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Analysis of Rotary Engine Combustion Processes

Based on Unsteady, Three-Dimensional Computations

M. S. Rajut

Sverdrup Tech., Inc.,NASA Lewis Research Center,Cleveland, Ohio

E.A. Willis:_

NASA Lewis Research Center, Cleveland, Ohio

Abstract

A new computer code has been developed for predictingthe turbulent,and chemicallyreact-

ing flowswith sprays occurringinsideof a stratified-chargerotaryengine (SCRE). The solution

procedure is based on an Eulerian-Lagrangianapproach where the unsteady,three-dimensional

Navier-Stokesequationsfora perfectgas-mixturewith variablepropertiesare solvedingeneralized,

Euleriancoordinateson a moving gridby making use of an implicitfinite-volume,Steger-Warming

fluxvectorsplittingscheme, and the liquid-phaseequationsare solvedin Lagrangian coordinates.

Both the detailsof the numerical algorithmand the finite-differencepredictionsof the combus-

tor flowfieldduring the opening of exhaust and/or intake,andalsoduring fuelvaporizationand

combustion, are presented.

I. Introduction

The rotarycombustion engine (RCE) would be desirableas a powerplant for lightaircraft,

drones (includinghigh-altitudeapplication),auxiliaryand ground power units,and alsofor ma-

rine and industrialapplication,ifonly itsefficiencycould be improved closerto that of diesel

engines.Ithas inherentadvantagesover reciprocatingenginesin terms of higherairflowcapacity,

higher power-to-weightratio,and lessvibration,among others. An initialattempt to introduce

a gasoline-fueledrotaryengine intothe generalaviationmarket was unsuccessfulbecause of poor

fueleconomy, uncertainavailabilityof avgas,and marginal weight advantage over contemporary

reciprocatingengines.Subsequent researchsponsoredby industry,NASA, and the Navy has ledto

the development of the stratified-chargerotaryengine (SCRE) concept,which has demonstrated

multifuelcapability.Current R&D sponsored by NASA isaimed at reducing the cruisebrake spe-

cificfuelconsumption (BSFC, Ib/bhp-hr)from a currentvalueofabout 0.42to 0.35or lessby the

end of 1992. The expected improvement willbe enabled by furtherCFD - drivenfuelinjection,
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spray,and nozzleoptimizations,rotorpocket and nozzlerelocations,and relatedmodifications.In

thispaper,we addressthe CFD aspectof the technologydevelopment program forpredictingthe

complex flowpatternsoccurringinsideofa Wankel engine.

Early modellingeffortson the Wankel enginewere based on thermodynamic models1'2and also

on one-dimensionalmodelling of premixed-charge combustion,s Multi-dimensionalmodels of the

Wankel engine are very recentin origin;Grasso et al.4have presentedthe firstthree-dimensional

computations of a SCRE during the earlystagesof flame propagation.Subsequent computations

performed by Abraham and Bracco5,ehave led to some important designchanges in the rotary

engine development at John Deere & Co., especiallyin the fuelinjectorconfiguration.Their

code, REC-3D-FSC-86, isa modifed versionof the KIVA code developed at Los Alamos National

Laboratory7 forthe modellingof reciprocatingengines.KIVA makes use of a conditionallystable

algorithm,and thestabilityofthe KIVA scheme isimproved by making use ofan acousticsubcycling

stepinordertoalleviatethestiffnessproblems arisingfrom compressibilityeffects.There appears to

be considerableroom forimprovement in the code,sinceitneglectsthe spatialgradientswhenever

the gridspacingbecomes smallerthan some predefinedvalueand alsorequiresexcessiveCPU time

when the enginespeed becomes small.Shihetal.spresentedthe firsttwo-dimensionalcomputations

of a motored Wankel engine in the absence of combustion. Their code, LEWIS-2D, isbased on

the Beam-Warming type of ADI method. Their computations have subsequentlybeen extended to

threedimensions in Steinthorssonet al.9 Linearstabilityanalysishas shown that the ADI method

is unconditionallystablein two dimensions but isunconditionallyunstable in three dimensions.

Although artificial dissipation has some stabilizing effect, an excessive amount can impair stability

and reduce accuracy and convergence. Recently, Li et al.lo have modified their LEWIS-3D code

based on upwind schemes together with the incorporation of a k - _ turbulence model.

The present solution procedure differs from both REC-3D-FSC-86 and LEWIS-3D in many ways

in terms of the numerics, and also the submodels used for turbulence, combustion, and sprays.

