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Abstract

We propose a multidomain spectral collocation scheme for the approximation of

the two-dimensional Stokes problem. We show that the discrete velocity vector field

is exactly divergence-free and we prove error estimates both for the velocity and the

pressure.
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Introduction.

Domain decomposition methods for the approximation of partial differential

equations axe based on the partition of the physical domain into subdomains. These

techniques allow one to decompose the problem into a collectionofproblems of smaller

size,deRned on the subdomains. By using proper interfaceconditions the overall ef-

ficiencyof the algorithm isthen improved.

Ifspectral schemes axe considered domain decomposition methods may also be

used to handle problems defined on plurirectangulax domains. Actually, spectral

methods axe naturally defmed only on rectangular domains (see e.g. [13]). If a

problem on a plurirectangle is considered then it is possible to decompose such a

domain in rectangles and employ spectral schemes on these subdomains. For the

analysis of spectral multidomaln methods for the ITelmholtz equation we refer to

[7],[9],[II],[121,[161,[18],[19]. General considerations on domain decomposition in the

framework of spectral methods can be found in [8,Ch.13].

In thispaper we consider the Stokes problem in a plurirectangulax domain with

homogeneous Dirichletboundary conditions. We anaJyze a scheme obtained from a

generalization of the spectr_l collocation method introduced in [6]and [15]for the

case of a monodomain approximation. An interestingfeature of the numerical scheme

isthat, for any value of the discretizationparameter, the approximated velocity field

isexactly divergence-free. This isan important property in itselfbecause it ensures

that, even ifa small number of degrees of freedom is used, the continuity equation

is solved exactly. Furthmore, if the Stokes solver is used at each step of a time

discretizationof the fullNavier-Stokes equation, then thisproperty makes the time-

algorithm more stable.

Our main interestliesin the analysis of the discrete problem and in the proof of

error estimates both for the velocity and the pressure. The number of subdomains is

considered fixed and convergence isa_ieved when the degree of the solution (which

is a polynomial in each subdom_in) tends to infinity.Iterativemethods for solving

the discreteproblem axe under investigation and some related numerical experiments

axe being conducted.

A multidomain scheme for the approximation of the Stokes problem can be found

in [16]where the _Spectral Element" method ispresented. The main differencebe-

tween that method and the one we analyze here liesin the choice of the discrete

pressure space and in the quadrature formulae which axe employed. Domain de-

composition for solving the Stokes problem in the framework of the Finite Element

methodistreatede.g.in[171and[14I.
The paper isorganized as follows. In section one we introduce the continuous

Stokes problem. A firstversion of the discrete problem is then formulated in a

vaxiational form and interpreted in a collocation one. Throughout the section we

assume, for the sake of simplicity,that the physical domain isa rectangle paxtitioned

in aligned subrectangles. We show that the discrete velocity isexactly divergence-free

and we state an inf-supcondition which gaxantees compatibility between the velocity

space and the pressure space (see [2]).In section two we give a new formulation of

the discreteproblem, which ismore appropiate for the computation of the pressure.
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Using results from the previous section, we prove convergence results both for the

velocity and the pressure. In section three we consider the case of a plurirectangular

domain and we extend the resultsof the previous sections. Finally an appendix is

devoted to the proof of the inf-sup condition stated in section one.

Notation.

In the following M is a fixed positive integer and F/is a plurirectangle partitioned

in rectangles fl_, i - 1, ..., M. Any quantity defined in f/_ is identified by a superscript

index i. For instance if v is a function defined on fl then the restriction of v to

fh is denoted by v _. We shall usethe classical Sobolev spaces H'(F/), H°(fl_),

i -- i,...,M, s E R (see e.g. [I]). The norms of these spaces will he denoted by

H" [l° and [[. [I,,_ respectively.

For any positive integer N we denote by PN (12_)the space of the restrictionsto

_ of the polynomials of degree lessor equal to N with respect to each variable. For

any integer i, 1 _ i < M, let -=_ be the set of the (N + 1)2 nodes related to the

Legendre Gauss Lobatto quadrature formula in _. The points of E_ are denoted by

(x_ * _ 1 < k, l < N and the related quadrature formula is

N N

vfx, y]dxdy i i i

i k=O I=0

where w_ and w_ are positive weights (see e.g. [101). We recall that if v e P2N-t(_,)

then the quadrature formula (0.1) is exact. For any v,w E C°(_) we set

N N

Yi) k l, i=l,...,M. (02_,_._,

k=O 1--0

This bilinearform is an inner product on P_ (12,),moreover we have (see [8]):

Ctll,_llo.,___IlvllN.'__C=ll,,llo.,v,,z P,,,(f_,),i- 1,...,M, (0.3)

where 01 and C2 are positive comstants independent of N and If"l]_v,_is the norm

associated to (0.2).For any v,w E C°(i=i)we define

M

i i((,,,,,,)).,.= _(,, ,_ ),,,.,. (0.4)

This bilinear form is an inner product on 1_M1 PN(fi_). Denoting by II" IIN the

associated norm, we have

M

C,ll,_llo< IlvllN_<C=ll,_llow,e 1-[PN(_,), (o.5)
v:=l.
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where C1 and (:72 are positive constants independent of N, M and of the measure of

each subdomain. If v and w are vector valued functions we keep the same notation

for the inner product and the norm induced by (0.2) and (0.4). Note that the form

((','))N is an approximation of the L2-inner product denoted by (.,.).

Given an integer i, 1 < i < M, and a point P - (x++,y++) e _ the characteristic

polynomial associated to P is the element of PJv ([l_) such that

1

• _ inP
×_= _.+, (0.6)

0 in the other points of _v-

Finally if _ is a rectangle given by [x_-l,x_] × [y_-I,Y_] we define, for any n E N:

L',+(_)=T (_.-.,-,-+,) "

)L_Cy)= r. I _-,,,-, -,,+
_'+rl, _ Y+ -- _1+ - 1.

(0._)

where L,,(_ ) is the Legendre polynomial of degree n defined in [-1,11, (see e.g. [101).

We also let C denote.a positive constant. The value of C shall always be independent

of the discretization parameter N.



The continuous and the discrete problems.

In this section we consider the case of a rectangle fl partitioned in aligned rect,

angle 12_, i - 1,...,M, as in the figure 1.1. The interfaces between subdomains are

denoted by F_, i - 1,...,M - 1.

b0 b

rl

0 2

b M
b. b

. M-t

a 2 aM-I
8
0 al aM

figure.l.1 Decomposition with aligned subdomains.

