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INTRODUCTION

GiSrtler vortices arise in boundary layers along concave surfaces due

to centrifugal forces. These counter-rotating streamwise vortices are one

of the three known flow instabilities which lead to boundary-layer

transition. Advanced supercritical Laminar Flow Control wings have

concave regions on the lower surface near the leading and trailing edges.

G_Srtler vortices coupled with T-S waves and crossflow vortices may play

an important role in triggering early transition.

In earlier studies the linear development of GiSrtler vortices was

reduced to an eigenvalue problem assuming the flow to be parallel or

quasi-parallel (refs. 1-4). The shapes of the perturbation velocity

components were assumed invariant in the streamwise direction while

their amplitudes were assumed to grow at a common rate. The major

differences in the approach, details of the formulations, as well as the

computational results are discussed extensively by Herbert (ref. 5). In

each of these investigations, a unique neutral curve was obtained. The

major limitation of this method is that it cannot be used to determine the

development of G_Srtler vortices in the presence of variable curvature,

suction and pressure gradients. In such a general case it is necessary to

solve the governing partial differential equations as an initial value

problem as developed by Hall (ref. 6).
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BACKGROUND

Hall obtains multiple neutral curves that depend strongly on the

initial condition and their location (Fig. 1). However his conclusions are

misleading because his initial conditions are mathematically correct but

physically meaningless as shown in figures 2a 2c below. If a physically

meaningful vortex perturbation is introduced as the initial condition, then

these multiple curves will coalesce into one curve. It will be shown

subsequently that the resulting growth rates agree well with results

obtained from the solution of the eigenvalue problem for the case of
constant curvature.
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HALL'S INITIAL GUESS

u =rl 6 exp(-rl2), v=0.0 (ref. 6)
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GOVERNING EQUATIONS

The perturbation form and their linearized governing equations with

appropriate boundary and initial conditions are given in figure 3. A second

order accurate, implicit, iterative finite-difference scheme is used to solve

the perturbation equations for the Blasius boundary layer. The governing

equations are the same as those developed by Hall (ref. 6) but physically

meaningful initial conditions have been used in the computations.

• DISTURBANCE FORM

U(X,Y,Z) = U(X,Y)cos(c_vZ)

V(X,Y,Z) = V(X,Y)cos(avZ)

W(X,Y,Z) = W(X,Y)sin(av Z)

P(X,Y,Z) = P(X,Y)cos(avZ )

• GOVERNING EQUATIONS Gv = 21/R ,,f'_l/v

U X + Vy + avW = 0
2

uUx + uxU + vUy + Vuy - Uyy + avU = 0
2

uV X + vxU + vVy + Vvy + Py +GvUu - Vyy + cxvV = 0

u W X + vWy -avP " Wyy + ot2W = 0

• BOUNDARY CONDITIONS

U(X,0) = V(X,0) = W(X,0) = 0
U(X,_) = V(X,co) = W(X,_) = 0

• INITIAL CONDITION

u = u(Y)

v = v(Y) AT (X =X)
w=w(Y)

Figure 3
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NORMALIZED PERTURBATION VELOCITIES

_:igure 4 below shows the normalized u- and v-perturbation

velocities obtained from the present method and by solving the eigenvalue

problem (ref. 3). Computed results based on Hall's initial guess have also

been included to show the effect of physically incorrect input on the

solution. The u-, v-, and w-perturbation velocities are assumed to grow at

a common rate in the eigenvalue problem. If this approximation is true for

the physical problem, then the v-perturbation velocity has to grow very

rapidly to match the correct shape and amplitude if it is assumed to be zero

initially as in reference 6. This may explain the behavior of the v-

perturbation velocity in the following figures when it is assumed zero

initially.
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VARIATION OF AMPLIFICATION RATE WITH GORTLER NUMBER

This conclusion is further reinforced by figure 5 showing the

variation of the amplification rates with G_Srtler number. A number of

computational experiments showed that whenever the growth rates 13u and

13v matched (as assumed in the normal mode approach) the computed

results from the initial value problem merged with results obtained from

the normal mode approach, indicating that the assumptions made in the

normal mode approach are reasonable for this problem (also, see ref. 2).
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EFFECT OF VARIABLE CURVATURE DISTRIBUTION ON GORTLER VORTICES

We now look at the growth/damping of GSrtler vortices in the

presence of a variable curvature distribution (Fig. 6). A Blasius boundary

layer is assumed for the mean flow. The normal mode approach is not

applicable to this problem. Computations were carried out for a number of

curvature distributions, but only one case is considered here. Typical

normalized perturbation functions and the perturbation velocity field

along the span over one wavelength are shown in the following pages

(Figs. 7a - 7f) for different streamwise locations. Note that a negative

value of the GiSrtler number G v denotes convex curvature, The G_Srtler

vortices appear to lift off at the beginning of the convex region and a

secondary, weaker vortex pair begins to emerge near the surface. The

original vortex changes sign in this region and we observe counter-rotating

vortices in the spanwise as well as normal direction. Further studies on

more realistic problems are in progress.
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VARIATION OF ENERGY ALONG THE STREAMWISE DIRECTION

The variation in kinetic energy along the streamwise direction is

shown in figure 8. As expected, the energy reaches a maximum at

the end of the concave region followed by a rapid damping in the convex

zone.
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CONCLUSIONS

An effective computational scheme has been developed to study the

growth/damping of GiSrtler vortices along walls of variable curvature.

Computational experiments indicate that when the amplification

rates for the u-, v-, and w-perturbations are the same, the finite-difference

approach to solve the initial value problem and the normal mode approach

give identical results for the Blasius boundary layer on constant curvature
concave walls.

The growth of GSrtler vortices was rapid in the concave region and

was followed by sharp damping in the convex region. However, multiple

sets of counter-rotating vortices were formed and remained far

downstream in the convex region.

The current computational scheme can be easily extended to more

realistic problems including variable pressure gradients and suction
effects.
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