II. Physical Description

A schematic of the Wankel engine is shown in Fig. 1. The Wankel engine is composed of a

peripheral housing with provisions for the intake and exhaust ports, fuel injector and spark igniter,

a three-flank rotor, and a crank shaft. The contour of the inner surface of the outer casing of the

Wankel engine is composed of a two-lobe peritrochoid. _I The contour of a rotor revolving along

an outer housing is represented by a peritrochoid inner envelope. The geometric analysis of the

rotor and housing surfaces c_ be found in Yamamoto. 11 The rotor surface is further modified by

the formation of a rotor pocket ` The presence of a rotor pocket not only alters the expansion

and/or compression ratio of the engine but also plays an important role in modifying the fl0wfield,

and mixing and combustion characteristics of the combustor. The present rotor configuration is

adopted from Steinthorsson et al.0
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The rotor turns eccentricallyat one third of the crank shaft speed. The three combustion

chambers of the Wankel engine are the three regions enclosed between the three rotor faces and

the peritrochoid housing, two side housings, two side seals, and lead and trail apex seals. In

the present calculations, only one of the three combustion chambers is considered, since leakage

through the seals is assumed to be negligible. As the rotor revolves around the crank shaft, each of

the combustion chambers is continually deformed. This produces the necessary compression and

expansion of the fluid for the required engine performance during each one of the cyclic operations.

The intake and exhaust ports, spark igniter, and the fuel injector are located along the peritrochoid

housing as shown in Fig. 1.

In the present study, the computations are initiated before the opening of the exhaust port

for the combustor formed with the second rotor flank as shown in Fig. 1. The initial conditions

correspond to the conditions of quiescent air at pressure, P_, = 1 atm, and temperature, T_,
= 300K. As the rotor moves in the clockwise direction the exhaust port opens and the residual

gas moves out of the combustion chamber, since the normally imposed pressure in the exhaust

remains lower than the interior engine pressure during most of the compression cycle. The exhaust

conditions are given by

Op OF_ 8e

On On On

P = Pe=h, u = w = O,

[2 (P- P.=h)] °'sv = --Cdc -p J

(1)

where p, e, and It are the fluid density, internal energy, and mass fraction, respectively; u, v, and w

are the velocity components in Cartesian coordinates; C& (= 0.9) is the discharge coefficient; and

subscript i and n represent species and the normal component of the boundaries, respectively.
As the rotor moves further in the clockwise direction, the intake port opens and fresh air moves

into the combustion chamber. There is an overlapping region during which both the exhaust and

intake ports are simultaneously open before the exhaust port closes completely. During this process

not only the residual gas but also some of the fresh intake might escape through the exhaust port.

Most of the intake occurs during the expansion stroke of the engine. The inport conditions are

given by

P = P_.t,T = T_.,,,yi= It_,o_,

P = Pi._,u=w=0,

v =-C,_ [2 (P_nt- P)] °'5
P

(2)
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As the rotor turns further, the intake port closes and the liquid fuel is injected into the chamber

during the compression stroke before the top-dea_l center (TDC) is reached. Spark injection pro-

vides the initial energy needed for the early droplet evaporation and also helps to promote ignition

of the vaporized fuel and air mixture. Most of the combustion is completed as the rotor moves past

the TDC, and most of the residual combustion products are eventuMly driven out of the combustion

chamber through the exhaust port. The whole combustion performance is determined by a very

complex interaction of various engine parameters including the location of the exhaust _nd intake

ports, shape of the rotor pocket, injector and spark timings, fuel properties, and many others.

III. Gas-Phase Equations in Generalized Coordinates

The governingunsteady equationsbased on the conservationofmass, momentum, energy,and

speciesforturbulent,reacting,and compressibleflowsarepresentedinstrongconservationlaw form.

The exchanges ofmass, momentum, and energy through liquid-phaseinteractionare consideredby

the inclusionof appropriatesource terms. The Reynolds-averaged equationsare formulated in

generalizedcoordinatesto accommodate the time-variationof the complex combustor geometry.

