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Abstract

We propose a multidomain spectral collocation scheme for the approximation of
the two-dimensional Stokes problem. We show that the discrete velocity vector field
is exactly divergence-free and we prove error estimates both for the velocity and the

pressure.
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Introduction.

Domain decomposition methods for the approximation of partial differential
equations are based on the partition of the physical domain into subdomains. These
techniques allow one to decompose the problem into a collection of problems of smaller
size, defined on the subdomains. By using proper interface conditions the overall ef-
ficiency of the algorithm is then improved.

If spectral schemes are considered domain decomposition methods may also be
used to handle problems defined on plurirectangular domains. Actually, spectral
methods are naturally defined only on rectangular domains (see e.g. [13]). If a
problem on a plurirectangle is considered then it is possible to decompose such a
domain in rectangles and employ spectral schemes on these subdomains. For the
analysis of spectral multidomain methods for the Helmholtz equation we refer to
(7],(9],[11],[12],{16],{18],{19]. General considerations on domain decomposition in the
framework of spectral methods can be found in (8, Ch.13].

In this paper we consider the Stokes problem in a plurirectangular domain with
homogeneous Dirichlet boundary conditions. We analyze a scheme obtained from a
generalization of the spectral collocation method introduced in [6] and [15] for the
case of a monodomain approximation. An interesting feature of the numerical scheme
is that, for any value of the discretization parameter, the approximated velocity field
is exactly divergence-free. This is an important property in itself because it ensures
that, even if a small number of degrees of freedom is used, the continuity equation
is solved exactly. Furthmore, if the Stokes solver is used at each step of a time
discretization of the full Navier-Stokes equation, then this property makes the time-
algorithm more stable.

Our main interest lies in the analysis of the discrete problem and in the proof of
error estimates both for the velocity and the pressure. The number of subdomains is
considered fixed and convergence is achieved when the degree of the solution (which
is a polynomial in each subdomain) tends to infinity. Iterative methods for solving
the discrete problem are under investigation and some related numerical experiments
are being conducted.

A multidomain scheme for the approximation of the Stokes problem can be found
in [16] where the "Spectral Element” method is presented. The main difference be-
tween that method and the one we analyze here lies in the choice of the discrete
pressure space and in the quadrature formulae which are employed. Domain de-
composition for solving the Stokes problem in the framework of the Finite Element
method is treated e.g. in [17] and [14].

The paper is organized as follows. In section one we introduce the continuous
Stokes problem. A first version of the discrete problem is then formulated in a
variational form and interpreted in a collocation one. Throughout the section we
assume, for the sake of simplicity, that the physical domain is a rectangle partitioned
in aligned subrectangles. We show that the discrete velocity is exactly divergence-free
and we state an inf-sup condition which garantees compatibility between the velocity
space and the pressure space (see [2]). In section two we give a new formulation of
the discrete problem, which is more appropiate for the computation of the pressure.



Using results from the previous section, we prove convergence results both for the
velocity and the pressure. In section three we consider the case of a plurirectangular
domain and we extend the results of the previous sections. Finally an appendix is
devoted to the proof of the inf-sup condition stated in section one. '

Notation.

In the following M is a fixed positive integer and 0 is a plurirectangle partitioned
in rectangles 1;, ¢ = 1,..., M. Any quantity defined in {); is identified by a superscript
index 3. For instance if v is a function defined on 1 then the restriction of v to
0); is denoted by v*. We shall use the classical Sobolev spaces H*(1), H*(f),
t=1,..,M, s € R (see e.g. [1]). The norms of these spaces will be denoted by
| - lls and || - ||s,s Tespectively. -

For any positive integer N we denote by Py ((;) the space of the restrictions to
1; of the polynomials of degree less or equal to N with respect to each variable. For
any integer 1, 1 < i < M, let E%, be the set of the (N + 1)? nodes related to the
Legendre Gauss Lobatto quadrature formula in ;. The points of Z%, are denoted by
(z5,9}), 1 < k,I £ N and the related quadrature formula is

/; v(z,y)dzdy = Z Z”(xkaw wiw}, (0.1)
k=0 (=0

where w} and w} are positive weights (see e.g. [10]). We recall that if v € Poy— (1)
then the quadrature formula (0.1) is exact. For any v,w € C°(f};) we set

N N , : e
(viw)lns = Z Zv(z}c,y})w,‘cw;, 1=1,...,. M. (0.2)

k=01=0

This bilinear form is an inner product on Py ({l;), moreover we have (see [8]):

Cillv]los < Hv”N, < Callvllos Vv e Py ), i=1,..,M, (0.3)

where C; and C; are positive comstants independent of N and || - || v, is the norm
associated to (0.2). For any v,w € C°({1) we define

M

((v,w))n = Z(v",wi)N,i- | (0.4)

i=1

This bilinear form is an inner product on H PN((—),-). Denoting by || - ||» the
associated norm, we have : R

- |
Cillvllo < lvllw < Callvllo W € ] Pw(fh), (0.5)

i=1
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where C; and C, are positive constants independent of N, M and of the measure of
each subdomain. If v and w are vector valued functions we keep the same notation
for the inner product and the norm induced by (0.2) and (0.4). Note that the form
((-,+))w is an approximation of the L2—inner product denoted by (:,").

Given an integer {, 1 <t < M, and a point P = (z8,9}) € 2% the characteristic
polynomial associated to P is the element of Py (Q;) such that

1 .

1 ) wiwy in P

Xp=9y.*"' . i (0.6)
0 in the other points of Ej.

Finally if {}; is a rectangle given by [zi-1,Z:] X [¥i—1,:] we define, for any n € N:

Li(z) = La
Li(y) = Lo (2 tizmti

2Z—%{_1—%;
Ty—Zi-1

(0.7)

where L, () is the Legendre polynomial of degree n defined in [-1,1], (see e.g. {10]).
We also let C denote a positive constant. The value of C shall always be independent
of the discretization parameter N.



The continuous and the discrete problems.

In this section we consider the case of a rectangle () partitioned in aligned rect-
angle ;, + = 1,..., M, as in the figure 1.1. The interfaces between subdomains are
denoted by I';, 1=1,....M —-1. ' '

by by b, By Bry :
n n n E
) A P R IO P
— e
b} 3 22 am-| 3

figure.1.1 Decomposition with aligned subdomains.

