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NOMENCLATURE
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{F}

{%}

[K]

[M]

{q}

t
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{x}
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l+]

[oo1

interface compatibility coefficient matrix

force coefficient matrix

force vector

term j in expansion of interface force vector

stiffness matrix

mass matrix

modal coordinate vector

modal coordinate vector due to applied lbrces

modal coordinate vector due to interface forces

time

time at time increment i

physical degrees of freedom

length of integration time step

percent critical modal damping

mode shape matrix

diagonal matrix of circular frequencies

diagonal matrix of eigenvalues

Subscripts

a,b substructure a,b, respectively
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TECHNICAL PAPER

A TRANSIENT RESPONSE METHOD FOR LINEAR COUPLED SUBSTRUCTURES

INTRODUCTION

The successful design of a modern aerospace structure requires an accurate determination of the

internal loads it will experience during its useful lifetime. Often the internal loads that impact the design

the most are those caused by the transient response of the structure due to suddenly applied external

forces. For example, the ignition and thrust buildup of launch vehicle engines and the subsequent lift-off

of the vehicle results in a transient response that can cause the maximum internal loads the vehicle struc-

ture will experience during its lifetime. Transient response analyses of structures has been the subject of

study for many years because of its effect on the design of structures.

The equations of motion representing a linear structural system are a set of coupled second-order

differential equations. Even though a number of numerical methods are available for the direct solution

of such equations, it is often not practical because of the large number of equations involved. Models of

structures generated by finite-element computer codes often can have several thousand degrees of free-

dom (DOF). The standard approach to overcome the problem of too many DOF is to first compute the

vibration modes and frequencies of the structure by solving an eigenvalue problem. The structural vibra-

tion modes are then used to transform from the original discrete physical coordinates to a set of new

modal coordinates. This permits the number of equations to be reduced by truncating the higher fre-

quency modal coordinates without significantly reducing the accuracy of the results. Also, the trans-

formation results in a set of uncoupled rather than a coupled set of equations. This approach yields a set

of equations of form and size that are easily solved on present day computers. The difficulty of perform-

ing a vibration analysis to determine the modes and frequencies of the structure prior to solving the set of

equations expressed in modal coordinates is still a major problem due to the large order of the eigenvalue

problem that must be solved.

The vibration analysis of structures has been the subject of many papers. Two approaches have

been used to make the vibration analysis of large structural models tractable. One approach is to develop

efficient algorithms for the solution of large eigenvalue problems directly, and the other approach is to

make judicious approximations to reduce the size of the eigenvalue problem without significantly affect-

ing the results. One example of the first is based on the repeated application of the Rayleigh-Ritz method

of vibration analysis in which each solution is an improvement over the previous. This method was

originally called an iterative Rayleigh-Ritz technique [I] and later renamed subspace iteration method

[2,3]. The other approach, called substructure synthesis, results in a reduction in size of the eigenvalue

problem. Many vibration analysis methods [4-1 I] are based on this approach. Substructure synthesis is a

method where the structure is considered to be made'up of a number of substructures. The motion of each

substructure is represented by a set of displacement vectors. The vectors may or may not be substructure

modes. The number of vectors required to represent the motion of a substructure is much less than the

number of physical DOF's required to represent its motion. As a result of this approximation, the size of

the eigenvalue problem is greatly reduced.



Other transient response methods have been studied that circumvent the need to solve a large

eigenvalue problem and still reduce the number of DOF in the equations of motion to a manageable

number. These methods [ i 2- i 4] are based on the direct integration of the equations of motion expressed

in coordinates other than system discrete coordinates or system modal coordinates. They use a set of
coordinates that contains both interface discrete coordinates and substructure modal coordinates.

In this paper, a method is developed for the transient response analysis of structures that is

different from the approaches described above. The structure is considered to be composed of substruc-

tures. The method is based on approximating the interface forces between the substructures as power

series in time. The equations of motion of each substructure are integrated for a time step, with all

external forces applied including the interface forces with unknown coefficients. The unknown coeffi-

cients in the power series are evaluated by satisfying the interface compatibility relationships at the end of

the time step. Once the coefficients in the power series are known, the interface forces and the response

characteristics at the end of the time step can be computed. This procedure is repeated as many times as

required to span the time interval of interest. Theimplementation of the method on a computer is quite

simple and permits enforcing the interface compatibility relationships by a simple matrix multiplication.

Satisfying boundary conditions between substructures in this manner allows the boundary conditions to

be changed during the transient response by simply changing the matrix used to enforce the compatibility

relationships. Therefore, this method is ideally suited for the transient response analysis of structures that

have interface boundary conditions between substructures that change during the response. The transient

response analysis of launch vehicles during the lift-off event is an example of this type of problem, since

the boundary conditions between the vehicle/pad change as the vehicle lifts off.

