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SUMMARY

A study was conducted to determine the effectiveness of using a low-order panel code to estimate

wind tunnel wall corrections. The corrections were found by two computations. The first computation

included the test model and the surrounding wind tunnel walls, while in the second computation the

wind tunnel walls were removed. The difference between the force and moment coefficients obtained by

comparing these two cases allowed the determination of the wall correctionsl The technique was verified

by matching the test-section, wall-pressure signature from a wind tunnel test with the signature predicted

by the panel code (Panel Method Ames Research Center (PMARC)). To prove the viability of the tech-

nique, two cases were considered. The first was a two-dimensional high-lift wing with flap that was

tested in the 7- by 10-Foot Wind Tunnel at NASA Ames Research Center. The second was a 1/32-scale

model of the F/A-18 aircraft which was tested in the low-speed wind tunnel at San Diego State Univer-

sity. Results of this study indicate that the proposed wind tunnel wall correction method is comparable to

other methods and that it also inherently includes the corrections resulting from model blockage and

wing lift.

1. INTRODUCTION

Wind tunnels provide a well-controlled environment which is free of atmospheric hazards for aero-

dynamic measurements. One of the typical problems associated with a wind tunnel test is the error intro-

duced into the measurements by the presence of the wind tunnel walls. Since the flow in a wind tunnel is

constrained by the walls, it must accelerate around the model in order to satisfy the continuity equation.

As a result, the model behaves inside the wind tunnel as if it were at a slightly greater speed than the

nominal wind tunnel velocity (ref. 1).

The increased velocity or dynamic pressure, caused by the solid blockage of the model, results in an

increase in all the forces and moments acting on the model. Because the velocity in the viscous wake is

slower than the velocity in the free stream, an additional blockage, known as wake blockage, is created.

As the wake grows, the free-stream velocity must increase, again as defined by the continuity equation.

The increase in velocity around the model and its wakes causes a pressure gradient to develop (accord-

ing to the Bernoulli equation) which creates an apparent increase in drag on the model. A blockage cor-

rection is needed to be able to determine the incremental velocity that, when added to the free stream,

accounts for the extra forces and moments. Once the velocity increment is found, the aerodynamic data
can be "corrected" to obtain the desired free-air results.

The angle of attack of the model is also affected by the wind tunnel boundaries. The presence of the

wind tunnel walls alters the normal curvature of the flow around the test body, creating an apparent

increase in the angle of attack (ref. 1). To complete the wind tunnel wall corrections, the geometric angle

of attack needs to be corrected for this apparent increase. In this study, however, only the dynamic pres-

sure correction was calculated, although the angle-of-attack correction can be determined using the same

numerical technique.



Most methodsfor determiningthedynamicpressurecorrectiontakeamathematicalapproachbased
onaerodynamicpotentialtheory.Usingapotentialflow model,asolidbodycanbesimulatedwith a
source-sinksystemwhile thewakeis simulatedwith doublets.Earlymethods,suchasHerriot's (ref. 2),
attemptto representthesolidblockageby usingimages.Herriot simulatesthemodelwith asource-sink
distributionandthewalls with aninfinite distributionof source-sinkimages.Thecorrectionis foundby
summingup theeffectof theimagesalone.Maskell (ref. 3) usesasimilarmethodologyto determinethe
increasein drag.In thismethod,thewakeblockageis replacedby asourcewhich,becauseof continuity,
ismatchedby adownstreamsinkof thesamestrength.Imagesin this modelarecomposedof adoubly
infinite source-sinksystemwhich is spacedonetunnelheightapartvertically andonetunnelwidth apart
horizontally(ref. 4). Theincrementalincreasein velocity dueto theimagesis thesourcestrength
divided by twice thewidth of thejet multipliedby theheightof thetunnel.Theincreaseddragcanthen
beeasilyfoundfrom theincrementalvelocity.

Anotherapproachto theproblemis thewall-pressuresignaturemethoddevelopedby Hackett
(ref. 5).Hackettusesaninversemethodto determinethestrengthsof a seriesof sourcesandsinksthat,
whenacteduponby anappropriatewall-imagesystem,will producethesamepressuresignature
observedduring thetest.In thismethod,thesolidandwakeblockagesarehandledseparately.Thewake
blockageis foundby matchingtheactualwakepressuresignaturewith asignaturegeneratedby apoten-
tial sourceimagesystem.Thecorrectionis derivedby finding theinfluenceof the imagesystemalone.
Thesurfaceblockageishandledin thesamemanner.

Similarly, it is possibleto determinethecorrectionby usingpanelmethods.Low-orderpanelcodes
modelthegeometryof abodywith aseriesof panels.A flow field is generatedby distributingsource
and/ordoubletsingularitiesover thepanels.Onceaproblemis modeledcorrectly,thepanelcodescan
determinetheforces,moments,andpressuresactingon thebody.To determinethewall correctionsby
thismethod,two computationsarenecessary.Thefirst computationmodelsthegeometryof thetest
bodyandthewind tunnelwalls,while thesecondcomputationmodelsonly thegeometryof thetest
body.Thevalidity of thefirst computationis evaluatedbycomparingthewall-pressuresignature
obtainedin thewind tunneltestat thecenterlineof thetestsectionwith thesignaturecalculatedby the
panelcode.If thesignaturesmatch,thenthetunnelwallsaremathematicallyremovedfrom thecom-
putermodelandtheforces,moments,andpressuresarerecalculated.Thedifferencebetweenthetwo
casesis thecorrection.

Two caseswerestudiedto demonstratethemethod.Thefirst casewasa two-dimensional,high-lift
wingwith asingleflap whichwastestedin the7- by 10-FootWindTunnelatNASA AmesResearch
Center(ARC) (ref. 6). Thesecondcasewasa 1/32-scalemodelof anF/A-i8 aircraftwhichwastestedin
thelow-speedwind tunnelat SanDiegoStateUniversity (SDSU).A low-orderpanelcode,Panel
MethodAmesResearchCenter(PMARC) (ref. 7), which is beingdevelopedatARC, wasusedfor the
computations.Thecaseswerechosento showtheversatilityof thecodeto handlearelatively simple
geometry,thetwo-dimensionalwing andflap, andacomplexgeometryconsistingof athree-
dimensionalfighter.After areviewof themathematicalmodelin chapter2, theresultsfrom thetest
casesarepresentedin chapter3.
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2. THEORY

2.1 The Mathematical Model

In this chapter a brief description of the important principles of panel methods will be provided.

These methods, as well as the current low-order panel code (PMARC) are based on potential-flow

theory. The steady-state flow is considered to be irrotational, incompressible, and inviscid, and must

therefore satisfy Laplace's equation

V2_ = 0 (1)

applied over a control volume. The closed surface of a body divides the flow field into two regions--an

inner region and an outer region--as shown in figure 1, where both flows satisfy equation (1). For most

applications, the flow field outside the body is the region of interest. The boundary conditions for equa-

tion (1) are

1. The normal velocities across the body's solid boundaries must be equal to zero or a prescribed

value.