Let us consider the Stokes equations:
~Au+Vp=f inQ

V:iu=0 inQ , (1.1)
=0 onofl.

As usual u and p denote the velocity and the pressure of an incompressible fluid,
the kinematic viscosity has been normalized to one and f represents a source term.
Supposing f € (L?(12))? it is well known that problem (1.1) has a unique solution in
(H%(0))? x H'(N)/R and that its variational formulation is the following (see e.g.

[21]).
Find u € (H(0))? and p € L?(01)/R such that

(TR

(Vu, V) = (5, V-v) = (£,v) Vv e (H}(Q)? s
(V-u,g) =0 Vg€ L2(Q)/R.. '

We now define a multidomain spectral approximation of this problem. The ve-
locity space (H{(€1))? is approximated by its finite dimensional subspace Vyy defined
as follows: -

T W g e M e Wl

Vi = {v € (C°M)*: v e (Py(W)), vV =0ondnNan;, i= 1,...,M}. (1.2)

Denoting by My the discrete pressure space (which is defined below) and recalling
the definition (0.4), we consider the following approximation of problem (1.2).
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Find uy € Vy and py € My such that

(Vuy,Vva))n — ((en, V-vy))y = ((,va))y  VVN EVN »
1.4

((V'uN)qN))N=0 Y gn € My.

Here we have supposed that f € (C°({1))2. We require that My is a subspace of
H;Iix Px(£3;) such that problem (1.4) is well posed. Clearly My must not contain
any “spurious mode” of the pressure, i.e. any nonvanishing element of the space

M
Inm={q€ HPN(ﬁ:‘): (¢, V-v))y =0 VveVy}

=1

In the following ?pr position, which is proved in the appendix, we precise which
are the elements of Zy ps. Let us first remark that, due to the geometry of (1, the
polynomials L (y), defined in (0.6), do not depend on i; hence the index ¢ will be
omitted.

Proposition 1.1. The space Zy,u is a linear subspace of Hf—u Py (©);) whose
dimension is 4M + 4. A basis of Zy s is given by the following elements.

(xL,50,450), (Xis10;-»0) (1.6)

0,..,0,x2), (0,...,0,xs%,) (1.7)

(0, ..., 0, X5, —x5F1,0,...,0), (0,...,0,x,,—X47 1,0, ...,0) fori =1,..,M -1 (1.8)
1,1,..,1), (Ln(¥),Ln(¥)s Ln(¥)) (1.9)

(o, ...,0, L (2),0,...,0), (0,...,0,L%(z)Ln(v),0,..,0) fori=1,..,M. (1.10)
|

We shall define the space My so that My @ Zy.m = [[;o; Pn({k:). A possible
choice is

M
My = {q e [[Bv@): ((er))n =0 Vvre ZN‘M}. (1.11)
i=1

Using (0.2)(0.4) and (1.6)-(1.10) it is readly seen that My can be written as follows:

M
My ={<1 € [ Pv(8:) : ¢*(ao) = ¢' (b0) = ¢ (an) = ¢¥(bar) =0, (1.12)
=1 ' '
¢ (%) = ¢(a), ¢(6:) = ¢ (h), i=1,.,M -1,
M v M « .
Y @ )ni =0, D _(¢", Ly (¥))wsi =0,
=1 =1

(¢, Liy (=) wi = 0, (¢, Liv (2) L (0))wi = 0, §=1,.., M }.
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Theorem 1.1. Problem (1.4) has a unique solution.

Proof. If f = O then choosing vy = uy and ¢y = py in (1.4) we obtain
((Vuy,Vuy))nx = 0. From (1.3) and the Poincaré inequality this gives uy = 0.
From the proposition 1.1 we also deduce py = 0 hence the theorem is proved. |

For the couple of spaces (Vy,My) the followmg “inf-sup” condition holds (see
the appendix for the proof).

Theorem 1.2. There exists a positive constant C independent of N such that

. ((qNsv 'VN))N c
inf su D> — 1.13
anEMN v,,eg,, lavliv |Vvmlly = N (113)

Remark 1.2. Note that the right hand side of (1.13) depends on the discretization
parameter N. This estimate is optim al, actually an upper bound for the left hand
side of (1.13) is C1/N, where C/ is a positive constant independent of N. For a
detailed discussion on this subject we refer to [20]. ]

Proposstion 1.2. f vy € Vy then V. vy € My.

Proof. Since vy =0 on 90 we have V.-v =0 at ag, by, arr,and bps. Moreover
vi=v*lonT;fori=1,..,M—1, hence V-vi(a;) = V-v**1(a;;) and V-v*(;) =
V - vi*i(b;), for ¢ = 1,..,M — 1. Recalling (0.2) and the fact that the Legendre
Gauss Lobatto formula is exact for polynomials of degree 2N — 1, we have, from the

divergence theorem
M v
2 (V-vi)n =0,

=1
moreover
M - M »
Y V-V Iy = (0 In(W)wa=
=1 =1

M N a'. - »
=YY intw) [ vhalmudn =0

i=1 {=0 Gi-1

Using the same arguments we also deduce

(Vv , Ly (2))n: = (vhy, Ly (2)) v = ZL’ xk)/ v2y Tk, )dywk—O

Finally, since v* € (PN(Q-)) we have (V vi, L} (x)LN(y)) = 0. It is readly seen
that this implies (V - v¢, L}, (z) Ly (¥))v: = 0, for i=1,.,M.

The following is a direct consequence of (1.4) and Proposition 1.2.

6
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Theorem 1.3. If uy is the solution of problem (1.4) then V -u}, = 0 in ; for
i=1,..,M. |

Remark 1.2. Using the technique introduced in [6, Corollary 5.1], for the mon-
odomain case, one can prove that My is exactly the image of Vv through the diver-
gence operator. |

We now give a collocation form of problem (1.4). Let us recall that gy Ny,
for 1 <1 < M is the set of the collocation points internal to (;, and By NIy, 1<
i < M — 1 is the set of the points which lies on the interfaces T; (not including the
endpoints a; and b;). Let now &5, k = 1,...,4, be four points of E}y N (1 and let
f};, k = 1,2 be two points of E}v N Q;, for ¢t =2,...,M. We suppose that

det{pf(e,t)} #0 (1.14)

where p}, | = 1,...,4 are the four polynomials 1, L}, (z), Ly (y), Ly (z)Ly (y). More-
over denoting by ¥}, I = 1,2, i = 2,..., M the polynomials L (z) and Ly (z)Ln; (v),
we suppose that

det{¢f(e;;)} £0 fori=2,...M. (1.15)

The hypothesis (1.14) and (1.15) are for instance verified if for any ¢ = 1, ..., M the
points &, | =1,2 (or I = 1,...,4 if i = 1), are not aligned.
We can now state the following.

