reference chord is chosen such that
goL = yer =0 (44)
When eq. (44) is satisfied, the expression for { Bl
reduces to the simple 2-D model case except for
the mass ratio terms. Therefore, all the conclu-
sions reached for the 2-D pitch-plunge strip ap-
ply to the generalized strip, provided eq. (44) is
satisfied.  Hence, we reach the following very
important conclusions:

1. The spanwise reference section of an active strip
should be chosen such that it passes through the
center of gravity of the control surface.

2. IfbothL.E. and T.E. control surfaces are activated
along the same strip, these two control surfaces
should be aligned so that their centers of gravity
lic along the same spanwise rcference section.

3. If a similar analysis is performed for the aecro-
dynamic forces, based on 2-D aerodynamics, the
reference section should pass through the center
of area of the generalized strip.

4. For best control of both inertial and acrody-
namic destabilizing forces, the inertial refer-
ence section described in item (2) above should
be made to pass through the center of area
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of the wing mentioned in (3) above. Uni-
form wing and control surfaces do yield such
a congruency.

NUMERICAL EXAMPLE
AND RESULTS

A mathematical model of the YF-17 aircraft
(Fig. 1) is used to test some of the results obtained in
the present work. The available mathematical model
allows for two activated control surfaces: onc leading-
edge control and one trailing-edge control. (Hwang
and others, 1978, gives more details relating to the
mathematical model.) However, no data is available
regarding the alignment of the center of gravity of L.E.
and T.E. controls, and therefore, deviations from some
of the conclusions for the 2-D strip should be expected.
To keep the focus of this work on the effects of mass
unbalance on the stability of an active control sys-
tem, no flutter calculations are made, and the system
is tested for zero dynamic pressure. This means, in
essence, that eq. (1) is solved for the case where

[AR+iA1] =Oand{F}=0

The resulting equation reduces, in effect, to a vibration
problem involving elastic and inertia forces only, with
inertial coupling terms between activated control sur-
faces and structural degrees of freedom. This equation
can be brought to the canonical form of an eigenvalue
problem, the solution of which yiclds the state of sta-
bility of the system. All the cigenvalues presented in
the attached tables relate to the solution of eq. (1) un-
der the aforementioned conditions. Hence, a negative
real part of an eigenvalue means a stable structural de-
gree of freedom, and a positive real part of an eigen-
value will mean an unstable structural degree of free-
dom. These eigenvalues should not be confused with
the energy eigenvalues discussed earlier in this work.
Table 1 presents the eigenvalues for the 10 elastic
modes, both for the open-loop case and the closed-loop
case, using real transfer functions only (that is, using
real values for t;;). It can be seen that a single con-
trol surface is activated each time, and that the effect
of this activation on the stability of the system is abso-
lutely negligible. Table 2 presents similar results per-
taining to the simultaneous activation of both L.E. and
T.E. control surfaces. Hence, it can be concluded that
for the specific example in hand, the real parts of the



transfer function have a negligible effect on the stabil-
ity of the system. Table 3 presents results pertaining to
the complex transfer function

(wn) = _4g% N Wn
QWn) = 21 45+ 4 (s+ wp)

(45)

where s denotes the Laplace variable. This transfer
{unction was chosen to simulate the imaginary compo-
nent of t;; because the computer program available for
the solution of eq. (1) is constrained to transfer func-
tions where the order of the polynomial in s of the nu-
merator is less or equal to the order of the polynomial
in s in the denominator. The value of w, was chosen
to equal 50 to ensure some gain at high frequencies.
It should be noted that a(w,) introduces the positive
values of e;. Similarly, —a(w,) introduces the nega-
tive values of e;;. Contributions of the real part of the
transfer function are expected to be small, following
the results presented in Tables 1 and 2. On the basis of
the forcgoing analysis, it is expected that the T.E. with
—a(50) and the L.E. with a(50) will cach yield the
most stable system in relative terms, as far as mass-
unbalance effects are concemed. Table 3 confirms
the aforementioned expectations. Table 4 presents re-
sults for a combined L.E.-T.E. active systcm using the
a(50) transfer function. Here again, it can be scen
that the most stable system is the onc obtained using
11 = a(50) and = —a(50), as predicted herein,
where
tii = Qi + €