GOVERNING EQUATIONS

For clarity, the governing equations are formulated for a structural system composed of two

substructures. However, the extension of the equations for systems consisting of an arbitrary number of

substructures or bodies is evident. The derivation of the equations begins by writing the equations of

.... motion of the two bodies-and the associated interface compatibility equations for the system shown in

Figure 1. The interface compatibility conditions for the two bodies are expressed as

{XI,}- {X_,} and {FI,} + {F_,} = {0}

For simpiicity the interface force compatibility will be rewritten as

{F_,} = {F'} and {F_,} =-{F'}

(l)

(2)

The equations of motion for the substructures were derived by using Lagrange's equation with

undetermined multipliers [15]. The undamped equations of motion of the substructures are written as . _



{F,(t)}

Substructure

Interface

{Fb(t)}

Substructure b

Figure 1. Free body diagram.



I {o} }[M.] {x,,} + [K.I {x.} = {Fdt)} + f/ft(O } (3a)

_{o} }[Mb]{Xb}+ [Kd {Xd = {Fb(t)}- l{F,(t)} (3b)

The interface forces are the undetermined multipliers. The equations of motion expressed by

equations (3a) and (3b) are in discrete coordinates with the interface coordinates last. The equations can

be solved in this form, but for large systems the computer storage requirement can be excessive. This

problem is overcome by using the substructures vibration modes to transform the equations of motion

from discrete coordinates to normal mode coordinates. This transformation uncouPles the equations and

results in a system of equations much simpler to solve from a computational point of view. Modal damp-

ing of the substructures can be introduced at this point. Equations (3a) and (3b) transformed to modal
coordinates are

{G} + 2GIto_,] {G} +[mE, l {q_,} = ID,,I {F,,(t)} + ID_,I {F'(t)} , (4a)

{qb} + 2_b[c%] {dtb} + [c°_l {qb} = [Db] {Fb(t)} + [D_,I {Ftft)} (4b)

where

{X.} = [_,l {qa} and {Xb} = [_bl {qb} (5)

Since the interface forces {F_(t)} result from the motion of a structure that is governed by second order

differential equations, they will be of trigonometric form. If equations (4a) and (4b) are solved in a step-

wise fashion, it is appropriate to approximate the interface forces by a power series valid for a time step

of length At. This is expressed as

" _ -=.

{F'(t)} = 'Y--. {Gj}(t ii) j t, _<t _< ti + At
j=o

(6)

4



This series is expected to converge very rapidly for time steps of the size normally used in integra-

tion of equations of motion. Therefore, very few terms need to be retained in the series to achieve a good

approximation of the interface forces. Terms up through the third order will be retained in this develop-

ment. Truncating equation (6) and substituting in equations (4a) and (4b) yields

{_.} + 2{.[c%] {ct.} + [m_] {q.} = [D.I {F_(t)} + [Di,,] {{Go} + {Gl}(t-ti)

+ {G2} (t-ti) 2 + {G3} (t-ti) 3} ; ti _< t _< ti + At , (7a)

{qt,} + 2G, lo_hl {q_,} + l_o_,l {qb} =

+ {G2} (t-ti) 2 + {G3} (t-ti) 3}

lDb] {Fb(t)} -- [DIhl {{Go} + {G,}(t-ti)

; t, _< t _< t_ + At (7b)

Since equations (7a) and (7b) are linear differential equations, superposition of their solutions are per-

mitted. Therefore, let us define the following

{q.} = {¢,}+ ; {4°}= + {a.} ; {¢,} = + (8a)

{%} = {qb}+ {'qb} ; {_lb} = {_lb} + {_b} ; {qb} = {qh} + {q'b} , (8b)

where {q_}, {_,,}, {qb}, {q'l-,}, and their derivatives are obtained by solving the following equations for ti _ t

_< t_ + At

{q_} + 2¢,,[to,] {_,} + [to._] {q,,} = [D,] {F_,(t)} + iD',] {Go} (9a)

{'_',,} + 2_,,[co.1 {_,,} + [oo_] {_'.} = IDa] {{G,} (t-ti) + {Gz} (t-t0 2 + {G3} (t-ti) 3} . (9b)

{_lb} + 2_U[mb] {qb} + [_0_,1 {qb} = [Db] {Fdt)} - ID'b] {Go} (9c)

{_'b} + 21_t,[COb]{qb} + [to_,l {q'b} = [D_,I {{G,} (t-t0 + {G2} (t-t02 + {G3} (t--ti) 3} (9d)

where the initial conditions for equations (9a) through (9d) are

5



{qa(ti)} = {q,_(ti)} , {q_(ti)} = {q,,(ti)} , (lOa)

{q_(t,)} = {0} , {fl,,(q)} = {0} , (10b)

{qdtD} = {qb(t0} , {(lu(q)} = {Clb(ti)} ' (lOc)

= {o} , = {o} ,

and {Go}, the first time in the power series, is determined by substituting q in equation (6).