Proposition 1.8. Problem (1.4) is equivalent to find uy € Vy and py € My
such that

—Auy (€) + Vo () =f(§) VeEe Exn; fori=1,.,M, (1.16),
V-uk(€) =0 V€ EY exept € € {ag,b0,a1,b1, &k, k=1,...,4}, (1.17)
v 'U‘N(E) =0 Vf € E}v exept f € {ai’bi’ 6;;,1 k= 1$2} fOT 1= 2, ""M’ (1'18)

ou} - ousFt . .

(22— i) () - (B — piga)(6) = (119
i+1

== {(~auk + Vo - £)f }() VE€ ERNTii=1,.,M -1
Jj=i

1

We omit the proof of this proposition because it is a direct generalization of the
proof given in [6, Prop.5.1] for the monodomain case. Let us however precise some
remarks about (1.16)-(1.19). In (1.16) we impose the momentum equation at the
internal collocation nodes of each subdomain. These equations are obtained by (1.4)
by choosing vy as the characteristic function of the internal nodesof ;, ¢t = 1,...,. M
and by using (0.2). In (1.17) and (1.18) the continuity equation is imposed in all the

7



collocation points exept a set of 4M + 4 points. In order to have the same number
of unknowns and equations it is necessary to ehmmate such points (we recall that
My is a subspace of codimension 4M + 4 of H‘_ Pn(0;)). We enphasize that the
solution of (1.16)-(1. 19) do not depend on the choice of the points &, k = 1,...,4
and &, k = 1,2, 1 = 2,...,M, provided the hypothesis (1.14) and (1.15) ho‘d
Concerning (1.19), note that on the right ha.nd side we have the residual of the
momentum equation multiplied by the weight wj, (which behaves like N~ 2). Hence
(1. 19) asymptotically ensures that the stress tensor is continuous at the interfaces
T;, ¢ =1,...,M —1. This property is clearly verified by the solution of the continuous

problem (1.1)

2. Error estimates and a new pressure space.

In this section we first prove an error estimate for the velocity field.

Let w € (H3(Q ))2 (where Q is given in figure 1.1), be such that V-w =0 in
1. We denote by Il d"'w the orthogonal projection of w, for the inner product of
(HA(0))?, on the space of the divergence-free functions which belong to Vy. The
following approx1mat10n result holds.

Theorem 2.1. Let w € (Hj(€1))? be a divergence-free function and suppose that
i e (H7(0;))?, with 0; > 1, for i = 1,..., M. There exists a positive constant C
independent of both w and N such that

M
lw - Ig*°wll, < C 3 N7 Wil ;- (2.1)
=1
Proof. Since w € (HL(0))? and V - w = 0 in Q there exists ¢ € H(Q) such
that w = rot ¢. In [5, thm. 3.6] it is proven that there exists ¢y € HZ(Q) such that
i, € Pu(f), v = viFt on T; and 3 = 280 on T for 4 = 1,..., M — 1 which
verifies
B M _
o —wnll, SC Yo N Wl 22 (2:2)
i=1
Here C is a positive constant independent of N and . Defining w N = rot Yy we
have that wy € Vy and

[w—wxlls < [[¥—dnll; < CZ N2H _CZ N2=B Wi

s=1 =1
for u; > 2. This gives (2.1) for oy > 1. ]

Theorem 2.2. Let u and uy be the solutions of problems (1.2) and (1 4) respec-
tively. If u’ € (H% (%))2,0: > 1 and f € (H*(%))?, ps 2 1, fori=1,..., M, then

there exists a positive constant C independent of N, u, and f such that

[l €3 { N g+ N s} (2.3)

=1

OO e e )



Proof. From a general approximation result (see e.g. [3, Corollary II.3]) we have
- < i - .
la-uvlosc{  _ it _ {lu-wxl+ (2.4
((VWN, VZN)) - ((VWN, VZN))N
su +
aveVn [Vzn]] }
sup (£22v)) — (£, ZN))N },
*NEVN IVzn|

where C is a positive constant related to the constant C; appearing in (0.5). Choosing
wy = I1;%7u the first term at the right hand side of (2.4) can be estimated using
(2.1). Moreover, since the Legendre Gauss Lobatto quadrature formula (see (0.1)) is

exact on Pyy-1({;), the second term vanishes. The last term in (2.4) is estimated
by using known results on the interpolation error (see [8, section 9.4.3]). |

Our aim is now to prove an error estimate for the pressure. We remark that if
My is given by (1.12) then py vanishes at the corner points ag, bo, aar, bar. On the
other hand the solution p of the continuous problem do not vanishes at these points.
Hence if My is defined by (1.12) the spectral accuracy cannot be achieved. Using
an idea introduced in [6] we now define a new pressure space My. The following is
a direct consequence of theorem 1.2.

Proposition 2.1. Let My be a subspace of Hfix Pn(£%) such that

M
QN = {qe {HP(,\N](I:Z,-)}/R: ¢=¢*ttataandb;, i=1,..,.M— 1} C My

=1
(2.5)
where A € (0,1) and [AN] is the integer part of AN. Moreover suppose that there
exist an isomorphism Gy : My — My such that for any ¢ € My

((¢, V- v)In = ((GNg, V-V))xy WeVy (2.6)

and
Gl < Cllqll (2.7)
with a constant C independent of ¢ and N. Then the inf-sup condition (1.13) holds
with My substituted by My. |

A new discrete problem is obtained by using My instead of My in (1.4). From
the proposition 2.1 it follows that such problem has a unique solution (iy,pnx) and
that Gy = uy. In other words the discrete velocity do not depends on the choice
of the pressure space provided the assumptions (2.5)-(2.7) hold. We now give an
example of pressure space.