At this point it should be stressed, once again, that the
results of the present analysis, based on a general 2-D
system, were applied to a YF-17 mathematical model
with no knowledge of the degree of mass unbalance,
control surfaces’ center of gravity locations, or span-
wisc locations of the control surface centers of gravity.
Nevertheless, the correlation between analysis and re-
sults is indeed impressive.

CONCLUSIONS

The study of the effects of mass-unbalanced con-
trol surfaces on the stability of the closed-loop system
indicates that:

1. A single L.E. or a single T.E. mass-unbalanced
control surface may lead to instability (or neu-
tral stability) arising from inertial forces, irre-

spective of the control law used, becausc not
all energy cigenvalues can be made 10 assume
positive values.

_ The most efficient single L.E. or T.E. mass-

unbalanced control surface can be made to yicld
a zero energy eigenvalue in addition to a positive
eigenvalue, thus indicating the possibility of ncu-
tral stability (or an uncontrollable mode).

. A combined LE.-T.E. mass-unbalanced control

system is shown to permit stabilization, irrespec-
tive of the mode of oscillation of the wing.

_Inecrtial and aerodynamic control laws can be

made compatible for an L.E. control system. In-
compatibility exists, however, between aerody-
namic and inertial control laws for a T.E. control
system.

. For mass-unbalanced stabilization to be insensi-

tive to modc of oscillation for a continuous sys-
tem like a wing surface, the sensor should be
placed along a streamwise section that passcs
through the spanwise center of gravity of the con-
trol surface.

_ When two control surfaces are activated on one

strip of the wing (like an L.E-TE. control sys-
tem), the two control surfaces should be aligned
so their spanwise centers of gravity lie on the
same streamwise section, with the sensors placed
along this section.

_ Results obtained herein suggest that the best

geometrical arrangement for flutter suppression
should aim at aligning the control surfaces’ span-
wise centers of gravity (section (6) above) with
the spanwise centroid of the wing strip, where the
control surfaces are located.

. Numerical results relating to a YF-17 mathemat-

ical model appecar to agree with the theoretical
predictions based on thc analysis made in the
present work.

. Results obtained herein can be used to stabilize

elastic modes of large space structurcs by means
of incertial forces.

11



APPENDIX A
DERIVATION OF CONTROL SURFACE CROSS-INERTIA TERMS

2b

Figure A1. AL.E-T.E. Control System

The following derivation of control surface cross inertia terms is performed for a general configuration of a
L.E.-TE. system. Numerical estimates, however, will relate to 20 percent chord control surfaces.

The kinctic energy of the system described in the above sketch is given by:
1 r= . . .o b rar . .
KE. = 5/ dmlh+ (z+04b)a+ (z;, —-z)B]° + 5/ dm[h+ (z+04b) &)
—-b Ty
1 b . .
+5/ dmlh+ (z+0.4b) &+ (7 — 27)6)2 (A-1)
IT

where 7 and zp (shown in the figure) denote the = coordinates of the L.E. and T.E. hinge lines, respectively. The
kinetic energy coupling terms with control surface deflections are given by

(K.E), = /ZL dm{(z+0.45)(z;, — 2)&B+ (21, — 7) hf]

b
+/ dm[(z+0.4b)(z — 2r)ab + (z — z7) hé]
I

or

(K.EE), = mpzgL hﬁ+ mrxcr hé
+ [ dmz—ay+ o+ 0.4b)(zp, — 2)aB
—b

b
+/ dm(z — 27 + 270 + 0.4b) (2 — 27) &b
Ir

where my, is the mass of the L.E. control surface, mr is the mass of the T.E. control surface, zg is the distance
from the hinge line of the center of gravity of the L.E. control, positive if upstream of the hinge line, and zgr is the
distance from the hinge line of the center of gravity of the T.E. control, positive if downstream of the hinge line.

