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Results are presented from a numerical simulation of transition control in plane
channel and boundary layer flows. Details of the channel flow control are available
in reference 1. The analysis is based on a pseudo-spectral/finite-difference semi-
implicit solution procedure (ref. 2) employed to numerically integrate the time-
dependent, three-dimensional, incompressible Navier-Stokes equations in a doubly
periodic domain. In the channel flow, we find the active periodic suction/blowing
method to be effective in controlling strongly three-dimensional disturbances. 1In
the boundary layer, our preliminary analysis indicated that in the early stages,
passive control by suction is as effective as active control to suppress instabili-
ties. Our current work is focused on a detailed comparison of active and passive
control by suction/blowing in the boundary layer.
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GOVERNING EQUATIONS

CONTINUITY EQUATION
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SOLUTION PROCEDURE

SAME TECHNIQUE AS THE VELOCITY FIELD

Non-dimensionalized with (T—To)/(Tw-TO); h andkjo
Adams-Bashforth 2-step method for the advective terms
Crank-Nicholson implicit scheme on the diffusive terms.
Periodicity along allows Xy and X3 -

Two-D Fourier transform in the X1=X3 plane

The Pseudo spectral method in the x],xé directions
Finite differences with variable mesh along the X5 direction
Solution in Fourier space as a tridiagonal system

Back transformed into physical space to obtain temperatu}e
field at (n+1)

IMPLEMENTATION OF BOUNDARY CONDITIONS

No-slip B.C.
Uy = Uy = ug = 0 7
p from x,-momentum equation

Suction B.C.

Flow homogeneous along X1s X3

. Incoming mass flow rate must equal to the outgoing mass flow rate

<
9 U2>

3)(2

Uy> = CONST. or g(x], x3)

L ot UL UL G R UL TR U

v Hence velocity magnitude and direction at one wall must be preserved
throughout the flow field to satisfy continuity

. Physically plausible condition is suction-blowing or periodic b. cond.
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TRANSITION IN WALL-BOUNDED FLOWS

2-D Tollmien-Schlichting waves.
Formation of streamwise vortices.

Formation of shear layers away from the wall due to
vorticity-induced velocity.

Secondary instability
(kinks and spikes).

Breakdown into smaller scales, formation of wall shear,
hairpin eddies.

Turbulent spot - horseshoe vortex-turbulence.

MODEL PROBLEMS

Periodic plane channel flow

Periodic boundary layer.
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COMPUTATIONAL DETAILS

Nesh Resolution : 32 x 51 x 32

Channel flow Reynclds nuamber : Re = Uoh/v = 7500
U° : Centerliine velocity
h™: Channel half-thickness

Boundary layer Reynolds number : Re = Uair /» = 1100
Ue : Free-3tream velocity
6& : wmomentum thickness (constant)

Inatial Conditions

a. Channel Fiow
All velocities per cent of channel centerline velocity.
Tc is the time when contrel is applied for one time step.

asr ma
& 6 u'in u.3° ‘r‘
1 ! 3 2 20,50,40

b.Boundary Layer
Velocities are per cent of free-stream velocity.

o @ A
25 209 0% 0.

Ol : Wave number of the 2D fundamental wave.

(3 : Wave nuamber (spanwise) of the oblique wave.

) o« ang (3 are used to generate the initial conditions froa an
Orr-Sonmerfeld solver.

(J:;) : Maxizum amplitude of the initial 2D wave.
m
(u3;5 : Maximum amplitude of the initial 3D wave.

Flow geometry, the computational box

outfiow

+1

Inflow
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MAXIMUM PLANE-AVERAGED RMS VELOCITIES

The temporal development of plane-averaged maximum velocities is presented.
These velocities provide comparisons between the controlled flow (three-dimensional

control) and no-control cases for the channel flow.
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TEMPORAL DEVELOPMENT OF U-COMPONENT FLUCTUATING VELOCITY AND ITS HARMONICS

The evolution of the various Fourier modes indicated that all amplitudes are
significantly reduced, and after the third control wave they all decay rapidly.

No control . With control
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NORMALIZED ONE-DIMENSIONALIZED WAVE SPECTRUM

In the uncontrolled case we cbserve that energy transfer to the high wave num-
bers is indicated by a full spectrum. In the controlled case, this does not occur

and energy is concentrated in the low wave numbers preventing the development of
higher harmonics.
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MAXIMUM U-RMS ALONG X5 (SPANWISE DISTRIBUTION)

In the uncontrolled flow, peak-valley splitting develops. The control wave
does not prevent peak-valley splitting, but reduces the amplitudes. The uncontrolled
and controlled distributions remain in phase.

MAXIMUM UL® RHS ALONG X3 AT T=20 o MAXINUM Ul® RHS ALONG X3 AT 7=30.

586

Uy " RAS

Ul1® RNS

.10

12

LJLEN S B A S B S At e e 4

E

.Qa .08

.00

L S S L [ R e S R

T

| U SR

PR

X3

MAXIMUM U1' RMS ALONG X3 AT T=40.

LA B M St S S S B S B S S S S S R

T

T

P W R

PR W S

No controil
With control

RNS

[VE

u1* kns

a.
b.

L S L B S Bt R S S

MRS S RS G a B

X3

MAXTHUN Ul RMS ALONG X3 AT T=80.

L S S S S e S LA Rt e e p

No control X3
With control

LI T LR L TR TR UL L N R TT UT T TE R AT}

LRI A AR KRR ] 4T



PLANE AVERAGED Ul RNS

PLANE AVERAGED'U1 RNS

U-RMS PROFILE

These figures indicate the amplitude reduction
the imposed control waves.

Ul RMS PROFILE AT T=20
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Ul—FLUCTUATIONS ALONG Xl

In the uncontrolled case a strong negative spike develops between T = 40 and
T = 50. No evidence of spike formation and nonlinear distortions is observed in the
uncontrolled case. As T = 60, the controlled distribution is nearly sinusoidal,

whereas the uncontrolled case shows a broad frequency content.

e
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SURFACES OF CONSTANT TEMPERATURE

In these figures, three-dimensional representations of the temperature field
(treated as a passive scalar) are displayed. The uncontrolled flow displays evidence
of strong mixing and a highly convoluted temperature surface, while the controlled
flow is relatively uniform and indicates local laminarization.

No control
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SURFACES OF CONSTANT TEMPERATURE (CONC.)
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T =40

No control

(-)a=

T=150

With control

No control

|

Q\ ﬁmmmmww
ﬁ\ \ﬁmmwmmv
.

/

=
o &\\\WW

U
0

\

.
W

W
§ \\

7

7,

With control

Fhkal

L Ty W [V

Constant valued temperature surfaces fn the computational box between the lower

wall and the channel centerline (v = 0.10},
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PERIODIC BOUNDARY LAYER

u-component velocity in response to various control waves.
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CONCLUDING REMARKS
* 2D and 3D wave interaction in channel flow.

* Preliminary calculations indicate comparable effects of passive and active
control in the periodic boundary layer.

* Passive temperature effective to tag flow dynamics.

* Need for space-evolving numerical experiments.
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