2. The flow disturbance due to the model must diminish far from the aircraft.

3. The flow field must satisfy the Kutta condition along sharp trailing edges to fix the circulation.

Equation (1) is solved by applying Green's Identity to the volume encompassed by both flow

regions. The resulting surface integral defines the potential at any point in the region such that (ref. 8)

Op = _ (_- _i)_. V dS 4r_ r _" (Vt_- Vt_i)dS

S+W+S** S+W+S,_

(2)

In the integral, r is the distance from a point in a region, P, to an area element, dS, on the surface of a

body or a wake. The variable fi is the unit normal vector of the surface or wake element pointing into

the flow and the subscript i represents the internal flow region. The first integral of equation (2) is the

contribution from a distribution of doublets on the surface and wake per unit area. The second integral is

the contribution from a similar distribution of sources per unit area. This equation is reduced by applying

the second boundary condition and by assuming that the upper and lower wake surfaces are infinitesi-

mally close to each other. This thin-wake assumption allows the entrainment in the wake to be

neglected; therefore, the jump in the normal velocity is zero, which causes the source term to disappear

from the integral (ref. 9). The simplified equation becomes



s S w

where000is thefree-streampotentialof theboundarysurfaceat infinity.

If point P lies on thebodysurface,the integralsbecomesingular.Thesingularityis avoidedby
assumingahemisphericaldeformationof thebody's surfacecenteredat P (ref. 8).In thelimit wherethe
radiusof thedeformationgoesto zero,theresultingtotalpotentialatpoint P is

1 1 1 1
¢Yi_p= -._ If (_ - _i)_l "V(1)dS -_(_-_i)p-'-_ f f rfi "(V_ - V_i)dS

S-P S

w

(4)

where 1/2(qr--@i) p is the contribution from the hemispherical deformation only. The subscript S-P
denotes that the point P is excluded from the integral. Equation (4) is solved by applying the internal

Dirichlet boundary condition, which assumes that the internal potential equals the onset potential. As a

result, the surface singularities have to provide only the perturbation potential instead of the total poten-

tial (ref. 8). Looking at P inside the surface, equation (4) reduces to

1. • + _ =4n _,, ,, ,, 4re J Jr (V_-VO_o)dS _-_--fflf(rbu _L)fi.VI1)dS 0

S-P S W

(5)

The doublet density on the surface exterior is defined as the perturbation potential (ref. 9)

4rqa = • - ¢0,, = (6)

and the source density is defined as (ref. 9)

4nor = -fi-(V¢ - V_)

The source strength of each singularity is found by applying the first boundary condition to equa-

tion (7). The doublet strengths are found by reducing equation (5) into a single integral which contains

only the unknown singularities. This is accomplished by substituting equation (6) into equation (5).

After solving for the doublet and source strengths, the potential at any point P is found by substituting

and I.t into equation (5) and solving for 4)0, which results in

(7)
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$ S W

(8)

In the equation, K = 0 if the point P is not on the body's surface, K = 2n if P is on a smooth part of

the outer surface of the body, K = -2n if P is on a smooth part of the inner surface of the body, or if P

is at a crease in the surface, then K = the solid angle contained at that crease (ref. 8).

The external velocity field is found by

Vp = VCI_p (9)

At any point P, the velocity is

Vp=-II BVp[n" VK(1)]dS - II _VK(-lr)dS - II_tVp[ _ "VK(1)ldW + V¢¢

S S W

(10)

where Vp is taken with respect to the coordinates of point P and VK is taken with respect to the cen-

troid of panel K.

By breaking up the surface of a body and its wake into panels, the integrals of equations (8) and (10)

can be rewritten in a discrete form. This is done by assuming that constant-strength doublets and sources

are distributed on the panels and that the potential and induced velocity at a point is the sum of the influ-

ences from each panel. The unknown doublet strengths can then be found by using a set of simultaneous

equations that are defined as the sum of the surface integrals of each panel. Because the source strengths

are known, they are moved to the right-hand side (RHS) of the resulting matrix equation. The discrete

forms of equations (8) and (10) are (ref. 9)

Ns NW NS

E (I-I-KCJK) + E (I-tWLCJL) + E (IKBJK =0;

K=I L=I K=I

J = 1,N S (11)

Ns NW NS

_"p= V_ - E (.kVtlpK) - E (.LVBLK) - E 05k V.pK)

K=I L=I K=I

(12)

where the potential influence coefficients are found by evaluating the gradients from equation (10). The

influence coefficient for the source is



BjK = (13)lds
Panel K

and

CjK =

Panel K

(14)

for the doublet.

The velocity-influence coefficients for the source and doublet are, respectively (ref. 9),

Panel K

(15)

and

Q_JK =- ff Vj[RK" VK(1)] dS

Panel K

(16)

In PMARC, either the Dirichlet or Neumann boundary conditions can be applied to the surface

panels, and a combination of the two can be applied to a given geometry. Equation (11) is applied if the

designated patch (a group of panels) is part of a thick boundary enclosing an inner volume. This type of

patch is called a Dirichlet patch. A form of equation (12), where only the induced normal velocities are

considered, is used if the patch is part of an open surface. This type of patch is called a Neumann patch

(ref. 9).

The remaining discussion will focus on the solution of the velocity equation (12). The solution

technique involves finding the velocity contribution from the doublet and source of each panel. The total

contribution is the sum of all the panels. The induced velocity at a point P by a constant unit strength

doublet distribution over a panel is given by equation (16). Using the vector identity

= x xe+ e)

equation (16) becomes

6



Panel K

Noting that

and remembering that potential flow satisfies Laplace's equation, equation (17) further reduces to

Panel K

(17)

(18)

or

By applying the identity

equation (19) can be rewritten as

but

Finally, the velocity at any point P

P_elK

_f (fi x V)dS = _d_
C

S

due to constant doublet distribution over a panel is given by

Wl.tjK -" --_ r X-rd_

(19)

(20)

(21)

(22)

7



This is theBiot-Savartequationfor thevelocity inducedatapoint by a linevortex.

Theline integralof equation(22) is solvedby consideringonly onesideof apanelat atime.The
totalcontributionfrom thepanelis thesumof thecontributionsof thefour sides.Thesolutionof equa-
tion (22) for onesideof apanelis

VlajK= A(B)[(A)(B) - _. b]
(23)

where A and B are the magnitudes of _ and b defined by figure 2.

If the point in question is far enough away from a panel, a far-field approximation can be made

without significantly affecting the solution's accuracy. The approximation assumes that a doublet can be

treated as a point doublet instead of a distributed doublet. This allows the integral to be replaced with the

multiplication of the integrand and the panel area whose contribution is being evaluated. The same

argument holds for the treatment of the source contribution. Assuming a unit doublet is used, the far-

field expression is

(24)

or

where r

The solution of this equation is

Vi.tjK = -VJ(_)areaK

,- j

is the distance from the centroid of panel K to the influenced point.

-3(PN)? + r2fi

VgjK = -area K r 5

(25)

(26)

The completed proofs of equations (23) and (26) and the definition of PN are given in Appendix A.

The contribution to the induced velocity of a constant unit strength source distribution over a panel is

given by equation (15)i After substituting equation (21) into equation (i5), it becomes

8



PanelK

(27)

The solutionis

VcrjK= GL[(SM)(I')- (SL)(lVl)]+ CJKn (28)

SeeAppendixB for thedefinitionsof thenomenclature.

Thefar-field equationfor thesourceof unit strengthis simply

Vo :area ( ) (29)

For the completed proofs see Appendix B.

It should be pointed out that although the doublet solution, equation (23), is valid for a twisted panel

(a panel that is nonplanar), the source solution, equation (28) is not. This problem should not usually

affect a particular geometry that may have a limited number of twisted panels because the far-field

approximation is used about 90% of the time for most configurations. In some cases, however, a twisted

panel may cause the doublet solution to converge slowly. This phenomenon is investigated in

Appendix C.