Let us consider the Stokes equations:

-AU -I- Vp = f in fl

V.u = 0 in n (1.1)

u = 0 on aft.

As usual u and p denote the velocity and the pressure of an incompressible fluid,

the kinematic viscosity has been normalized to one and f represents a source term.

Supposing f E (L2(12)) 2 it is well known that problem (1.1) has a unique solution in

(H_(lq)) 2 x Hi(Q)/R and that its variational formulation is the following (see e.g.

[21]).
Find u e (H01(lq)) 2 and p e L2(12)/R such that

(Vu,vv) - (p,V.v) = (f,v) vv e (H Cn))2
(1.2)

(V. u,q) -- 0 V q E L2(n)/R. -

We now define a multidomain spectral approximation of this problem. The ve-

locity space (H01(fl))2 is approximated by its finite dimensional subspace V_v defined
as follows: .....

VN= {vE(C°(l_))2: v'E(P_(_,)) 2, v'=0onOflr_af_,, i=l,...,M}. (1.2)

Denoting by MN the discrete pressure space (which is defined below) and recalling

the definition (0.4), we consider the following approximation of problem (1.2).



Find UN 6 VN and PN 6 MN such that

((VuN,W_))N--CCPN,V'_))N=((f,_N))_V_N E VN
(1.4)

((v.uN,q,,))N= 0 V qN e MN.

Here we have supposed that f 6 (C°(_)) 2. We require that klrN is a subspace of

l-IM1PN(fl_) such that problem (1.4) iswell posed. Clearly AIrN must not contain

any _spurious mode" of the pressure, i.e.any nonvanishing element of the space

M

z,,,,_= {q_ II e,,Cn,):
i=I

((q,v.v)),v=o v.,,e v_}.

In the following ?pr position,which isproved in the appendix, we precise which

are the elements of ZN,M. Let us firstremark that, due to the geometry of fl,the

polynomials L_(y), defined in (0.6),do not depend on i;hence the index i will be

omitted.

Proposition 1.1. The space ZN,M is a linear subspace of l-IMt PN (fl_)whose

dimension is4M + 4. A basis of ZN,M isgiven by the following elements.

(×i,o,...,o),(x_o,o,...,o) (1.6)

(0,...,0,MXa,), (0, ..., O, Xg_,) (1.7)

_+t ...,O) fori 1, M 1 (1.8)-'+' " o), (o, o,xk,-x,,, ,o, = ..., -(o, ..., O,x_, , -x,,, ,v,..., ...,

(1,I,...,1),(L_(_,),LN(y),...,C_(y)) (1.9)

(0,...,0, C_v(x),0,..,0), (O,...,O,C_(x)CN(y),O,...,O) for i= 1,...,M. (1.10)

|

We shall define the space MN so that MN (9 ZN,M = I]MI PN (_)- A possible

choice is
M

M,v={qEHPN(_,): ((q,r))N=0 VrEZN, M}. (1.11)

Using (0.2)(0.4) and (1.6)-(1.10) it is readly seen that Miv can be written as follows:

M

MN ={q e H PN((_,) : ql(ao) = q*(bo) = qM (aM) = qM (bM) = O,
i=1

¢(_) - ¢+_(_), q'(b_)= q'+_O_),i = 1,...,M - 1,
M M

_(¢,1)_,, - 0, _2(¢,LN(y)),,,,- O,

(¢,C_(x))Na =0, (q_,L_(z)L.,,c(y))N a = 0, i= i,...,M}.

(1.12)



Theorem i.i. Problem (1.4)has a unique solution.

Proof. If f = 0 then choosing vlv = uN and qN = ply in (1.4) we obtain

((VuN, Vu_v))N = 0. From (1.3) and the Poincard inequality this gives uN = 0.

From the proposition 1.1 we also deduce pN "-0 hence the theorem isproved. 1

For the couple of spaces (VN,MN) the following "inf-sup" condition holds (see

the appendix for the proof).

Theorem 1.2. There existsa positive constant C independent of N such that

inf sup ((qN,V. vN))N C (1.13)

I

Remark 1.2. Note that the righthand sideof (1.13)depends on the discretization

parameter N. This estimate isoptim al, actually an upper bound for the lefthand

side of (1.13) is Ct/N, where Ct is a positive constant independent of N. For a

detailed discussion on this subject we referto [20]. 1

Proposition 1.2• If v N E VN then V • vN E Mz¢.

Proof. Since v_- = 0 on 0[_ we have V .v = 0 at ao, b0, aM,and bM. Moreover

v i = v _+1 on r_ for i = 1,...,M-1, hence V.v_(a_) = V.v_+l(a_+l ) and V-vi(b_) =

V. v_+_(b_), for i = 1,...,M- 1. Recalling (0.2) and the fact that the Legendre

Gauss Lobatto formula is exact for polynomials of degree 2N - 1, we have, from the

divergence theorem
M

moreover

Z(V" v i, 1)N,_ = O,
ill

M M

_(v. v'.L.Cy))_..= _(d,=,L.C_))N,,-
i:l i:l

M N jfaa _- o'- l,_(_,u,)d_ =o.
i= 1 /=0 _- X

Using the same arguments we also deduce

(v•v',L_(_))N,,= ( _,.,L_(_:))_,,= _ L'_(_:_)
aa

Finally, since v _ E (PN(_,)) 2 we have (V. v_,L_Cz)LN(y)), = 0.

that this implies (V. v_,L_v(z)LN(y))lv,_ = O, for i = 1,...,i.

4,.(_,y)ay_= o.

It is readly seen

The following is a direct consequence of (1.4)and Proposition 1.2.

I
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Theorem 1.3. If uN is the solution of problem (1.4) then V • uk' = 0 in _i for

i = I, ..., M. II

Remark 1.2. Using the technique introduced in [6, Corollary 5.1], for the mon-

odomain case, one can prove that MN is exactly the image of VN through the diver-

gence operator. I

We now give a collocation form of problem (1.4). Let us recall that -_v N fl_,

for 1 _ i <__M is the set of the collocation points internal to try, and _v n r_, 1 <_

i <__M - 1 is the set of the points which lies on the interfaces r_ (not including the

endpoints a_ and b_). Let now _, k -- 1, ..., 4, be four points of _ n ('/t and let

_, k = 1,2 be two points of E_v N n_, for i = 2, ...,M. We suppose that

det {io_(_)} =riO (1.14)

where ion, I -- 1, ..., 4 are the four polynomials 1, L_r(x ), L_v(y.), L_r(x)L,v(y). More-

over denoting by ¢_, l= 1,2, i= 2,...,M the polynomials L_(x) and Lk'(z)LN(y),

we suppose that

det{¢_(_) } _=0 for i = 2,...,M. (1.15)

The hypothesis (1.14) and (1.15) are for instance verified if for any i = 1, ..., M the

points _, l = 1,2 (or I = 1, ...,4 if i = 1), are not aligned.