-=4 "-4 -=t "==t

aq +aF aG aH •aF,
0-7 _T+-_-_+ o---{o_

OG, OH,d_-"
+--_+-_- s,+so (3)
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and x, y, and z are the Cartesian coordinates in the physical space; _, r/, and _ are the coordinates

in the computational space; D is the determinant of the matrix, J in Eq. (6), and is also a

measure of the volume of a computational cell; t/_ is the mass fraction of the I'th species; g, is

a vector representing the source terms arising from the finite-rate chemical reactions; Wi is the

molecular weight of the species; u_ is the etoi_iometric ratio of the ith species participating in

a given reaction step; A and Ea are the pre-exp_nential coefficient and activation energy of a

given Arrhenius reaction-rate term; _ is a vector representing the source terms arising from the

liquid-phase interaction; nk is the number of droplets in a kth characteristic representing a group

of droplets; mk is the vaporization rate of a droplet belonging to the kth characteristic; rk is the

droplet radius; hi, and lk,ef! are the enthalpy of the fuel vapour at the droplet surface, and the

effective latent heat of vaporization; /_t is the turbo.lent viscosity; kl,. and /_lm are the thermal

conductivity and laminar viscosity of the gas mixture and are determined using Wilke's mixing

rule with fourth-order polynomial fits based upon temperature dependence12; Cp,r, is the specific

heat of the gas mixture at constant pressure and is also determined from fourth-order polynomial

fits involving temperature dependence; Prt (= 0.90) is the turbulent Prandtl number; Sot (= 0.90)

is the turbulent Schmidt number; the subscripts f, o, l, £, c, rn, and k represent fuel, oxidizer,

liquid-phase, laminar, chemical reaction, gaseous mixture, and characteristic, respectively.

The pressure and temperature are calculated iteratively from the following procedure:



where

N. )e=_yih_---+ u2 v:
_=; P 2 + + w z

(4)

Thi = h°y, + Cp_y, dT
JT,.!

P'_A
cp_= _-_( ;_+ A:_T + As_T=+ A4_Ts + As_T4)

N.
P = pP,_T _ y_

,-1
(5)

where h_ is the heat of formation of ith spec.;es, and P_ is the universal gas constant. Equation

(5) is the equation of state for a gas mixture of ?7, species. The Jscobians of the coordinate
transformation are given by

j= y_ y_ y_ (6)
z_ z, z_

and

J-;= ,t, ,Ty ,1, (7)

_ffi fv fz

The metric coefficients resulting from the coordinate transformation are evaluated from the

following identities:

1
e.,= _ ((_): -

1

_v = _ ((",_')_ -

1

i

1

(y_z),)
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1

r/t = - (rl=:rt + rlvyt + rl,,zt)

_,= - (_x, + _y, + _._,) (8)

It is noteworthy that the following equatio_.s represent the metric invariant terms arising from the

coordinate transformation:

Dt + (D_,)_ + (D_t)._ + (Dft): = 0 (9)

(D_,)_ + (Dw=), + (Dg=): = 0 (10)

(D_)_ + (D_,). + (D_)_ = 0 (11)

(D_,)_ + (Dr/,),-t- (D_',)_ = 0 (12)

When the governing equations are formulated in strong conservation form, it is essential that

the left-hand side of Eqs. (9) to (12) vanish identically when the derivatives are approximated by
finite-differences; otherwise spurious source terms may result from geometrically induced errors, is

Equations (10) to (12) are satisfied identically when central differences are used to evaluate the

spatial derivatives. This is true since the metric identities in Eq. (8) are written in conservative

form. However, the determinant of the coordinate transformation is computed numerically from

the solution of Eq. (9) in order to avoid grid-motion induced errors, is

IV. Details of the Spray, Combustion, and Turbulence Models

Here we provide a brief description of the spray model as it is adopted from Raju and

Sirignano. 14,15 The solution of the liquid-phase equations is extended further in the present study

from the two-dimensional to three-dimensional computations. Also, several modifications are incor-

porated into the interpolation procedure between the Eulerian and Lagrangian coordinate systems

as the gas-phase computations are performed in the generalized coordinates as opposed to the

Cartesian coordinates used in Raju et al. 14,16 The interaction between the two phases is taken

into account by the following procedure: (1) In order to obtain the solution of the liquid-phase
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equations,itisfirstnecessaryto know the gas-phasepropertiesat the particlelocations.In the

presentcomputations, the gas-phasepropertiesare evaluatedby using a second-orderaccuratein-

terpolationmethod involvingvolume-weighted averaging;(2) The ordinary differentialequations

describingparticlesize,position,and velocityare solvedby the second-orderaccurateRunge-Kutta

method. The partialdifferentialequationdescribingthe transienttemperature variationwithinthe

dropletinteriorisbased on a simplifiedvortex model and issolvedby an implicitmethod. The

formulationfor the dropletvaporizationrateisbased eitheron a simplifiedgas-phaseboundary

layeranalysisor on a simplifiedcorrelation,Isdepending upon the dropletReynolds number; (3)

Finally,afterthe liquid-phaseequationsare solved,the source terms evaluatedat the particlelo-

cationare redistributedamongst the eightcomputational nodes surroundingthe particleby using

volume-weighted averaging.

