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A REVIEW OF QUASI-COHERENT STRUCTURES IN A NUMERICALLY SIMULATED
TURBULENT BOUNDARY LAYER

S. K. Robinson, S. J. Kline, 1 and P. R. Spalart

Ames Research Center

SUMMARY

This paper presents preliminary results of a comprehensive study of the structural aspects of a
numerically simulated number turbulent boundary layer. A direct Navier-Stokes simulation of a flat-

_plate, zero pressure gradient boundary layer at Re0 - 670 was used. Most of the known nonrandom,

coherent features of turbulent boundary layers are confim_ed in the simulation, and several new aspects
of their spatial character are reported. The spatial relationships between many of the various structures

are described, forming the basis for a more complete kinematical picture of boundary layer physics than

has been previously known. In particular, the importance of vortex structures of various forms to the

generation of Reynolds shear stress is investigated.

INTRODUCTION

In spite of decades of experimental research, the structure of turbulent boundary layers, and the

dynamical processes by which turbulence is created and maintained in boundary layers are only partially
understood. The incomplete nature of our understanding has prevented the results of turbulence structure

research from making any significant contributions to either predictive modeling schemes or to turbu-
lence control methodologies.

This continuing situation has given rise to a novel approach to the problem: a community-wide
re-evaluation of the knowledge. In simple terms, the aim is to develop a clear picture of what we know

with certainty and to form a "strategic plan" for attacking the voids in our knowledge. The eventual goal

is to lay the foundation for a class of"statistical-structural" models for turbulent boundary layers. The
new and critical element of this effort is the involvement of the research community. A detailed

description of the process and status of the cooperative evaluation project is given in Kline and Robinson
(1988).

The limitations of experimental methods for unravelling the puzzle of turbulence physics are well

understood but are, to a large degree, inherent. Fixed probes at a small number of points in space can be

weak tools for determining the characteristics of three-dimensional structures that exhibit large
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variationsin timeandspace.Althoughmanygoups a_ee _at simultaneoususeof flow-visualization

and probe arrays are optimum, it remains difficult to resolve Eulefian probe-based quantitative data with

visual information from markers in a three-dimensional unsteady flow-field. It is to the credit of the

researchers in the field that so much has been learned about the structure of turbulence through
experimentation.

To complement the large volume of experimental results in the field, this companion study of the
cooperative project is designed to take advantage of the direct Navier-Stokes turbulence simulation

databases available at NASA Ames. Although the simulations are currently limited to simple geometries

at low Reynolds numbers, there are many advantages to studying turbulence structure numerically, as
discussed later in this paper, and also by Moin (1984).

Community involvement also plays a fundamental role in the study of the numerical simulation data.
As the major unknowns are identified through the cooperative evaluation work, their resolution can be

pursued in the simulations. The questions and suggestions of the participants in the cooperative project

have helped pose the critical questions for study via the numerical simulation databases. This paper will
present an overview of the recent results of this approach.

The objective of the current effort is to combine the many known structural elements and events with

new insight gained from the numeficN studies, to fo_a complete dynamical picture of flat-plate
boundary layer turbulence, at least for low Reynolds numbers. This picture should include information

on: (1) the spatial character of each class of structure; (2) the spatial relationships between different
structures; (3) the generation and evolution of structures; (4)the statistical relevance of each class of

structure; and (5)descriptions of the dominant sequences of events that are responsible for maintainingturbulence.

An additional goal is to investigate the effects of Reynolds number on bound_ layer s_ctural fea,

tures, at least over the limited r_ge of Reynolds numbers available inthe simulations. A final important
objective is to simulate a v_ety of experimental techniques in the databases to improve and possibly
extend the understanding gained from experimental results.

In the remainder of this paper, a brief description of Spalart's bound_ layer simulation will be

given as will an outline of the strategy we _e employing to study the database. A preliminary taxonomy
of structures is presented, and examples of each class are illustrated and described. Finally, several

samples of spatial relationships between structures will be shown. The results conf'wm a number of pub-
lished experimental findings and also present new information on the structure of turbulent boundary
layers.

Since the results of this work are voluminous and are still in progress, conclusions concerning time-
evolutions of s_ctural features will be defen'ed toa subsequent paper. The results presented herein are

meant to serve as an introduction to the character of turbulence structure in the simulated bound_
layer.

This project is jointly funded by NASA Ames Research Center, The Air Force Office of Scientific
Research, and The Office of Naval Research.

All of the computational work has been done at NASA Ames. The simulation code was written and

run by Philippe Spalart at Ames. The core of the graphical display software was developed by P.

Buning of Ames, and by F. Merritt and G. Bancroft of Sterling Software. Support for this project has
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ImagingTechnologyBranch,andby theExperimentalFluid DynamicsBranch,of which S.K. Robinson
is amember.

The timeof Prof.S. J.Kline andof O. ManickhamandL. Portelais supportedby AFOSRandONR.

Useful discussionsof this work havebeenprovidedby Dr. J.Kim at Ames,by ProfessorsP.Moin
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ADVANTAGES/DISADVANTAGES OF THE USE OF FULL SIMULATION DATABASES

FOR THE STUDY OF TURBULENCE STRUCTURE

The central advantage of the numerical simulations over experimental investigation is that in the
databases, we can collect a large sample of structural features first, and then decide what statistics are

pertinent to compute. In the laboratory, the process is usually reversed. The flow can be made visible,

but quantitative structural information from probes must be somehow extracted by clever statistical

analysis of the data. This method is necessarily incomplete, and has proven to be seriously misleading
in some cases. The averaging and filtering inherent in most statistical techniques can discard phase

information, disguise true characteristics of individual realizations, create false symmetries, and con-
taminate ensemble averages by the inadvertent inclusion of extraneous flow elements. The current

availability of numerical turbulence marks the first time in history that a sufficient sample of each

structure can be inspected a priori and then quantitative statistics gathered for the significant features.

In addition to this subtle, but crucial point, the full simulation results offer a number of other more
obvious, but important advantages:

1. Selected structural features can be pursued both forward and backward in time, and this process
can be iteratively refined.

2. All structures of a given type that exist in the computational domain can be made simultaneously
visible, allowing evaluation of case-to-case variations.

3. The spatial relationships between the several types of co-existing structures can be studied.

4. Structural features that are virtually unmeasurable in the lab can be displayed (e.g., low-pressure
cores of unsteady vortices).

5. By combining time evolution with the ability to display different types of structures simultane-

ously, it becomes possible to examine the spatio-temporal relationships among the various elements of
the dominant structures.

6. Rapid turnaround time of structural queries and the availability of specific frozen data volumes

and time-sequences allow iterative reprocessing.



_e structuralaspectsof thedirectnumericalsimulationdatabaseshavebeenstudiedin depthfor
someyearsby their authors(e.g.,Kim, 1985;mm andMorn, 1986;MoserandMoin, 1987;Moin and
Spalart,1988). Recently,experimentalists(including thefirst two authorsof thispaper)havebegunto
explorethesimulationsas"numericalwind unnels to conf'maaandextendexperimentalresults,andtot 99

help design future experiments. P_cipation by turbulence structure experimentalists in the 1987

Summer Program at the NASA/Stanford Center for Turbulence Research resulted in a number of
significant findings from investigations of the numerical databases.