Given an integer ¢, 1 <1 < M, and a point P € E}'v, the characteristic function
X5 (defined in (0.6)) can be written in the form

N
Zzalek (=) Li(y). (2.8)

k=0 (=0



We define ¥ by

. N-L N-1 . .
o= ). D duli(@Lly), (2.9)

k=[AN]+1 I=[AN]+1

and we consider the space:

M
={q€ HPN(ﬁ

=1
(¢ %L )1 = (¢ %8, )n = (@, %0, ) v = (™, %be )N =0,

) =¢tHL), i=1,.,M -1,

q‘ ) = qs'+1( )

X0
q'(b
M
Z ZQ’LN(y)Nt_O
r im1

(¢ L (=i = 0, (¢ Ly (=) Ln () = 0, § =1,. M}. (2.10)

Recalling (1. 12) we remark that the difference between My and My consists in
the first four conditions appearing in (2.10). From (2.8)-(2.10) it is clear that My
verifies (2.5). We now prove the following.

Proposition 2.2 If My is given by (2.10) then there exists an isomorphism Gy
such that (2.6) and (2.7) hold.

Proof. Let us denote by xx, k = 1,...,4 the four elements of Hf_’il Py (1;) given
in (1.6)(1.7) and by Xx, k = 1,...,4 the corresponding elements with X% substituted
by Xb (see(2.9)). We define i, k = 1,...,4 as the projection, for the inner product
((s)) v, of xx on the subspace of Hfil Py (£);) which is orthogonal to the elements
given in (1.8)-(1.10).=— - :

For any ¢ € My we define

N(CRD)
Gng=q~— kz:l Wfk- (2.11)

From the definition of %%, k¥ = 1,...,4 we have that Gng i is orthogonal to the
elements (1 8) (1 10) for any q € My. Moreover using the expansion of Xk, Xk, X,
1 £ k < 4, in Legendre series (see e.g. [6, Prop.V.3]) one can show that

((XkaXl)) ||X1|lN5kz and ”Xk”N/”Xk”N <C kl=1,..,4, (2.12)

where b'k; is the Kronecher symbol Usmg (2 11) it follows that G Nq is orthogonal
to xi, { =1,...,4, hence Gnyq € My for any q € My.

Since ¥ EVZN.M k =1,...,4 we deduce from proposition 1.2 that (2.6) holds.
To prove (2.7) we remark that using the Cauchy-Schwarz inequality and (2.12) we
have

[exaly < el (1+ 3 ALY < gy, .12

R T I A I

TR AN,

koo

[}
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Hence (2.7) follows from (0.5).
We can now give a convergence estimate for the pressure.

Theorem 2.3. Let (un,pn) be the solution of problem (1.4) with My sub-
stituted by My. If (u,p) is the solution of problem (1.2) and ' € (H% (0))?,
p€ HO Y Q) n HY(Q), 0; 2 2, f € (H*())?, i 21, 1 <i < M, then we have

M M
e - ivllo < C{ 30 N (I lows + 15 lloi-r} + D N2 s} (2:13)
=1 =1

where C is a positive constant independent of N, p, u and f.

Proof. From a classical approximation result (see e.g. (3, corollary 2.3]) and
using theorems 1.2, 2.1 and proposition 2.1 we obtain

lp=Fwlo < ON{_inf o oo+ 3 (N [ NI 5} ). (229
=1

Recalling (2.5) and an approximation result due to Bernardi and Maday (see [5 thm.
I11.3]), we obtain

_ M
- < inf - <C) N'Y%p o 2.15
i lp-avlo < B o= axlo SCL N Il (239
hence (2.13) follows from (2.14) and (2.15). |

Remark 2.1. Let (uy,pn) be the solution of problem (1.4), and let (ux, pn) be
the solution of the same problem with My replaced by My. Recalling (2.11)(1.4)
and (2.6) it is readly seen that

oy = GNpN. (2.16)

Hence to obtain a spectral approximation of the pressure one can either solve (1.4)
and compute py from (2.16), or solve directly (1.4) with My replaced by My. 1
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3. Plurirectangular Domains.

In this section we consider a plurirectangle 0 partitioned in rectangles Q;, 1 =
1,..., M, where M is a fixed integer. We assume that the decomposition of 2 is such
that the intersection of two adiacent subdomains is either a point or an entire edge.

The finite dimensional space Vy is defined again by (1.3) and the discrete prob-
lem is given by (1.4). The crucial difference with the case of aligned subdomains lies
in the choice of the pressure space My. Let us first consider, as an example, the
domain of figure 3.1.

a bs By by 2
Q Cq G q
& 2 b
£ C‘
0
q 0,
a ag
3 ° &
ﬁgt‘n'e 3.1

The points a;, ¢t = 1,...,6, are the non-reentrant corners of 3Q2; &;, ¢t = 1,...,6,
are the points of Q2 which are the intersection of two subdomains, ¢; and c; are the
reentrant corners of 9(1 and d, is a so called “cross point”, i.e. the intersection of
four subdomains.

Following the lines of section one we define My as the subspace of HZ=1 Py ()
whose elements are orthogonal to Zy, 7 (see (1.5) and (1.11)). In this case there are
30 independent elements of Zy 7, and the space My is given by '

7
My ={qe[Pv(%): ¢=0ina, i=1,..86, (3.1)
- S oe=1 ) ’
q" = q""'1 in b;, 1 =1,...,6,
¢ +¢=q"inc, ¢ +q =¢%inca,
¢ +4¢° =¢*+¢*in dy,

7
> (@ )ni=0,

=1

((¢', Liv(z) Ly (¥))w,: =0 i=1,..,7,
2 6

(@7, Ly (2))nr =0, D (¢, Ly (2))wsi =0, Y _(¢', Ly (z))wii =0,
=1 =3
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7
> (¢, Ly@)vs =0, (¢, Ly (v))n.s =0, (¢, Ly (v))na + (¢%, Ly (v))we = O,
+=6

3 (¢, Liy(¥))ws = 0}

=2

The first 15 conditions are orthogonality relations, as a matter of fact they can be
written as follows.

(¢, x5, v =0, 1=1,2,3, (¢% x5, )mve = (47, X3 ) w7 = (a7 X3, ) w7

(¢, 0, v = (@ i v, 1= 1,6,

(¢', x2, v + (2% x5, )vs = (4%, X5, ) v s (3.2)
(6% %3, )ns + (a7, x5, vt = (%, x5, ) v e

(¢ 33, )n + (6% X3, )nv s = (6%, x5, ) vz + (%, X4, v s

These conditions will be called “physical conditions” as opposite to the last 15 con-
ditions appearing in (3.1) which will be called “spectral”.