The successof the spray model alsodepends a great deal on the correctspecificationof the

injectorexitconditions.The injectorisan eight-holesconfigurationand islocatedalong the middle

of the peritrochoidhousing as shown in Fig. 1. The timingof the injectoropening and closingis

determined by the givenengineoperatingconditions.The fuelemerges in a fan shape consistingof

eightstreams as shown in Figs. 5 and 6. Both the initialdropletvelocitiesand temperatures are

assumed to be known, and the dropletsizesare determined by the Rosen-Rarnlerdistribution.16

The dropletinjectiontiming isdetermined by the resolutionof the computational cellsused in

the gas-phasecomputations.14The presentmodel does not take intoaccount detailsofthe liquid

filamentbreakup and itssubsequent effecton the conditionsat the injectorexit.

The solutionprocedure could perhaps be improved with the considerationofdropletdispersion

due to turbulence. However, the effectsof turbulentdispersionin the modelling of combusting

sprays were found to be small in a previous study, in comparison to the uncertaintiesin the

specificationof the initialconditionsat the injectorexit.IzThe presentmodel isbased on a dilute

spray approximation where the spray characteristicsare based on an isolateddropletbehaviour.

O'Rourke and Bracco,IsGreenberg and Tambour, 19and Asheim etal._0have modelled liquidsprays

includingdropletcollisions.The importance ofdropletcollisionand breakup in the overallspray

behaviour isnot wellestablished,especiallyin the regionsof the spray where the dropletloading

islow. In the presentcomputations, the effectof variablepropertiesin the liquid-phaseisnot

considered,though thisfactorbecomes veryimportant when the dropletsvaporizenear the critical

conditions.21,22

The combustion model isbased on an analogoustreatment oflaminar diffusionflameswith the

assumption that no envelope flameexists.The reactionrateisdetermined based on a single-global

kineticmechanism ofWestbrook and Dryer.2sFor n-decane,the kineticmechanism isgiven by

C10irlr22-Jr-15.5(O2+ 3.76N2) --*10CO2 + 111120 + 58.28N2 (13)

By assuming equal binary diffusivitiesfor allthe speciesin the mixture, the concentrationsof

N2, C02, and 1120 can be determined from simple algebraicrelationshipsbased on the atomic
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balance of the constituent species, once the mass fractions of fuel and oxidizer are known from the

solution of the two gas-phase equations based on the conservation of fuel and oxidizer.

I/N2

YH20 -- K2 - I_IK2yo2 - K2YC,oH2_

Yco2 = K2K3 - K, K2K3yo2 - K2Ksyc,oH22

= 1 - K2 - K2K, - yo2(1 - K,K_ - KxK2K,) - Ye,oH,2(1--K2 - K2Ks)

(14)

where K, = 4.29, K2 = 0.08723, and Ks = 2.222. Note that the effect of turbulence on the

reaction rate can be very important, but is not considered in the present solution procedure since

a realistic model is not currently available. In the near future, we are planning to implement the

turbulence-reaction model used in Raju and Sirignano 14'1s which is based on the eddy break-up

model of Spalding 24 requiring the solution of an additional equation involving the square of fuel

concentration fluctuations. The eddy break-up model provided some useful results in the modelling

of premixed flames, however, its appl;cabiiity in a spray environment is uncertain.

The turbulence model used is a constant eddy viscosity model of Steinthorson et al. 9 where the

turbulent ditfusivity is given by

Pt = aTf_P (15)

and a T is a function of the crank angle O, and fl is the crank speed. One obvious discrepancy of

this model is its failure to satisfy the condition of/Jr - 0 at the walls. ° The k - e turbulence model

of Launder and Spalding 25 will soon be incorporated into our solution procedure.