The direct Navier-Stokes simulation work is still in its infancy, and has several limitations. These

include high costs in time and dollars (both for the simulation itself and for the later analyses), and
restriction to low Reynolds numbers, simple geome_es, and periodic boundary conditions. Neverthe-

less, the study of the simple flows now available will not only enlighten us about those exemplary cases,
but will also aid in establishing appropriate procedt_es for application to the more complex flows of thefuture.

NUMERICAL SIMULATION SPECIFICATIONS

S _

palart s direct Navier-Stokes numerical simulation of a fiat-plate turbulent boundary layer (Spalart,
1988) has been chosen as the initial simulation database to explore. The code has been run to statistical

equi_brium for four Reynolds numbers, Re 0 = 225, 300, 670, and 1410. Most of the analysis so far has

utilized the Re 0 = 670 case, due to the high computational cost of the Re 0 = 1410 case. At Re 0 = 670,
each time-step is computed on a 384x288x85 grid, comprising 9.4 million nodes. At each node, for
each time-step, pressure and all three components of velocity (and thus vorticity)are available. Grid

resolution is 12.8 viscous lengths in the streamwise (x) direction, and 4.3 viscous leng_s in the spanwise

(z) direction. Resolution in the wall-normal (y)direction v_es from 0.03 to 16.0 viscous lengths, with

14 grid points between the wall and y+ = 10. The grid spacing for the Re 0 = 670 case gives a compu-
tational domain with streamwise, spanwise, and wall-normal dimensions of 4900", 2500, and 1100 vis-

cous units, respectively (fig. 1). The boundary layer is approximately 300 viscous units thick at this

Reynolds number. Further details concerning the computational method and the results are given in
Spal_ (1988).

The simulation provides access to a turbulent region approximately 25 wall-streak spacings wide and
16 bound_ layer thicknesses long. The velocity and pressure field of the computation has been saved

on tape for 104 time steps, each three viscous time-units apart. This database offers a massive amount of

information with high resolution in both space and time. Estimates suggest the amount of data available
will provide sufficient sample sizes for spatial statistics of the major structural features.

A subvolume of the total computational domain is shown in figure 2. In the wall-normal (y) direc-
tion, the subvolume reaches from y+ = 3 to y+ = 250, which is approximately 80% of the mean
boundary layer thickness. Over 1600 subvolumes of this size are available in the stored turbulence

database. For comparison purposes, the same subvolume of data (referred to as "subvolume S") will be

used repeatedly to illustrate several structural features. Many other subvolumes are being included in

the overall analysis, however, so the figures presented here should be considered examples, and not nec-
essarily representative of all realizations. It is worth noting that examples of each class of structural
feature are detectable in nearly every subvolume studied so far.
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Spalart(1988)hasperformeda numberof statisticalchecksof thenumericalboundarylayer,which
generallyshowgoodagreementwith availableexperimentalresults. Theseincludeturbulenceintensi-
fies,skewnesses,flatnessfactors,Reynoldsstressandturbulencekinetic energybudgets,andspectra.
Themostsignificantknown discrepancyis a 5%overpredictionof thefriction coefficientfor thehighest
Reynoldsnumbercase. In addition,near-wallfourth-orderstatistics,especiallyfor v', showa depen-
denceongrid resolution. It is unclearhow significantthesemaybe in termsof thestructuralbehaviorof
theturbulence.Resultsof our analysessofar indicatethatthesimulationis structurallyindis-
tinguishablefrom aphysicallow Reynoldsnumberboundarylayer.

ANALYSIS STRATEGY

The problem at hand is to understand the physics of turbulence creation and maintenance in bound-

ary layers. Spalart's numerical simulation offers access to over 31 gigabytes of flow-field data. The

computational and graphical power available to study the simulation results makes possible the pursuit

of hundreds of "interesting" questions. Effective progress toward an understanding of turbulence pro-
duction therefore demands a well thought-out strategy in order to set work priorities.

We have adopted the following six-phase strategy for the study of the simulation databases (fig. 3):

I. (a) Identify structures in the numerical boundary layer that are known to exist in laboratory
boundary layers. These can be grouped into eight classes, which are delineated in the next
section.

(b) Once examples of these structures have been identified in the simulation results, obtain detailed

descriptions of their spatial character by studying individual time-steps.

IIQ

Determine the spatial relationships between the various structures by visualizing them together in
individual "frozen" time steps.

UI. Study the spatio-temporal relationships between structures by using all the stored time-steps and,

where necessary, computing intermediate solutions at very small time increments (At + = 0.3)
between the stored time-steps.

IV. Determine the statistical significance of the various structures, their apparent generation mecha-

nisms and any interaction events. Populations, frequencies in space and time, and statistics of

occurrence will be computed. Contributions to future statistical/structural models will be made at

this stage by computing probability distributions of events and structures,, and their contributions to

specific terms in the Reynolds-averaged model equations.

V.

Combine the results of stages I through V to develop a phenomenological model of the maintenance

of turbulence in flat-plate boundary layers. This should include a description of the important

sequences of events, and should describe the roles of all classes of experimentally observed struc-

ture. The flow of cause and effect within these sequences should be modeled, as well as any sig-
nificant interactions between structural features.



VI. Simulatevariousexperimentaltechniques,includingmulti-sensorprobesandconvectedvisual
markers.

PhasesI throughIV involve only the kinematics and statistics of turbulence structure. As J. M.

Wallace has reminded us, a picture of the dynamics does not emerge from passive observation of phe-
nomena. Some kind of model must be proposed which links observed sequential events with causative

mechanisms. Thus, only Phase V directly addresses the problem of dynamics in the turbulent boundary
layer.

In the context of this strategy, most quantitative experimental results have addressed Phases I, II, and
IV, while most flow-visualization studies could be categorized as Phase III. A number of authors have

proposed structural models which include dynamical hypotheses and so belong in Phase V. Our Phase

V work will involve testing the many models published by the community in the simulated turbulence,

with the goal of combining the best parts of each into a single, and hopefully more complete, phe-
nomenological model.

Phase VI of the strategy involves the simulation of various probe-based and visual experimental

methods. In the numerical simulation, spatial variations can be considered separately from temporal

variations. This may lead to clarification of probe-based results, which are generally Eulerian and hence
treat space and time as a single., inherently combined variable.

The six-phase analysis strategy allows us to build up knowledge in a logical order, and facilitates

prioritization of the large number of possible queries that might otherwise become disorderly and over-

whelming. In the current study, the phases of the strategy represent an iterative, rather than a one-pass,

sequential process. So far, work has been done under all six phases, but none have been completed.. As
noted, the current paper focuses largely upon results of Phases I and II of the research program.

TAXONOMY OF STRUCTURES

A consistent and accepted definition of "structure" (in the turbulence sense) has not yet surfaced.
Thus, it may be viewed as a hopeless task to categorize the many flavors of turbulence structure to be

found in the literature. However, a taxonomy, even though somewhat arbitrary, can help focus thinking
and inject organization into the somewhat tangled mass of information on the subject.