The above cquation can be integrated to yield the following form:

h . ST o b
(K.E), = mL‘"’%b‘Z B+ me%bzgm [Is + (z7 + 0.4 b) mpzgr] b

+[—Ig+ (21, + 0.40)ymyzcL a8 (A-2)



where
b 2
I5=/ (z —z7)"dm
I;L
Iﬂ=/ (:z:—a:[,)zdm
—b

and I g and [ arc the moment of inertia, about the control surface hinge line of the L.E. and T.E. controls, respectively.

Equation (A-2) can further be reduced to the following form:

h . h .

(K.E), = mpicLb? 38+ mraor bzgs + mpb? [(7h s + Bap) + (Zr + 0D TgT]ds
b — (kg + 750) + (35 + 0.4 ZoL]aB (A-3)
where 7gs and G g are the normalized radii of gyration (normalized with respect to the semichord length b), of
the T.E. and L.E. control surfaces, respectively, about their respective control surface center of gravity points. The

bar above the parameters IZGL, TGT» ZL» and 7 indicates that the paramcters are normalized with respect to the
semichord length b.

The expression for the kinctic energy in cq. (A-3) is now differentiated as required by Lagrange’s equations, to
obtain the inertia terms, that is

d (AKE))_ _ 2p s
7 <———a(h/b) ) =mpIcLb B+ mrigrb” o]
d /O(K.E), ) ) ) R
= <—(%—)—> = mrb? [(rés +357) + (37 + 0.4)ch}8

+ mpb? {_(féﬂ + 25 )+ (3, +0.4) :‘::GL]B (A-4)

Equation (A-4) yields the following coupling mass matrix (with the h/b and o degrees of {frecedom):

(B.] = mb? 3Gl mrb? TGt
¢ mpb? [ (7% g+ B5L) + (2L + 0.4 ZaLl mrb*[(7& 5+ 251) + (2r + 0.4) ZoT]

which can be reduced to

B.] = mb? mLIGL MTIGT )
[Bc] =m [mL[—('FéB+:EéL)+(§;L+O.4)EEGL] il (725 + 3%7) + (27 + 0. GT] (A-5)

where m is the mass of the two-dimensional section, my, and mr are given by

_ my,
myp = —
m
i = - (A-6)
Note: It should be noted that if [ B.] is denoted by
by b
[B] = [ o } (A7)
21 022
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then cq. (A-5) indicates that b, and by, are always positive for mass unbalanced L.E. and T.E. control surfaces. For
a 20 percent chord T.E. control, Z1 = 0.6 thus yielding positive values for by, (which will be positive for all T.E.
control surfaces of sizes less than 70 percent chord—that is for zr > —0.4-—namely for all practical cases). Note
also that by, /b5 will always be larger than 1, that is

b
2 51 (A-8)
b1z

For a 20 percent L.E. control surface 7 L = —0.6, thus yielding a negative value for by; (which will remain
negative for L.E. control surfaces of sizes less than 30 percent chord—that is for z;, < —0 .4 —namely again—for
all practical cases).

Numerical Example

To get some insight into the different values of the bi; terms, the following example is presented. Consider
20 percent control surfaces (ie,z2,=-0.6,2r=0.6) yielding the following values for [B.], (see eq. (A-5)):

[B.] = mb? mLIGL MTIGT
¢ ML —(7& 5+ 25) —0.2%6L] mr((7hs + 337) + TT)
Note that in this case
=2 =2
b2 _ ., TGt 26t (A-9)
b2 TGT
and
b -
1 _ IGL (A-10)

by  —0.2 IGL — 'Féﬁ - :—E(Z}L
Assume also that the airfoil and control surfaces can be approximated to the homogeneous cross section shown below.