Since the singularities are known from the doublet solution, the velocities on each control point can

be evaluated (ref. 8). The tangential velocities are found by differentiating the doublet strengths in the

appropriate directions, while the normal velocity is either zero or a user-defined value. From the result-

ing velocity at each control point the corresponding pressure coefficient is found by the equation
_:

(30)
CPK=I V 2

Finally, the lift and drag forces can be calculated by numerically integrating the pressure distribution,
and the moment coefficients can be determined around a user-defined reference line.

2.1.1 Shortcomings of Potential Flow-Based Computer Codes- Because potential flow-based

codes exclude viscous effects, they cannot predict friction drag. By assuming that a thin wake exists, the

viscous wake blockage is reduced. This results in a decrease of the calculated drag on the computer

model. Also, older panel codes could not accurately predict the shape of free wakes. PMARC improves

this by taking into account the unsteady nature of the wake by using a time-stepping technique (ref. 10).

Although the wake is still assumed to be thin, the new wake modeling will allow a more realistic wake



roll-upcalculationandimprovethecomputationalcapability.Modelingof separatedflow is alsoaprob-
lem for panelcodes.Onepossiblemethodfor modelingtheseparationis for theuserto attachawakeat
aguessedseparationline on thebodyandto enclosetheendof thewakewith theendof thetrailing-
edgewake.Thismodelcanhelp incorporatetheeffectof wakeblockageinto thecomputations.This
technique,however,needsfurtherstudy.

2.1.2 Method of Removing the Wind Tunnel Walls- Wind tunnel walls are removed by moving

them far enough away from the tested body so they have little or no influence on it. Because it is impor-

tant to retain the same matrix for the two computations, the integrity of the RHS of the doublet matrix

equation is maintained by not removing the wind tunnel walls. Elimination of the tunnel walls from the

model would result in a slight difference to the RHS which would result in a slightly different solution.

The extent of the difference would depend on the individual case.

2.1.3 Calculation of the Wall Correction Factor- The correction factor is found by taking the ratio

of the lift coefficients of the two computer model cases and applying it to the dynamic pressure such that

(ref. 11)

q m , nw JCalculated

(31)

To find the "corrected" dynamic pressure, qc, the lift-coefficient ratio is simply multiplied by the mea-

sured dynamic pressure from the wind tunnel test, qm- The corrected dynamic pressure can then be

applied to the aerodynamic coefficient calculations to find the corrected force and moment coefficients.

10



3. DISCUSSION OF RESULTS

3.1 Case One: The Two-Dimensional High-Lift Wing

The two-dimensional test case was modeled after a wind tunnel test of a high-lift NACA 4412 airfoil

equipped with a NACA 4415 single-slotted flap at the ARC 7- by 10-Foot Wind Tunnel (ref. 6). For the

wind tunnel test, the chord length of the wing was 35 in. and 14 in. for the flap. The angle of attack was

8.2 ° and the flap deflection was 21.8 ° .

The two-dimensional characteristics of the wing and flap were modeled by extending their span to

1000 times the chord length of the wing. The upper and lower walls of the wind tunnel were modeled in

the same manner. The side walls were not included in the computer model because they were not neces-

sary because of the two-dimensionality of the problem. The pressures and forces on the walls and the

airfoils were taken only from the center of the configuration to assure that they would not be skewed by

tip effects. Figure 3 shows a section of the PMARC model.

3.1.1 Verification of the Computer Model-The first step was to estimate the distortion in the free

stream resulting from the model blockage effects in the wind tunnel. This was done by examining the

predicted velocity profile at the centerline of the test section near the location of the wind tunnel pitot

tube. The velocity profile is presented in figure 4. The velocity profile does show a dynamic pressure

increase which, as stated earlier, is caused by the blockage effects. Since no data from the experiment

were available, this procedure was used only to validate that blockage effects were predicted by the

computer model.

The next step was to compare the wall-pressure signature resulting from the model blockage effects

in the test section. The comparison of the wall-pressure signatures from the wind tunnel test and the

computations are shown in figure 5. The peak from the wall-pressure signature matched very well, thus

giving confidence to the technique. The lower wall-pressure signatures, however, did not. One possible

explanation (keeping in mind that the wind tunnel test was of a high-lift nature) is that a separation

bubble occurred at the floor of the wind tunnel during the test. It would have resulted from the circula-

tion caused by the wakes from the airfoils interacting with the boundary-layer separation from the floor,

which the panel code would not have been able to predict. Another possible explanation is that the

highly deflected flap wake interacted with the floor boundary layer, which, also, could not be modeled

by PMARC. In either case, it is impossible to be certain because neither effect was observed during the

experiment.

Another means of checking the validity of the panel model was to compare the pressure distributions

over the wing and flap airfoils, as shown in figures 6 and 7, respectively. Included in the figures are the

pressure distributions from the PMARC test case that did not include the tunnel walls. PMARC accu-

rately predicted the pressure distribution over the wing. The discrepancy between the wind tunnel test

data and the PMARC test data for the flap was attributed to the separation from the wing disrupting the

flow over the flap. The large pressure peak at the leading edge of the flap was due to the high accelera-

tion of the flow predicted by the code through the flap gap. This occurred because the panel code could

not predict the viscous flow in the gap region. The wind tunnel test data also showed a separated wake

coming off the last 30% of the flap, which PMARC did not predict.

11



Anotherapproachtakento showthatthepanelcodepredictedthesolidblockageeffectwasto move
thewind tunnelwallsawayfrom thewing andflap to determinewhetherthesolutionof thelift and
momentcoefficientsconvergedastheheightbetweentheairfoils andthetunnelwalls increased.
Figures8 and9 showtheresultsfrom theinvestigation.As expected,the lift coefficientdecreasedfor
boththewing andtheflap.This wasaresultof thedecreaseof thedynamicpressureover theconfigura-
tion andit is anexcellentexampleof theeffectof solidblockage.Themomentcoefficientof thewing
decreasedasthewallsweremoved,but increasedfor theflap. Thedecreasein lift causeda decreasein
thepitchingmomentandresultedin a loweringof theCMof thewing. Theeffecton theflap wouldbe
explainedby a broaddistributionof the lift. In otherwords,the lift wasnot concentratednearthequarter
chordbecauseof a shift of thecenterof pressure.Theresultwasthat thelift wasevenlydistributedover
theentireflap.Therefore,althoughthetotal lift coefficientdecreased,thepitchingmomentcoefficient
increasedasthetunnelwalls weremovedfartherfrom themodel.Again,acombinedsinglecorrection
for thesolidandwakeblockagesis foundby takingthepercentagedifferencebetweenthetwoeases,
with andwithoutthe influenceof thetunnelwalls.

Othermethods,however,calculatethesolidblockageandwakeblockagecorrectionsseparately.
Keepingthis in mind,matchingthewing pressuredistributionwith thewind tunneltestgivescredibility
to thesolidblockageeffectbeingpredictedcorrectlybyPMARC.Theinteractionof theflow over the
wing with thewind tunnelwalls wasresponsiblefor theincreasein dynamicpressurewhich is thesolid
blockage.Thedisparityof thepressuredistributionovertheflapbetweenthePMARCtestcaseandthe
wind tunneltestshowthatthePMARCmodeldid notpredictthewakeblockageasaccurately.Thiswas
dueto aseparatedwakecomingoff theflap, whichcouldnotbemodeled.It is difficult to determine
whetherthis differencewasappreciablebecausethecorrectionsobtainedfrom PMARCweresimilar to
thecorrectionsobtainedusingothermethods(ref. 6).