We can now state the following.

Proposition 1.3. Problem (1.4) is equivalent to find uN E VN and p_ E MN

such that

--Auk'(_) + Vpk'(_) = f_(_) V_ E _k' n fl_ for i = 1,...,M, (I.16),

V.u_(_) - 0 V_e=-_exept_e{ao,bo,al,bl,_,k-l,...,4}, (1.17)

V.uk'(_)=0 V_e_k' exept _e {a4,b,,_, k=1,2} / or i = 2, ..., M, (1.18)

auk, =
Pk'n')('_¢) - { "_n;n_

i+1

=-E
i=i

(1.19)

_v n r_ i = 1, ..., M - i.

I

We omit the proof of this proposition because it is a direct generalization of the

proof given in [6, Prop.5.1] for the monodomain case. Let us however precise some

remarks about (1.16)-(1.19). In (1.16) we impose the momentum equation at the

internal collocation nodes of each subdomain. These equations are obtained by (1.4)

by choosing vN as the characteristic function of the internal nodes of N_, i = 1, ..., M

and by using (0.2). In (1.17) and (1.18) the continuity equation is imposed in all the



collocation points exept a set of 4M + 4 points. In order to have the same number

of unknowns and equations it is necessary to eliminate such points (we recall that

Mlv is a subspace of codimension 4M + 4 of I]_1 PJv(_)). We enphasize that the

solution of (1.16)-(1.19) do not depend on the choice of the points _, k = 1,...,4

and _, k = 1,2, i = 2,...,M, provided the hypothesis (1.14) and (1.15) hold.

Concerning (1.19), note that on the right hand side we have the residual of the

momentum equation multiplied by the weight _r (which behaves like N-2). Hence

(1.19) asymptotically ensures that the stress tensor is continuous at the interfaces

r_, i = 1, ..., M-1. This property is clearly verified by the solution Of the continuous

problem (1.1).

2. Error estimates and a new pressure space.

In this section we first prove an error estimate for the velocity field.

Let w E (H01(fl)) 2, (where fl is given in figure 1.1), be such that V. w - 0 in

f_. We denote by H_a_w the orthogonal projection of w, for the inner product of

(HOt (lq)) 2, on the space of the divergence-free functions which belong to Vlv. The

following approximation result holds,

Th_rem 2.i. Let w • (Hot (f_))2 be a divergence-free function and suppose that

w _ • (H'(fl_)) 2, with a_ > 1, for i = 1,...,M. There exists a positive constant C

independent of both w and N such that

M

IIw H_"wll_ < C_ g '-_'' '- IIw L,,,,. (2.1)

Proof.Sincev,-• (Hot(r2)):andV.,,v = 0 in n thereexists¢ • _o(r2) such
that w = rot ¢. In [5, thm. 3.6] it is proven that there exists CN • Ho2([1) such that

_b_v • PN(_,), ¢_V ----¢_t on r_ and _ = _on, on r_ for i- 1,...,M- 1 which

verifies
M

II¢ ,/.'NIl2< c _ N=-'' _ (2.2)- I1'#I1,,,,_, _ > 2.

Here C is a positive constant independent of N and ¢. Defining wN - rot CN we

have that wN • V_. and

M M

llw ",,'Nil,< II¢ CNIh< c _ N:-"'II II,,,,,< c'_ N:-"'llw'll,,,_,.,
i=l _=1

for/_ _> 2. This gives (2.1) for a_ >_ 1. II

Theorem 2.2. Let u and uN be the solutions of problems (1.2) and (1.4) respec-

tively. If u _ • (H_'(fli))2,a_ >_ 1 and f • (H_"(fl_)) 2, /_ >_ 1, for i --- 1,...,M, then

there existsapositive constant C independent of N, u, and f such that

M

Ilu uNII,< c _ { N'-" ' g'-_'- Ilu II.,.,+ Ill'&,,,}. (2.3)
i=l

8

=

=
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Proof. From a general approximation result (see e.g. [3, Corollary II.3]) we have

[Iu -- unlit <C{ inf {llu - wNlll+ (2.4)
-- wN EVNfl7.W_ =0

((VwiN,w N))- ((VwiN,v,iN))iN/+sup /

((f, ziN)) -- ((f, ziN))iN I,sup 1

where C is a positive constant related to the constant Ct appearing in (0.5). Choosing

Hi'_U_u the first term at the right hand side of (2.4) can be estimated usingWIN -- N-1

(2.1). Moreover, since the Legendre Gauss Lobatto quadrature formula (see (0.1)) is

exact on P2iN-t(fl_), the second term vanishes. The last term in (2.4) is estimated

by using known results on the interpolation error (see [8, section 9.4.3]). II

Our aim is now to prove an error estimate for the pressure. We remark that if

MIN is given by (1.12) then PIN vanishes at the comer points ao, bo, aM, bM. On the

other hand the solution p of the continuous problem do not vanishes at these points.

Hence if MIN is defined by (1.12) the spectral accuracy cannot be achieved. Using

an idea introduced in [6] we now define a new pressure space -b/Jr: The following is

a direct consequence of theorem 1.2.

Proposition _.1. Let A:/N be a subspace of I]Mt PiN(fl,) such that

M

QN.x := {qE { H P[_NI(n,)}/R: q' =q'+t at a_ and b,, i= I,...,M-1} C I_IIN
i=t

(2.s)
where A E (0,1) and [AN] is the integer part of AN. Moreover suppose that there

exist an isomorphism GIN : MIN _ MIN such that for any q E MIN

((q,v. v))iN= ((aiNq,v. v))iN w vN (2.6)
and

IIGNqH <_ CHqll (2.7)

with a constant C independent of q and N. Then the inf-sup condition (1.13)holds

with MIN substituted by MN. II

A new discrete problem is obtained by using/V/IN instead of MN in (1.4). From

the proposition 2.1 it follows that such problem has a unique solution (fiiN,PN) and

that fin = UN. In other words the discrete velocity do not depends on the choice

of the pressure space provided the assumptions (2.5)-(2.7) hold. We now give an

example of pressure space.