Therefore, we have divided the various structures, events, flow modules, and organized motions
found in the literature into eight classes. The intent is to include all types of non-random events that

have been singled out for study by the researchers in the field, rather than utilize a definition that would

necessarily exclude some of the data. This classification is only one of several possibilities, and the fol-
lowing list is not a conclusion of the current work, but rather a starting point for it.

A Classification of Boundary Layer Turbulence Structure_:

(1) Wall low-speed streaks

(2) Ejections of low-speed fluid outward from the wall



(3) Sweepsof high-speed fluid inward toward the wall

(4) Vortical structures of various forms

(5) Near-wall shear layers, exhibiting strong spanwise vorticity and du'/dx

(6)

(7)

Near-wall "pockets," seen as regions swept clean of near-wall marked fluid in experiments

Large (delta-scale) discontinuities in the streamwise velocity, or "backs"

(8) Large (delta-scale) motions capped by bulges in the outer turbulent/potential interface

Kline and Robinson (1988) give descriptions and some of the known characteristics for each of these
structural classes.

The present classification is meant to provide a skeleton of organization on which the study of the

numerical simulations can build. Reflected in the broad coverage of the list is the objective of including
all of the known structural features of turbulence in the current study, rather than just a few. Thus the
categorization is comprehensive if not final.

PHASES I AND II: EXAMPLES OF THE SPATIAL CHARACTER OF EACH STRUCTURAL

CLASS AND SELECTED SPATIAL RELATIONSHIPS

Sublayer Streaky Structure

Figure 5 shows an instantaneous plan view of the x-z plane at y+ = 2 in the simulated turbulent

boundary layer. The low-speed regions (streamwise velocity less than the local mean) are elongated and
thin, in agreement with many experimental observations. (Here and elsewhere in the paper, "local

mean" refers to the spatial average over the entire computational x-z plane at constant y+, for at least

five time steps.) Streamwise coherence of single low-speed streaks often exceeds 1500 viscous lengths,

with widths ranging from 20 to 80 Az +. The streaky character of the instantaneous low-speed regions is
somewhat more pronounced than shown by marked fluid in laboratory flows. This is because markers in

low-speed streaks often lift away from the wall during ejections, leaving the remaining near-wall streak

unmarked and invisible. However, the current results appear consistent with the wall-temperature data

of Hirata and Kasagi (1979) in which continuous visualization at the wall was achieved using liquid
crystals.

The high-speed regions in the sublayer (fig. 5) are considerably less elongated and somewhat wider

than the low-speed regions. Streamwise lengths of high-speed regions seldom exceed 800 x +, .and

widths range from 40 to 110 Az +. This difference in "streakiness" is to be expected, since high-speed
fluid generally originates from outside the sublayer where the mean velocity gradient is lower and the
flow is known to be less streak-like. Experimental flow visualizations have not shown the character of

high-speed regions clearly, however, since fluid markers introduced near the wall collect in the low-

speed regions. Since high-speed regions in the sublayer are less elongated than the low-speed regions,
the term "'high-speed streaks" is not used in the current study.
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Anothercharacteristicof low-speedstreaksis shownin figure 6, which is aninstant_eousplan-view
of theboundarylayerat y+ = 15. Thecoloredcontoursmarkregionsof significantvalueof theprod-
ucts(-u')(+w') and(-u')(-w'). Thisproductservesasa"streak-turning"parameter,sinceit highlights
low-speedstreaks(-u')that simultaneouslyexhibit spanwisemotion(+w'). Thiscorrelationmaybe
termedu'w'2andu'w'3,after thequadrantsit occupiesin the u'w' hodographplane. It wasnoticedby
oneof theauthorsandJ.Swearingenthat u'w'2andu'w'3 contoursdisplaya vaguely"cross-hatched"
pattern,suggestiveof possibletransversepropagationmechanismsnearthewall. Swearingenet al.
(1987)havedrawnparallelsbetweenthisbehaviorandspanwiseoscillationsrelatedto breakdowninsta-
bilities in curved-wallflows. In thesimulatedboundarylayer, significantnear-wallspanwisevelocities
arecommonlyassociatedwith "leg" or "neck" vortices(seebelow). A completeexplanationfor the
spanwisemotionsof thelow-speedstreaksawaitsfurther investigation.

Ejections

The quadrant technique will be used to define and identify ejections, or regions of low streamwise

velocity with motion outward from the wall. The quadrant method involves splitting the instantaneous

product of u' and v' into four categories according to the quadrant occupied in the u'v' hodograph.
Since its introduction by Wallace et al. (1972) and by Willmarth and Lu (1972), the quadrant method has

been widely used to assign structural significance to motions that contribute to the boundary layer clo-
sure term, the Reynolds shear stress.

It is important to distinguish between the Reynolds shear stress u'v', which is defined only as an

average, and the instantaneous value of u'v'. To facilitate this .distinction, the new term "shear product"
will be used to refer to the instantaneous value of u'v' at a location in space.

Figure 4 shows the four quadrants into which the shear product can be split, and the names associ-

ated with their respective motions (Wallace et al., 1972). The contributors to the positive Reynolds
shear stress are quadrants 2 and 4. The concepts of ejection and sweep imply a coherent movement of

fluid, rather than the occurrence of quadrant 2 or 4 motion at a single point in space. In the current

work, ejections are arbitrarily defined as instantaneous regions of quadrant 2 shear product that extend at

least ten viscous lengths in any direction. Sweeps are defined similarly. Thus, every ejection is a quad-

rant 2 motion, but not necessarily vice versa. Note that under this definition, sweeps and ejections may
occur anywhere in the boundary layer.

Figure 7 shows contour surfaces of quadrant 2 shear product in the instantaneous computational sub-

volume, S. For the figure, the contour value was set to detect strong quadrant 2 motions, with u'v'2
equal to 4ux 2. This and many other realizations show that strong ejections occur with two types of

instantaneous spatial character: 1) thin and elongated in the buffer and lower log regions, and 2) broader

and more blob-like in the outer log and wake regions. The spanwise extent of the outer-region ejections

ranges up to Az + = 200. Since ejections near the wall originate from low-speed streaks by definition,
their character is expected to be at least somewhat elongated. Ejections are not observed to extend over

the entire streamwise length of a streak, however. Only portions of the low-speed regions extend out of
the sublayer.

Sweeps

Sweeps are regions in which the shear product u'v' occupies the fourth quadrant in the u'v' plane
(fig. 4). Instantaneous contour surfaces of quadrant 4 shear product in the subvolume S are shown in

figure 8. The contour threshold is the same as for figure 7; that is, the iso-surfaces correspond to



quadrant4 shearproductequalto 4ux2. At anygiventime, strongsweepsoccupylessvolumein the
simulatedboundarylayerthanequallystrongejections. Thisspatialresult agreeswith theprobe-based
statisticsof Wallaceet al. (1972),Willmarth andLu (1972),andothers,who haveshownejectionsto
dominatethecontributionsto theReynoldsshearstressoutsidethebuffer region. Thespatialcharacter
of high-speedfluid with awallwardvelocity componentis somewhatdifferent thanthatof ejections.
Strongsweepsareonly occasionallyelongatedin the streamwisedirection,andtendto havespanwise
dimensionsof lessthan100Az+, regardlessof distancefrom thewall.