V. Details of Flux Vector Splitting

The present finite-difference formulation is based on an upwind scheme because of its superior

numerical stability, and efficiency properties compared to those of a centered difference scheme. 26

The most widely used flux vector splitting methods are those of Steger and Warming, z° van Leer, 2_

and Roe. 2s Recently, there is a considerable interest in extending these methods for the modelling of

reactive flows to solve problenm emerging from the design of the National Aerospace Plane (NASP),

and Air-assisted Orbital Transfer vehicles (AOTV). _9's° Details of the generalization of the Steger

and Warming flux vector splitting for a perfect gas mixture with variable properties are presented

in this section. Since the flux vector F(Q) of Eq. (1) retains its homogenous property for the

equation of state considered, the flux vector can be split into two parts,

F = F÷ + F- (16)

where F + is the subvector associated with the non-negative eigenvalues of A, F- is the subvector

associated with the non-positive eigenvalues of A, and A is the Jacobian matrix, aL_.The eigenvalues
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of the matrix, A are given by

A4 -- U + _, + aA_ (17)

A5 = U + _= - aA_

2 1 1(o_
where_ = (_ + _; + _.),, = - V_,o.. j _, i, the sp_d ofsound,_,, = _g'l y,C_,_._ =
Cp,n R, and /} N,- = Ru _i=l _s;. It can also be shown that

F + = MA+M-1Q,, F- = MA-M-IQ (18)

where the diagonal elements of the matix, A±, are given by

1(u+ _,+ lu + _,1)_ = _ = _ = _ = A_=

1 (U + _, +aA_ + [U + _, + aA_[)_=

_=

and

(19)

M

M -1 =

1 0 0

,, 6,,p o _(,, + 6==)
,, -6=: _,p _(,, + 6,=)
,,, o -6: _(,,, + 6:)

- _o_T p(6:, - 6:) p(6,,,- 6,,,,,)_(h + 0=)
Yl 0 0

Y2 0 0 2__.,/3=

0 0

_(,,- 6==) o o
_(,,-6,=) o o
_(w- 6:) o o
:;_2=(h-0=) ,_,1 _,_,2

p o
o p
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and

_-_+&o_ _ _h -/d_ o o o

_ h - _-_--_ o o o

---x-,[oo , {&a _ {6,_ _[_,,,_"
+C'r- 1)ho] -(,-i- 1)u] -(_- 1)v] -(-_- 1)w]

! " 1
-_hl_[__ __1 _ _ -_ -_ - __:x-

+C-y- 1)_o] -('r- 1),,1 -(-1- 1),,] -('r- 1)_1

-_ 0 0 0 0 1, 0
p P

-_ 0 0 0 0 0 1
p #

f 1_o = _o+ _oaT-_a:o¢_.T- (_'+ _' + _2),

Z
Tr,! l_u

N

and also "t= Cpm/Cv,n, it = a-_' _= a_' _r= a-_¢' and O = _zu+ _'_v+ _w.

The resulting components of the split fluxes F + are given by

13



(2o)

In this section, we have presented the derivation of the the split fluxes associated with the flux

vector F(Q). The corresponding split fluxes associated with the vectors G(Q) and H(Q) can be

derived in a similar way.

VI. Details of the Numerical Method

Solution for the gas-phase equations is obtained by making use of a finite-volume, Lower-

Upper (LU) decomposition scheme. The governing equations are linearized in a delta form where
the nonlinear terms associated with finite-rate chemistry and convection are treated implicitly,

while the diffusion terms and the source terms arising through liquid-phase interaction are treated

explicitly. The time-linearized governing equations in delta form are

= -Q"AD + Aff (21)

where A + = _' B+ = _aQ ' C+ = _aQ ' L = _aQ, At is the time step size, 6 + and 6- are forward

and backward differences, respectively, and

(22)

14



Upon factoringEq. (20)we obtainthe followingsequence:

(23)

(24)

It is noteworthy that to be consistentwith the objectiveof deriving a finite-volumecode,

the split-fluxdifferencesin Eq. (21)are implemented accordingto Monotone Upstream-Centered

Schemes for Conservation Laws (MUSCL)-type differencing,st's2The fluxesat the cellfacesare

firstobtained by a fullyupwind first-orderaccurateinterpolation,and then centereddifferencesare

used for both the forward and backward spatialoperatorsevaluatedat the cellcenters.Centered

differencesare alsoused forevaluatingthe spatialoperatorsassociatedwith the viscousterms.