Given an integer i, 1 < i < M, and a point P E _v, the characteristic function

X_, (defined in (0.6)) can be written in the form

N iN

,= ak,lLk(x)Li(y ). (2.8)

k=O 1=0



We define :_, by
/9"-1 N-I

= _.,L_(_)L, (y), (2.9)
k=i_N]+l l=[_V]+l

and we consider the space:

M

={q IIeNCn,):
i=1

1 -1 -1 M ~M
(q , Xao)N,1 (qt =(q ,xo_,)N,,4= (¢", _,)N,u =0,-" _Xbo )N, 1

q'(a4) = q_+l(a./), q'(b,) = q'+l(b,), i = 1,...,M - 1,
M M

_(q',l)N,, = 0, _(¢,LN(_))_., =0,
4=1 4=1

= O, (qI,L_N(x)LN(Y))N ,, = 0, i = 1,...,M}. (2.10)(q', LCN (Z) ) N.,

Recalling (1.12) we remark that the difference between MN and hTfN consists in

the first four conditions appearing in (2.10). From (2.8)-(2.10) it is clear that ATfN

verifies (2.5). We now prove the following.

Proposition 2.2 If l(ZINis given by (2.10) then there exists an isomorphism GN

such that (2.6)and (2.7)hold.

Proof. Let us denote by X_,,k = 1,...,4 the four elements of riM, PN(_i) given

in (1.6)(1.7)and by )_, k = 1,...,4 the corresponding elements with X_ substituted

by :_, (see(2.9)).We define :£k, k = 1,...,4 as the projection, for the inner product
M

((','))N,of Xk on the subspace of I'[¢=iPN(_) which isorthogonal to the elements

given in (1.8)-(1.10)._

For any q 6 MN we define

4 ((q,_k))N
UNq= q- Y_ ll;kll,lr_k. (2.11)

k=1

From the definitionof _k, k = 1,...,4 we have that GNq isorthogonal to the

elements (1.8)-(1.10)for any q 6 MN. Moreover using the expansion of Xk, :_, _I,,

1 <: k < 4, in Legendre series(see e.g. [6,Prop.V.3]) one can show that

(bz_,_,))_ = II:_,ll_&.,and II:_kll_/ll:_,,ll..',,_ c I,,I = 1,...,4, (2.12)

where 6k.l is the Kronecher symbol. Using (2.11) it follows that GNq is orthogonal

to Xl, 1 = 1,...,4, hence GNq 6 I_IN for any q E MN.

Since _k 6 ZN.M k = 1, ..., 4 we deduce from proposition 1.2 that (2.6) holds.

To prove (2.7) we remark that using the Cauchy-Schwarz inequality and (2.12) we
have

' ll:_I1.,,, Cllq[l,,, (z12)
k=l

io

I

L

-/_



Hence (2.7) follows from (0.5).

We can now give a convergence estimate for the pressure.

Theorem 2.:?. Let (uN,i_N) be the solution of problem (1.4) with MN sub-

stituted by A:/N. If (u,p) is the solution of problem (1.2) and u _ 6 (H"'(t2¢)) 2,

p E H_'-lCfl,) _ Hl(fl), o, >_ 2, f 6 (H_"(FI,)) 2, _ >_ 1, 1 < i < M, then we have

M M

II I1-,,,+ lipI1-,-_,,_ + I1_11_., (2.13)

where C is a positive constant independent of N, p, u and f.

Proof. From a classical approximation result (see e.g. [3, corollary 2.3]) and

using theorems 1.2, 2.1 and proposition 2.1 we obtain

IIP--_NIIo< CN_ inf

M

IIp-q llo+ u' . .

Recalling (2.5)and an approximation resultdue to Bernaxdi and Maday (see [5 thin.

IH.3]), we obtain

inf Ilp-qNllo_ inf
q. EATK. q.EQ.,x

M
i

lip-qNllo _ c _ Nt-" liP I1_,.,, (2.15)
i--1

hence (2.13) follows from (2.14) and (2.15). |

Remark '2.1. Let (UN,PN) be the solution of problem _1.4), and let (uN,16N) be

the solution of the same problem with MN replaced by MN. Recalling (2.11)(1.4)

and (2.6) it is readly seen that

PN = GNpN. (2.16)

Hence to obtain a spectral approximation of the pressure one can either solve (1.4)

and compute/SN from (2.16), or solve directly (1.4) with MN replaced by -A_/'N. |
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3. Plurirectangular Domains.

In this section we consider _ plurirectangle n partitioned in rectangles f2_, i =

1, ...,M, where M is a fixed integer. We assume that the decomposition of n is such

that the intersection of two adjacent subdomains is either a point or an entire edge.

The finite dimensional space VN is cie_ed again by (L3) and the discrete pro_

lem is given by (1.4). The crucial difference with the case of aligned subdomains lies

in the choice of the pressure space M_r. Let us first consider, as an example, the

domain of figure 3.1.

C_ 0. 5

C2 C!

f_
!

a

_3
3

figure 3.1

The points a_, i - 1, ...,6, are the non-reentrant corners of an; bi, i -- 1, ...,6,

are the points of Of_ which are the intersection of two subdomains, ct and c2 are the

reentrant corners of an and dt is a so called "cross point", i.e. the intersection of

four subdomains.

Following the lines of section one we define MN as the subspace of 1-I,=l PN(fl,)

Wh0see[ementSare orthogonal to Z_V,7 (see (1.5) and (i.li)). h this case there are

30 independent elements of ZN, v, and the space M_ is given by

MN-- {qe HPl_(12,) : q--Oirta_, i 1,_.6, (3.1)

q_ = qi+t in b_, i = 1,_.6,

qt + q5 = q4 in ct, q5 + q7 = q6 in c2,

qt + q3 = q2 + q4 in dl,

7

=o,
i=I

((q',L_(x)L_(y))N5 =0 i= 1,...,7,

2 6

(qT, L_Cx))N.t -- O, ECq',L_(x))N5 -- O, E(q',L_cCx))1,_,, = O,
i=l i=3

12
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7

_(¢:, x-.,_Cy))N,,= o, Cq_,.r_.,_Cy))_,,= o,Cq",Li,,.Cy))_,,÷ Cq',.r.,_Cy))_,,= o,
i=6

3

_Cq', L_(yjlN,,= 0}.
i=2

The first 15 conditions are orthogonality relations, as a matter of fact they can be

written as follows.