(lOd)

{Go} = {FT(ti)} (! 1)

Equations (9a) and (9c) can also be solved numerically or closed form to obtain the solutions at

t__ _ = t_ + At. Closed-form solutions are usually possible since the applied forces over a time increment

are often simple expressions. These solutions are

{_,,(t,+,)} ; {4,,(ti+,)} ; {q.(ti+,)} , (12a)

{qb(q, ,)} , {qb(ti+ ,)} ; {qb(ti4 ,)} (12b)

Equations (9b) and (9,1) can be solved in closed form, however, the solutions contain {G1}, {G2},
and {G3} as unknowns. The use of superposition of solutions of linear differential equations is the most

practical approach for getting the solutions in a form suitable for evaluating the unknowns {G I}, {G2}, and

{G3}. This is done by sol_,ing equations (9b) and (9d), with the elements in {Gi}, {G2}, and {G3} being

assigned a unit value, one at a time, and summing the solutions. This can be expressed in matrix form as

{2_,(ti+,)} = [C,,,] {G,} + ICe] {G2} + [C,,.d {G3} ,

{_',,(t,+,)} = [C,,,] {G,} + [C..,2] {G2} + [C_3]' {G_} ,

(13a)

x. t ={q,,( _+ ,)} [(::,,] {G,} + [C.21 {G2} + [(_,3] {G3} , (13c)

6



{_'h(t__,)} = [Cb,1 {G,} + ICu21 {G2} + ICu31 {04 , (14a)

{'_b(ti+l)} = [(_b,] {G,} + [(_b2l {G2} + [(_b31 {G3} , (14b)

{'_u(ti_ ,)} = lCb_l {G,} + [(2h21 {G2} + [Cb.4 {G3} (14c)

The interface compatibility conditions will be used to evaluate {Gi}, {02}, and {03}. Since the

solutions of the differential equations are going to be evaluated each At, the compatibility conditions will

be approximately satisfied by requiring the interface displacement, velocity, and acceleration of both

bodies be equal at the end of each 2_t. That is

{X_(q+,)} = {X_,(h_,)} ; {X],,(h_,)} = {XIb(ti+,)} ; {Xla(ti+,)} = {]_Ib(ti÷ ,)} (15)

Substituting equations (5), applied to the interface coordinates, and equations (8) in equations (15) yields

[,bt,l {q,,(t++ ,)} - [4,_,1{q,_(t++,)} = [4,_] {qb(t+ +,)} - I4'I,1 {q',,(t++.,)} , (16a)

[+_] {_l_,(t++,)} - [+_,] {_b(t,+ ,)} = N4,] {&(t,+ ,)} - [+_1 {_'_,(t++ ,)} , (16b)

14,1,1{_].(t_, ,)}- l+'l {_,(t,, ,)} = [+_l {q'h(t, _ ,)}- I+[,I {t],,(t, _ ,)} ( ! 6c)

The terms on the left hand side of equations (16) represent the difference in displacements, velocities,

and accelerations of the interface DOF's of substructures a and b, due to the external applied forces.
These terms are written as

{_)(ti+ I)} = 14,I,]{qa(ti+ ,)} - [(_lb] {4b(t,_ ,)} (17a)

{_(ti+ ,)} = l£bla] {qa(ti+ ,)} - [£b[_l {qb(q+ ,)} , (17b)

{+(t+ + ,)} = l+r,,I {q_,(t,+ ,)}- [+_b] {_b(t+ +',)} (17c)



Substitutingequations(13), (14), and (17) into equations(16) gives

{g(t,+ _)} = i[+LllCb,1- I+LI lC.,l] {O,} + II+LI lCb21- I+[,I [C.=ll {G2}

+ [l+[] [Cb3]- [+ _] [C.3]] {G3} , (18a)

{g(t,+,)}= .+_][Cb,]- l+'.] [0:,,1}{c,} + I[+_)[Cb_4- 1+I,]P._41 {G=}

+ [[+L]I6M - [+'j [_M] {o3} . (18b)

{6(ti + l)} = [[+Ll[Cbl]--[+I,] [Ca,]] {Gi} +

+ [[+_] [Cb.,]- [+',,][C,31]{63}

[i,t,L][Cb=]-ImLIICM] {G2}

(18c)

Equations (18) can be put in a single matrix equation in partitioned form. This results in the following

6(ti + I)

(19)

or

+ r{GJ}"
(20)

{G I}, {G2}, and {Gs} can be obtained from equation (20) by inverting the coefficient matrix [C].