For the dynamic gridcalculations,the metric quantitiesare evaluatedat time leveln+l, and

D n+1 isevaluatedfrom the solutionof Eq. (9)by using an explicitmethod. The numerical grid

isgeneratedby an algebraictechniques with the help of the grid-generationcode taken from the

LEWIS-3D code.9

By adopting an algorithm taken from the RPLUS-3D code,12 the presentcode isvectorized

ratherefficientlyby operatingon allpointsin a diagonalplane ofthe computational space,simul-

taneously.The diagonalplane isone on which i+j+k = constant.The integrationproceedsduring

the backward and forward substitutionstepsfrom one cornernode of the computational gridand

ends at a cornernode which isfarthestfrom the initialcornernode.

The boundary conditionsare implemented explicitlyby defininga layerofphantom cellsoutside

the boundariesofthe computational domain. Itisalsonoteworthy thatthe left-handsideoperators

of Eqs. (23)to (24)requireblock diagonalinversions.

VII. Results and Discussion

Here we present the resultsof our preliminarycomputations for a singlecase corresponding

to the operatingconditionslistedin Table 1,where subscriptso, c,r, and h representopening,

closing,rotor,and housing, respectively,V_,iisthe initialdropletvelocity,and Tg,iisthe initial

droplettemperature. Isothermalwallconditionsare implemented in the caseconsidered.

15



Table 1. Operating Conditions

Engine Parameters

(see Fig. 1)

Engine Speed
Intake Port

Exhaust Port

Fuel Injector

Generating Ra_iius(R)= 0.1064m

Eccentricity(E)= 0.01542m

Clearance(C) = 0.004 m

Chamber Width(W)= 0.07 m

Port Width(Wp)= 0.05 m

4000 rpm

00 = -1.26 rad, 0v = 5.96 rad,/_ = 1.25 atm,

Tint = 300 K, YI,_,, = 0
0o = -5.96 rad, 0c = 1.07 rad, Pezh = 0.85 atm

00 = 8.3rad,0v = 8.75tad,Vdj = I00 m/s,

Td,_= 300 K

Spark ignition Timings 0o = 8.35 rad, 0c = 8.475 rad

Temperature of Rotor

and Housing Surfaces Th = T, = 400 K

The computations are performed with a variable time-step corresponding to a maximum CFL

number of 20, and on a grid with a mesh size of i=31, j=16, and k=20, where i, j, and k represent
the coordinate surfaces in the direction extending from the trailing-edge surface to the leading-edge

surface of the combustor, from the rotor to housing surface, and from the side wall to the symmetry

plane of the domain between the end-to-end side walls, respectively.

As described in Section II, the computations are initiated before the opening of the exhaust port,

and are terminated after the completion of combustion process. Figure 2 shows the variation of

the engine volume versus crank angle. The indicated engine volume is obtained from the numerical

integration of the individual computational-cell volumes. The figure demonstrates the ability of

the numerical method to accurately reproduce the combustor volume changes corresponding to

a maximum and minimum displacement volume of 750 c.c. and 115 c.c, respectively, yielding a

compression ratio of about 6.5.

Figure 3 shows flow patterns (particle traces) during the middle of the exhaust (Fig. 3a), of

the intake (Fig. 3b), and of the simultaneous opening of both exhaust and intake ports (Fig. 3c)

together with the schematic of a Wankel engine (Fig. 3d). The particle traces are coloured based

upon the local value of the internal energy e. Fig. 3a shows clearly that the bulk fluid motion of the

residual gas is essentially directed out of the engine chamber through the exhaust port. The fluid

motion is clearly seen to be influenced by the combined effect of the positive pressure difference
that exists between the chamber and back pressure, and of the rotor motion on the fluid near the

rotor surface. Figure 3c shows that while part of the residual gas is escaping through the exhaust

port, fresh air is entering the chamber through the intake port. Because of the difference that exists

between the intake and exhaust pressure (1.25 and 0.85 atm), part of the fresh air emerging from

the intake is drawn towards the exhaust before it recirculates in the rotor pocket.
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Figure 3b shows a complex flowpatterncreatedby a strongjetof freshairemerging from the

intakein a crossflow. The crossflowiscreatedby the clockwisemovement of the rotorsurface.

The flowpatternrevealsthe existenceoftwo clearlydefinedrecirculation(low-pressure)regionson

both sidesof the intakealong the ith direction.Upon the impingement of the intakejet on the

rotorsurface,the jet,near the leadingedge,ispartlydrawn intothe low-pressureregion,and part

of the fluidiscarriedover backwards through the openings between the outer edge of the jet and

the side-walls.