We now suppose that {] is any plurirectangle partitioned in M rectangles (1,
i =1,...,M. Let My be defined by (1.11), in the following we describe the conditions
which characterize the elements of My .

A physical condition is associated to every node of the decomposition. Precisely
if P is a non-reentrant corner of 11 (as a; ,# = 1,...,6 in fig.3.1) then we impose that
any ¢ € My vanishes at P. If P is a reentrant corner (see fig. 3.2) then we impose

7*(P) + ¢"(P) = ¢'(P).

Q,

P
Q, Q,
figure 3.2

If a node P belongs to 91 and it is not a corner (as 4;, t = 1,...,6 in fig.3.1) we
impose the continuity of ¢ at P. Finally if P is a cross point (see fig.3.3) we impose
the “continuity” condition ¢™(P) + ¢'(P) = ¢*(P) + ¢"(P).

Let us now describe the spectral conditions appearing in the definition of My . As
in the continuous case we impose that any ¢ € My is orthogonal to the constants. The

13



Qn Qq
P

Q| Q
figure 3.3

orthogonality of ¢ to L, (z)Ly (¥), ¢ = 1,..., M, gives M additional conditions. Let
us now call “horizontal strip” any maximal set of horizontally aligned subdomains.
For instance in figure 3.1 these strips are {Q7},{0Q;,02}and{0;, 1 =3,..,6}. If a
horizontal strip is given by {ﬂ;, l e A} where A is an index set, then we impose
that g is orthogonal to the function which equals L (y) on Q, ! € A, and vanishes
on the other subdomains. Similarly if {Q%, k € K} is a “vertical strip” (these
strips are {Qs, 07}, {05}, {0,,04}and{02,0s} in fig.3.1) then we impose that g is
orthogonal to the function which equals L% (z) on Qk, k € K, and vanishes on the
other subdomains. ,

Using this definition of the pressure space My, the “inf-sup condition” (1.13)
holds also in the case of a plurirectangle (see remark A.1). In particular this im-
plies that the discrete problem is well posed. Moreover, it is readly seen that if
vy € VythenV - vy € My, so that the discrete solution is divergence-free for any
value of the discretization parameter. '

We now give the collocation form of problem (1.4) for a decomposition of a
plurirectangle 2.

Let (uy,pn) be the solution of (1.4), we have

_AW(€) + Vo (€) =£(8), VEYNQ, i=1,..,M. (3.3)

Denoting by I'x, the common side of two subdomains 1, {;, (not including the
end-points) we have

{%%’% — st} o) - {22 - st} (0) = (3.4)

= -{ — Ak, + Vg — f"}(f)w,’f, -~ { — Auly + Vply — f‘}(f)wjv, Ve € Tey.

~ Let £ be a cross-point and consider, for simplicity the notation of figure 3.4.
Setting R -
. 2 . ond '

D (uly, piv)(€) = Y { 3= — phem™* }(8)

=1
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n3'1 e
0, <+ N2z Q
3

figure 3.4

the cross-point condition is

4 4
> Dé(uky, s ) (6) = = { - Auly + Yy — £} (), ¥ cross — point £ (3.5)

i=1 =1

Finally uy verifies the incompressibility condition, i.e.
V-uy=0 ing%,i=1,.,M. (3.6)

Actually, it is sufficient to impose (3.6) in a subset of {Ejv, 1=1,...M } Precisely,
since uy = 0 on 9} then V -uy automatically vanishes at any non-reentrant corner
of 0. If P is a node on 80 which is not a corner (e.g. b; in figure 4.1) it is
sufficient to impose only one condition at P (e.g. for fig. 4.1 V - u},(4,) = O implies
V .u%(b1) = 0 since V.-uy € My). Similarly if P is given in figure 3.2 or 3.3 it
is sufficient to impose V-uf, = V. .u} =0and V.- uf, =V.-u} =V-up =0
at P respectively. It is also not necessary to impose (3.6) at some collocation points
internal to each subdomain (this follows from the fact that V- uy € My and hence
it verifies the spectral conditions). Precisely one can eliminate in (3.6) one point for
each subdomain, one point for each horizontal strip, one point for each vertical strip
and one point choosen in an arbitrary subdomain. The points which are eliminated
must verify some hypothesis of the kind of (1.8),(1.9); if in every subdomain these
points are not aligned then these hypothesis hold. Summarizing, (3.6) reduces to

Vou‘},=0 inEjv/AN'M, 1=1,...M

where Ay pr is a sét of n collocation points and n is the codimension of My in
[1:2, P ().

The velocity error estimate (2.3) holds also in the case of a plurirectangle. The
proof works exactly in the same way.

As in the case of the aligned subdomains to obtain an error estimate for the
pressure one has to modify the space My introducing a new space My such that

15



the thesis of proposition 2.1 holds. Precisely the physical conditions related to the
corners of 90 have to be removed. In the case of a non-reentrant corner P& 91);
the condition ¢*(P) = O has to be substituted by (¢*,xt)n,; = O (as in the case
of the aligned subdomains, see (2.8)-(2.10)). On the other hand if P is a reentrant
corner (see fig. 3.2) the condition g + ¢® = ¢! at P has to be substituted by
(6%, %5 )N x+(a% XB) N.n = (@', X5) v If the other conditions of My are not changed

we obtain a new space My which verifies (2.6),(2.7) and:

M
{q e { H PN (©;}/R: qis continuous at the verteces of the subdomains} C My.

=1

Then the result of proposition 2.1 holds and the estimate (2.13) can be obtained with
exactly the same proof technique.

16
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Appendix

In this section we prove proposition 1.1 and theorem 1.2. We first consider
two aligned subdomains, the proof in the general case will follow from an induction
argument. Let us precise some notation. The outward normal unit vector to 9Q
is denoted by n. For ¢ = 1,2 we denote by r* the counterclockwise unit tangent
vector to 8f); and by n* the outward normal unit vector to dQ;. The notation

7§, n¥, i,j = 1,2, are introduced in figure A.1.

Tn‘ b Tnz
bO - 4 ) ——— D2
2
! T,
1 '
n' t;A
et —". 0 A
T 0, 2 | Ny 2 tz
J’ ' ne 3
< 2 —Tb
i t] 2 ﬁ3
12 t!
- .
2. g
5 n;l 3 n;l

fig. A.1 The decomposition of {1 with M = 2.