(q/,xi,)N,i=0, i= 1,2,3, (q6, = (q7 Xa7 )N, 7 = (qT, xa7 )N, 7

(qi, = (qi+l, )N,i, i = 1, 6,x_,,)N,_ "_+*A,b,i '"_

5 5 .-- Xtt)N,4_(ql,x1,)N, 1 "[- (q ,Xc,)N,5 (q4, (3.2)

Cq_,x_,)_,_+ (q',xl)N,_ (¢,= X_:)N,6,

(q',xl)_,, + (qs,x,_,),',,,= Cq:,xl)N,=+ (q',xi,),v,,,.

These conditions will be called "physical conditions" as opposite to the last 15 con-

ditions appearing in (3.1) which will be called'"spectral'.

We now suppose that fl is any plurirectangle partitioned in M rectangles i3_,

i = 1, ...,M. Let MN be defined by (1.11), in the following we describe the conditions

which characterize the elements of MN.

A physical condition is associated to every node of the decomposition. Precisely

if P is a non-reentrant comer of c313 (as a_ , i = 1, ..., 6 in fig.3.1) then we impose that

any q E MN vanishes at P. If P is a reentrant comer (see fig. 3.2) then we impose

q_(p) + q,.,(p) = qt (p).

rl

P

figure 3.2

If a node P belongs to all and it is not a corner (as bl, i = 1, ...,6 in fig.3.1) we

impose the continuity of q at P. Finally if P is a cross point (see fig.3.3) we impose

the "continuity" condition q'_(P) + qt(p) = qk(p) + q_(p).

Let us now describe the spectral conditions appearing in the definition of MN. As

in the continuous case we impose that any q E MN is orthogonal to the constants. The

13



m

P

figure 3.3

orthogonality of q to L_ (x)L_ (y), i - 1, ..., M, gives M additional conditions. Let

us now call "horizontal strip" any maximal set of horizontally aligned subdomains.

For instance in figure 3.1 these strips are {flT},{i2,,fl2}and{12,, i- 3,...,6}. If a

horizontal strip is given by {fit, l E A} where A is an index set, then we impose

that q is orthogonal to the function which equals L_r (y) on il_, l E A, and vanishes

on the other sub domains. Similarly if {_2k, k e g_a%ertical strip" (these

strips are {il6,il,}, {ils}, {nl,n4}and{_2,il3} in fig.3:i) then we impose that q is

orthogonal to the function which equals L_v (x) on ilk, k E K, and vanishes on the

other subdomalns.

Using this definition of the pressure space MN, the "inf-sup condition" (1.13)

holds also in the case of a plurirectangle (see remark A.1). In particular this im-

plies that the discrete problem is well posed. Moreover, it is readly seen that if

vN E VNthenV • vN E MN, so that the discrete solution is divergence-free for any

value of t_e discretization parameter,

We now give the collocation form of problem (1.4) for a decomposition of a

plurirectangle fl.

Let (uN,pN) be the solution of (1.4), we have

-Au_C_)+Vp_(_)=f(5), v_nn,, i-1,...,M. (3.3)

Denoting by Fk,_ the common side of two subdomains ilk, i21, (not including the

end-points) we have

au ,an k

Let _ be a cross-point and consider, for simplicity the notation of figure 3.4.

Setting
2 i

D_ (U_v, p_¢) (_) -/._ t an,,k j (_)

14
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_k

n 2,1

n 1.2,_

_2

n
4.1

n3.1

n 1,1-

n4,2 ,_

n 2,2
3

figure 3.4

the cross-pointconditionis

4 4

1;=1 w:=l

V cross -- point _. (3.5)

Finally uN verifies the incompressibility condition, i.e.

V.U_v=0 in=_v, i=l,...,M. (3.6)

Actually, itissumcient to impose (3.6) in a subset of {_¢, i = 1,...,M}. Precisely,

since ulv = 0 on an then V .UN automatically vanishes at any non-reentrant corner

of aft. If P is a node on 8fl which is not a corner (e.g. bl in figure 4.1) it is

sufficient to impose only one condition at P (e.g. for fig. 4.1 V. u_r(bl) = 0 implies

V • U_v(51) = 0 since V • uN E MN). Similarly if P is given in figure 3.2 or 3.3 it

is sufticient to impose V-U_r = V. u_r = 0 and V. u_v = V. U_r - V-u_ = 0

at P respectively. It is also not necessary to impose (3.6) at some collocation points

internal to each subdomain (this follows from the fact that V. uN E Mlv and hence

it verifies the spectral conditions). Precisely one can eliminate in (3.6) one point for

each subdomain, one point for each horizontal strip, one point for each vertical strip

and one point choosen in an arbitrary subdomain. The points which are eliminated

must verify some hypothesis of the kind of (1.8),(1.9); if in every subdomain these

points are not aligned then these hypothesis hold. Summarizing, (3.6) reduces to

V. u}¢ = 0 in _v/AN,_, i = 1,...,M

where A_v,._ is a s_t of n collocation points and n is the codimension of MN in
M[I,=iPN

The velocity error estimate (2.3)holds also in the case of a plurirectangle. The

proof works exactly in the same way.

As in the case of the aligned subdomains to obtain an error estimate for the

pressure one has to modify the space MN introducing a new space MN such that

15



the thesis of proposition 2.1 holds. Precisely the physical conditions related to the

corners of cgFl have to be removed. In the case of a non-reentrant corner PE ai'l_

,Xp)N,i = 0 (as in the casethe condition qi(p) _ 0 has to be substituted by (q_ -i

of the aligned subdomains, see (2.8)-(2.10)). On the other hand if P is a reentrant

corner (see fig. 3.2) the condition qk + qn __ ql at P has to be substituted by

(qk, :_)N,k + (q'_, :_)_r,,_ -- (ql, :_,)N,l. If the other conditions of MN are not changed
N

we obtain a new space MN which verifies (2.6),(2.7) and:

M

(1-[
i---1

P[_/z](n,)/R: q is continuous at the verteces of the subdomains} c AT/'N.

Then the result of proposition 2.1 holds and the estimate (2.13) can be obtained with

exactly the same proof technique.

!

-Jl

=
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Appendix

In this section we prove proposition 1.1 and theorem 1.2. We first consider

two aligned subdomains, the proof in the general case will follow from an induction

argument. Let us precise some notation. The outward normal unit vector to an

is denoted by n. For i - 1, 2 we denote by r _ the counterclockwise unit tangent

vector to an_ and by n _ the outward normal unit vector to aF_. The notation

_, n_,i,3-- 1,2,areintroducedin_re A1.

b0

1

h I

_2

I

b2

2

3

n 3

fig.A.I The decomposition of f/with Air- 2.