Low-Speed Streaks with Ejections and Sweeps

Figure 9 is a plan-view of an x-z plane in the simulated boundary layer at y+= 15. Ejections and

sweeps are shown for the same contour levels as listed above. Low-speed streaks are identified by con-

tours of streamwise velocity 3u x below the local mean. Strong ejections are seen to occur only on low-

speed streaks, as they must by definition (both are regions of -u') The simulated boundary layer is seen
• • o "Q

to agree w_th Corlno and Brodkey's (1969) and Bog_d and Tlederman's (1986) finding that several

e lecuons may arise from a single low-speed streak, although the number of ejections per streak is

dependent upon the contour levels chosen for -u' and u'v'2. The contour value for second quadrant u'v'

in figure 9 corresponds to a value of approximately 2.6, when normalized by the product of u'(rms) and
v'(rms) at y+ = 15. Strong ejections seem to originate from the central portion of streaks more often
than from either end.

As expected from experimental results and from previous simulations (Moin, 1984), the contours of

strong quadrant 2 and 4 motions are highly intermittent in space; neither displays the extended stream-

wise coherence of the low-speed regions, although quadrant 2 motions are somewhat elongated in the

x-direction. The spanwise scale of sweeps is slightly larger than the low-speed streaks and the ejections,

but their extent is still less than 80 z+. Thus, sweep motions in the buffer zone are narrow and localized,
rather than broad inrushes.

When strong ejections and sweeps are found in close proximity at a given time, they are often later-
ally associated, in a side-by-side pair. This characteristic was also noted by Moin (1984) in simulated

turbulent channel flow, and is evident in figure 9. Sweeps and ejections virtually never follow each

other closely in the streamwise direction, contrary to several published structural models. However,
slight skewing of the sweep/ejection pair in the x-z plane would cause a fixed probe to detect one fol-
lowed closely in time by the other. Most single-point conditional sampling schemes do not allow for

spanwise variations, so ensemble averages that show sweeps following ejections are to be expected, but
are misleading if interpreted via Taylor's hypothesis, with the additional assumption that the motion
lacks significant spanwise component.

The lateral pairing of vertical motions near the wall is more clearly shown in figure 10, in which
instantaneous contours of v' are plotted for the x-z plane at y+ = 15. Figure 10 shows that outward

motions (+v') nearly always occur closely beside inward vertical motions (-v'). This was also noted by
Moin (1984) in channel flow simulations. This character suggests that in the buffer region, the occur-
rence of strong outward motion is strongly associated with an occurrence of wallward motion. The

spanwise dimensions of significant wallward motions are limited to less than approximately 70 viscous

lengths. The pattern in figure 10 is highly suggestive of localized, quasi-streamwise vortical motions,

which have been discussed in a number of publications (Bakewell and Lumley, 1967; H. T. Kim et al.,
1971; Blackwelder and Eckelman, 1979; Smith and Schwartz, 1983). The spanwise dimensions of the

_+v' pairs range from 40 to 70 viscous lengths. The streamwise extent of the pairs ranges from 50 to
250 viscous lengths; however, this is not indicative of the streamwise dimensions of near-wall



quasi-streamwisevortices. Sincethefigure depictsa planeof dataatconstanty, avoaex with an
inclinationangleto thewall would beintersectedin a limited regionby theplane. Note thatlaterally
arr_ged tripletsof alternatingpositiveandnegativev', whichsuggesttheoccurrenceof vo_ex pairs,
arerelatively uncommon,but doexist. Most significantverticalmotionin thebuffer regionappearsto
beassociatedwith singlevortices.

Vortical Structures

For the current work, vortical s_ctures are defined as identifiable vortices, usually with segments of

varying orientation in space. Under this definition, regions of significant vorticity do not necessarily
qualify as vortical structures. The problem that arises from any reference to vortices is the definition of

a vortex in unsteady viscous flow. In the cross-stream (y-z) plane of a zero pressure-gradient boundary
layer, the time-averaged flow is nearly zero. In this plane, a working definition of a vortex is as follows:

A vortex exists when instantaneous stream_nes mapped onto the cross-su'eam plane display a roughly

circular or spiral pattern; the core of this vortex will be oriented substantially streamwise. In any plane
with significant mean motion, this definition becomes ambiguous due to the necessary choice of a refer-
ence frame velocity. From a reference frame moving with the core of the vortex, this same definition

should hold, although it requires identifying _e vortex core before defining the vortex itself. Thus, the
above definition of a vortex is useful as a check of other vortex-identification methods, but not as an a
priori tool in any plane other than the cross-stream (y-z) plane.

Distinction must be made, of course, between vortices and vorticity. Since regions of strong vortic-
ity are not uniquely associated with vortices, the spatial character of the vorticity field in the turbulent
boundary layer tends to be noisy and inconclusive with respect to vortical structures. This is demon-

strated in figure 11, in which iso-surfaces of the three fluctuating components of vorticity in subvolume

S are shown. Clearly, understanding of vortical structures requires a technique for marking only
instantaneous vortices in the turbulent flow field.

Vortex lines have been used extensively by Kim and Moin (1986) to study the structure of vortices

in a numerically simulated turbulent channel flow. This method, however, requires some meaningful
criteria with which to choose starting locations for the vortex line tracing. In addition, vortex lines do

not reflect the local strength of vorticity, so that dense bundles that occur in regions of very low vorticity
could attract undue attention. Finally, although vortex lines must move with the fluid particles (neglect-
ing viscosity) dunng time evolution, vortices, which are bunched sections of vortex lines, need not.

Thus the method of vortex lines can be arbitrary and inconclusive unless coupled with an independent
means of identifying vortex locations.

Near-wall vortices with mostly streamwise orientation have been the subject of a number of experi-
mental investigations (Praturi and Brodkey, 1978; Blackwelder and Eckelman, 1979; Smith and

Schwartz, 1983; Swearingen and Blackwelder, 1987). By taking a cross-stream cut through the simu-

lated boundary layer and plotting velocity vectors or streamlines, such vortical motions are easily found

with the above definition of a vortex. Figure 12 shows an instantaneous cut through a low-speed streak

and its neighboring high-speed region in subvolume S. Velocity vectors in the cross-plane (v'w') clearly
meet the criteria of roughly circular streamlines and so a trial vortex has been identified in the data.

A method is required to trace the instantaneous, three-dimensional extent of vortical structures in

space. Our proposal is to utilize the fact that vortex cores should be regions of low pressure. In fig-
ure 13, low-pressure and cross-plane velocity vectors are plotted for the same instantaneous plane of

data as shown in figure 12. Fluctuating pressure is shown in color in figure 13, with lighter shades
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indicatinglower pressure.Theinstantaneousv'w' velocity vectorsareoverlaidasin figure 12.
Marking thelow pressureclearly identifiesthevortexcorein theexample. In figure 13, theradial
pressuregradient(normalto thecore)is fairly largeat theouteredgeof thecore,sothevalueof the
pressurecontourusedto locatethevortexis notcritical. A white contourline hasbeendrawnin figure
13for valuesof pressureequalto 4pux2 below thelocalmean. (Local meanrefersto theaveragevalue
ateach y-locationovertheentirecomputationalx-z plane,for severaltime-stepsof thesimulation.)
For reference,thermsof thepressurefluctuations,normalizedby pu_2,variesfrom about2.5nearthe
wall to 0.5 at themeanboundarylayeredge(Spalart,1988).