3.1.2 Wall Correction Computed by PMARC- The total section lift data and the corresponding

corrections from PMARC are tabulated in table 1. The data are taken from the five spanwise sections of

the configuration. The coefficients were lower on the last section because of tip effects and because this

was a three-dimensional effect, they were omitted from the correction calculations. Slight tip effects also

caused minor increases in the coefficients farther out in the spanwise direction. The PMARC lift data

compared favorably with the wind tunnel test lift data. The test measured a CL of 3.2 (ref. 6) for the

main wing, a 14% change compared with the PMARC test case. The difference can be attributed to the

overprediction of the leading-edge pressure peak by PMARC. The overprediction is a characteristic of

panel codes because they cannot predict the viscous flow that occurs at the leading edge of an airfoil.

TABLE 1.- COEFFICIENT OF LIFT CALCULATED BY PMARC

Section With Tunnel Wall Without Tunnel Walls qc]qm

5.413

5.413

5.413

5.413

5.412

5.055

5.055

5.055

5.053

5.019

1.071

1.071

1.071

1.071

1.078
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3.1.3 Wall Correction Comparison- The wall corrections were computed by four other methods

and axe tabulated in table 2. The six methods from reference 4 were of the same magnitude (the methods

of Pope, Allen and Maskell and PMARC were almost identical). The methods of Allen and Maskell,

Pope, and Thorn were based on the classical approach outlined in the introduction. The equation used by

Thorn was a simplified form of Herriot's equations which predicted a higher correction than the others.

Merker's was lower, but his method was originally developed for automotive wind tunnel testing.

TABLE 2.- WALL CORRECTION FACTORS

BY VARIOUS METHODS

Method

Allen and Maskell

Merker

PMARC

Pope

Thom

qc/qm

1.072

1.046

1.071

1.070

1.090

3.2 Case Two: The F/A-18 Aircraft Model

3.2.1 Model Fabrication and Wind Tunnel Apparatus- The F/A-18 aircraft test was conducted in

the low-speed 32- by 45-in. closed-circuit wind tunnel at SDSU. The 1/32-scale model was manufac-

tured by the Hasegawa Model Company of Japan and was reinforced internally with a steel frame, sev-

eral balsa wood ribs, fiberglass, and epoxy so it would be structurally sound at high angles of attack. The

model was 23.5 in. long with a wingspan of 14 in. and a mean aerodynamic chord of 4.32 in. The test

was conducted with a 2.5-in. radar boom attached at the nose (without the wingtip missiles). Diagrams

of the model and the test section are shown in figures 10 and 1 l, respectively. The model was connected

to two fixed struts that were attached to the wings and an adjustable hinged jackscrew that was attached

to the arresting hook underneath the tail section. The force and moment data were acquired using a six-

component load balance in conjunction with a Hewlett-Packard Data Acquisition System. The static

upper wall pressures were taken along the centerline of the tunnel using a differential water manometer

board. The signature measurements extended from the plane of the pitot-static ports to downstream from

the model but they were still within the test section as shown in figure 12.

3.2.2 Validation of the Wind Tunnel Test- The wind tunnel tests were conducted at varying

dynamic pressures and angles which ranged from 16.4 to 36.9 lb/ft 2 and 1° to 56 °, respectively. The

dynamic pressures represented a range of velocities from 117 to 176 ft/sec, which resulted in Reynolds
numbers between 242,000 and 364,000, based on the mean aerodynamic chord. The test angle range was

chosen to serve a dual purpose. The first and foremost reason was to show the viability of the panel code

wall correction method. The second was to determine the tunnel wall corrections that would be needed

for a full-scale test at high angles of attack in the 40- by 80-Foot Wind tunnel at the National Full-Scale

Aerodynamic Complex at ARC. The 1/32 model size was chosen because it allowed the opportunity to

geometrically simulate such a test in the SDSU wind tunnel because the plane/wind tunnel test section

area ratios were the same. Since a large amount of separation would most certainly occur at high angles

of attack, the PMARC calculated wall corrections would only be a guideline for that wind tunnel test.
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To determinewhethertheSDSUwind tunneltestdatawereaccurate,themeasuredaerodynamic
characteristicswerecomparedwith theresultsfrom reference12.Thecomparisonis presentedin
figure 13.TheCLandCDdatashowa verygoodcorrelationbetweenthetwo tests.From thiscompari-
sonit wasdeterminedthatthedataobtainedfrom thewind tunneltestwerereasonablyaccuratesuch
thatvalid wall correctionscouldbecalculated.

3._.2.3 Verification of the Computer Model- The PMARC F/A- 18 computer model was modified

from an existing data file generated by McDonnell Douglas which is presented in figure 14. The changes

involved modifying the panel density of the wings and both stabilizers and eliminating the sharp edge

created by the intersection of the ventral nacelles. The changes were made to eliminate solution conver-

gence problems of the original McDonnell Douglas model. By smoothing out the sharp edges on the

body and by eliminating the inconsistent paneling, a "cleaner" computer model was produced that did

not have the convergence problems. The repaneled model is shown in figure 15. The finished model was

not as detailed as the original, but because the only concern was the blockage effects, it was considered

an acceptable tradeoff.

The geometry went through three derivations before the final configuration of 1336 panels was

settled upon. Problems occurred at the intersection of the the wing and the horizontal and vertical tails

which resulted in a couple of slightly twisted panels on the main fuselage near the trailing edge of the

wing which caused the solution to converge slowly. The upper wall-pressure distribution was used to

validate the computer solution. The comparisons of the wind tunnel and PMARC signatures are pre-

sented in figure 16. They do not compare as favorably as the two-dimensional airfoil. The trends were

the same; however, the magnitudes were not. The wind tunnel test pressure coefficient peaks were about

20% larger for the 46 ° and 20 ° cases and as much as 80% larger between the 0 ° (the PMARC model)

and the 1° (the wind tunnel test) case. These results indicate that the computer model was not creating as

much blockage as the wind tunnel model.

The CL of the F/A-18 computer model was affected by the placement of the wakes. Originally, the

wakes extended from the trailing edges of the wing and the horizontal and vertical tails and were

allowed to follow the path of the free stream. At low angles of attack, however, the CL was higher with-

out the influence of the wind tunnel walls than with the walls' influence. It was obvious that the com-

puter model was in error. After remodeling the aircraft it was discovered that the problem was with the

placement of the wakes. By allowing the wing wake to follow the free stream, it cut through the vertical

tail and caused an excessive amount of drag on the aircraft. The problem was solved by manually forc-

ing the wing wake around the vertical tail. Also, instead of the wakes immediately following the path of

the free stream, they were forced to follow the aircraft's angle of attack for a distance half the length of

the plane before they turned in the direction of the free stream. The distance the wake followed the air-

craft's angle of attack was determined after manipulating many different test cases. It was discovered

during this time that an endless variety of lift data within a 10% margin could be generated depending on

the placement of the wake. The best course was to place the wake where it would be expected during a

wind tunnel test. It must be pointed out that the wake must be placed in the same location for both com-

puter calculations. After the adjustments to the wakes were made, the CL data and the wall corrections at

all angles of attack were more believable. The predicted aerodynamic characteristics are presented in

figure 13.
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3.2.4 Wall Corrections Computed by PMARC- Before discovering that the wake placement was

causing most of the problems with the computer model, a study was conducted to determine whether the

wing of the F/A-18 model, figure 17, followed the same CL trend as the full configuration. The wing

was found to follow the expected trend, which led the troubleshooting in the direction of the wake prob-

lem. The correction data for the wing and the full configuration are presented, with other correction

techniques, in figure 18. It can be seen from figure 18 that the panel code correction method predicted
wall corrections similar to the classical methods. The conclusion, therefore, is that the technique was

successful in adequately predicting the wall corrections for the F/A-18.
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4. CONCLUSIONS

