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Abstract

Periodic-disturbance accommodating control is

investigated for asymptotic momentum manage-
ment of control moment gyros used as primary ac-

tuating devices for the Space Station. The pro-
posed controller utilizes the concepts of quaternion

feedback control and periodic-disturbance accom-
modation to achieve oscillations about the constant

torque equilibrium attitude, while minimizing the
control effort required. Three-axis coupled equa-

tions of motion, written in terms of quaternions,

are derived for roll/yaw controller design and sta-

bility analysis. The quaternion feedback controller

designed using the linear-quadratic regulator syn-

thesis technique is shown to be robust for a wide

range of pitch angles. It is also shown that the pro-

posed controller tunes the open-loop unstable ve-
hicle to a stable oscillatory motion which minimizes

the control effort needed for steady-state operations.

Introduction

The Space Station will employ CMGs (control

moment gyros) as primary actuating devices dur-
ing normal flight mode operation. Gravity-gradient

torques will be used for CMG momentum manage_

ment (unloading). The effect of a constant aerody-

namic torque on a gravitationally stabilized space-
craft was first studied by Garber [1]. Such a torque

prod uces a constant attitude angle for which aerody-

*This work was supported by the NASA Johnson Space

Center through the RICIS program of the University of Hous-

ton at Clear Lake.

)'Graduate Research Assistant, Member AIAA.

t Assistant Professor, Dept. of Aerospace Engineering and

Engineering Mechanics, Member AIAA.

§Aerospace Engineer, Mission Planning and Analysis

Division.

namic and gravitational torques are balanced. Gar-

ber [1] has shown that small roll/yaw librational mo-
tions are affected by large pitch angles. The aero-

dynamic disturbance torques acting on the Space
Station are expected to have constant values plus

periodic components caused mostly by the effects

of solar panel rotations and Earth's diurnal bulge.

As a result, attitude and CMG momentum oscilla-

tion about the torque equilibrium attitude will oc-

cur. A recent study [2] demonstrates the usefulness

of the linear-quadratic-regulator synthesis technique

and the concept of periodic-disturbance accommo-

dation in minimizing attitude and/or CMG momen-

tum oscillations as needed for mission requirements.

This paper is primarily concerned with attitude

control and CMG periodic-disturbance rejection for

large-angle pitch maneuvers of the Space Station.

New results are presented expanding on the con-

trol scheme developed in [2]. Pitch-coupled roll/yaw

equations of motion, first discussed in [1], and writ-

ten in terms of Euler angles, are derived here in
terms of quaternions. It is shown that these equa-

tions are well suited for use in designing a roll/yaw

controller for large pitch motions of the Space Sta-

tion. A simple concept of using quaternions for the

control of spacecraft large-angle maneuvers has been

developed in [3, 4]. The concept is extended here

to a more complicated case of controlling both the
attitude and CMG momentum of tile Space Sta-

tion. Furthermore, this paper presents a new con-

trol concept of asymptotic momentum management

of the CMGs, which tunes the open-loop unstable

vehicle to a stable oscillatory motion during steady-
state operations, while minimizing the control effort
needed.

Figure 1 is a functional block diagram represen-

tation of a quaternion feedback control system pro-

posed for the Space Station. The attitude determi-

nation system utilizes rate gyros and star trackers to

compute inertial quaternions and the absolute angu-
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lar velocityof theSpaceStation.Relativequater-
nions with respect to a local reference frame are then

computed for control purposes. The proposed atti-

tude/momentum controller utilizes relative quater-

nions, body rates (or relative quaternion rates), and

CMG momenta to generate proper control torque
commands to the CMGs.

Mathematical Models

In this section, equations of motion for the Space
Station in a circular orbit are derived in terms of

quaternions. For simplicity, the Space Station is as-

sumed to be a single rigid body. Emphasis is on the

use of quaternions in the equations of motion and in

feedback control. Quaternions define the rigid body

attitude as an Euler-axis rotation. The vector part

of the quaternions indicates the direction of the Eu-
let axis. The scalar part of the quaternions is related

to the rotation angle about the Euler axis. Detailed

discussion of the kinematics associated with quater-

nions and Euler angles can be found in [5, 6].