I °'-II= (21)



It should be observed that the coefficient matrix in equation (21) does not depend on anything

related to time except the time step At. Therefore, if the At is held constant during the integration, the

coefficient matrix used to compute {G j}, {G2}, and {G3} only needs to be computed once at the start of the

integration.

The essential equations for implementing the proposed transient response method have been

developed. The task at hand now is to use these equations to form an efficient and practical algorithm for

the solution of transient response equations.

COMPUTATION PROCEDURE

The computationprocedure for this transient response method is best explained by providing a list

of steps in the order they are to be implemented. The procedure consists of five initial computation steps

that are executed once followed by eight steps that are executed once each integration time step. The

steps are as follows:

Step i -Compute free modes and frequencies of each substructure.

Step 2 - Select an integration time step At that is consistent with the highest substructure free

frequency.

Step 3 - Compute the interface compatibility matrix [(_], as defined in equation (20), and its

inverse.

Step 4 - Set t_ = integration start time, with i= I.

Step 5 - Compute initial conditions at integration start time. These include substructure mt_dal

displacements and velocities, along with initial interface forces.

Step 6 - Set ti+ I _- ti -I- At.

Step 7- Compute response of substructures due to applied loads at time = t_ by solving

equations (9a) and (9c) with {Go} defined by equation (11).

Step 8 - Compute interface displacements, velocities, and accelerations due to applied loads at

time = till using equations (17).

Step 9 - Compute the coefficients of the power series as expressed in equations (6) at time = t, _-_

using equations (21).

Step 10 - Compute the response of the substructures due to the interface forces at time = t_ _

using equations (13) and (14).

Step 11 - Compute the total response of the substructures at time = t__ _ by adding the response

due to applied forces and the response due to interface forces using equations (8).



Step 12- Computethe interfaceforcesusingequations(6) andresetinitial conditionsfor next
time stepusing equations(10) and (I !).

Step 13- Set t_ = t,. _ and return to step 6.

Care must be exercised in carrying out step 1 to prevent an unacceptable loss of accuracy. If one

simply computes the free modes and frequencies from the discrete coordinate substructure models and

truncates the number of modes based on a cut-off frequency, the motion and forces at the interface will

not be represented very well. This is the same problem that occurs when free modes are used in modal

synthesis methods. This loss of accuracy can be eliminated by introducing an additional step. The step

consists of transforming the discrete coordinate models to the Craig-Bampton [6] form using the interface

DOF's as boundary DOF's. The modal truncation is introduced in the formation of the Craig-Bampton

model by truncating the fixed boundary modes based on a cut-off frequency that is consistent with the

applied forcing function. The free modes and frequencies are computed from the Craig-Bampton models

and are not truncated. This procedure assures the motion and forces at the interface are accurately

represented.

DEMONSTRATION PROBLEM

To demonstrate the transient response method for linear coupled substructures, a cantilevered

beam with an applied tip force was selected. The cantilevered beam's material and geometric properties

are defined in Figure 2a. The applied force at the tip of the cantilevered beam is defined in Figure 2b. The
cantilevered beam was discretized into a two-dimensional finite element model composed of two

substructures (body A and body B) of equal length. A total of 20 DOF's (10 translations and I0 rotations)

and 10 elements were used to model the two substructures (Fig. 2c). A modal reduction of the finite

element models was accornplished using the Craig-Bampton [6] technique. The Craig-Bampton con-

strained normal modes were retained up to 100 Hz. Interface DOF's were retained in discrete form. The

free modes and frequencies of the substructures were computed by an eigenvalue analysis of the Craig-

Bampton models. This eigenvalue analysis produced frequencies in the range of 4 to 286 Hz for body A

and 0 to 286 Hz for body B. All modes from the eigenvalue analysis were retained for this study.

A benchmark model composed of the two reduced substructures was developed to investigate the

coupled substructure transient response method. The benchmark model was formulated by coupling the

two reduced beam substructures together using the direct stiffness method. The coupled equations of

motion for the benchmark model were then uncoupled by an eigenvalue analysis. The uncoupled

equations of motion resulted in a frequency range of ! to 185 Hz, with all modes retained.

Damping is normally introduced in the uncoupled equations of motion in terms of a percent of

critical damping. For this study, a value of zero percent of critical damping was used in order to compare

the benchmark closed-form solution to the coupled substructure solution.