In threedimensions,contourlinesbecomecontoursurfaces.The3-D contoursurfaceof constant
low pressurethatcorrespondsto the2-D contourline in figure 13is shownfor subvolume S in figure
14. As canbeseenin figure 14, low-pressureregionstendto beelongatedandoccurin avarietyof
shapesandsizes,apparentlyindicatingawide variationin thethree-dimensionalform of vortical struc-
tures. This observationis confirmedby thestudyof manyothersubvolumesin thedatabase.Compared
to thevorticity field shownin figure 11,theinstantaneouspressurefield of figure 14isrelatively noise-
free,with avarietyof structuralfeaturesclearlyevident. (Figures11and 14displaythesamedataset.)
Comparisonof figures 11and 14emphasizestheimportanceof distinguishingvortical structuresfrom
regionsof concentratedvorticity.

Thetechniqueof marking low-pressure regions allows application of the vortex definition advanced

earlier. The velocity of a candidate low-pressure region is first determined. Then the instantaneous

streamlines in a plane normal to the axis of elongation of the low-pressure zone are computed from a
flame of reference moving with the low-pressure region. Roughly circular or spiral streamlines confirm
the existence of a vortex.

It is not immediately clear whether a discernible low-pressure region is both a necessary and a suffi-

cient condition for the existence of a vortex in the flow field. Many cuts normal to the axes of elongated

low-pressure regions have been made. In every case so far, the velocity vectors in a cut-plane moving
with the mean velocity of the low-pressure region has displayed roughly circular or spiral instantaneous
streamlines. Although most low-pressure regions are elongated, there are several convoluted volumes of

low pressure that are globule-shaped. So far, the analyses show that virtually all elongated low-pressure
regions are vortices. The non-elongated regions are not always identifiable as vortices, and are assumed

to be due to other fluid interactions, such as local accelerations. Thus, the technique of mapping elon-
gated low-pressure regions provides a means of identifying the instantaneous spatial extent of vortical
structures in the simulation.

The loop-like vortical structures shown in figure 14 are strongly suggestive of the hairpin or horse-
shoe vortices discussed in many previous papers, beginning with Theodorsen (1952). To facilitate dis-

cussion of the vortical structure topology, various sections of the structures are labeled as follows" heads

are vortices with mostly transverse orientation; necks are vortices that generally extend wallward and

upstream from heads at an angle of approximately 45 degrees to the wall; legs are vortices with mostly
streamwise orientation. Legs sometimes appear connected to and trailing from a head/neck vortical
structure.

Although statistical compilations have not yet been completed, some preliminary statements may be
made concerning the structural nature of the elongated low-pressure regions. First, arch- or horseshoe-

like vortical structures (head/neck) combinations are common, but long leg vortices are not. The legs
that do exist can be quite long in the streamwise direction, reaching up to at least Ax + - 400. True

hairpin vortices, with two trailing legs, are very rare. Many vortical structures are strongly asymmetric.
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Hook-like shapes,asin figure 14,appearrelativelyoften. In somecases,themissingneckcanbe
identifiedonanasymmetrichook-like vortical structurewhenthecontourlevelof theisobaric:surfaces

is varied. Legs can be found without necks, and are seen both near the wall (center at y+ < 60) and in

the wake region. Vortical arches occur with a variety of scales, and their heads are found at _,-locations

ranging from the buffer region to the edge of the boundary layer. Arches are generally as tall" (in the

wall-normal direction) as they are wide. The spanwise extent of vortical arches ranges from 50 to

350 viscous lengths in the simulated layer. The above conclusions hold true over a range of -p' contour

values. In general, varying the -p' contour level affects the diameter and, in some cases, the topologi-
cal connectivity of the low-pressure regions, but does not significantly alter the overall form of the

vortical structures marked by elongated regions of low pressure. A variety of statistics on the spatial
character of vortical structures in the boundary layer will be reported in subsequent publications.

Vortices with Low-Speed Streaks, Sweeps, and Ejections

An example of the spatial relationship between low-pressure regions, low-speed regions, and quad-

rant 2 shear product is shown for the sample subvolume S in figure 15. Low-speed regions are identi-

fied by iso-surfaces of streamwise velocity 3ux below the local mean. Surface contour values for uv2

and pressure are the same as for figures 7 and 14, respectively. Portions of at least two elongated low-

speed streaks are visible near the wall, as are significant regions of locally low-speed fluid away from
the wall, both within and beyond the buffer zone. Figure 15 shows low-speed fluid concentrated below

and upstream of the vortical heads, and alongside the trailing vortex leg. The arch-like vortical struc-

tures in the figure straddle elongated low-speed regions, similar to the manner described by Runstadler
et al. (1963) and by Smith (1984). Just upstream of the smaller of the two vortical arches is a small

transverse region of low pressure, which appears to be a newly formed secondary vortex, possibly rolled

up on the low-speed fluid lifted by the action the downstream vortical arch in the manner described by
Acarlar and Smith (1987). The formation of this particular secondary vortex is clearly visible in time
evolutions of the simulation.

The regions where low-speed fluid possesses a significant outward velocity component are marked

in red in figure 15 as quadrant 2 ejections. Most regions of lifting low-speed fluid are in close proximity
to the isobaric surface.

The spatial relationship between low-pressure regions, strong ejections, and strong sweeps is shown

for subvolume S in figures 16 (oblique view) and 17 (plan view). The instantaneous spatial association
of both sweeps and ejections with the vortical structures is striking.

Strong ejection regions (u'v' 2 > 4ux 2 in fig. 16) apparently occur in two locations: (1) Alongside

quasi-streamwise leg vortices, on the inboard (towards the head)side of the leg. This is the upward-
rotating side of the vortex, so the picture is kinematically consistent. (2) Underneath and upstream of a
head vortex. Ejections in location 2 are significantly farther from the wall than those in location 1. Both

the head and neck seem to contribute to the outward induction of low-speed fluid from upstream and

below the head. Since leg vortices are relatively rarer than head/neck combinations, the majority of the
strong ejections seem to be associated with the head/neck vortical structure.

For ejections along quasi-streamwise vortices, figure 17 clearly shows that a single vortex can be

responsible for the lifting of low-speed fluid, in agreement with Pearson and Abernathy's (1984)

numerical studies of vortices in viscous shear layers, and with the ensemble-averaged simulation results

of Guezennec et al. (1987). This view differs from hairpin vortex models (e.g., Offen and Kline, 1975;
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Smith, 1984)of the boundary layer, which have fluid lifting due to the combined action of a pair Of
counter-rotating quasi-streamwise vortices.