A studywasconductedto determinetheviability of usingalow-orderpanelcodeto calculatewind
tunnelwall corrections.Resultsof theinvestigationwerepromising. Thepanelcode,PMARC,pre-
dictedthedynamicpressurewall correctionfor atwo-dimensionalairfoil to be1.071,which wassimilar
to thewall correctionpredictionmadeby othertechniques.Although theflow separationthatoccurred
during thewind tunneltestcouldnotbemodeledbyPMARC,thewall correctionwasnotsignificantly
affected.Thepredictionof theF/A-18 aircraftwall correctionsposedotherchallengesandproblems,of
which thegeometrydevelopmentandwakeplacementwerethemostserious.Thegeometrygeneration
wasachallengebecauseof its complexity,andthevarietyof thewakeplacementwasa problembecause
it severelyaffectedthewall correction.Eventually,theproblemsweresatisfactorilyresolvedsothatthe
final resultscomparedfavorablywith othermethods.

Althoughmanyproblemsoccurredduring thisstudy,muchinsightwasgainedinto theuseof panel
codesasa meansof predictingwind tunnelwall corrections.It wasevidentthatto usethis technique
effectively,caremustbetakenduringthegenerationof complexgeometriesandwhenchoosingthe
properwakeplacements.In thefuture,it is hopedthatimprovedseparationandboundary-layermodel-
ing techniqueswill bedeveloped.Whenthis is accomplished,theaccuracyof wind tunnelwall correc-
tionsfor complexgeometriesdeterminedby panelcodeswill greatlyimprove.
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APPENDIX A

SOLUTION OF THE DOUBLET CONTRIBUTION TO THE INDUCED VELOCITY

An introductory phase of this research project was to study the structure of first-order panel codes.

For this study the influence coefficients were analyzed first and then the formulation was numerically

investigated. In Appendices A and B the mathematical formulations are provided, and in Appendix C the

numerical influence of these elements will be investigated.

Starting with the Biot-Savart equation,

VILI'JK = ___ _ X dg (A1). r3

By considering only one side of a panel, the line integral can be changed to a single-element integral.

Now, let _ represent the direction formed by _ x d_ such that

× d_ = -_r sin 0 ds (A2)

From figure 19

h

r=_ (A3)

and

h

tan 0
(A4)

which results in

(A5)

Substituting in equation (A2) and equation (A5), equation (A 1) becomes
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O2VI.tjK =- _(h/sin0)sin0(h/sin20)d0

(h3/sin30)
01 01

f
e r ,-,102 = _h[COS01 _ c0s02]= --ff sin0 dO = -_-t-cosuJ01 (A6)

From figure 19

COS01 = (A7)

(A8)

Substituting equations (A7) and (A8) into equation (A6)

(A9)

g= unit vector between _ and _-

(_x(_-_))(_x_-_×_) _-_
i_×(___)I-I_×___×_1I_×_1

(A10)

The perpendicular distance h is

________i _I._-_ I_ (A11)
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Substituting equations (A9), (A10), and (A11) into equation (A6) yields

_ [A*B-_.b](_×_)l_:__]_+sFA*_--__ (_×_---))_A+S>[A,BI_×_ll_×_J_-r_LA,_ i_×_1_
(A12)

And finally,

(_x b)(A+B)

VgjK = A,B,(A*B- ft. _ )
(A13)

The point doublet is simply the integrand from the general solution multiplied by the panel area.

Vi.tjK = _VjIfi. V(1)], areaK = -areaK, Vj(_) (A14)

Letting

results in

thus

n._'-- n

r 3 = (12 + m 2 + n2) 3/2
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V j( ) = Vj 3/2
12 + m 2 + n 2)

[( 2"]'-" 3I( 2mn 1-:" 3I( 2n2 1_3 2 In _ - _ 5/2 J - _ m2 )5/2
=-_ 12+m2+n2)5i 12+m2+n 2) 12+ +n 2

] [ n(l_+m]+nl¢]7 [ 12+m2+n 2 ]_
= _ 1 2 5/2 _- 3 (12_+ m2 + n2)5)2 + 2 + m2 + n215/2/h

(12+m2+n) ] [( J[(1 ] j

-3* PN* Y+ r2. fi

- r5

(A15)

where, from figure 20,

PN =

Finally,

VIXjK = area k

3* PN* ? + r2.

r 5

(A16)
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APPENDIX B

SOLUTION OF THE SOURCE CONTRIBUTION TO THE INDUCED VELOCITY

The source potential is solved by the technique presented by Hess (ref. 13). From the potential

BjK= _I }dS

Panel,K

(B1)

where

r = _/R 2 + Z 2

R = (x - e) 2 + (y - rl) 2

dS = R,dR*d0

Rewriting equation 031),

R

RdR
BjK = 5]R2 + Z 2

0

dO

But

r = _]R 2 + Z 2

RdR
dr=

4R 2 + Z 2

The integral now becomes

BjK= dr dO= (r-lZl)dO= rdO-lZlAO
Jlflzl j

(B2)

Realizing that R and Z represent the parallel and normal planes, where Z = 0 and x = y = 0,

respectively, the integral from equation (B2) can be written
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_rdO = _RdO+ _ZdO

If the integrals are solved for just one side of the panel, the line integral disappears and

frdO = fRdO+ fZdO (B3)

To solve the integrals it is necessary to define the following quantities. The directional unit vectors for

the problem are, from figure 21

ffa y-ri

4R 2 + Z 2

Z
fi=

4R 2 + Z 2

From figure 22,

Idl= 4(e2 - El) + (1"12- I"11)

(E2 - El)
COS0_ = d

(I'12- rl])
sin t_ -

d

where

_d (cosot, sin o_,0)

R = (e-x,rl-y,0)

RI = (el- x,rll- y,0)

R2 = (E2- x,1"12- y,0 )
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and

S= (e - x)costz + (11 - y)sin (x

S 1 = (e 1 - x)cos0t +(111- y)sinct

$2 = (e2- x)costz + (1"12- y)sin ct

The perpendicular distance from the vector d to the point defined by (x,y,0) is

d× R = (X-el)sintz- (y rll)COSC_ = (x- e2)sin (x - (y - rl2)cosct

R12 = _

The solution for the first term of equation (B4) is, noting that

and differentiating

R 2 = S2 + R22

S2 = R 2 _ R22

cos0 = R12
R

sin 0 = -- =
R R

d0(cos0) = I'

(R2_ R22)1/2

R 2
(1 / 2)_-_l/2]dR

R'2LR2(R2-R /"2J--
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thus

but

Finally,

fRd0 = fRR2 R*RI2dR =R(R2- R122)1/2 R12_RR2 dR

IR2+S 2

This equation can be rewritten as

f Rd0= RI+ R2 +--_[R12 log
(B4)

The second term solution is simply

Translating 0

SZdO = Z dO = Z(02- 01)
1

from the 1 and m plane to the normal plane
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Thus

Zfd0 = . -1(" S2Ztan _,RI_2 )- tan-I(RSI@R1 )

But from the trigonometry identity,

1tan-l(Al- tan-l(1)= tan (B--DT

Zld0= tan-l( Z* R12(R1 $2-- R--2sl) )z,
(B5)

The induced velocities are found by differentiating the potential, which yields for one side of a panel

(ref. 13)

OBJK IR-R-_+ R2+ I (B6a)Vx = Ox = c°s°t*R121°g + R2

_BjK IRI+R2+dl (B6b)Vy = _yy = sin or* R12 log R1 + R2 _ d

-1( Z* R12(RIS2- R2S 1) 1 (B6c)_BJK = Z, tan - .....