Recalling the definition (0.6} we set for any n > 1:

I = Lot1 = La-y
W =
2n + 1
i _ L T Ti-l Lﬁ;+1 - Lﬁ;—1 .
Jp. = 3 Tl fort =1,2,

where_{:z:;} are the abscisses of the points {a;} for 1 = 0,1,2. The polynomials J,
and J} are the primitive of L, and L}, respectively, i.e.

. . , ; N
(Y =L, Ji(zioy) =Ji(m) =0, fori=1,2,
Moreover we have foranyn >1and 1 =1,2:

i C,

” Ln ”g,t' = o2n + 1
C, s 12 Cs (A.Z)

e L 4\3 -<— ” Jn ”0,;’ S T \3 !

(2n+1) (2n +1)

17



where Cy,C2 and C; are positive constants independent of n.
Let us denote by Zx , the subspace of Py ({l;) x Py({l2) spanned by the 12

elements

(x5,0)s  (Xbo»0)s  (0,x3,)s  (0,x3,), (A.3)

(i =X2)r  (Xbys—X5,)s (A.4)

(1,1), (Lwn(y),Ln(v)) (A.5)

(L (2),0), (0,L%(2)), (Li(2),Ln(¥),0), (0,L%(z)Ln(v))- (A.6)

These are precisely the spurious modes given in (1.6)-(1.10) for two subdomains.
Using (0.2) it is readly seen that Z n.2 is contained in the space Zy 2 defined in (1.5).
In the sequel we prove that, actually, ZN 2 and Zy 2 coincide.

Let ¢ € Py({11) x Pn(Q2) be orthogonal, for the inner product (0.4), to Zn,2
(i.e. to the elements (A.3)-(A.6)). For i = 1,2, ¢" can be written in the form

N-1 N-1
d= 3 ohieLi+y AiLi®Jv-i+ ) iJv-1®L. (A7)
0<kIE<N~-1 k=0 =1

Let us define two continuous functions A and B: [zo, z2] — R such that
A and B are linear in [z;-1, %], ¢ = 1,2 (A.8)
A(zo) = B(zo) (A.9)

and _ _
Vz €lzi-1,2:] Alz) = ape Blz) =By fori=1,2.

We define the function v = (v1,v2) € (P (f11) X Pn({12))? as follows:

N-1
vi: E C!;“J,:®J¢+ ZﬁiJ;®JN—1+Ai®LO+B‘®JN—I’
0<I<k<N~1,k+{7#0 k=1
(4.11)
N-~1
= Y. ouLi®Jdi+ ) vk ®0 fori=1,2

0<k<ISN-—1 I=1

Lemma A.1. Let g € Py(02)) % PN(QQ) be orthogonal to ZN2 for the inner
product ((-,-))y defined in (0.4). If ¢ is written in the form (A. 7) and v is given by

(A.11) then we have

V.vi=¢g fori=1,2, (A.12)
v.-n=0 ondQ (A.13)
vi.nl=-v?.n? onT;. (A.14)

18
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Proof. From (A.1) (A.7) and (A.11) we obtain (A.12). Using (A.1) we deduce
that v -n = O on the two segments [ag, az] and [bo, b2]. Moreover we remark that
the orthogonality of ¢ to the elements given in (A.5) reads as follows

2 2
3 adolzi — zim1) = ) Byl — zi-1) =0
=1 =1
From (A.8)-(A.10) we deduce
A(Ig) = B(Zg) =0. (A.15)

Then the condition v - n = 0 on the two segments [aq, bo] and [az, b2] follows from
(A.1)(A.9) and (A.15). Finally since A and B are continuous we deduce (A.14) from
(A.1) and (A.11).

Lemma A.2. In the same hypothesis of lemma A.1 the following estimate holds
2 . 2 2 2
Z” v ”1,; < CN? Z | ¢* "0,1: ) (A.16)
=1 =1
for a positive constant C independent of ¢, v and N.

Proof. Using (A.2) and (A.7) a direct computation gives, for i = 1,2:

o ' .
185 2C (@ —2imr) D, (o)’ + (A.17)
0<kiZN -1 (2k +1)(20 + 1)

N-1 Y N-1
Ti — Ti-1 . (25 — zi-1) 2 1
+ N3 k—o(ﬂk) 2% + 1 + N3 . (’71) 2l+1)’

where C is a positive constant independent of ¢, N and ¢. It is readily seen that

i
v

Avs : :
, —_— . < * . = . .
128 s 4152 s < Cla'lss = 1,2 (4.18)

i
Let us now estimate ”%"2‘}'”0,1'- From (A.1) and (A.11) we obtain

vl . N-Lo .
== > Ay Ji®Li+ Y fiJi®Ly-1+B @ Ln-1. (A19)
y 0<SISk<N -1, k+i#0 k=1

We now estimate the three terms appearing in the right hand side of {A.19).
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1) Recalling the inequality f_l1 (L)’dz < C(21+ 1), we get for i =1, 2

N-t i N 2

> ak,J‘®L'||0‘SC[Z 21+1/ (> ak,],‘;)zdx)llz] <

0<I<k<N-1 (=0 Ti-l k={, k+i#0
(@ =)\

+ \ = <
sc[ @+ ) (o) IR ) ] <

=0 k=i, k+{#0

1/2 ive (@, —zi-y)? 1/212
<ol X @+yY (k=,§, #)(a"‘) Gk D)@ +1)) T

-
il
=3

Using the Cauchy-Schwarz inequality and (A.17) we deduce

I Y ke Ll < (4.20)
0gISkEN-1 - - , o
= = i (= —z 1)° 2| 41|12
< 3 P Al < : 3 .

{=0 k=0

2) From (A.2) and (A.17) we obtain for { = 1,2

~1
I Z Bidi ® Ln-1i3; < N Z ﬂk)z(—(ﬁj—'lf-)-CNzllq‘llﬁ.;- (A.21)

3) Recalling (A.9) and using the Poincaré inequality, (A.10) and (A.17) we deduce

; c C
SoIB © -2 < S = o< 7 Llm -0 (42)
=1 =1
.
< CN? ¢ 3.
=1

From (A.19)-(A.22) we obtain

vt
Eu ‘no,SCNZan 12 ;.