20-percent trailing
edge controI]

/20-percent leading

edge control o0

Figure A2. Schematic Approximation of L.E~TE. System
Under these conditions, it can be readily shown that

my =0.22 mr=0.11
zgL =0.2 zZgt = 0.133
F(z;ﬁ = 0.0133 'Féé = 0.00889

14



Hence,

or

[ B.] = mb?

022 x0.2
0.22[-(0.0133+0.04) - 0.2 x 0.2]

[B.] = mb? 0.044

0.11 x0.133
0.11[0.00889 + 0.0178 + 0.133]

0.01463

—0.0205 0.01757
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APPENDIX B
DERIVATION OF CROSS-INERTIA TERMS FOR A GENERALIZED WING
STRIP WITH CONTROL SURFACES

Reference
section \
Lv

/7

[

Generalized
wing strip

y=a1 l—3 Y y=82 >y

» >

8031

Figure B1. Generalized wing strip

Consider the wing strip shown above. An attempt will now be made to generalize the results obtained in ap-
pendix A to nonrectangular wing strips which exhibit spanwise deformation in twist, together with rotation (about a
chordwise axis) which results from the bending of the wing. This implies that the plunge h at the 30 percent chord
location, the local angle of attack o and the local semichord length b along the strip of the wing can be allowed to
vary along the span of the strip. It will now be assumed the above variation to be linear and having small derivatives
(with respect to the spanwise coordinate y). That is, let

h=hg+ hyy
o= ap+ ayy
b=bg+byy; by << 1 (B-1)

where

h
hy = —g—y = const along the strip

ay = g% = const along the strip

by = % = const along the strip (B-2)

and where suffix g relates to the reference section indicated in the sketch above.

Equation (A-3) can bc made to be applicable to an infinitesimal strip. Assume that mj, and mr in eq. (A-3)
now dcnote local masses per unit span of the L.E. and T.E. control surfaces, respectively. Hence, the infinitesimal
strip masses will be given by mpdy and mrdy, and cq. (A-3) will now assume the following form (for the spanwisc
integration of the kinctic energy), that is

16



az P a2 .
(KE.), = / my(y)ZoL bhidy + / mr(y) aer bhédy
al al

az .
+ / mr(9) B[ (735 + 321) + (21 + 0.4) Zo7 | dbdy
ay

az

o my(bP (7 + 23,
ay

+(z1, + 0.4) 25 168dy (B-3)

Assumec also that the local control surfaces chords, relative to the wing chord are independent of the spanwise
coordinate y, and that the control surface satisfies the following relations (sec appendix A)

Iy, = const
ZT = const
IGL = const
IGT = const
TG§ = const
rGg = const (B-4)

Substituting eq. (B-1) into cq. (B-3) yiclds

(K.E.), = [ [ a9 (b + b,0) i+ hy) dy} ZoLf+ [ [ mrti) b+ by g+ hywdy} Forb

az
+ [ mr(y)(bg + byy)? (&g + d:yy)dy} [(;(2;5 + Z57) + (T + 0.4):'r(;1'J 8

a

| [ mao r+ b ans a0y [~ ) + (214 09301 (B-5)

1

Expanding ¢q. (B-5) and ignoring second order terms in by, one obtains
a2 . . . . .
(KE.), = [/ mi(y)(brhg + brhyy + byhgy + byhyy )dyJ IoLp
a1

az . , . ) )
+ [ m7{y)(bghp + thyy+ byhpy + byhyyz)dyJiGT5

ar

a
+ [ mr(y) (53 + 2bgbyy) (G + Gyy) czy}

1

X [(7§s+ 357) + (27 + 0 4) Zgr )6

az
+ [ m(y) (bF + 2bgbyy) (g + dzyy)dy}

1

X [—(F&p+ 350) + (2, + 0 4) 36118
which can be reduced 1o

(KE). = [Mpbrhp + MLthnyL + MpbyycLhg + MLTﬁLbyhy]iGL'B
+ [ Mpbphg + MTthnyT + Mrbyyerhp + MTTSTbyhy]iGTS
+ [ Mrblén + Mrbhayyor + 2 Mrbgbydipyt + 2 Mrbgbydyriy]
X (7B + 221) + (2 + 0 4) 307 16 + [ Mbhag + Mybha,yar + 2 M1brbydrycL + 2 Mybgbydyry, |