The total velocity influence is found by summing the contributions from the four sides of the panel.

PMARC uses the nomenclature developed for the panel code VSAREO (ref. 9) which is different

from the Hess nomenclature. The method of solving the problem in the VSAERO nomenclature was not

clear until the Hess solution was developed. The conversion from Hess to VSAERO follows.
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Nomenclaturefrom VSAERO:

. -1[" RNUM-]

CJk : tan [ D--_--_J

RNUM = SM* PN* (B* PA - A* PB)

DNOM = PA* PB + pN2A*B* SM 2

PN = PJK" n

A-I I

B--I I
s=FI

PA = pN2SL + AI*AM

PB = PA - AI*SM

SM = g. ff'l

SL = g* 1"

AM= _.rTa

AL = _.1

A1 = AM*SL-AI'_SM

GL = g log N + B-
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TABLE 3.- CONVERSIONFROM THE HESS
TO THE VSAERONOMENCLATURE

HESS VSAERO

l, m,n
Rl
R2

= (sinoc*R12,cosoc*R12)
d×R

Z*S2

Z*S1

Z, R12(R1* S2- R2* S1)

Z* SI* $2+R22" RI*R2

1,m ,n
A = I(AL, AM)Ia

B

,S = (SL, SM) a

AM*SL - AL*SM

PB

PA

RNUM

The final VSAERO form is

DNOM

aThe components are in the panel plane.

VcrjK = GL(SM* 1 - SL* r_) + CjKn (B7)

The point solution is

WffjK = area K -'_
r J

(B8)
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APPENDIX C

PANEL ANALYSIS

For this panel analysis, the program PANEL.ANY (see the following section) was developed. The

program was designed to find the induced velocity at an arbitrary point in space due to the influence of a

uniform distribution of doublets and sources over a given panel. The investigation was done in three

parts. The fin'st part was to determine at what point the far-field approximation, based on the panel chord

length, could be implemented. This was important because the computer time needed to calculate the

far-field approximation was 40 times faster than the full integration technique. Considering that most

problems consist of thousands of panels, and that the contribution from each panel must be calculated, it

was evident that the approximation was important to the overall efficiency of the panel code. The second

and third parts of the analysis were performed to determine the magnitude of the induced velocity at dif-
ferent locations from a uniform doublet and source distribution over a planar and twisted (nonplanar)

panel, respectively. This analysis was important in understanding how the integration solution differed

from the far-field point solution from different locations.

The first task was accomplished by using the program to choose an arbitrary point in space. The pro-

gram calculated the induced velocity at that point by both the integral and the point methods. The pro-

gram then formed a line between the chosen point and the center of the panel. The line was divided into

15 separate points and the program calculated the induced velocities at each point. A far-field radius was

found by comparing the divergence between the point calculation and the more accurate integral formu-
lation. The radius was the distance where the difference between the two methods was not appreciable.

Many different initial point locations were tested during the analysis. After some trial and error, it was

determined that a good starting radius was six panel chord lengths away from the center of the rectangu-

lar panel, with the chord length of the panel equaling unity. Three of the test cases are presented here.

The first case was a point directly above the center of the panel. For the second case the point was

located over the median of the panel (fig. 23), where DW = 45 °. For the last case the point was over the

horizontal of the panel (fig. 24), where DW = 20 °. The magnitude of the vector R, as stated earlier, was

six panel chord lengths away from the center of the panel. Figures 25, 26, and 27 show the results from

the three cases, respectively. The divergence of the first case occurred at the point farthest away from the

panel at a radius of 2. The other two cases began their divergence closer to a radius of 1.6. From the

other test cases not presented here, the worst divergence also occurred near a radius of 2. Allowing for

some margin of safety, the far-field radius for the point solutions was finally determined to be 2.5.

The next task was the evaluation of the induced velocity as a line traversed over the panel. The user

chose an initial point to begin the traverse either over the median, the horizontal, or a distance off the

median of the panel (figs. 28 and 29). As before, the line was divided into 15 separate points. Except, in

this case, the height above the panel remained constant. From figures 30 and 31, it is seen that the

induced velocity of a line of points over the median and the horizontal of the panel were exactly the

same for both the integral and point source methods. For this case the line was at a height of one panel

chord length. The off-median case showed the same behavior. For this particular comparison the far-
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field factor was not important because only the difference made by the location of the line of points was

studied.

The last task was to investigate the effect of a twisted panel on the induced velocities. As stated

earlier, the doublet integral solution was not affected by a twisted panel because it treated the sides of a

panel as line vortices. For this reason it was not studied. Thus, only the source solutions are presented

here. Figure 32 shows the geometry of the twisted panel. For the test cases the height was one radius

measured from the panel center and the line of points traversed the up diagonal of the panel. Results

from twist angles ('I_) of 0 °, 10 °, and 20 ° are shown in figures 33, 34, and 35, respectively. The inte-

gral solution was affected by the twisted panel; however, the point solution was not. At this time, no

explanation can be found for the behavior of the integral solution.

The study was concluded by examining the influence of points of an off-median line over a twisted

panel in which TW = 10% Two cases were considered. The first was an off-median line that fell directly

over the panel at DM = 0.25. The results are shown in figure 36. The only significant difference

between the point and integral solutions was a slight phase shift. The second case considered a line that

did not fall over the panel at DM = 3. The interesting results of this case are shown in figure 37. Again,

no explanation can be offered. A further thorough analysis of the mathematics involved with the source

integral solution will be necessary to answer the questions that resulted from this study.

C.I The PANEL.ANY Program

C PROGRAM PANEL.ANY

DIMENSION X(5),Y(5),Z(5)

PI=3.14159

EPS=I.E-06

THE45=SQRT (2.)/2.

DUB= 1.0

SIG=I.0

T=0.0

CINC=0.0

OPEN (2, FILE=' INDIV' ,STATUS= 'NEW' )

1 CONTINUE

C **************************************************
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C CASE ONE: MEDIAN ***

C CASE TWO: OVER CORNER ***

C CASE THREE: STRAIGHT LINE OVER MEDIAN ***

C CASE FOUR: STRAIGHT LINE OVER HORIZONTAL ***

C CASE FIVE: CHOOSE INITIAL POINT ***

WRITE (6,*) 'ENTER CASE AND TWIST(DEG) : '

READ(5,*) LLL, TW

TW=TW*PI/180.