The relationships between quaternions and Euler

angles, for the pitch-yaw-roll body-axis rotation se-

quence used in this paper, are

ql

q2

q3

q4

c_s2s3 + s,c_c_

C,S_C3 + s,c_sa

c,c2s3 - s,s_cs

cic2c3 - sis2s3

(1)

where Ci _= cos(Oil2), Si _- sin(Oil2) for i = 1, 2, 3,

(01, 0_, 03) are the roll, pitch, and yaw Euler angles
of the body axes with respect to the local vertical

and local horizontal (LVLtt) axes, which rotate with

the orbital angular velocity; and (qt, q2, q3) are the

vector parts of the quaternions which indicate the

direction of the Euler axis while q4 is the scalar part

of the quaternions and is related to the angle of ro-
tation about the Euler axis. Inverse relations may
also be written as:

[2(qlq4 - q2q3)]
O, = tan -1 [l_2q__2q_]

= tan-1
[ 1 - 2q_ - 2ql J

0z = sin -1 [2(qlq2 + qsq4)] •

(2)

The nonlinear equations of motion and attitude

kinematics for the Space Station are as follows:

Space Station Dynamics:

[,1I12/2, I2,_ I_3 _ =

[,i-- _ 121 I22 I2a w_
/31 /39 I33 w3

+3n_c hi I2_ I_3 c_

131 13_ 133 C3

+ -u_ + w2
-us + ws

(3)

where

_..]w = W3 0 --cal

-ca2 wl 0

c = c3 0 --Cl

--c2 ct 0

A
Cl = 2(qlq3 -- q_q4)

c2 -- 2(qlq4 + q2q3)
A

ca = 1- 2q_- 2q_

Attitude Kinematics (with respect to LVLH):

[ql][ql]1 q2
is = _ft q3

q4 q4

(4)

where

0 w3 --w2 + n cat

--ca3 0 cal w2 + n

w2 -- n --cat 0 _3

--wt --w2 -- n --w3 0

CMG Momentum:

[hx][hl]
ha ha u.q

(s)

and (cat,w2, cas)are the body-axis components of

the absoluteangular velocityof the Space Station;

I0 (i- j) are the moments of inertia;lij(i¢ j)

are the products of inertia;(hi, h2, ha) are the

body-axis components ofthe CMG momentum; (ul,

u_, us) are the body-axis components of the control
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torque; (wa, w2, w3) are the body-axis components
of the external disturbance torque; and n is the or-

bital rate of 0.0011 rad/sec.

When body and control axes are aligned with
A

the principal axes of the Space Station (Is In,

/2 A I22, /3 _A_I33), Eqs. (3) become

II_t - (I2 - I3)_2_3

+ 6n2(h - Is)(qlq, + q_qs)(1- 2q_- 2q2)
= --Ul -k Wl

+ 6n2(Is -- Ii)(qlq3 -- q2q4)(1 -- 2ql2 -- 2q221

= -us + w_ (o)

Is&s - (I1 - I2)_1_2

+ 12n2(I1 - I2)(qlqs -- q2q4)(qlq4 -b qsq3)

: --U 3 -_- W 3 .

which can be found in [5]. In this paper, however,

we present a new set of equations determined by

linearizing the shove equations for the case of large
pitch angles with small roll/yaw attitude changes.

In this case, Eqs. (4), (5/, and (6 / can be linearized
with respect to qt and q3 as follows:

Space Station Dynamics:

h_, + n(/s - I3)_s + on2(Is - h)(q, - 2q4q_)q_
+ 6nS(h - Is)(2q_q2 - q_)qs= -ul + w, (Ta)

= -us + w2 (7b)

I3d_a q- n(I1 - I2)wt - 12n2(I1 - Ia)(q2q_)ql

-- 12n2(/1 -- [s)(q4q_)q3 "- --us -I"wa (7c /

Attitude Kinematics (with respect to LVLH):

q4 q_ (8a)ql = "T_'l + -f_s + nqs

q2 = _(w2 + n) (8b)

qs q4 (8C)

qs
q_ = -- T(_2 + n) (8d)

CMG Momentum:

h2 = .s (9)
h3 + nhl = us •

For the case with large pitch angles and small

roll/yaw attitude changes, the relationships between

quaternions and Euler angles can be simplified by

linearizing with respect to 01 and 0a • Equations (1)
then reduce to

q_ = sin 02 (10a)
2

Oz
q4 = COS- (10b)

2

q3 = 2 -q2 q, 0s

Inverse relations for Eqs. (10c) are written as

[0,] [,,os = 2 . (11)
qs q4 q3

Equations (7) and (8) may be used to derive the

Space Station equations of motion in terms of

quaternions,writtenas follows:

I3q2 [sq4

o ]o (h - h)

x (q2 + 6q2ql) (q4 + 6q4q_) q3

1 [ -t_l'_'wl ] (]2a /= _ -us+ ws

1
= _(-u_ + w2). (12b)

The quaternion relations of Eqs. (10 / may be used

to transform Eqs. (12) to the following known form

[1, 6] involving only Euler angles:

I10x + n2(Is - Is)(1 + 3cosS0s)01

-- n( I1 -- 12 -k Ia)0a + 3n2(Is -- la)(sinO2cos02)O3

"-- --Ul "l- W1 (13a)

Ia0_ + 3ha(Ix - I3)sinOscosOs

= -u:_ + w_ (13b)

_Js + n_(h - h)(1 + 3sin_0:)a_
+ n(_ - h + _)01 + 3n_(h - h)(sin0scos0_)01
= -us+ ws • (13c)

A final linearization with respect to small pitch mo-

tions leads to the following well-known equations of
motion:

Space StationDynamics:

I10t + 4n2(I_ - Is)01

41



- n(I1 - I_ + 13)/}3 = -ul + Wl (14a)

120_ + 3n2(I1 - 13)02 = -u2 + w2 (14b)

I30'3 + n2(I2 - 11)03

+ n(I1 - I_ + Is)01 = -us + wa (14c)

Attitude Kinematics (with respect to LVLH):

01 - nO3 ----Wl (15a)

02 - n = w_ (15b)

03 + nO1 = w3 • (15c)

These linearized equations are used in [2] for the

case of small roll, pitch, and yaw attitude changes.

In this paper, emphasis is on the use of Eqs. (7)

for the momentum/attitude control of the Space

Station having small roll/yaw attitude changes but

large-angle pitch motions.

Inertia values for the Phase 1 Space Station, as

well as assembly flight 3, are listed in Table 1. Ta-

ble 2 includes expected aerodynamic disturbances
which are modeled as a bias plus periodic terms in

the body-fixed control axes:

w(t) = Bias + A,_sin(nt + ¢1)

+ A2nsin(2nt + ¢_)

+ Asnsin(3nt + ¢3)

+ A4,sin(4nt + _b4)

The disturbance torque acting in each axis is deter-

mined from data generated at NASA Johnson Space

Center by a nonlinear simulation program. The pro-

gram simulates translational and rotational motions
of the Space Station in orbit about an oblate Earth.

It includes rotating solar panels, time-varying sur-
face areas, and time-varying center-of-pressure lo-

cations. A Jacchia-Lineberry atmospheric model is

used to compute density variations. The dominant

aerodynamic torque frequencies at n and 2n are
caused by Earth's diurnal bulge and solar panel ro-

tation effects, respectively. Actual magnitudes and

phases of these disturbance torques are assumed un-

known for control design.

Control Issues

Before presenting the pitch and roll/yaw con-

troller designs, it is important to clarify some issues

related to the effects of large pitch motions and in-

ertia value uncertainties on the stability of the con-

trolled Space Station. A characteristic of momen-

tum/attitude control using gravity-gradient torque
is that pitch, roll, and yaw responses will settle down

to, or oscillate about, a constant torque equilibrium

attitude (TEA). Primary factors involved in deter-
mining the constant pitch TEA are the magnitude of

the bias in the disturbance torque and the numerical

difference between roll and yaw moments of inertia.

This can be seen by studying the steady-state form

of Eq. (14b):

0-2= q¢
3n_(11 - 13)

where 0-2 is the pitch TEA angle and ¢v is the bias of

the pitch disturbance torque. Pitch gravity-gradient

torque is largest when the pitch attitude is 45 de-

grees. This is predicted in Eq. (13b) where, at the
steady-state,

2W

sin (20-2) = 3n2(i1 _ 13) '

It may be necessary to consider this worst-case pitch

TEA in control system design. After switching to

CMG mode from some other modes (e.g., reboost

mode utilizing reaction jets), the Space Station must
be able to achieve TEA in each axis without CMG

momentum or commanded torque saturations.

The large motions possible in the pitch axis em-

phasize the importance of using Eqs. (7), (12), or

(13) in designing the control system. These equa-
tions show the dependence of roll/yaw dynamics on

pitch attitude. In fact, a roll/yaw closed-loop sys-

tem designed for small pitch angles may become

unstable at large pitch angles; therefore, roll/yaw
closed-loop stability must be checked at various

pitch TEA values.

Other factors affecting closed-loop stability are

uncertainties and variations in moments and prod-

ucts of inertia. In particular, the magnitude of the

pitch gravity-gradient torque depends on the differ-
ence between the roll and yaw moments of inertia. If

these inertias are nearly equal (e.g., see Table 1, as-

sembly flight 3 data), pitch gravity-gradient torque

is very small and the pitch TEA (if it exists) is large.
In addition, very small uncertainties in the moments

of inertia can cause the system to become unstable.