Strong sweeps are observed mainly in two locations" (1) On the outboard, wallward-rotating side of

the leg vortex. Here, high-speed outer fluid is induced toward the wall in a sweep motion. (2) A wall-

ward induction of high-speed fluid by the outboard side (away from the head) of a neck vortex. Sweeps
are more common in location 2, since neck vortices are more common than leg vortices in the simulated
boundary layer. In either case, sweeps are found to be closely related to the existence of vortical
structures.

A large percentage of the Reynolds shear stress in the boundary layer is known to be produced by
highly localized strong ejections and sweeps (e.g., H T. Kim et al., 1971; Brodkey et al., 1974;

Willmarth, 1975). Visualizations of the simulated boundary layer (fig. 16 is an example) suggest that
the generation of Reynolds shear stress is closely tied to the existence of coherent vortical structures.

The conclusion that vortical structures are a critical element of turbulence production and momentum

transfer in the boundary layer is in agreement with a number of previous experimental and numerical
studies.

Near-Wall Shear Layers

The existence of sloping du'/dy shear layers near the wall (y+ < 80) of turbulent channels and

boundary layers has been established both by flow-visualization studies (Corino and Brodkey, 1969) and

by probe-based results (Kreplin and Eckelmann, 1979; Johansson et al. 1987a). The VITA technique in
particular has been employed in a number of experimental studies to detect rapid changes in the stream-

wise velocity. Correlations of the experimental data have shown these velocity jumps to correspond to

the passage of local shear layers with a steep downstream slope. Bogard and Tiederman (1987) have
shown that such shear layers occur on the upstream face of an ejection from the buffer region, at the

interface between the lifting low-speed fluid and the higher-speed fluid overtaking it from behind. The

limited ability of the VITA technique to detect ejections implies that near-wall shear layers also occur in

other locations. The origin and dynamical significance of these shear layers has remained poorly under-
stood, however.

Recent work by Jimenez et al. (1987) in numerically simulated channel flows has shed new light on
the role of near-wall shear layers. These authors have proposed a mechanism for the generation and

maintenance of the shear layers which is essentially equivalent to that responsible for the instability of
two-dimensional Tollmien-Schlichting waves.

• Additional recent work on near-wall shear layers in numerically simulated turbulent flows has been

reported by Johansson et al. (1987b). These authors found that shear layers in the near-wall region
propagate with a velocity of about 10.6 u x, and retain their coherence over streamwise distances of

1000 viscous lengths. Johansson et al. also show that near-wall shear layers make important contribu-
tions to the conditionally averaged production of turbulent kinetic energy.

In the current study of the simulated boundary layer, the sublayer and buffer region are found to be

well-populated with near-wall shear layers. Shear layers can be found in any randomly selected x-y

slice through the data, and are most common below y+ = 80. Several examples of near-wall shear lay-

ers in the simulation are shown in three unrelated side-views in figure 18. The structures are nearly par-
allel to the wall in the sublayer and slope at an increasing but shallow (<20 °) angle farther from the wall.
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The spanwise dimension of most near-wall shear layers ranges from 30 to 60 viscous lengths, implying
that highly three-dimensional mechanisms are involved in their formation.

Near-Wall Shear Layers with Vortices and Ejections

A new observation made in the current study is that some of the near-wall shear layers roll up into
transverse vortices. Transverse roll-up of internal shear layers has previously been observed outside the

wall region (y+ > 200) in experiments by Nychas et al. (1973). Figures 19 and 20 show an example of

near-wall shear layer roll-up. In figure 19, the shear layer is visualized by contours of spanwise vortic-
ity. Although the vorticity is high everywhere along the shear layer, a low-pressure region is seen to

exist only at the outer tip, where a transverse vortex is indicated. The existence of a vortex at the tip of
the shear layer is confirmed by the instantaneous vector field in figure 20, which has been plotted in a

reference frame moving downstream with the shear layer tip at its propagation velocity of 15 u x. Obser-
vation of computed time-sequences confirms that the particular transverse vortex in figure 20 does
appear after the formation of the shear layer.

Contours of quadrant 2 shear product show ejection-type contributions to the Reynolds shear stress
in figure 19. A region of strong quadrant 2 motion is observed to be associated with the transverse roll-

up of the shear layer, but is not present along the remainder of the shear layer. Although the dynamic
relationship between near-wall shear layer roll-up and the ejection of low-speed streak fluid needs clari-

fication, the current findings support the suggestion of several experimental studies (Acarlar and Smith,
1987; Swearingen and Blackwelder, 1987; Johansson et al., 1987a) that shear-layer instabilities in the
wall region may play a major role in the production of turbulence.

High-Pressure "Potatoes" with Low-Pressure Vortical Structures

The simulation database presents opportunities not available in the laboratory, and this allows the

study of an additional class of "structure," namely high-pressure regions. Figure 21 shows the high-

pressure regions in the instantaneous subvolume S of the computation, and their spatial relationship to
the low-pressure regions.

High- and low-pressure regions in the simulated boundary layer exhibit very different characters, as

noted by Moin and Spalart (1988). Whereas the low-pressure regions tend to be elongated, the high-

pressure regions are roundish and potato-shaped. These "pressure potatoes" often occupy the space just
upstream of the head portions of arch-like vo_ical structures, and appear to exist at a convected local

stagnation point which lies at the interface of high- and low-speed fluid. The dynamic consequences of

the local convecting pressure gradient set up between the low-pressure vortex core and the following
high-pressure region have yet to be fully explored.

Wall-Pressure Fluctuations

Contours of instantaneous wall-pressure fluctuations are shown for the simulated boundary layer in
figure 22. The patterns are rounded rather than elongated, in agreement with experimental results

(Dinkelacker et al., 1977)and previous simulations (G_6tzbach and Schumann, 1979; Moin, 1984).

High- and low-pressure regions appear similar in dimensions, with most regions ranging from 50 to

200 wall units in both directions. However, occasional high- and low-pressure regions with extents of

over 400 viscous lengths occur. Although wall-pressure disturbances of this scale would be expected to
be associated with events in the outer flow, their specific sources are unclear.
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Pockets

When distributed markers are introduced into the sublayer of a turbulent boundary layer or channel,

roughly circular regions devoid of marked fluid appear in the plan view, These have been named pock-
ets (Falco, 1980a), and they give the visual impression of being a "footprint" of some outer structure that

induces fluid toward the wall. Kim et al. (1987) have shown that pockets become visible in numerically
simulated channel flow only with distributed fluid markers, not with simulated bubble-lines. This

observation confirms a similar experimental finding of Falco. However, time evolution of the marked

flow field is necessary to detect pockets with distributed markers. In the current analysis of the simu-
lated boundary layer, we have endeavored to detect pockets in instantaneous flow fields.

If pockets are associated with wallward-moving fluid in the sublayer, the instantaneous streamlines

in the x-z plane would be expected to diverge in the pocket region. Figure 23 shows instantaneous

streamlines computed in the y+ - 2 plane of the simulated boundary layer. Regions of abrupt spanwise

divergence of the streamlines are evident in the figure. The spanwise dimensions of these regions are

generally between 50 and 100 viscous lengths, in agreement with pocket dimensions reported by Falco
(1983). A time evolution of simulated fluid markers is being performed by the authors to check whether

the regions of streamline divergence in the numerical boundary layer are indeed pockets.