X(1)=-.5

X(2)=.5

X(3)=.5

X(4) =-.5

Y(I)=-.5

Y(2) =-.5

Y(3)=.5

Y(4)=.5

DZ=TAN (TW)

IF (DZ.GT. 0.0) THEN

Z (1) =DZ

Z (2)=-DZ

Z (3) =DZ
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Z (4)=-DZ

ELSE

DO 5 I=i,4

z (I)=0.0

CONTINUE

ENDIF

X (5) =X (1)

Y (5) =Y (i)

z (5) =z (i)

IF (LLL. LE. 2) THEN

WRITE(6,*) 'ENTER ANGLE:'

READ(5,*) THETA

THETA=THETA*P I / 18 0 .

WRITE (6,*) 'ENTER INCREMENT:'

READ (5, *) TTT

ELSE

IF (LLL.EQ. 5) THEN

WRITE (6,*) 'ENTER THE POINT LOCATION OF INTEREST:'

*) PXI PYI PZIREAD (5, , ,

WRITE (6,*) 'ENTER INCREMENT:'

READ (5, *) TTT

GO TO 7

ENDIF
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WRITE(6,*) 'ENTER OFF CENTERLINE INCREMENT: '

READ (5, *) CINC

ENDIF

CALL CASE(LLL, PI,THETA, THE45,DI,PXI,PYI,PZI)

TIXY=SQRT(PXI*PXI+PYI*PYI) /15.

7 CONTINUE

DO i00 NT=I,31

T=T+I.

TT=T*TTT

IF (LLL. LE. 2 .OR. LLL.EQ. 5) THEN

pX=PXI*TT

PY=PYI*TT

pZ=PZI*TT

ELSE

IF (LLL.EQ. 3) THEN

PX=PXI-(T-I.)* (PXI/15.)

PY=PYI + CINC

PZ=PZI

END IF

IF (LLL.EQ. 4) THEN

PX=(PXI-((T-I.)*TIXY/SQRT(2-) )) + (CINC*THE45)

PY=(PYI-((T-I.)*TIXY/SQRT(2-))) + (CINC*THE45)

PZ=PZI
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ENDIF

ENDIF

RDI ST=SQRT (PX*PX+PY*PY+PZ*PZ)

VX=0.0

VY=0.0

VZ=0.0

VXS=0.0

VYS=0.0

VZS=0.0

VXD=0.0

VYD= 0.0

VZD=0.0

PVXS=0.0

PVYS=0.0

PVZS=0.0

PVXD=0.0

PVYD=0.0

PVZD=0.0

PNLX=. 25" (X (i) +X (2) +X (3) +X (4))

PNLY=.25* (Y (1) +Y (2) +Y (3) +Y (4) )

PNLZ=.25* (Z (1) +Z (2) +Z (3) +Z (4) )

PNX=PX-PNLX
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PNY=PY-PNLY

PNZ:PZ-PNLZ

PNS=SQRT(PNX*PNX+PNY*PNY+PNZ*PNZ)

DIX=X (3) -X (i)

DIY=Y (3) -Y (I)

DIZ=Z (3)-Z(1)

m2x=x (4) -X (2)

D2Y=Y (4) -Y (2)

m2z=z (4)-Z(2)

CRX=DIY*D2Z-D2Y*DIZ

CRY=D2X*DIZ-DIX*D2Z

CRZ=DIX*D2Y-D2X*DIY

CRSQ=SQRT(CRX*CRX+CRY*CRY+CRZ*CRZ)

AREA=CRSQ/2.

CNX=CRX/CRSQ

CNY=CRY/CRSQ

CNZ=CRZ/CRSQ

PNN=CNX*PNX+CNY*PNY+CNZ*PNZ

TCMX= (X (3) +X (4) ) /2. - PNLX

TCMY= (Y (3) +Y (4) ) /2. - PNLY

TCMZ=(Z (3) +Z(4)) /2. - PNLZ

TMS=SQRT(TCMX*TCMX+TCMY*TCMY+TCMZ*TCMZ)

CMX=((X(3)+X(4))/2. - PNLX)/TMS
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CMY= ( (Y (3) +Y (4) ) /2. - PNLY)/TMS

CMZ= ( (Z (3) +Z (4) ) /2. - PNLZ)/TMS

C LX= CMY* CNZ -CNY *CMZ

CLY =CNX* CMZ -CMX *CNZ

CLZ=CMX* CNY-CNX*CMY

PVXD=AREA* (3. *PNN*PNX-PNS* PNS*CNX) / (PNS * *5 )

PVYD=AREA * (3. *PNN*PNY-PNS*PNS *CNY) / (PNS * *5 )

PVZD=AREA* (3. *PNN*PNZ-PNS*PNS*CNZ) / (PNS* *5)

PVXS =AREA* PNX/ (PNS * * 3 )

PVYS=AREA* PNY / (PNS * * 3 )

PVZ S=AREA* PNZ / (PNS* * 3 )

DO 20 J=l, 4

K=J+I

AX=PX-X (J)

AY=PY-Y (J)

AZ=PZ-Z (J)

BX=PX-X (K)

BY=PY-Y (K)

BZ=PZ-Z (K)

sx=x (K) -X(J)

SX=X (K) -Y (J)

SZ=Z (K) -Z (J)
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C

C

A=SQRT(AX*AX + AY*AY

B=SQRT(BX*BX + BY*BY

S=SQRT(SX*SX + SY*SY

SOURCE CONTRIBUTION

SM=SX*CMX+SY*CMY+SZ*CMZ

SL=SX*CLX+SY*CLY+SZ*CLZ

AM=AX*CMX+AY*CMY+AZ*CMZ

AL=AX*CLX+AY*CLY+AZ*CLZ

BM=BX*CMX+BY*CMY+BZ*CMZ

ALL=AM*SL-AL*SM

+ AZ*AZ)

+ BZ*BZ)

+ SZ*SZ)

RJ3=alog((A+B+S)/(A+B-S))/S

PA=PNZ*PNZ*SL + ALL*AM

PB=PA - ALL*SM

RNUM=SM*PNZ*(B*PA - A*PB)

DNOM=PA*PB + PNZ*PNZ*A*B*SM*SM

DE=ATAN2(RNUM, DNOM)

VXS=VXS+RJ3*(SM*CLX-SL*CMX)+DE*CNX

VYS=VYS-(RJ3*(SM*CLY-SL*CMY)+DE*CNY)

VZS=VZS+RJ3*(SM*CLZ-SL*CMZ)+DE*CNZ

DOUBLET CONTRIBUTION

- AZ*BY

- AX*BZ

- AY*BX

AVBX=AY*BZ

AVBY=AZ*BX

AVBZ=AX*BY
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C

20

TOTAL

ADB=AX*BX + AY*BY + AZ*BZ

VMOD=(A+B)/(A*B*(A*B + ADB))

VXD=VXD +

VYD=VYD +

VZD=VZD +

DUB*VMOD*AVBX

DUB*VMOD*AVBY

DUB*VMOD*AVBZ

VX=VXD+VXS

VY=VYD+VYS

VZ=VZD+VZS

CONTINUE

TVS=SQRT(VXS*VXS+VYS*VYS+VZS*VZS)

TPVS=SQRT(PVXS*PVXS+PVYS*PVYS+PVZS*PVZS)

TVD=SQRT(VXD*VXD+VYD*VYD+VZD*VZD)

TPV]9=SQRT(PVXD*PVXD+PVYD*PVYD+PVZD*PVZD)

TV= _Q_T (VX*VX+VY*VY+VZ *VZ )

IF (LLL.EQ. 4) THEN

IF (PX.LE. 0.0) THEN

PDI=-SQRT (PX*PX+PY*PY)