Recalling the definition (0.6)we set for any n __ 1 :

L_+I - L_-I

2n+ 1

2 2n÷l
, fori=l,2,

where {x_} are the abscisses of the points {a_} for i - 0, 1,2. The polynomials J_

and J_ are the primitive of L,, and L_ respectively, i.e.

J_ = L,,, J,,(-1) = J,,(1) = 0 (A.1)(jd)' = L_, J_(x_-l) = J_(x_) = 0, for i = 1,2,

Moreover we have for any r_ __ 1 and i = 1, 2 :

IIL'_IIoL- 2_ ÷ x

c_ < IIJ_,II_o,,<
(2_+ 1)3 -

C3

(2n -']- 1) 3

(A.2)

17



where Ct, C2 and C3 are positive constants independent of n.

Let us denote by ZJv,2 the subspace of PN(_t) x PN(fl2} spanned by the 12

elements

(x_o,o), (x_o,o), (o,×_,), (o,×_,), (A.3)

(x_,,-x,,,), (xt,,-x_,), (A.4)
(1,1), (LN(y),r.N(y)) (A.S)

(Lb(_),o), (o,r_,(_)), (L_,C_),r_N(_,),o),CO,L_-C_)L_,Cy)). (X.o)

These are preciselythe spurious modes given in (1.6)-(1.10)for two subdomains.

Using (0.2)itisreadly seen that Zlv,2iscontained in the space ZN,2 defined in (1.5).

In the sequel we prove that, actually,Zt¢,2 and ZN,2 coincide.

Let q E Pzc(l_t) x Plv(l_2) be orthogonal, for the inner product (0.4),to Zt¢,2

(i.e.to the elements (A.3)-(A.6)). For i = 1,2, qi can be written in the form

N-I N-I

q' = _ _,L'_®L,+ _., _IL'_®s_,-1+ _ ./,s_,__®i.,. (A.7)
O_k,l<N-1 k=O |=I

Let us define two continuous functions A and B: [Xo, x2] _ R such that

AandBarelinearin[x__t,x_], i = 1,2 (A.S)

A(xo) = B(xo)

and

Vx e]xl-x,xi[ At(x) = O_ioo Bl(x) = 3_ for i = 1,2.

We define the function v = (vl,v2) e (Pjv(l_1) x P_v(l_2)) 2 as follows:

(A.9)

]V--I

i i
ak, J_ ® Jl + E/_,D_ ® JN-t + A' ® Lo + B i ® Jtc-t,

k=l

(A.il)
N-I

= "Tl.DN_l®Jt for i = 1,2.

O<_k<l<_N-t l=i

Lemma A.I. Let q E P_v(l_l) x P_v(f_2) be orthogonal to ZN,2 for the inner

product ((','))N defined in (0.4). If q is written in the form (A.7) and v is given by

(A.11) then we have

V. v i = ql for i = 1, 2, (A.12)

v.n=0 on0t2 (A.13)

_I..31= -_.._ onr_. (_.14)

18



Proof. From (X.1) (X.7) and (A.11) we obtain (A.12). Using (X.1) we deduce

that v.n = 0 on the two segments [ao,a2] and [bo,b2]. Moreover we remark that

the orthogonality of q to the elements given in (A.5) reads as follows

2 2

'/=1 t::l

From(X.S)-(X.I0)we deduce

A(z2) = B(z2) = 0.

Then the conditionv. n = 0 on the two segments [ao, bo] and [a2, b2] followsfrom
(A.1)(A.9)and (A.15). Finally sinceA and B are continuouswededuce(A.14)from
(X.1)and (A.11).

Lemma A.2. In the same hypothesis of lemma A.1 the following estimate holds

2 2

E:II,,'I1 .,___o E: II¢'rio,,,
_:1 _:1

for a positive constant C independent of q, v and N.

Proof. Using (A.2) and (A.7) a direct computation gives, for i = 1, 2:

1

I1¢11_.,>_c((_,-z,_l) _ (_')_ (2k+ z)(21+ z) t- (A.lV)
o_<k,,t_<N- 1

z, - ___ _ (ZC)2. 1 (_- z,_t)3 (_i)2 1+ 7vz 2k¥ 1 + _-z 2_+----_)'
k=O /=1

where C is a positive constant independent of q, N and i. It is readily seen that

a,,i a,4
II-_--_I]o,_+ II--_-yIIo,,_ Cllq'llo,,, i= 1,2.

o_d
Let us now estimate o_ 0,i. From (A.1) and (A.11) we obtain

ad
=

0<_t_<_<_N-1, k+_#.O

N-1
i t

_kJ_ ® LN-_ + ® LH-1.

k=l

(A.19)

We now estimate the three terms appearing in the right hand side of (A.19).

19



1) Recalling the inequality f1_I (L_)2dz < C(21 + 1), we get for i= 1, 2

N- I --zi N

O<l<k<N-t 1=0 i-t k=l, k-+.l#O

l=0 k=I, k+l#0 (2k + 1)3 --

_<c _ (21+i)I/'(_ ("_')2(2k+i)(21+ i)) "
/=0 k=l k+l#O

2

Using the Cauchy-Schwarz inequality and (A.17) we deduce

II _ ' J_'®L',=_<

N-I N-I

_<c(g +,)(g
1=O k=O

(_ - :':=-I)_ - q Iio,,(zZ:di)_= i)) < C:ll ' :

(A.20)

2) From (A.2) and (i.17) we obtain for i = 1,2

N-I

I1_ '' c_'-__J_ ®LN-111OL<--_ _ (_D=(=' - ='-_)_
k=l kft (2k + 1) 3

2 i 2CN IIqliD,,. (A.21)

3) Recalling (A.9) and using the Poincaxd inequality,(A.10) and (A.17) we deduce

2

C _liB' ®LN-111_,,,<_-_ o
i=I

<_CN 2__, I1¢11o2,,•
i-1

C 2

i=1

(A.22)

From (A.19)-(A.22) we obtain

2 Ov_t =_

_t IIqIio,,.IIoL< CN2 E ' 2
"= i= 1

2 0_ : =
Using the same technique it b possible to estimate _=1 o_ Ito2,,,hence, recalling

(A.18) we obtain (A.16). II

Lemma A.$. In the same hypothesis of lemma A.1 the following estimate holds

2 2

IIv' '•_ IIL'(O.,p <--c_ _=IIqIIo,_, (A.23)
i=1 i=1

=

![
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for a positive constant independent of q, v and N.