X [=(7 g+ TEL) + (31,+ 0.9)361.13 (B-6)
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where M, and M7 denote the masses of the L.E. and T.E. control surfaces, respectively, and Ty, TyT denote the
radii of inertia about the reference streamwise section of the L.E. and T.E. control surfaces, respectively. Without
affecting the generality of the results, assume that a relationship exists between hy and hp, ay and ap (like the
relationship existing during a modal oscillation), such that

hy_.hy
ilR hR
] (B-7)
aR aR

so that cq. (B-6) can be written in the form
h b ron \2 [ Ry \ 1. hg\ -
KE). = 211 _V_) <_ﬂ> <_9_> (_ﬂ_ } pieid
(K.E.), MLbR{ +(hn yGL + - yGL + by b Py ZGL b B
o (o (2o 35 () i)
+MTbR[l+(hR>yGT+(bR vor + b\ ) (7 ))%07 8 )°

R
+ Mbe{[l + (—Ofl> yGT + 2 (f’i> yeT + 2 brby (9&)
QR bR xR

x [(7%5 +75p) + (Er+ 0.4):‘cGT] agd

2
+ MLb}{[l + <ﬂ> VoL + 2 (b—”> vGL + 2brby <ﬂ> (1&) }
oR br OR br

x [~(7&p+ ZoL) + (T 0.4)%oL| @R (B-8)

2 2
(TLL> <<1; (TiT—) << 1
br br
2 2
one can neglect the second order terms in eq. (B-8) involving b, (fb"}—;‘-) and by, (a%) . Differentiating eq. (B-8), as
specified by Lagrange’s equations (see appendix A), one obtains the following [ B.] matrix

Assuming

ML[l + (-Ef;) yoL + (gbf;) !IGL] ZTGL

i+ (22 (v < | @

[('7%,5 + EZGT) + (z7+ 0.4):-17(;'1“]

—— e f— ———

[—('F%w +zg) + (T + 0-4)5_5(}L}

where M is the mass of the strip and

L

_ M

M
- M
Mr = __MT (B-10)

The element inside the square matrix can be nondimensionalized by normalizing with respect to the reference chord,
in the following manner:

18



Lct

_ _ Oa
= 3(y/om)
hg = hr/br
yoL = yL /bR
yor = yor /bR (B-11)

Then eq. (B-9) can be written in the following form:

(B-12)

[(7%5+ 2&7) + (B + 0. D Zr)
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TABLE 1. Variation With Single Control Mass Unbalance of
Complex Eigenvalues A Using Real Transfer Function