To solve the transient response analysis of the two-body differential equations, a Fortran com-

puter routine was written utilizing the computational procedure described in the previous section. For the

benchmark differential equations, a standard closed-form transient response routine was used. The

applied force defined in Figure 2b was linear interpolated for both the closed-form analysis and the

10



E1, m

L _-

F(_)

2
E I = 52080 Ibs-in. 2 2
m = .00307169 Ibs-sec. /in.
L = 48.0 in.

Figure 2a. Cantilever beam with applied load F('r).

F(%) =

.0 sin (_ "c/0.2).0

F(z)

1.0

'9[ -===-- o.2

Figure 2b. Definition of app]ied force.

_, Time

Body A Body B

Figure 2c. Two-dimensional finite element model of cantilevered beam.
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methodpresented.The highestfrequencyof the two substructuresis 286 Hz. This gives a minimum
periodof 0.0035seconds.In orderto achieveaccurateresultsin transientanalysis,a time stepmustbe
chosenbelow theminimumperiodof theproblembeingsolved.Forthis study,arangeof timestepswas
chosento researchtheaccuracyof theproposedmethod.Thetime stepschosenrangefrom 0.0003to
0.0042seconds.The benchmark transient response was computed using the same time steps used in the

substructures transient response method. AII transient response analyses were run from 0 to 1.0 seconds.

Interface shear force and moment were recovered from the analysis of the two substructures and

were compared to the benchmark results. Also compared were the tip acceleration, velocity, and dis-

placement. Using a time step of 0.001 seconds, the tip acceleration, velocity, and displacement, obtained

from the response analysis of the coupled substructures and the benchmark response analysis, were

plotted versus time in Figures 3a, 3b, and 3c. Within the fidelity of the plots, the results fell on top of
each other.

The solutions from the benchmark closed-form transient response are compared to the substruc-

ture method by the relative error defined in the following equation:

RMS Error -

where Xb is the benchmark time vector result (i.e., force, acceleration, etc.); X_ is the substructures time

vector result (i.e., force, acceleration, etc.); NT is the total number of time points computed; and Big is

the absolute largest benchmark result.

The RMS error results are plotted versus the time step used in the transient response analysis. The

RMS errors for the tip acceleration, velocity, and displacement results are shown in Figure 4a. RMS

errors for the interface shear force and moment are shown in Figure 4b. A correlation exists between the

order of the time derivative results to that of the RMS error in Figures 4a and 4b. For example, the tip

acceleration is an order of time derivative higher than the tip velocity, and the RMS error of the tip

acceleration is an order of magnitude higher than that of the tip velocity. Likewise, the tip velocity RMS

error is higher compared to the tip displacement. This can also be seen between the interface shear force
and moment where an order of one exists between the time derivatives.

For a reasonable time step, the coupled transient response method presented gives accurate results

of the demonstration program. As the time step gets closer to the minimum period, a leveling off of the

RMS error occurs. This effect corresponds to accuracy of the integration for a given time step used in the

analysis. Using a time step larger than the minimum period results in erroneous results.

12
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SUMMARY

A method for transient response analysis of linear coupled substructures has been presented. The

equations of motion are solved in a stepwise fashion with the interface forces between substructures

being approximated by a third-order power series in time. The coefficients in the power series are

evaluated for each time step by enforcing compatibility of displacements, velocities, and accelerations at

the substructure interfaces at the end of each time step. The method is approximate because the interface

compatibility is enforced only at the end points of a time step rather than continuously. Therefore, as in

most numerical integration methods, the smaller the time step the more accurate the results. The evalua-

tion of the coefficients in the interface force power series is accomplished by a matrix multiplication. The

only dependence on time in the interface compatibility coefficient matrix is the integration time step.

Therefore, the matrix is generated only once unless the time step size is changed. The accuracy of the

method has been validated by comparing the results with a closed-form response analysis of cantilever

beam.

The interface compatibility between substructures is maintained by the use of the interface

compatibility coefficient matrix. Therefore, this method is especially appealing for the response analysis

of structural systems that have substructure interface boundary conditions that change during the

response run. The coefficient matrix is simply changed or regenerated to reflect the change in boundary

conditions between the substructures. The application of this method to the response analysis of a launch

vehicle while rifting off from the launch pad was mentioned earlier. Another application is for structures

that exhibit slip-stick motion at interfaces caused by friction. The appropriate interface compatibility

matrix is selected by monitoring the interface force and determining if the interface is slipping or

sticking.

Since the equations of motion of each substructure are solved independently for each time step, it

appears the method would be ideally suited for parallel processing.
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