A discussion of the importance of checking closed-
loop system robustness with respect to inertia un-

certainties, by varying inertia values in an appropri-
ate "direction", is included in the appendix of this

paper:
Under normal operating conditions, the Space

Station will have rotating solar arrays. This causes

time-varying (sinusoidal) roll and yaw moments of
inertia, and consequently, a similarly time-varying

gravity-gradient torque in the pitch axis as shown
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in Fig.2. If the biasvalueof II(Q - Ia(Q is such

that the pitch gravity-gradient torque never changes

sign, the system will remain stable. If the gravity-

gradient torque does switch signs, the system may
become unstable, depending upon how long the sign

of the torque is changed. For sufficiently short peri-

ods of this opposite torque, the system will be sta-

ble with large, bounded responses about the TEA.

If gravity-gradient torque is to ultimately be used

in momentum/attitude control, the above factors
will be useful in the design of the inertia configu-

ratiou. Consideration should be given to defining a

boundary near the point or condition corresponding

to zero pitch-axis gravity-gradient torque, defined

by Ii(t) - I3(t) = 0. This is illustrated in Fig. 2.

The boundary may be thought of as the minimum

gravity-gradient torque allowed in the pitch axis for
which closed-loop stability, with respect to inertia

uncertainties, is maintained.

In the next sections, the pitch and roll/yaw con-

troller designs are presented along with time sim-
ulations of the closed-loop system. In this paper,

we expand on the previous study [2] by developing

a periodic-disturbance accommodating controller
which achieves asymptotic momentum management
of the CMGs in all three axes. The Phase 1 iner-

tia configuration listed in Table 1 is used. Effects
of products of inertia are assumed negligible. The

corresponding time-varying gravity-gradient torque

in the pitch axis does not change sign; however, the

time sinmlations presented here use the assumption
that inertia values remain constant while periodic

terms in the aerodynamic torque include solar panel

rotation effects. Large pitch TEA responses are pro-

duced by introducing an appropriately large bias in

the pitch-axis disturbance torque.

Pitch Control

In this section, a pitch-axis controller is developed
for attitude and OMG momentum control. It is

shown in [2] that disturbance rejection filters can be
used to reject either attitude or CMG momentum

oscillations occurring at the frequencies present in

the disturbance torques. Since asymptotic momen-

tum management of the CMGs in all three axes is

of primary interest in this paper, the disturbance

rejection filters for the pitch axis have the following
for nls-

where initial conditions for the lilter states can be

arbitrarily selected (usually zero initial conditions).

Use of filters at frequencies n, 2n, 3n, and 4n is in-

dicated by aerodynamic torque data generated by a

nonlinear simulation program written for the Space

Station. The pitch-axis control logic is given by a

single control input involving twelve states:

u2 = K2x 2 (16)

where

K 2 _ a 1 x 12 gain matlix

i, [ q2 ;t2 t_2 f h_ o_ 62
]T.

The control task is to find proper gains for this
twelve-state feedback controller.

In order to use linear control design methodolo-

gies, Eq. (Tb) must be linearized for small pitch mo-
tion. This results in Eq. (14b), which is used as the

basis for pitch control analysis and design. Vari-

ous techniques may be used in selecting the twelve

gains of Eq. (16). These include linear-quadratic-

regulator (LQR) synthesis [7] and direct assignment
of closed-loop eigenvalues using a pole-placement

technique. Several iterations of any method may

be required to achieve satisfactory closed-loop per-

formance and robustness. Note that gains resulting

from Eqs. (14b) are for the use of 02 in state feed-
back. In order to accommodate q2 for use in feed-

back, the gains corresponding to states q2 and 0'-,are

doubled since the approximation used for q2 is 02/2.
New gains do not need to be computed for the pitch

controller in the case of large pitch motion. It is

mostly roll/yaw destabilization at large pitch angles

which forces pitch-axis instability.

The open-loop pitch axis of the Phase 1 inertia

configuration is unstable, with poles at s = -t-l.5n,

0, 0, and filter poles at s = +jn, ±j2n, +j3n, :kj4n.

One pole at s = 0 comes from the integral feedback
of h2. After it erative use of an LQR synthesis code,

available in CTRL-C software, a set of closed-loop

eigenvalues have been selected and are listed in Ta-

ble 3. The corresponding gain set is given in Table 4.

Closed-loop pitch responses of Eq. (6), for a pitch-

axis maneuver of -30 degrees (caused by a large

pitch-axis torque bias), caz_ be seen in Figs. 4, 5,

and 6. Comments on the responses are reserved un-

til after the presentation of the roll/yaw controller

design.
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Roll/Yaw Control

el(s)e3(_)

where

The roll/yaw controller has a structure similar to

that of the pitch controller. By examining the open-

loop transfer function matrix from control inputs to

roll/yaw attitudes and CMG momentum, it is shown

in [2] that a periodic disturbance at the orbital rate
can be rejected in the yaw attitude but not in the

roll attitude. The analysis is accomplished using

Eqs. (9) and (14), which assume small motions in
all axes. In an effort to determine if it is possible to

have periodic-disturbance rejection in both roll and

yaw attitudes for this different case involving large

pitch motions, a similar analysis is considered here

using the pitch-coupled roll/yaw dynamics described

by Eqs. (13).