R10 R11 RI12 R13 R14
MReal Mmaginary AReal Amaginary *Real Mmaginary AReal Mmaginary AReal Mmaginary
—0.1563E~12  0.3893E+03  —04707TE—12  0.3884E+03 0.1066E—12  03906E+03  _0.2132E—13  03899E+03  —030SSE—12  0.3888E+03
~0.1421E-12  03168E+03  —02842E-13  0.3094E+03 01847E—-12  0.3249E+03  —0.5365E—12  03213E+03 07105E-13  0.3129E+03
~0.1137E~12  0.2671E+03  —03197E—13  02668E+03 04263E—13  02673E+03 03104B—12  02691E+03  —09948E—13  0.2649E+03
—03126E-12  02277E+03  —0.1616E—12  02277E+03 0.11T2E~12  02277E+03 02034E—12  02278E+03 02558E—12  02276F+03
~021326-12  0.1613E+03  —0.1279B—12  0.1613E+03 05258E—12  0.1613E+03 0.2842E—-13  OI613E+03  ~0.5684E-13  0.1613E+03
0.1705E~12  0.1203E+03 0.1030E—12  0.1203E+03 02416E—12  0.1203E+03  —0d4832E—12  0.1203E+03  —0.16M4E—12  0.1203E+03
—03411E-12  09351E+02 O.1I51E-11  09319E+@2 03439E-11  0.9384E+02 03979E—12  093S7E+02  -0.6928E—12  0.9345E+02
0.9948E—13  0.8416E+02 0126SE—11  08404E+02  —0S5471E-12  08427E+02  —03268E—11  0.8419E+02 02721E-11  08413E+02
0.1705E-12  0.4515E+02 04062E—11  0.4514E+(2 0S826E~12  0ASIGE+02  —04952E—~11  04517E+02 0.6297E-12  04513E+02
02842E-13  0.2908E+02  —05912E—11  02903E+02  —04743E-11  02913E+(2  —08630E—11  02909E+02 _09603E—11  O0.2907E+02
R10—-Open Loap

RIL-TE. Only; 57 = 4
RIZTE. Only; 53 = —4
RI3LE. Only; f1) = 4
RI4-LE. Only; f1] = —4
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TABLE 2. Variation With L.E.~T.E. Mass Unbalance of
Complex Eigenvalues ) Using Real Transfer Function

R15 R16 R17 R18
AReal Mmaginary AReal Mmaginary ARea) Mmaginary AReal 2 Imaginary
0.1492E-12 0.3889E+03 —02700E—12 0.3880E+ 03 —0.2842E-13 0.3914E+03 0.5542E—~12 0.3899E+03
—~04690E—12 0.3140E+03 ~04263E—13 0.3055E+03 0.7816E—12 0.3292E+03 —0.5087E~11 0.3211E+03
~0.4050E—12 0.2687E+03 —0.1137E~12 02648E+ 03 0.2842E—-13 0.2695E+03 ~0.6928E—12 02650E+ 03
0.3979E-12 0.2278E+03 0.6182E—12 0.2277E+03 —0.7105E-13 0.2277E+03 —02380E~12 02276E+03
—02387E-11 0.1613E+03 —0.8100E~12 0.1613E+ 03 0.7319E-12 0.1613E+03 ~0.3979E~12 0.1613E+03
—0.1279E-12 0.1203E+03 0.8527E—13 0.1203E+03 0.1243E~11 0.1203E+03 ~05116E-12 0.1203E+03
~02984E—12 0.9325E+02 —02540E—-12 0.9313E+ 02 ~0.4849E 12 0.93¢1E+(2 0.3126E-12 0.9377E+ (2
0.1580E-10 0.8407E+02 0.5329E—-11 0.8401E+ 2 —0.1023B-10 0.B430E+ (2 02323E-10 0.8425E+ (2
~0.1696E~11 0.4517E+02 04245E—11 04512E+ 02 ~0.3924E—-12 0.4518E+02 0.5677E—11 0.4513E+ (2
~02756E~10 0.2904E+02 0.3519E-11 02902E+02 —0.1802E-10 O 2914E+ 02 ~0.6210B~-11 02912E+02
RISLE-TE;f)) =4,i5 =4
RIGCLE-TE;f)] = 4,3, =4
RIZ-LE-TE;f)| =4,fy = —4
RISLE-TE.f)) = —4,ty; = -4
TABLE 3. Variation With Sin gle Control Mass Unbalance of
Complex Eigenvalues ) Using Complex Transfer Function
R50 Rs1 R52 R53
AReal ‘\l.magimry AReal A[rmginary AReal A Imaginary AReal xImnp‘mu'y
0.1333E+ 00 0.3893E+03 —0.1318E+00 0.3893E+03 —0.6984E-01 0.3893E+03 0.7040E—01 0.3893E+03
0.1190E+ 01 0.3170E+ 03 —0.1188E+ 01 0.3166E+03 —0.6363E+ 00 0.1167E+03 0.6400E+ 00 0.3169E+03
0.3996E—u1 02671E+03 —0.4062E—01 02671E+03 —0.3842E+ 00 02670E+03 0.3308E+ 00 02672E+03
~0.9477E-02 02277E+03 0.9560E— 2 02277E+03 —0.1189E—01 02277E+03 0.1173E-01 02277E+03
0.2788E—02 0.1613E+ 03 —02789E- 02 0.1613E+03 —0.8265E—02 0.1613E+03 0.8219E-02 0.1613E+03
—0.1761E--03 0.1203E+03 0.1741E—-03 0.1203E+ 03 0.1721E-03 0.1203E+03 —0.1718E-03 0.1203E+03
0.1332E+ 00 0.9359E+02 ~0.1313E+00 0.9343E+ (2 —0.2617E-01 0.9349E+02 0.2619E—01 0.9353E+02
0.4911E~01 0.8419E+ 2 ~0.5072E-01 0.8413E+®2 —0.1138E-01 0.8415E+02 0.1129E-01 0.8417E+02
0.276E—02 04515E+02 —02266E-2 0.4515E+ (2 —0.9934E—02 04514E+02 0.9931E—-2 0.4516E+02
0.1686E—01 0.2912E+ (2 —0.1678E—0]1 02904E+02 —0.2896E-02 02907E+02 0.2888E—02 0.2909E+ 02
RS0-TE. Only, i35 = a(50)
R51-TE. Only; 522 = —a(50)
RS52-L.E. Only; ] = a(50)
RS3-LE. Only; {); = ~a(50)
o{w) is defined in cq. (45)
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TABLE 4. Variation With L.E.-T.E. Mass Unbalance of
Complex Eigenvalues Using Complex Transfer Function