ELSE

PDI=SQRT(PX*PX+PY*PY)

ENDIF

ENDIF

IF (LLL.LE. 2) WRITE (6, *) fRADIUS=', RDIST
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IF (LLL.EQ. 3) WRITE (6, *) 'X-AXIS =' ,PX

IF (LLL.EQ. 4) WRITE (6, *) 'XY-PLANE=',PDI

WRITE (6, *)

WRITE (6, *)

WRITE (6, *)

WRITE (6, *)

WRITE (6, *)

WRITE (6, *)

CASE = ',LLL

SOURCE ONLY: '

TOTAL= ',TVS

POINT SOURCE ONLY:'

TOTAL=' ,TPVS

DOUBLET ONLY: '

WRITE (6, *) 'TOTAL =' ,TVD

WRITE (6,*) 'POINT DOUBLET

WRITE (6, *) 'TOTAL =' ,TPVD

ONLY:'

WRITE (6, *) 'VX=' ,VX

WRITE (6, *) 'VY=' ,VY

WRITE (6,*) 'VZ =',vz

WRITE (6, *) 'TOTAL=' ,TV

IF (LLL.LE. 2) WRITE (2, *)

IF (LLL.EQ. 3) WRITE (2, *)

IF (LLL.EQ. 4)WRITE (2, *)

WRITE (6,*) '

WRITE (6,*) '

100 CONTINUE

CALL EXIT

END

RDIST, TVS, TPVS, TVD, TPVD

PX, TVS, TPVS, TVD, TPVD

PDI, TVS, TPVS, TVD, TPVD
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SUBROUTINECASE(LLL, PI,THETA, THE45,DI,PXI,PYI,PZI)

WRITE(6,*) 'INPUT LINE INITIAL RADIUS:'

READ(5,*) DI

IF (LLL. GE.3) THETA=45. *PI/180.

IF (LLL.EQ. 1.0R. LLL.EQ. 3) THEN

PXI=DI*COS (THETA)

PYI=0.0

PZI=DI*SIN (THETA)

ELSE

PXI=DI*COS (THETA) *THE45

PYI=DI*COS (THETA) *THE45

PZI=DI*SIN (THETA)

ENDIF

RETURN

END
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Figure 2.- Line vortex geometry.
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Figure3.- Sectionof thetwo-dimensionalPMARCmodel.
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Figure 14.-F/A-18 paneledmodelfrom McDonnellDouglas.

Figure 15.-F/A-18 paneledmodelafterrework.
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Figure 19.- Vector orientation.
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Figure 20.- Panel orientation.
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Figure23.- Pointorientation,overmedian.
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Figure 24.- Point orientation, over horizontal.

59



30-

[] Int Source

20

 =1o

4, Pt Source
• Int Source

- OPt Doublet

'r,
1 2 3 4 5 6

Radius

Figure 25.- Over median, DW -- 90 °,

30-
4

o

o Int Source
• Pt Source
• Int Source
O Pt Doublet

10 _1

0 1 2 3 4 5 6
Radius

Figure 26.- Over median, DW = 45 °.

60



o 20

0

"ID

_=10

[] Int Source

[IJ • Pt Source
J _ • Int Source

_> Pt Doublet

0 1 2 3 4 5 6
Radius

Figure 27.- Over horizontal, DW = 20 °.

Z

X

y
J

C

.Soy,-

MD

Figure 28.- Panel transverse, over horizontal (HZ) and over median (MD).

61



Z

"_ '%

%

/
/

• ,s"

f

J

f

¢-

J
,,. I

" I
I"

/ I
f

/ I

I

__x____V,
/I"

OMD

Figure 29.- Panel transverse, over off-median.

1.45

D Source (MD)
• PT Source (MD)
• Source (HZ)
0 PT Source

.45
-1 0 1

X

Figure 30.- Panel transverse, source contribution.

62



4

O Doublet (MD)

• PT Doublet (MD)

3 • Doublet (HZ)
•_ 0 PT Doublet (HZ)
O

--1

0
-1 0 1

Figure 31.- Panel transverse, doublet contribution.

Z

t_

Top View

UP

The Up Diagonal
D,,-

Front View

Panel

Edge

Figure 32.- Twisted panel orientation, UP = over the Up diagonal.

63



.2O

u

.16
>

"o
-= .12

.08
-3 -2 -1 0 1 2

Radius

[] Int Source

• Pt Source

Figure 33.- Twisted panel, TW = 0%

.20

_.16

.08
-3

[3 Int Source

• Pt Source

I

-2 -1 0 1 2 3
Radlus

Figure 34.- Twisted panel, TW = 10°.

64



.2O

"o_ .16

"_ .12

.08
-3

[] Int Source

• Pt Source

-2 -1 0 1 2 3
Radius

Figure 35.-Twisted panel, TW = 20 °.

.O7

.06

=>,
U

.05

_.04
"ID

c::

.03

.02 ___ , t
-6

[] Int Source

• PI Source

, I x i _ I J

-4 -2 0 2 4 6

Radius

Figure 36.- Off median, DM = 0.25, TW = 10 °.

65



.07

.06

_.05

"_.04

.03

[] Int Source

, • PI Source

.02 , I , , , t • I , I
-6 -4 -2 0 2 4

Radius

Figure 37.- Off median, DM = 3, TW = 10°.

66



N/" SA Report Documentation Page
N alonal Ae_on aulJc$ end

Space Adminis_'etlc*n

1. Report No.

NASA TM- 102196

2. Government Accession No.

4. Title and Subtitle

Study of the Integration of Wind Tunnel and Computational

Methods for Aerodynamic Configurations

7. Author(s)

Lindsey E. Browne and Dale L. Ashby

9. Performing Organization Name and Address

Ames Research Center

Moffett Field, CA 94035

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. Recipient's Catalog No.

5. Report Date

October 1989

6. Performing Organization Code

8. Performing Organization Report No.

A-89148

10. Work Unit No.

505-68-71

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Point of Contact: Dale L. Ashby, Ames Research Center, MS 247-2, Moffett Field, CA 94035

(415) 694-5047 or FTS 464-5047

16. Abstract

A study was conducted to determine the effectiveness of using a low-order panel code to estimate wind

tunnel wall corrections. The corrections were found by two computations. The first computation included

the test model and the surrounding wind tunnel walls, while in the second computation the wind tunnel

walls were removed. The difference between the force and moment coefficients obtained by comparing

these two cases allowed the determination of the wall corrections. The technique was verified by matching

the test-section, wall-pressure signature from a wind tunnel test with the signature predicted by the panel

code. To prove the viability of the technique, two cases were considered. The first was a two-dimensional

high-lift wing with flap that was tested in the 7- by 10-Foot Wind Tunnel at NASAAmes Research Center.

The second was a 1/32-scale model of the F/A- 18 aircraft which was tested in the low-speed wind tunnel

at San Diego State University. The panel code used was PMARC (Panel Method Ames Research Center).

Results of this study indicate that the proposed wind tunnel wall correction method is comparable to other

methods and that it also inherently includes the corrections due to model blockage and wing lift.

17. Key Words (Suggested by Author(s))

Wind tunnel

Computational

Aerodynamic

18. Distribution Statement

Unclassified-Unlimited

Subject Category - 02

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

71

22. Price

A04

IASA FORM 1626 OCT86
For sale by the Nationai Technical Information Service, Springfield, Virginia 22161