By combining Eqs. (9) and (13), the transfer func-

tion matrix from (ul,u3) to (8, f13) can be written
as

1

= a3,(.)G33(.) u_(.)

a,l(.) = - [I3.2 + (1 + 3._).*(I2 - I,)]
× [S2 + n2]

ax3(s) = - [.(I, - Is + z3)s
_ 3n,(i2 _ i3)_2c_][_2+ .2]

G3,(S) = [n(I1 - 12 + Iz)s

+ 3n2(I2 --I1)s2c2][s 2 + n_]

G3z(s) = - Ills2 + (1 + 3c_)n2(12-/3)]

x [s 2 + n2]

A = 1113(s 2 +n2){s4+n2[1 + 3kl +klk3

+ 3(le_- lea)d]. _
+ [3._(le3- le,).2e2].+ 4.%le3}

and s2 = sin 82, c2 : cos 82,let : (I2 - I3)/II, and

ks = (1_ - I1)/13 . Transmission zeros at +jn ap-
pear in the transfer function matrix. It would seem
that periodic disturbances of frequency n cannot be

rejected in either the roll or yaw attitudes; however,

for CMG momentum and control torque relations

defined by

hi -- Ul

h3 -" u3

and with appropriate alterations of Eqs. (13), the

transfer function matrix from (u,,u3) to (81,t93) can
be written as

1

O3(s) a3_(_) a_3(_)

where

GI_= (s){-X_s3+ _2[3(I_- I2)_ - I_ls
+ 3n3(/2 -- I3)s2c2}

c_3 = (-.){(I2 - x_)s2+ [3.(/2 - I_)s2c_]_
+ (1 + 3d)_2(I2 -/_)}

C_l = - (_){(t2 - I_)s2 + (1 + 3c_)._(I_ - z_)}
G33 ---- -- {I,s 4 + n213(12 -- I3)c_ + I1]s

+ 3n2(I_ -- I1)s2c2}

A = IlIs(s_){s 4 + n211+ 3k, + klk3

+ 3(le_- k,)4]_ _
+ [3"3(k3 - kl)S2C2]S + 4n4k, k3).

Transmission zeros are not apparent in these expres-

sions. A numerical analysis reveals, however, that

there are transmission zeros at -t-jn for the trans-
fer functions from ul and u 3 to roll attitude, while

yaw attitude has no troublesome zeros. These re-

sults show that, even for the case of pitch-coupled

roll/yaw dynamics, there is an inability to reject roll

attitude oscillations occurring at the orbital rate.
Hence, in this paper, periodic-disturbance rejection

for CMG momentum in both the roll and yaw axes is

considered. That is, a periodic control of the Space

Station for asymptotic momentum management of
the CMGs in all three axes is of primary interest
here.

Periodic-disturbance rejection filters for the

roll/yaw axes can be represented as:

_, -I- (n)20¢I -- h 1

hi+ (2-)2_1= h,

_1 -_-(3n)271 : hl

_, + (4n)27h= h_
53 + (n)2_3 = h3

% + (3n)_'r3= h_
#3 + (4n)U03 = h3 •

The roll/yaw control logic involving two control

inputs and twenty-four states is expressed as

where

K _ a 2 x 24 gain matrix

a [ ql w_ hi f h, oq 5_1

XI--" /_1 _I _'1 //1 /71 _' IT

A [ q3 _ h3 f h_ _3 b,_
x3= _ _ _ _ _ _ IT

(roll states)

(yaw states).
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Thepitch-coupledroll/yawequationsdescribedby
Eqs.(7)areusedasthebasisfor theroll/yawcon-
troller design. It is evidentin the pitch-coupled
equationsthat roll/yaw dynamicsare dependent
uponpitchattitude. Considerationmustbegiven
to thepitch-axisTEAwhendesigningtheroll/yaw
controllergains.Equations(7)(orEqs.(12)or(13))
are especiallyusefulfor this purposewhen q2
and q4 in the equations are assigned their respec-

tive values corresponding to the expected pitch

TEA (see Eqs. (10a) and (10b)). As a result,
Eqs. (7a) and (7c) become linear and any linear con-

trol design methodologies may be used to design the

roll/yaw controller gains.