Proof. From (A.1) and (A.11) we obtain for i = 1,2

O<l<k<N-I k+l_O

(A.24)

Using (A.2), the Cauchy-Schwarz inequality and (A.17) we deduce

( <_.c .- x,_,)3],<
_-, o_<l_<k_<N-l,k+l#O _<=0 l=O k'_7"_

,,,'-i[ k I=f<,l )i i ]<
<_ C(Xi- 2:i_1) 3 E (_ (2k + 1)1/2(2l + 1)1/2 2k +'--'-'_ -

k=0 I=0

N-1 _ (a_m)2 k + 1 < Cq'll- - 11o,,._< C(xi - x_-l) a E E (2k + 1)(2/+ 1) 2k + 1
k--O 1=0

The second term at the right hand side of (A.24) can be estimated using the

technique of the proof of (A.22), so that we obtain

2 2

IIv' < .•_'<illn,toa,) _ C _'_ II'q 11o,,2
i=i i=I

2

Working in the same lines to estimate _-_=i fly'.r)[lL,(oo,),
(A.24).

Theorem A.I.

w E VN such that

j -" 1, 2, 3. we obtain

I

Let q E PN (_1) x Ply (fi2) be orthogonal to Ziv,2. There exists

V.w i=q_ ,fori=l,2 (A.25)

and
2 2

E , 2 < CN 2 E II¢lloLIIwI1_,1_
i=l i--1

for a positive constant C independent of w, q and N.

Proo/. Let 0N+ and 0_ be two functions such that

0_, 8_ E P.,v([-I,1])

(0})'(1) = I, 0_,'(i)= 0
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and
C

ll0_+Ilvc-t,_j+ II0_llL_c-t,,)< _. (A.2S)

One can for instance choose 0_v(y ) -- (t+v)2(t-Y)L_'(:')
-- 4L_,Cl ) and 0N(y) -- -0_v(-y ).

(it can be proved that it is not possible to find 0 + and 0_ verifying (A.27) and (A.28)

with on the right hand side a power of N greater than 3).

Let q and v be given by (A.7) and (A.11) respectively. We define the functions

f and g as follows:

f(y) = vt •_(bl)s+(y) - v_. _(.t)0_(y)
(A.29)

8vt._.x +
g(Y)=--_(bt)ON(Y) -- av-_(a_)ON(y)a_._ for V E [--I, I].

For i = 1, 2 we now define the functions _b_ and _i on af_ as follows:

_=0 on0fltnafl

Vy E [-1,1] @_(zt,y) =.V(y)

_ = v _ .r _ on Oflt n Off

VV E [-1, 11,

We now show that there exists _ E PN(flt) x PN(_2) such that

and

_btCa:t,y)"-gCy) and _b2Czi,I/)--v I .rI +v 2 .r_ -gCy).

_=_i on0f_¢0_ _

= ¢2 on 0fie

2 2

I1_'11_,,<__c _(.2'v"_ll_' _II.r..,co_,)+ N_ll_"ll.r..=co_,))• (A.32)
i_-t i--'--I

The existence of this function _ is a consequence of a trace theorem due to Bemaxdi

and Maday provided some compatility conditions hold (see [4,thm 3.1]).To simplify

the notation let us fix the index i and set At = a_-t, A2 = ad, A3 = be,A4 = b¢_t

(seefig.A.1). We denote by _. (resp._b_.)the restrictionof q_i(resp._) to [A__t,A_].

The compatibility condition axe the following

_.(A,.)= '

(&)= _Lt(Ai),
J

i

Or} (Ail=-_b;'CAi)'

1 < j < 4 (A.33)

1 _<j < 4 (A.34)

1 <_ j < 4 (A.35)

1 _ j < 4. (A.36)
0_'+.. t

•_ (Ai) = (Ai),
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Thanks to (A.27) (A.29) and (A.30) the conditions (A.33) axe satisfied.

For ] -- 1 the condition (A.34) reads as follows:

v'._(_o)=o

v_.,-_(a,)= -f'(-_).

Due to (A.27) and (A.29) these relations can be written in the form

v_•ni(_)=0

v_.,,_(a,)= -v,.nlCa,)

hence they follow from (A.13) and (A.14). Using (A.13) (A.27) and (A.29) mad

working in the same lines the conditions (A.34) for 3" = 1, ..., 4 and (A.35) can be

easily verified. For ] - 1 the compatibility condition (A.36) reads as follows:

_i. _._ avi"_'i
g,.}-(_o)= _-q (_o)

av1. ,._ av2. ,.2 av2.,.2
g,._ (_1)+ _;._- (_1)+ g'(-i) = _-_- (_1).

The firstcondition can be written in the form V. v i(ao) = 0. It follows from (A.12)

and the orthogonality of ql to X_to. Recalling (A.29) and (A.30) the second condition

is V. vi(al) - V. v2(al). This is a consequence of (A.12) and the orthogonality

of q to (X_,-X_). Working in the same lines the relations (A.36) for y = 2,3,4

can be proved. They follow from (A.12) and the orthogonality of q to the elements

(o,x_,), (x_o,o),(o,x_,) and(x_,l,-x_l).
It follows from (A.33)-(A.36) that there exists @ E Pt¢(_l) x Plv(_2) such that

(A.31) and (A.32) hold. We set

w=v+rot@ , (A.37)

where v isgiven by (A.11). From lemma A.1 and (A.30) (A.31) we have that w E TIN

and V-w = q. To prove (A.26) note that

2 2

Z i 2 i 2 2IIw I1,,_-<c _(llv II1,,+ I1_11=,,). (a.3s)
_=1 _=1

2
Recalling (A.32) we have to estimate the terms _'_i=i iI1¢'II_,coo,), and

2
Zi=I i[l_b IIr._(0n,)2. Thanks to (A.28) (A.29) and (A.30) we have

2

II_,'llL,coo,)_<-_--_(ICy_•r,_)Cb_)l=+ I(v_•r=')Cax)l=)
d=l.
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and

2 C av I •_

,=111¢I1_c,:,_,)_ _(I _ (bl)l_÷l
_I .r d 2 i

_-_- (a_)l_)+_ll v''_ I1_-c_,,). (A.4O)
i=l.