Figure 4,which issimilarto Fig. 3b, shows an experimentalflow-visualizationresultobtained

by Hamady et al._ using a transparent-sidedrotary engine motoring testrig. _Microballoon_

seedingmaterialwas illuminatedby a pulsedlaserlightand recordedby high-speedphotography.

At the leadingedge of the jet,a recirculatoryflow pattern quite similarto that shown in Fig.

3b isclearlyseen. Although quantitativecomparison has not yet been attempted, the degree of

qualitativeagreement noted here isquiteencouraging.The trailingvortex,which isclearlyshown

in Fig. 3b, isbeyond the fieldofview ofFig.4.

The droplettrajectoriesat 0 = 8.5 and 8.75tad are shown in Figs.5 and 6. The polydisperse

characterof the spray isrepresentedby differentsizedcircleswhich are indicativeof the sizeof

the initialdroplets.The initialdropletsizesrange between 10 #m __rkj __30 pro,and the initial

dropletReynolds numbers varybetween 75 __Rekj _ 600. The wide disparityin Rekj isa resultof

the steeprisein the chamber pressuredue to combustion from 6 to 35 atm during the time offuel

injection.Because of the largeinitialmomentum associatedwith these particles,they retaintheir

initialpath as describedby theirinitialconditions.Ittakesabout 1.5ms for the largestparticles

to vaporize.The deflectionofthe particlesinthe directionof the gaseous flowisevidentfrom Fig.

6 as the dropletsbecome smallerdue to evaporation.

The temperature distributionwithin the combustion chamber during the earlystagesof flame

propagation at 0 = 8.5 rad, and aftercombustion at 0 -- 10 rad is shown in Figs. 7 and 8,

respectively.In Fig. 7, the highesttemperature region (2900 K) isconfinedto the regionnear

the rotorpocket,where the liquidfuelisinjected.The temperatures are lower near the wallsand

in the clearanceregionsnear the leadingand trailingapex seals,where the heat transferto the

walls isgreatestbecause of the high surface-to-volumeratio.In Fig. 8, the highesttemperature

regionextends allthe way from the regionnear the rotor pocket to the regionnear the leading

apex seal,while the temperatures are lower in the regionnear the trailingapex seal.During the

expansion stroke,the regionnear the leadingapex sealbecomes wider,causing a decreasein the

heat transferrateto the wallsinthatregion,while heat transferto thatregionwithinthe chamber

interiorincreasesdue to convectionof the fluidas influencedby the rotorrotation.An opposite

trend isobserved in the regionnear the trailingseal.

The gaseous-fuelmass fractioncontours at 0 = 8.5 and 8.75 rad are presented in Figs. 9

and 10. It isnoteworthy that in presentingsome of the resultsinvolvingthe iso-contourlinesof

fuelconcentrationin Figs. 9 and 10, and alsoof pressurein Fig. 13, some of the contour lines

representingthe near-maximum valuesare shown in dotted lines.Thus, Figs.9-10 show that the
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regionnear the fuelinjectorlocationisfuelrich.Diffusionof the fuelconcentrationwith time and

the influenceof convectionon the distributionofthe fuelconcentrationmore towards the leading

regionisalsoevidentfrom the comparison of thesefigures.While the stratifiedchargegivesriseto

a diffusionflame,a carefulexamination alsorevealsthat part of the evaporated-fueland oxidizer

mixure burns likea premixed flame. This isdemonstrated by an absence of fuelconcentration

in the region near the rotorpocket surfacewhere the fuelconcentrationresultsotherwise from

the presence of liquidfuelin that region,as shown in Figs. 6 and 7. It ismore likelythat the

combustion characteristicsin that regionmight be influencedby an isolated-combustingdroplet

behaviour.