Using the same technique it is possible to estimate Z:‘ 1 H ”o i hence, recalhng

(A.18) we obtain (A.186). |
Lemma A.3. In the same hypothesis of lemma A.1 the following estimate holds

2 2
Yol rllzagaans £ € Y lld 12, (A.23)
i=1 =1
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for a positive constant independent of ¢, v and N.

Proof. From (A.1) and (A.11) we obtain for 1 = 1,2

Vz € [Zim1,z:), Vi -1i(z,1) = - > a Ji(z) + A¥(z).  (A.24)
0<ISk<SN =1 k+i%0

Using (A.2), the Cauchy-Schwarz inequality and (A.17) we deduce

/:.- ( Z aHJ‘ dz<CZ[Z ay;) —(Z%f—l—')l—)s']s

i-1 0<ISKSN-1, k+l;é0 k=0 (=0
o] 2_ 1 ]
< Oz — 7ioy) E_: [IZ; 2k + 1)172 2z+1)1/2) 2%r1) S
N-1 &
k+1
< )3 (o) ¢
< Ol — i) kz—%:g CE+ )@+ D)2k 1 Clia'llg:-

The second term at the right hand side of (A.24) can be estimated using the
technique of the proof of (A.22), so that we obtain

2 2
IV - rllzagany < C Y ld 13

=1 =1
Working in the same lines to estimate 37 ||v* - Tilzaaq,), J =1,2,3. we obtain
(A.24). |

Theorem A.1. Let ¢ € Py (1) x Pn(Q12) be orthogonal to Zy ;. There exists
w € Vy such that

V-wi=gq ,ori=1,2 (A.25)
and
2 » 2 -
oIz, <Ny, (A.26)
=1 i=1

for a positive constant C independent of w, g and N.

Proof. Let 6% and 85 be two functions such that
8%, Oy € Pn([-1,1])
0% (£1) =0, 65(x1) =0
(05)(-1) =0, (65)/(~1) =1

(@FY(1) =1, 51(1) =0

(A.27)

21



d
an C

6% 13 (-1,1) + 108 1lL3(-1,1) S iR (A.28)

One can for instance choose 8 (y) = E—’-’)%%ﬁfém and 05 (y) = =05 (-v).
(it can be proved that it is not possible to find 8% and 05 verifying (A.27) and (A.28)
with on the right hand side a power of N greater than 3).

Let g and v be given by (A.7) and (A.11) respectively. We define the functions
f and g as follows:

Fly) = v* - 12 (b1)0% (y) — v* - 74 (a1)05 (3)

av ol + avlr (A29)
g(y) = T (b1)0% (¥) - —rl(aa)ﬂn(y) fory € [-1,1].
For ¢t = 1,2 we now deﬁne the functions ¢* and ¥* on 91); as follows:
; =0 ondQ; NN
Vye[-1,1] ¥*(z1,9) = f(y)
Y =vi-r* ond NN
Yy € [-1,1], %!(zi,v) =g(y) and V2 (zy,y) = vt - +v2.rE —g(y)-
We now show that there exists & € Py (0;) x Py(Q2) such that
{ i = ¢i on 30,
8Pt :
v ¥* on OfY;
and
2 v 2 v »
SN2 < C D (NO6 1122 (2a,) + N2HI¥ L2 (20:)- (4.32)
i=1 i=1

The existence of this function & is a consequence of a trace theorem due to Bernardi
and Maday provided some compatlhty conditions hold (see [4, thm 3.1]). To simplify
the notation let us fix the index ¢ and set A; = a;_y, A2 = a;, Az = b;, A4 = b;—,

(see fig. A.1). We denote by ¢’ (resp. ¢}) the restriction of ¢* (resp. ¢*) to [Aj-1, Aj].
The compatibility condition are the following

:(4;) = ¢ha(45), 1<55<4 (4.33)
¢’ _
gr—i(A )= ¥iea(4;), 1<7<4 (4.34)
a¢t+1 : .
a’Tj (4;) = —¥5(4;), 1£7<4 (4.35)
a¢; (A ) = a_;tl(AJ')a 1<5<4. (A.36)
0Ty
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Thanks to (A.27) (A.29) and (A.30) the conditions (A.33) are satisfied.
For j = 1 the condition (A.34) reads as follows:

vter(a0) =0
vZ-r3(a1) = -f'(-1).
Due to (A.27) and (A.29) these relations can be written in the form
v’ -nj(a) =0

V2 . nf(al) = -V né(al)

hence they follow from (A.13) and (A.14). Using (A.13) (A.27) and (A.29) and
working in the same lines the conditions (A.34) for j = 1,...,4 and (A.35) can be
easily verified. For j = 1 the compatibility condition (A.36) reads as follows:

avt.r} avt.r}
orl (a0) = - ar} (ao)
ovl.r} av2.r} , av?.r?
A = GO A a7 (%)

The first condition can be wrltten in the form V - v!(ao) = 0. It follows from (A.12)
and the orthogonality of ¢! to x1 . Recalling (A.29) and (A.30) the second condition
is V-v!(a;) = V-v2(a;). This is a consequence of (A.12) and the orthogonahty
of ¢ to (x2,,—x2 ). Working in the same lines the relations (A.36) for j = 2,3, 4
can be proved. They follow from (A.12) and the orthogonality of ¢ to the elements

(0:x2,)» (x3,,0): (0, x3,) and (x3,,~x3,)- ) )
It follows from (A.33)-(A.36) that there exists ® € Py (f1;) x Py ({12) such that
(A.31) and (A.32) hold. We set

w=v+rotd , (A.37)

where v is given by (A.11). From lemma A.1 and (A.30) (A.31) we have that w € Vy
and V -w = ¢q. To prove (A.26) note that

Z Ihwlli; < C’Z (viiE s + 1213.,). (4.38)

=1

Recalling (A.32) we have to estimate the terms 3 - ||| L3(aa,)? and
7, lz3(a0,)2- Thanks to (A.28) (A.29) and (A.30) we have

2

> I¥lzsoag < 15 (0 DEIP+ I D)) (439)

i=1
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and

2 Cc ,av! r} g
Y I llLaeas < G (I—a"f_(bl)lz‘H 2 (a1)|2)+zHV‘-T‘!IL=(ao.~)- (A.40)

i=1 =1
From (A.39) (A.1) (A.10) (A.11) and (A.17) we get
2. C C C
i; 6*lL2(a0,) < ]—v'glAl(zx)lz < ]T,Elatllolz < Fllqlﬂg,x (A.41)
From (A.1) (A.11) and (A.40) we obtain
2 c 2
> I llza(ans) < ~e Yoo ek + D IV - lla(any-
i=1 0<ISkSN -1 i=1

Using the Cauchy-Schwarz inequality, (A.17) and lemma A.3 we deduce

2
. c’ 1
Z ||¢"”L’(an;) <=3 Z Iakl|2 + (A.42)
2 Nl R D@ )
2
+C" > 3. < CZ g 115+
=1 =1

Finally from (A.37), (A.16), (A.38), (A.32), (A.41) and (A.42) we obtain (A.26). 1§

We are now in a position to generalize the result of theorem A.1 to the case of M
aligned subdomains. To this end let us denote by Z N, the subspace of H‘_ Py ()
spanned by the 4M + 4 spurious modes given in (1.6)-(1.10). The other notation are
those of section one.