From (A.39) (A.1) (A.10) (A.11) and (A.17) we get

(A.41)

From (A.1) (A.n) and (A.40) we obtain

2 C 2

il¢":ll,-.c_,o,)-- _( _ I_,1): + _ I1¢-',"11_.c._,,).
i=I O<l<k<N-1 i=I

Using the Cauchy-Schwaxz inequality, (A.17) and lemma A.3 we deduce

2 C'

II¢'llL.co_,)-<_ _ I_i:,l_
_=l O<l <k<N- _

2 2

C" _ _ 2llqIio,,-<c _ , 2IIqIio,,.+

4=1 i=I

(21,+ 1)(21+ 1)
_- (A.42)

Finally from (A.37), (A.16), (A.38), (A.32), (A.41) and (A.42) we obtain (A.26). $

We axe now in a position to generalize the resultof theorem A.1 to the case of M

aligned subdomains. To thisend letus denote by ZN.M the subspace of I-IMI PN (12_)

spanned by the 4M + 4 spurious modes given in (1.6)-(1.10).The other notation are

those of section one.

Theorem A.'2. Let q 6 1-IMI PN (l_,) be orthogonal, for the inner product ((-,-))N

defined in (0.4), to any element of ZN,M. Then there exists w 6 VN such that

V. w _ = q! .for i = 1,...,M (A.43)

and
M M

Z WI 2I1 t1_,,< cN=_II¢IIoL, (A.44)
4=I 4=I

where C is a positive constant independent of w, q and N.

Proof. We use an induction axgument on M. Theorem A.1 gives the case M = 2.

We suppose now that the theorem holds for M - 1 (M < 3) aligned subdomains and
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we consider the case of figure I.I. The function q E _z PN (fli) can be decomposed
as follows:

where

qz = qZ,

and q2 has the following properties

q=¢+q (A.45)

= 0 for i = 3, ...,M (A.46),

pCa,) = q'Ca_),

(qt,LtLo)N,t + (q2,L_Lo)N,_

Cq_,L_C_))N,_

q2(bt) = qt(bt), q2(a2) = q2(b2) = 0,

=0, (qt,ZN(Y))N,t + (q2, LN(y))N, 2 =0,

= (q2,L2N(X)LN(Y))N, 2 = O,

there exists a positive constant C independent of N such that

(A.47)

(A.4S)

llq211o,=_ cllq_llo,x (A.49)

The polynomial _ is then defined by _ = q2 _ q2. Let us assume for a moment that

such a decomposition exists. From (A.45)-(A.48) it follows that (qt, q2) is orthogonal

to ZN,2 and (_,q3,...,qM) verifies the hypothesis of the theorem in the M- 1

subdomains f12,..., tiM. Hence from theorem A.1 and the induction hypothesis there
2

exists ",V 6 _i=t PN(_i) 2 and _, • _/Mffi2 PN (_i) _ with _ = 0 on 0(flz U f_2),& = 0
M

on 0(U_=21"li), _' and _" continuous at the interfaces, such that

V.W i=_, i=1,2, V-'_=_, i=2,...,M (A.50)

and

2 2 M M

E i 2 2IIwII,,, -<CN2 ___I1¢11o,, , X_ II*IIL <--CY' _ 11(11o2,. (A.51)
i=1 i=l i=2 i=2

We now set

_ [ _t z in Oz

w I_2+_2 in fi2=i
w in fi_ for i=3,...,M.

Clearly w • VN, furthmore from (A.45) and (A.50) we have that V. w i = ql

1,...,M.

From (A.52) (A.51) and (A.46) we obtain

(A:52)

for/=

M M M

Z Wi 2 =i SII iiwII .,+E I1,-I1,,,)
if 1 i= 1 i=2

M

IIqIio,,+ Ilq'llo2,=÷ 11_11o2,,)
i=1 i_2

25



hence using (A.45) and (A.49) we get

M M

Ew' EII II1,,<
i=l _=1, i#2

2 Ilq 1[o,2)llq I[0,,+ []qlll_,l + 2 2

which gives (A.44). To conclude the proof we exhibit a polynomial q2 which verifies

(A.47) (A.48) and (A.49). We suppose, for simplicity, N even and we set:

(12 2 2 9. 1 2 2 2 ql alLZo Lo @=(w_) xb, q (bl) + (wN) Xa, (al) + ® + a2L_ LN+ (A.53)

+ o3L_ ®Zo + o,,L_ ®LN + asLi ®L2

where ok, k = 1,... ,5, axe constants.
4

From (0.7) it follows that (A.47) is verified provided as = - Z_k=l o_.

An easy computation shows that ok, k = 1,...,4, can be found so that (A.48)

holds, moreover we have

Io,_l_<(11q111o,1+ (_2,)=lqlCadlllx_,IIo,=+ (_._)=lqiC_1)IIIx_,IIo,_-).

Hence from (A.53) we deduce

IIq=llo,2< C(llq111o,1+ (w_)2clql(b_)lllx_,IIo,=+ IqlC_l)lllx2,IIo,=)).

Using (0.2) and (0.3) it is readly seen that the two last terms can be bounded by

IlqXllo,1 hence (A.49) holds. I

Proof of Proposition i.i and Theorem 12.

From theorem A.2 and (0.5) we have that there exists a positive constant C

• independent of N such that

hence

((q,V.w))N > c Ilqllo > _,vq • Z_,M a w • VN : IlqllNtlVwll_-- IlVwllo--

ink" sup ((q'V'v))N > 67 (A.54)

qe_#._,_ev,, IIqlINIIVvlIN- N

From (A.54) we deduce that Z._,M do not contain any spurious mode for the pressure.

Recalling (1.5) we then have Z_,M n ZN,M = {0}. This implies that

dimZN,M < dimZN,M. Since ZN,M D Z.,C,M we deduce that ZN,M = "Zlz, M, hence

proposition 1.1 is proved and theorem 1.2 follows from (A.54) and (1.1I). 1

I
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Remark A.I (More complex decompositions).

The proof technique of theorem A.2 can be generalized to cover more complex

decompositions. Consider for instance the L-shaped domain of figureA.2.a.

f_
2 3

l

2 3

figureA.2.a figureA.2.b

If q EMiv (the pressure space described in section 3) then it can be written

in the form (A.45) with qt = qt, _3 = q3 and #2 such that (qt,q2) belongs to

Z_,2" It turns out that theorem A.1 can be applied in f_t U f/2 and in fI2 U ft3

and that theorem A.2 holds for this decomposition. Analogous consideration holds

for the figure A.2.b. In this case q EMiv can be written in the form q = q +

withql = 0, _ -- q4 _t = qt, 94 = 0 and _, _ fori= 2,3 such that one can

apply theorem A.2 on the L-shaped domains f_l u fl2 U fl3 and t_2 u t_3 u f_4. For a

general partition of the domain of"the kind of that of figure 4.1 one can always find a

decomposition of q as in the previous cases. Hence proposition 1.1 and theorem 1.2

can be proved also in this case. |
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