For spacecraft operating under the influence of

gravity-gradient torques, it is interesting to exam-
ine the changes in roll/yaw open-loop eigenvalues

that occur as the pitch bias changes. This was first

studied by Garber [1]. A root locus of open-loop

eigenvalues versus pitch angle, for the Phase 1 ir--
ertia configuration, is shown in Fig. 3. It call be

seen that the open-loop roll/yaw dynamics are not

very sensitive to pitch attitude. The Space Station

is unstable with poles at s = +l.05n±j0.7n, 0, 0,

-4-jn, and filter poles at s = +jn, -t-jn, ±j2n, ±j2_,

+j3n, +j3n, 4-j4n, -I-j4n (for 02 = 0° where q2=0

and q4=l). The double pole at s = 0 occur because
of the integral feedback of hi and h3.

After iterative use of an LQR synthesis code,

closed-loop eigenvalues have been selected and are

listed in Table. 3. A gain set for Eqs. (17), corre-

sponding to a pitch TEA of 0°, is listed in Table..t.

For these gains, the closed-loop roll/yaw axes are

stable for pitch angles ranging from -210 to 4-230 .
Since a simulation of the large-angle pitch maneu-

ver needed to reach a pitch TEA of -300 is desired,

a different gain set is used for the sinmlations pre-
sented in this paper. For these gains, the closed-

loop roll/yaw axes are stable for pitch angles ranging
from -480 to +3 °. Closed-loop roll/yaw responses

of Eqs. (6), for a pitch-axis maneuver of -30 de-

grees, can be seen in Figs. 4, 5, and 6. The overall
closed-loop system has a 10 dB gain margin and a

phase margin of 60 ° in each control loop.

Discussion of Simulation Results

Closed-loop responses for a simulation of the non-
linear dynamics described by Eqs. (6) are shown in

Figs. 4, 5, and, 6. Quantities plotted include quater-
nions, CMG momenta, and control torques. Initial

conditions corresponding to 01 (0) = 02(0) = 03(0) =

1 degree and t),(0) = 02(0) = 03(0) = 0.001 deg/sec
are assumed. Allowable limits on CMG momentum

and commanded torque are assumed to be 30,000

ft-lb-sec and 150 ft-lb, respectively.

In the roll axis, quaternion ql oscillates (-t-0.7 °)

about a roll TEA of-0.003 (01 = -0.5°). Roll

CMG momentum hi is the input to the roll-axis

disturbance rejection filter and settles down to zero

after reaching a maximum value near 8000 ft-lb-sec.

Control torque ul is zero at the steady-state and

has a peak value near 23 if-lb. In the pitch axis,

quaternion q_ oscillates (±4.3 o ) about a pitch TEA

of-0.257 (02 = -30°). The large-angle maneuver

causes the pitch (:MG momentmn h_ (disturbance

filter input) to become quite large at nearly 18,000
ft-lb-sec, before settling to zero. Control torque u= is

zero at the steady-state with a maximum value near

30 fl,-lb. In the yaw axis, quaternion qa oscillates

(±1.2 ° ) about a yaw TEA of-0.013 (03 = -1.5°).
Yaw (?MG momenlunl h3 (disturbance filter input)

settles down to zero after reaching a maximum value
close to 600 ft-lb-sec. Control torque u3 is zero at.

the steady-state, and reaches a maximum value near
12 ft-lb.

The simulations show that the proposed control

scheme tunes the open-[oot_ unslable Space St.a-

tion to a stable, oscillatory motion which mini-

mizes control effort during steady-state operations.
For the assumed disturbance torque models (with

unknown magnitudes and phases), the stabilized

Space Station n_eds no control torque at, steady-
stale conditions. Analysis shows, however, that

small-amplitude periodic components of frequencies

5n and 6n are present in ut and u3 at the steady-
state. These small residual components are caused

by the coupling between the pitch and roll/yaw axes,
and become particularly noticeable for large pitch
biases.

There is an interesting feature of the quaternion

fi'edback scheme which is not apparent from the sim-

ulal.ion responses. If rejection of pitch and yaw at-
titude oscillations is desired, it seems natural to use

q:, and qa as inpuls to the respective disturbance re-

jection filters. Ev,'n though q2 aml q3 will becorne
constant at the steady-state, all of the Euler angles

will oscillate. A st,,dy of Eqs. (2) (or Eqs. (11)) re-

veals why. By assigning constant values t.o q2, qa,

and q4 ill F_qs. (2) (or Eqs. (] 1)), it can be seen that
01, 02, and 03 are all flmctions of ql, which oscil-

lates. The same may be said for ql, q2, q3, and q4 if

Euler angle feedback is used. For oscillations of 01

amt constant values for 02 and 03, Eqs. (1) show that

all qnaternions are fimctions of 0j and will therefore
oscillate. In either case, however, these oscillations
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aresmall. Theimportantpointis that theelimi-
nationof pitchor yawoscillations,if needed,may
beaccomplishedbyusingEulerangles02 and 0z as
disturbance rejection filter inputs (with appropriate

gain changes).