Pockets with Sweeps

Spanwise divergence of instantaneous streamlines in the sublayer is, by continuity and the streaky

nature of the streamwise velocity in the sublayer, most likely to be associated with wallward velocity.
Wallward fluid in the sublayer arrives from regions with relatively higher streamwise velocity, so
diverging instantaneous streamlines are generally expected to be associated with uv4 motions, or

sweeps. Since sweeps are observed to be commonly associated with vortices in the simulated boundary

layer, pockets may be the footprint of fluid swept toward the wall by vortical structures. Preliminary
studies in the simulated data suggest that this reasoning is correct for at least some of the observed

pockets. This idea is nominally consistent with Falco's (1980a) theory concerning pocket formation,
although the form and motion of the responsible vortex remains in question.

In figure 23, regions of converging streamlines may be likened to "detachment" lines in a separating
flow, and regions of diverging streamlines to "reattachment" lines. The figure shows that most "detach-

ment" and "reattachment" lines lie at a significant angle to the mean (streamwise) velocity vector. Since

near-wall _+v' motions have a strong association with quasi-streamwise vortical structures (legs), it
appears that vortex legs are generally oriented at an angle to the mean flow in the x-z plane as well as
in the x-y plane.

Pockets with Wall-Pressure Fluctuations

Figure 24 shows instantaneous streamlines at y+ = 2 together with contours of instantaneous wall

pressure. As expected, local regions of high pressure coincide with spanwise divergence of the stream-
lines (wallward motion) and low pressure regions occur along lines of converging streamlines (outward

motion). (See also Moin and Spalart, 1988.) Thus, pockets may be expected to be evidence of local
wallward motions above regions of high wall pressure.
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Bulges in the Outer Interfaces/Large.Scale Motions

Kovasnay et al. (1970)and others have shown that the instantaneous outer interface between the tur-

bulent bound_ layer _d the potential _ee s_eam consists of large'scale bulges, sep_ated by deep,

narrow incursions of _ee-stream flow into the layer. In the simulated _und_. layer, the instantaneous

edge. of the rotational flow can be identified by-contours of low total vorticity magnitude

(5/_x + 4+_), as shown in figure 25, The picture is essentially the same as given by Spal_ (1988),

and exhibits broad outward bulges and narrow _otational incursions. The interface bulges have.... dimen-

sions of the scale of the bound_ layer _ickness in bo_ the streamwise (x)and _ansverse (z) direc- "

tions. Figure 25 resembles visualizations of smoke-filled low Reynolds number bound_ layers (e.g.
Falco, 1980b). ............. ".......... "

The large-scale motion beneath bulges in the simulated bound_ layer show a weak rotation in the

direction of the mean shear, when obse_ed from a frame of reference moving at 0.8 Uel This is in
qualitative a_eement with experimental findings for the large-scale motions (e.g., Blackwelder and
Kovasznay, 19.72; Falco, 1983). '

Backs

Delta-scale, sloping structures with strong local values of du'/dx have been investigated by a num-
ber of groups using multi-sensor temperature and velocity probes (e.g., Brown and Thomas, 1977; Chen

and Blackwelder, 1978; Subramanian et al. 1982), Space-time correlations and conditional s_pling

procedures have given _om 12 to 30-de_ees for the outer-region angle between the wall and these large
structures. Because these structures are commonly associated with the ups_eam side of the large-scale

motions discussed above (Kovasznay et al., 1970), we will refer to them as "backs" (though some publi-
cations refer to them as "fronts"). ..... .... .......

At this time, we are drawing a distinction between "backs" (which also have transverse vorticity)mad
the previously discussed near-wall shear layers. Backs are tall (delta-scale) discontinuities in u, with

limited (10-.40 viscous lengths)streamwise thickness, and with spacing in the streamwise direction of the
order of the boundary layer thic_ess. Near-wall she_ layers have dimensions on the scale of the near'

wall layer, .and exist mostly below y+ -80. It is not yet clear if the size and spacing of these shear'layer

structures are dismbuted smoothly from small to large, or if there is a bimodal disNbution, suggesting
two different types of structure. Recent statistical analyses of simulated turbulence by Moin et al. (1987)

have shown some evidence of a "two-layer" s_uctural makeup of a low Reynolds number channel.
xperimental ensemble averages have not generally separated the data into two structures possibly

because the commonly used VITA technique will trigger on either, independent of vertical scale' Also,

the scale separation between the two structures, if such a separation exists, would be most pronounced at

high Reynolds numbers, where probe sensors are usually too long to independently detect _e small-

scale structures near the wall. Recent multi-point detection techniques (e.g., Britz and Antonia, 1987;
Fernando et al., 1987) should help clarify this point.

Following Thomas and Brown (1977), figure 27 shows instantaneous velocity vectors in an x-y

plane moving at 0.8 U e in the simulated boundary layer. A back structure is clearly evident as a large-
scale, sloping shear layer with transverse vorticity. The picture is strikingly similar to Thomas and

Brown's ensemble-averaged velocity field in the vicinity of backs. Figure 28 shows the instantaneous
transverse vorticity associated with the back in figure 27.
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Backs with Vortical Structures

Several researchers have reported on outer-flow vortical structures that are inclined to the wall

downstream at approximately 45 degrees (e.g., Head and Bandyopadhyay, 1981; Kim and Moin, 1986).

Hot-wire rake studies have consistently given from 12 to 30 degrees for the slope of the backs of large-
scale motions in the outer region (Brown and Thomas, 1977; Rajagopalan and Antonia, 1979; Robinson,

1982). Bandyopadhyay (1980) attempted to resolve this discrepancy by speculating that the shallow-
angle backs are composed of the heads of arrays of 45 degree hairpin vortices.

In the current work, an example of the spatial relationship between a back and a hook-like vortical

structure is shown in figure 26. In this example, the back, which is sloped at about 30 degrees, is located

upstream of the 45 degree vortical structure. Apparently, the low-speed fluid being left behind by the
action of the vortex is crowded from behind by the faster upstream flow. The interface between the

upstream fluid and the low-speed remnants of vortex induction forms the velocity discontinuity which is

the back. In this scenario, the back is generated without need for the row of hairpin vortices suggested
by Bandyopadhyay. Final conclusions on the relationships between backs, large-scale motions, and

vortical structures will require the study of more examples, especially in the simulation at the higher
Reynolds number, Re0 = 1410. The generality of the descriptions of the large scale motions in low

Reynolds number simulations may be limited in view of Murlis et al.'s (1982) finding that the outer
structure depends on viscosity up to Re0 = 5000.

CONCLUDING REMARKS

The current ongoing investigation of the quasi-coherent structures in a numerically simulated turbu-
lent boundary layer has produced the following preliminary results:

1. Examples of all known classes of boundary layer structure have been identified in the simulated
boundary layer.

2. High-speed regions in the sublayer are observed to be less elongated than the low-speed regions.

3. Low-pressure regions tend to be elongated, and apparently serve as a useful spatial detection
method for instantaneous vortex cores.

