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Results are presented from a numerical simulation of transition control in plane
channel and boundary layer flows. Details of the channel flow control are available

in reference i. The analysis is based on a pseudo-spectral/finite-difference semi-

implicit solution procedure (ref. 2) employed to numerically integrate the time-

dependent, three-dimensional, incompressible Navier-Stokes equations in a doubly

periodic domain. In the channel flow, we find the active periodic suction/blowing

method to be effective in controlling strongly three-dimensional disturbances. In

the boundary layer, our preliminary analysis indicated that in the early stages,

passive control by suction is as effective as active control to suppress instabili-

ties. Our current work is focused on a detailed comparison of active and passive

control by suction/blowing in the boundary layer.
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GOVERNING EQUATIONS

CONTINUITY EQUATION
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CONSTANT PROPERTIES; NO VISCOSITYITEMPERATURE FIELD UNCOUPLED

EQUATIONS NONDIMENSIONALIZED BY UO, h

FLOW DRIVEN BY A CONSTANT MEAN PRESSURE GRADIENT 2/Re, Re = Uoh/u

CONVECTIVE TERMS PUT INTO A FORM THAT CONSERVES ENERGY AND MOMENTUM
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SOLUTION PROCEDURE

SAME TECHNIQUE AS THE VELOCITY FIELD

Non-dimensionalized with (T-To)/(Tw-To); h and_o

Adams-Bashforth 2-step method for the advective terms

Crank-Nicholson implicit scheme on the diffusive terms.

Periodicity along allows x I and x 3

Two-D Fourier transform in the Xl-X 3 plane

The Pseudo spectral method in the XlJX 3 directions

Finite differences with variable mesh along the x 2 direction

SoTut_on in Fourier space as a tridiagonaT system

Back transformed into physical space to obtain temperature

field at (n+l)
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IMPLEMENTATION OF BOUNDARY CONDITIONS

No-slip B.C.

u] = u 2 : u 3 = 0

p from x2-momentum equation

Suction B.C.

Flow homogeneous along x I, x 3

Incoming mass flow rate must equal to the outgoing mass flow rate

B<u2>
- 0

_x2

<u2> = CONST. or g(x], x3)

llence velocity magnitude and direction at one wall must be preserved
throughout the flow field to satisfy continuity

Physically plausible condition is suction-blowing or periodic b. cond.



TRA_NSITION IN WALL-BO.UN.DEDFLOWS

2-D ToIlmien-Schlichting waves.

Formation of streamwise vortices.

Formation of shear layers away from the wall due to

vorticity-induced velocity.

Secondary instability

(kinks and spikes).

Breakdown into smaller scales, formation of wall shear,

hairpin eddies.

Turbulent spot - horseshoe vortex-turbulence.

MODEL PROBLEMS

Periodic plane channel flow

Periodic boundary layer,
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COMPUTATIONAL DETAILS

Meah Resolution : 32 X 5l X 32

Channel flow Reynolds number : Ne = U h/_ = 7500

U : Cen_erline vQloc_ty o

hO: Channel h_l_-thickness

Roundary layer Reynolds number : Re = Ue_/_ = Ii00

U e : Free-_te_m velocity

_ : momentum thickne3s (constant)

In_ti_l Condit ionu

a. Channel Flow

All volocLtles per cent o_ channel center]ine velocity,

T e is the time when control is _pplied for one tzme step.

I I "5

b._oundar_L_Yer

Velocities are per cent of free-stream velocity.

C_ : W=ve number of the 2D fundamental wave.

: Wave number (spanwise) of the obllq_e w&ve.

o_ _n_ (_ _re use_ to _ener_te the Inltla! conditlon_ _roa an

Orr-_ommer_e_ solvor.

(U2D} : M_x_mu_ amplitude of the inltial 2D wave.

(u_D_ : Maximum amplitude of the initia] 30 wave.
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Inflow

Flow geometry, the computational box

outflow

x3

L3
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MAXIMUM PLANE-AVERAGED RMS VELOCITIES

The temporal development of plane-averaged maximum velocities is presented.

These velocities provide comparisons between the controlled flow (three-dimensional

control) and no-control cases for the channel flow.
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TEMPORAL DEVELOPMENT OF U-COMPONENT FLUCTUATING VELOCITY AND ITS HARMONICS

The evolution of the various Fourier modes indicated that all amplitudes are

significantly reduced, and after the third control wave they all decay rapidly.
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NORMALIZED ONE-DIMENSIONALIZED WAVE SPECTRUM

In the uncontrolled case we observe that energy transfer to the high wave num-

bers is indicated by a full spectrum. In the controlled case, this does not occur

and energy is concentrated in the low wave numbers preventing the development of

higher harmonics.

SPECTRUM OF ul VELOCITY X2 _ -0.9

10°

\

t
10 -1

10.2 i a

10-3 1

10

T=50

]0 °

I0 "I

I0"2

10-3 lO

K l

a. Without control

T : 40
(lOb) I

lO01

i0"I

:,'\a

IO-Z I b \

I0 "3 1 ,

10

(lOd) !

lO0

i0-I

i0 "2

10-3

T : 60

\\'4

I0

K 1

¢ : _(Kl)l,,(l)

b. With contro]

585



MAXIMUMU-RMSALONGX3 (SPANWISEDISTRIBUTION)

In the uncontrolled flow, peak-valley splitting develops. The control wave
does not prevent peak-valley splitting, but reduces the amplitudes. The uncontrolled
and controlled distributions remain in phase.
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U-RMS PROFILE

These figures indicate the amplitude reduction in u-rms distributions due to

the imposed control waves.
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UI-FLUCTUATIONS ALONG X 1

In the uncontrolled case a strong negative spike develops between T = 40 and

T = 50. No evidence of spike formation and nonlinear distortions is observed in the

uncontrolled case. As T = 60, the controlled distribution is nearly sinusoidal,

whereas the uncontrolled case shows a broad frequency content.
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SURFACESOFCONSTANTTEMPERATURE

In these figures, three-dimensional representations of the temperature field
(treated as a passive scalar) are displayed. The uncontrolled flow displays evidence
of strong mixing and a highly convoluted temperature surface, while the controlled
flow is relatively uniform and indicates local laminarization.
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SURFACESOFCONSTANTTEMPERATURE(CONC.)
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PERIODICBOUNDARYLAYER

These figures show the time-evolution of the various Fourier componentsof
u-component velocity in response to various control waves.
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CONCLUDINGREMARKS

* 2Dand 3Dwave interaction in channel flow.

* Preliminary calculations indicate comparable effects of passive and active
control in the periodic boundary layer.

* Passive temperature effective to tag flow dynamics.

* Need for space-evolving numerical experiments.
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