A check of closed-loop robustness with respect to
inertia uncertainties emphasizes an important issue

associated with the Phase 1 inertia configuration.

By selecting specific "directions" in which to vary

the three moments of inertia (I1, I2,/3), the closed-

loop system can be shown to be unstable for as lit-

tle as -7% uncertainty in/3 with +8% uncertainty
in I1. For these inertia variations, the pitch-axis

gravity-gradient torque disappears (I1 -/3 = 0) and
closed-loop pitch dynamics become unstable. The

limitations shown in this example (and several oth-

ers involving even smaller inertia uncertainties), are
not related to the selection of control logic but are

physical limitations inherent to the inertia configu-

ration of the Phase 1 Space Station. A description
of the inertia variation "directions" used above is

presented in the appendix of this paper.

Conclusions

In this paper asymptotic momentum manage-

ment of control moment gyros of the Space Sta-

tion has been investigated. It was shown that the

proposed controller tunes the Space Station, which

has a gravitationally "unstable" inertia configura-
tion, to a stable, oscillatory motion which minimizes

the control effort needed at the steady-state. By

utilizing the concepts of quaternion feedback con-

trol and periodic-disturbance rejection filters, the

proposed controller provides robust control of the

Space Station for large-angle pitch motions. The

pitch-coupled roll/yaw equations of motion derived
in this paper were shown to be particularly useful in

roll/yaw controller design and stability analysis.

ApI)endix: Inertia Variation Directions

It is a comnlon practice in control design to satisfy

time and frequency-domain requirements first, then
check for closed-loop robustness. For spacecraft, in-

ertial properties may be very sensitive parameters

in the closed-loop system. It seems reasonable to

increase and decrease all inertias by the same per-

centage, thus checking controller effectiveness for a

proportionally heavier and lighter spacecraft. This

procedure may not indicate the true inertia sensi-

tivity. It is important to consider the magnitude
and direction of the variation for each inertia value.

Since the inertia matrix may be transformed to three

principal moments of inertia by aligning tire body

and principal axes, suggestions for variations in the

moments of inertia for the roll (/1), pitch (I2), and

yaw (/3) axes are presented here.

Three important relationships may be derived
from the definitions for the moments of inertia.

These relationships are as follows:

II + I_ > In

11+[3>12

1_ + I3 > I1 .

Together, these relations define the physically pos-

sible inertia configurations. A control designer may
unknowingly use inertia variations which result in
inertia values that violate these constraints. Sta-

bility of the closed-loop system will be tested for

a physically impossible inertia configuration. The

important point is not the fictitious inertias but

whether or not the control designer can redirect this

extraneous stability margin to encompass more of

the region of physically possible inertia values.

When gravity-gradient torque is used in the con-

trol of a rotating spacecraft, additional inertia con-
straints are introduced. The control scheme pre-

sented in this paper is a good example. Equa-

tions (14) show that roll-axis gravity-gradient and

gyroscopic coupling torques are zero when I2 = 13,

pitch-axis gravity-gradient torque is zero when I1 =
I3, and the yaw-axis gyroscopic coupling torque is

zero when I1 =/2.

A useful aid for visualizing the relationship be-
tween inertia constraints and inertia variations

is now presented. Figure A.1 shows a three-

dimensional, cubic figure defined in three "inertial"

directions. The inertia constraint relations may now

be visualized as planes in this "inertial" space. The
planes I1 + I2 ---- 13, I1 + 13 = 12, and I2 + I3 = I1

are labeled in Fig. A.1, arid represent the physical
boundaries of inertia values. The area inside the

three intersecting boundaries represents all physi-

cally possible inertia configurations. A representa-
tion of the cut-away portion of the "inertia cube" is

shown in Fig. A.2. Planes defining the physical and

system torque boundaries are labeled. Figures A.1

and A.2 provide a three-dimensional representation

of the information presented in the k3 versus kl in-

ertia ratio plots in [5-7]. It. may be convenient to
normalize the moments of inertia being studied by

V//12 + I22 + Ia_ in order to locate the position of the
nominal configuration within a "unit irmrtia cube".
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Therelative positioning of the nominal inertia con-

figuration from the constraint boundaries can then

be easily determined.