Fig. 11 shows the angularvariationofthe amount oftheevaporated-fueland alsothe amount of

reacted-fuel.The resultsareobtained by integratingthe sourceterm contributionsofthe gas-phase

equationsarisingfrom the production of fueldue to evaporationand alsofrom the consumption

of reactantsdue to combustion. It isnoteworthy that the totalamount of liquidfuelinjectedis

determined based on an equivalenceratioof0.7.The resultsshow that the totaltime forcomplete

vaporizationand alsocombustion islessthan 2 ms. The slopeofthesecurvesindicatesthatmost of

the fuel,afteritevaporates,reactsquicklywith oxidizerto form products.This inturnimpliesthat

most of the fuelburns in a premixed-flameenvironment. Sincethe vaporizationrateand ignition-

delay characteristicsofthismodel were not known in advance,however, the fuelinjectionand spark

timings were arbitrarilychosen to be 66° and 63°,respectively,beforeTDC. These conditions,

which in retrospectare clearlynon-optimal,correspond to very advanced fuelinjectionand spark

timings. Under more optimal engineoperatingconditions,the fuelinjectionevidentlysho_.:_dnot

begin before30°to 45°from the TDC. Both the vaporizationand combustion characteristicsmight

be quitedifferentifthesetimings are chosen accordingto optimized operatingconditions.Future

work willaddress the optimizationof thesetimingsin terms of the overallcombustion behaviour.

Note alsothatbecause oftheseadvanced timings,additionalenergy has to be suppliedforthe work

to be performed during the remainder ofthe compression processfrom the time aftercombustion

to the time beforethe TDC isreached.

Figure 12 shows the velocityvectorplotsatfourdifferentcrank angles:Fig.12a atthe beginning

of fuelinjection,Figs. 12b and 12c during combustion, and Fig. 12d aftercombustion. In these

velocityvectorplots,onlythreedifferentsizesofarrow symbols areused todistinguishthe variation

between the maximum and minimum valuesin magnitude. These plotsindicatethat the direction

of fluidmotion near the symmetry plane ismainly determined by the rotor motion; however, for

a briefperiod during the earlystagesof flame propagationas shown in Fig. 12b, the expanding

gases do createa motion in a directionoppositeto the main bulk flow. The non-uniformityin

pressurebetween the leadingand trailingregionsas shown by the pressurecontours in Fig. 13

betterexplainsthe reasonforthe strongbulk fluidmotion createdby the rotormovement. Recall

that,as in Figs. 9 and 10,some of the near-maximum contoursare shown in dotted lines.These

figuresdo show a more or lessgradual decreaseof pressurefrom the trailingto the leadingapex

seals,and the pressuredecreasesin the directionofthe fluidmotion. The higherpressuredrop,as
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expected from the substantialfrictionlossesin the regionscloserto the apex seals,isalsoevident

from thesefigures.

VIII. Concluding Remarks

We have presented a descriptionof a new computer code developed for the modelling of

stratified-chargerotaryengineperformance based on thesolutionofthe unsteady,three-dimensional

Navier-Stokesequations,with the use of convenientsubmodels for turbulence,combustion, and

sprays. The detailsof the rotary engine flowfieldduring exhaust and/or intakeprocessesand

compression stroke,and alsothe detailsof the mixing, vaporizationprocessesduring and after

combustion have been presentedfora singlecase with advanced fuelinjectionand spark ignition

timings.The salientfeaturesof thiswork are summarized below:

1. The code takesapproximately 3 CPU-hours, when the calculationsare performed on a gridwith

a mesh sizeof 31x16x20 on a CRAY Y-MP, for a non-reactingcase,and ittakes about 7.5 to 10

CPU-hours fora reactivecasewith sprays.For the non-reactivecase,the solutioncan be marched

in time non-iteratively,but,fora reactivecase,the solutionisobtained by an iterativeprocedure.

2. One apparent findingofour study isthatvaporizationappears to be more rate-controllingthan

mixing during the combustion process,at leastin the casethatwe have studiedwith advanced fuel

injectionand spark ignition.

3. There isa good degree of qualitativeagreement between the predictionand an experimental

flow-visualizationpatternof Hamady et al.s3 obtained during the intakeprocess.

4. The presentsolutionprocedure makes use of an extremelysimplifiedconstant diffusivityturbu-

lencemodel. The k - _ turbulencemodel ofLaunder and Spalding_5 willsoon be incorporatedinto

our solutionprocedure.

5. The presentcombustion model isbased on laminar kinetics.While recognizingthe factthat

no realisticmodel would be availablein the foreseeablefuturefor a proper treatment of the ef-

fectof turbulenceon combustion reactionrates,the eddy break-up model of Spalding_4 willbe

incorporatedintoour solutionprocedure in order to account forsome effectof turbulenceon the

combustion processes.

6. After implementing the above-mentioned modificationswe willconduct a parametric study in

order to optimizethe locationand alsotimingof the fuelinjectorand spark igniter.
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