RSS RS6 RS7
AResl Mmaginary AReat Mmaginary MReal Mmaginary MReal Mmaginary

_02010E+00  0.3893E+03 02042E+00 03893E+03 0.6289E-01  03893E+03  —06206E—01  03893E+03
_0.1828E+01  0.3165E+03 0.1827E+01 03171E+ 03 0S563E+00  O3169E+03  —0S5454E+00  03167E+03
_04229E+00  02670E+03 04226E+00 026T2E+03  —03462E+00  0.2670E+03 0.3385E+00  02672E+03
—02363E-02  02277E+03 02213602 02277E+03  —02133E-01  0.2277E+03 02133E-01  022TIE+03
_0.01026-01  0.1613E+03 0.1104E—01 0.1613E+03  —0.5514E—02  0.1613E+03 05393602  0.1613E+03

0.3482E—03  0.12036+03 ~0.3460E—03 01203E+03  —0.5942E—05  0.1203E+03 03435E-06  0.1203E+03
_0.1568E+00  0.9342B+Q2 0.1601E+00 09360+ 02 0.1064E+00  09357E+02  —0.1058E+00  0934SE+02
_0.6237E—01  08412E+02 0.6014E—01 0.8420E+02 03798E-01  O.8419E+02  —03918E-01  0B8413E+02
_0.1222E-01  04S13E+02 0.1219E—01 04517E+@  —07639E—02  0.4514E+02 07684E-02  04516E+02
_0.1964E—0L  02903E+02 0.1978E—01 02913+ 02 01393E-01  O2911E+02  —0.1393E-01  02905E+02
RS4-LE.-TE.fy) = o(50),ipp = ~a(50)
RS5-LE.~TE,;fj) = —a(50),t2 = a(50)
R56-L.E.-TB. ) = a(50),t33 = o(50)

RS7T-LE.-TE.#}; = —o(50),t2 = —a(50)
o{w) is defined ineq. (45)
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