Since the shortest distance from a point to a plane

is in a direction perpendicular to that plane, it seems

logical to check inertia variations in directions per-

pendicular to the inertia boundaries. In this way,

the minimum variation necessary to reach a physi-

cal boundary can be found while checking the closed-

loop stability of the system in question. For rotating

spacecraft with gravity-gradient control systems, in-

ertia variations perpendicular to the planes 11 = I2,

/1 = /3, and I2 = 13 are needed. It may be seen

in Fig. A.2 that these planes intersect inside the re-

gion of physically possible inertia values, and par-

tition the region into several sections. It should be

a control designers' goal to include the area within

the physical boundaries inside a "control surface"
which contains all of the inertia values for which the

closed-loop system is stable.
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Table 1. Space station inertia

configurations

Inertia Assembly Phase 1

(slug-ft 2) Flight#3

Ill 23.22E6 50.28E6

I22 1.30E6 10.80E6

I33 23.23E6 58.57E6

/12 -0.023E6 -0.39E6

ar_3 0.477E6 -0.24E6

I23 -0.011E6 0.16E6

Table 2. Phase 1 aerodynamic torque models

(in units of ft-lbs)

Wl

W2

W3

l+sin(nt)+0.5sin(2nt)
+0 3sin(3nt )+0.5sin(4at )

13" + 1.2sin(nt)+3.5sin(2nt)
+0.3sin(3 t)+0.Ssin(4nt)

1+sin(nt)+0.Ssin(2nt)
q-0.3sin(ant)+0.5sin(4nt)

* nominal pitch bias torque is 4 but 13 is used

to produce a large pitch TEA
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Table 3. Phase 1 closed-loop eigenvalues

(in units of orbital rate - 0.0011 rad/sec)

Momentum/Attitude Disturbance Filters

Pitch -1.0, -1.5 -1.5=i=jl.5 -0.3+jl.0 -0.3+j2.0

-0.3:t:j3.0 -0.3+j4.0

Roll/Yaw -0.23, -0.71 -0.53=t=jl.54

-1.04=t=j0.70 -1.06+j0.71

-0.14+j0.99

-0.19+j2.01

-0.32=t=j3.02

-0.53=1=j3.97

-1.13+j0.75

-0.47+j2.20

-0.68+j3.21

-0.25:t=j4.00

Table 4. Phase 1 controller gains

Pitch

[K2]
4.2425E+2

2.5412E+5

1.4840E-2

4.0150E-6

-1.9064E-9

2.1970E-6

-4.6097E-9

-5.2383E-7

-5.3793E-9

-1.9423E-6

-7.3458E-9

-2.6056E-6

Units Roll/Yaw* Units

(ft-lb/rad)

(ft-lb-sec/rad)

(ft-lb/ft-lb-sec)

(ft-lb/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad 2/ft-lb-sec 2)

(ft -lb-rad 2/ft-lb-sec 3)

(it-lb-rad 2/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad 2/ft-lb-sec 2)

(it-lb-rad 2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

[K] T

3.8526E+3

1.2003E+6

1.4360E-2

-1.6361E-6

3.6578E-10

7.6282E-7

-3.2712E-9

-3.3865E-7

-1.0702E-8

-3.4827E-6

-1.5903E-8

-3.1256E-6

9.4016E+2

-1.2743E+5

-2.4992E-3

-7.3398E-7

4.8557E-9

3.7017E-7

2.0608E-9

1.8854E-6

4.0142E-10

1.5548E-6

8.3363E-10

1.3125E-6

3.7381E+2

1.0126E+5

1.9364E-3

2.7852E-7

-1.8526E-10

1.1857E-7

-5.7517E-10

-1.6409E-7

-1.1317E-9

-5.3664E-7

-1.5491E-9

-4.7197E-7

2.4994E+2

1.1386E+5

-3.5209E-3

-1.0348E-6

-5.5935E-10

-4.2651E-6

-6.8224E-10

-2.4769E-6

9.4962E- 10

-2.7820E-6

8.3453E-10

-2.5757E-6

(ft-lb/rad)

(ft-lb-sec/rad)

(ft-lb/ft-lb-sec)

(ft-lb/ft-lb-sec 2)

(ft-lb-rad_/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec _)

(ff-lb-rad_/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb-rad_/ft-lb-sec 3)

(ft-lb-rad_/ft-lb-sec _)

(ft -lb-rad2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb/rad)

(ft-lb-sec/rad)

(ft-lb/ft-lb-sec)

(ft-lb/ft-lb-sec _)

(ft-lb-rad_/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb-rad_/ft-lb-sec 3)

(ft-lb-rad_/ft-lb-sec: )

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec a)

(ft-lb-rad2/ft-lb-sec 2)

* Designed for a pitch TEA of 0 °
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