Theorem A.2. Let g € [[XX, Py (£3:) be orthogonal, for the inner product ((-,-))~
defined in (0.4), to any element of Zy, as. Then there exists w € Vi such that

vV.-w=¢g fori=1,....M (A.43)
and
M v
Z Iwil2; < CN2Y I3 (4.44)
i=1 =1

where C is a positive constant independent of w, ¢ and N.

Proof. We use an induction argument on M. Theorem A.1 gives the case M = 2.
We suppose now that the theorem holds for M — 1 (M < 3) aligned subdomains and
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we consider the case of figure 1.1. The function q € Hfil Py (£2;) can be decomposed

as follows:
(A.45)

ol

g=q+
where _
g =q, T=0 fori=3,..M (A.46),

and 2 has the following properties
P(a1) = q'(a1), @(b1) =¢'(b1), *(a2) =%(b2) =0, (A.47)
(4% LsLo)n,1 + (3% L§Lo) y o =0, (g%, Ln(¥))n.1 + (3% L (v)) N2 =0,

| (A.48)
(@ L% (2))y,2 = (8 LY (2) Ly (¥)) 2 = O,
there exists a positive constant C independent of N such that
Ia*llo,2 < Cllg*flo.x - (A.49)

The polynomial 7 is then defined by 6 = ¢? — 3. Let us assume for a moment that
such a decomposmon exists. From (A.45)-(A.48) it follows that (¢!, §?) is orthogonal
to ZNz and (q 4>, -..,qM) verifies the hypothesis of the theorem in the M — 1

subdomains ﬂg, ﬂ M. Hence from theorem A.1 and the induction hypothesxs there
exists w € [[>_, Pnv({k )? and W € 1Y, Pn ()2 with w =0 on 8(Q, U 03),% =0
on d(UM, 1), w and W continuous at the interfaces, such that
Vw=¢ i=12 V-W=F i=2,....M (A.50)
and
2. _ M Mo

Y Iwili3; < con? Z 113+ D IwlE. <N IFIB,. (a1

=1 =1 =2 =2
We now set

w={ W +W in {1, (A.52)

% in i for i=3,...,M.

Clearly w € Vy, furthmore from (A.45) and (A.50) we have that V-w* = ¢* fori =
1L,...,M.
From (A.52) (A.51) and (A.46) we obtain

an*lh. < (Z W+ I ) <

o =2
M
. _ . =2
<oN? (30 I3+ 10 1R + 1713)
=1 15£2
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hence using (A.45) and (A.49) we get

M M
Yo IwiEe < ont (Sl IR+ gt + a?l )
=1 =1, 1#2

which gives (A.44). To conclude the proof we exhibit a polynomial g* which verifies
(A.47) (A.48) and (A.49). We suppose, for simplicity, V even and we set:
& =(wh)?x3, 4" (0") + (wi)*x2, 0" (1) + 1 LG ® Lo + a2 L5 ® L+ (4.53)
+asl} @Lo+ael% ® Ly +asL3® L,
where o, k= 1,...,5, are constants. 7
From (0.7) it follows that (A.47) is verified provided as = — Sioy Qk-

An easy computation shows that ax, kK =1,...,4, can be found so that (A.48)
holds, moreover we have

el < (ltlo.s + (@321 B0l o2 + (@321 (a1) 12, llowa)-

Hence from (A753) ‘we deduce |
18%llo.2 < C(lla*llo,x + (wE)?(lg* (bu)llIx3, o2 + lg* (1) l1X3, llo.2))-

Using (0.2) and (0.3) it is readly seen that the two last terms can be bounded by
llg*[lo,1+ hence (A.49) holds. 1
Proof of Proposition 1.1 and Theorem 1.2.

From theorem A.2 and (0.5) we have that there exists a positive constant C
_independent of N such that

(AL ST

Vg € Z& IJweVy :
45 AN S PTIT T A

hence v
inf sup ((qv_l))_N >

C
AT A.54
w€zi,, vevy ldlInlIVVy = N (4.54)

From (A.54) we deduce that Z 7 a¢ do not contain any spurious mode for the pressure.
Recalling (1.5) we then have Zy, N Zyam = {0}. This implies that

dim Zy am < dimZN,M. Since Zy m D ZN,M we deduce that Zy v = ZN,M, hence
proposition 1.1 is proved and theorem 1.2 follows from (A.54) and (1.11). |
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Remark A.1 (More complex decompositions).
The proof technique of theorem A.2 can be generalized to cover more complex
decompositions. Consider for instance the L-shaped domain of figure A.2.a.

Q‘ 0‘ Q,

9]

Q G 9 3
figure A.2.a figure A.2.b

If ¢ € My (the pressure space described in section 3) then it can be written
in the form (A.45) with §* = ¢, 7 = ¢ and ¢ such that (g',7?) belongs to
Zj 5. It turns out that theorem A.1 can be applied in ; U2 and in 0 U Qs
and that theorem A.2 holds for this decomposition. Analogous consideration holds
for the figure A.2.b. In this case ¢ € My can be written in the form ¢ = 7 + 7
with g =0, # =¢* § =¢*, § =0 and ¢, § for i = 2,3 such that one can
apply theorem A.2 on the L-shaped domains 1; U 5 U {13 and 2 U Q3 U Q4. For a
general partition of the domain of the kind of that of figure 4.1 one can always find a
decomposition of ¢ as in the previous cases. Hence proposition 1.1 and theorem 1.2
can be proved also in this case. |
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