4. Arch-like (head + neck) vortical structures with a broad range of sizes are common in the bound-

ary layer, while quasi-streamwise vortices ("legs") with significant streamwise extent are relatively rare.

5. High-pressure regions are spheroid and rarely elongated, and typically occur just upstream and

below the heads of vortical arches, at the interface between high- and low-speed regions.

6. There is a strong instantaneous spatial association between vortical structures and both ejections
(uv2) and sweeps (uv4).
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7. Both ejectionsandsweepsoccuralongquasi-streamwise"leg" vortices,butejectionsaremost
commonjust upstreamandbelowvortical arches.Sweepsoccurmostoftenon theoutboardsidesof the
"necks"of vortical arches.

8. Somenear-wallshearlayershavebeenobservedto roll up into transversevortices,whicharein
turn associatedwith significantlocalcontributionto theReynoldsshearstressthroughejection(uv2)
sOtrt2s,nS. Shearlayersnot in theprocessof rolling upcontributeonly weakly to theReynoldsshear

9. "Backs" of outer-region,large-scalemotionshavebeenidentifiedin thesimulationdata. In some
casesat least,thebacks(at acharacteristicangleof 18to 30degrees)aretheinterfacebetweenlow-
speedfluid trailing a singlelarge-scalevortical structureandthefollowing high-speedfluid.

Work on thespatio-temporalrelationshipsbetweenthevariousstructuresis underway,andresults
will bereportedthisyear. Among thequestionsof primaryfocusare(1) thenatureandimportanceof
theinteractionof theouter,large-scalemotionswith turbulence-producingeventsnearthewall; and
(2) thegenerationmechanismsandevolutionhistoriesof thecommonvortical structures.As noted,a
varietyof populationandcontributionstatisticsarebeingcompiledto establishthestatisticalrelevance
of theobservedstructuralfeaturesandinteractions.Finally, simulatedprobesandvisualmarkersare
beingappliedto drawmoredirect comparisonsbetweenthesimulatedboundarylayer andexperimentalobservations.

Thecurrentwork, alongwith the1987Centerfor TurbulenceResearchSummerProgram,marksthe
openingof anewerain experimentalfluid dynamics,in whichfull-simulation resultsarestudiedby
experimentalistsworking in "numericalwind tunnels." Thelong-termbenefitsof this newactivity
shouldinclude 1)increasedexperimentalemphasison flows with morecomplexboundaryconditions
andhigherReynoldsnumbers,2) developmentof advancedinstrumentationwith specializedmeasure-
mentcapabilities,3) increasedunderstandingof proberesolution,conditionalaveraging,andphase-jitter
effects,and4) joint experimental/numericalinvestigationsof flows in whichthetwo techniquesare
complementary.

It is hopedthat thecurrentstudy,aspartof acommunity-wideassessmentof thestateof boundary
layer structureknowledge,will accelerateprogresstowarda broad-basedunderstandingof thedynamics
of wall-layer turbulence.
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FIGURE CAPTIONS

Figure 1.- Computational domain.

Figure 2.- Strategy for structural analysis of numerical simulations.

Figure 3.- Computational subvolume.

Figure 4.- Quadrants of the u'v' plane.

Figure 5.- Contours of fluctuating streamwise velocity in an x-z plane at y+ = 2.
Blue to white: u '+ = +0.7 to +2.0.

Red to yellow: u '+ =-0.7 to-2.0.

Figure 6.- Contours of u'w'2 and u'w'3 in an x-z plane at y+ = 15.

Green to white: u'w'2/u_ = 2.1 to 14.9.

Red to white: u'w'3/u_ =-2.1 to-14.9.

Figure 7.- Quadrant 2 shear product in subvolume S.

Red: u'v'2/ux 2 = --4.2.

Figure 8.- Quadrant 4 shear product in subvolume S.

Blue: u'v'4! u_ = -4.2.

Figure 9.- Low-speed streaks, ejections, and sweeps in an x-z plane at y+= 15.
Yellow: u '+ =-3.0.

Red: u'v'2/u 2 < -4.2.

Blue: u'v'4/ux z < -4.2.

Figure 10.-Contours of_+v' in an x-z plane at y+ = 15.
Magenta: v'+ = +1.0.

Green: v '+ = -1.0.

Figure 11.- Fluctuating vorticity in subvolume S (lowest y+ shown is 28).

Yellow: 0_ + = _+0.

Red: oSy+ = +.0.

Blue: ¢0z+ =+.0.

Figure 12.- y-z plane cut through low/high-speed streak interface.
Yellow: u '+ = 0 to -6.0.

Blue: u '+ = 0 to +6.0.

Green- instantaneous v'w' vectors.
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Figure13,- y-z planecut throughlow/high-speedstreakinterface.
Magentato white: p'+ = 0 to-12.0.
Whitecontourline: p'+ = --4.2.
Green: instantaneousv'w' vectors.

Figure 14.- Regionsof low pressure in subvolume S.

White: p'+ = -4.2.

Figure 15.- Regions of low pressure, low streamwise velocity, and quadrant 2 shear product in
subvolume S.

White: p'+ - --4.2.
Yellow" u '+ =-3.0.

Red: u'v'2/u_ =-4.2.

Figure 16.- Regions of low pressure, quadrant 2 shear product, and quadrant 4 shear product in
subvolume S.

White: p'+ = -4.2.

Red: u'v'2/ux 2 = --4.2.

Blue: u'v'4/ux 2 = -4.2.

Figure 17.-Top view of Figure 16.

Figure 18.- Near-wall shear layers in an instantaneous x-y plane.
Blue to green: C0z+ = 0.2 to 1.0.

Figure 19.- Roll-up of near-wall shear layer.

Blue to green: mz+ = +0.2 to + 1.0.

White- P'+ - --4.2 to -17.0.

Magenta to yellow: u'v'2/u_ = -2.1 to-12.8.

Figure 20.- Roll-up of near-wall shear layer. Instantaneous uv velocity vectors in an x-y plane moving
at 15u, c.

Figure 21.- Regions of high and low pressure in subvolume S.

White: p'+ = -4.2.

Green: p'+ = +4.2.

Figure 22.-Instantaneous wall-pressure fluctuations.

Blue to green" p;_ = +2.1 to +21.3.

Magenta to white: p;g = -2.1 to -21.3.

Figure 23.- Instantaneous streamlines in an x-z plane at y+ - 2.
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Figure24.- Instantaneousstreamlinesin anx-z planeat y+ = 2, underlaidwith contoursof wall pressure.
Yellow to red: p'+ = +3.0to +25.0.
Blue to white: p'+ =-3.0 to-25.0.

Figure25.- Contoursof total vorticity magnitudein anx-y plane.
Blue to magenta:[c0+l= 0.02to 1.0.

Figure26.-"Back" of large-scalemotionwith regionsof low pressurein subvolumeS.
White" p'+ = -4.2.
Blue to magenta: mz= +0.2to +3.0.

Figure27.- Instantaneousuv vectorsin an x-y planemovingat0.8 u e.

Figure 28.- Instantaneous transverse vorticity in same x-y plane as for Figure 27.
Blue to magenta: mz = +0.2 to +3.0.
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