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Introduction

This task addresses the general problem of software development for

real-time control in distributed systems. The space station and other

future NASA platforms will have a large number of sensors distributed

throughout the system. A comprehensive software system is needed to

integrate the sensor data and make decisions for real-time control. There

are several important problems that have to be solved in developing

software for such a complex task. This involves;

-- Real-time multi-channel data acquisition

-- Multi-stream asynchronous data analysis

-- Data flow architecture emulation

-- Task synchronization through message passing/memory sharing

-- AND/OR parallel inferencing (mostly forward chaining)

-- Presentation of results for ready assimilation and distribution.

The scope of this project is generic enough to be applicable to various

NASA systems. Instead of doing an abstract general software development

we have chosen the SSME (Space Shuttle Main Engine) as a concrete

example of distributed system and attempted to develop software for its

real time control. A part of this problem was studied earlier under a NASA

Summer Fellowship and most of that work serves as a foundation for this

further development

The Space Shuttle Main Engine (SSME) based on Hydrogen-Oxygen

combustion is a very complex power plant employing numerous pumps,

valves and ducts. During a ground test about 500 sensors are used to

monitor the state of SSME. Some of these sensors are used for the close

loop control of SSME and are connected to a Computer System 'Engine

Controller' To evaluate SSME performanace 1200 hot-fire ground tests

have been conducted, varying in duration from 0 to 500 secs. During the

test about 500 sensors are sampled every 20ms tc measure the various

parameters. The Sensors are generally bounded by 'r_.d-lines' so that an

excursion beyond the red-line could lead to premature shutdown by the

operator. In 27 tests, guided by the red-lines, it was not possible to effect

an orderly premature shutdown. These tests became major incidents where

serious damage to the SSME and the test stand resulted. In this study we

have investigated the application of pattern recognition and allied

techniques in a distributed real time system to detect trends that lead to

major incidents. Based on the sensor data a set of (n) features is defined.

At any time, during the test, the state of the SSME is given by a point in
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the n-dimensional feature-space. The entire history of a given test can

now be represented as a trajectory in the n-dimensional feature space.

Portions of the 'normal' trajectories and the failed test trajectories

would lie in different regions of the n-dimensional feature space. The

feature space can now be partitioned into regions of normal-tests and

failed tests. In this manner it is possible to examine the trajectory of a

test in progress and predict if it is heading into the 'normal-region' or the

'failure-region' of the n-dimensional feature space. In this study we have

developed techniques to extract features from ground test data, as

supplied by Rocketdyne, and develop feature space trajectories for the

tests. The initial results though looked very promising, their real time

interpretation in an n-dimensional space became too cumbersome. We have

developed the analysis further and reduced the n-dimensional problem to a

composite 3-dimensional solid. The failure modes can, in principle, be

recognized as distortions in the solid.

Data Structure

There are 3 different data acquisition systems used to collect the sensor

data (1,2), namely,

-- Command and Data Simulator (CADS)

-- Facility Recording (FR), and

-- Analog High Frequency Recording (AHFR)

In Fig. 1, the salient points of these systems is shown. The engine

controller uses 16 bit computations on 12-bit data words to perform close

loop operation of the SSME. For the SSME Anomaly and Failure Detection

(SAFD) analysis, as reported in (2), the CADS and FR data provide the bulk

of the input.

In ali about 1200 hot fire iests have i':_e=_1,conducted on the SSME. In 27

tests the SSME went out of controZ a,-_u _erious damage to tha engine a,-,(J

the teststand resulted. A summary of some of the salient points of the

ground tests is given in Table 1.

Considering that the replacement cost of an engine is ~$50M, it is highly

desirable to develop some technique for detecting failure trends which

would allow an orderly shutdown of the SSME and thereby preventing a

major incident (3). In (2) and (3) various techniques for failure detection

have been suggested including the following,
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SSME

FR

PID# 1-299 300-1999

40ms 20ms

12 bit data word

l AHFR

0-20kHz

6-14 tapes
14-28 tracks

Fig. 1 SSME Data acquisition system

• . c, .....,_,_,,,,,u_ Likelihooc; Ratio (GLR)
-- Generalized Likelihood Test (GLT)
-- Voting

-- Confidence Region Tests
-- Kalman Filters

°- Parameter Estimation

-- Jump Processes

-- Pattern Recognition.
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The success of a technique will be determined by;

-- detecting the fault fast enough to allow an orderly shutdown

-- identifying the technical nature of the fault.

-- feasibility of its implementation in software for real time execution

The last point is particulary important for this project and will determine
the choice of the ultimate software.

TABLE 1. GROUND TEST SUMMARY

I -1200 HOT- FIRES

- -27 MAJOR INCIDENTS

- -TEST DURATION 0-500 SEC.

- -300-500 SENSORS MONITORED

- -SAMPLING RATE 50 Hz.

lib -DATA WORD !2 bits

- -DATA TRANSFER RATE 0.5-1Mhz

- -DATA VOLUME 0.1 - 1Gbits
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the basic decision process involved in SSME fround tests can best be
described by the 'weighted truth-table' in Fig. 2 which shows the
probability W for various actions.

SAFD
Decision

ILl :3

_03

continu
shut
down

1 2

failur 3 4

Ideally, W1=W4=1 & W2=W3=O

Fig. 2 SAFD performance matrix

Note that W2 being the probability of a false alarm should be zero,

however, a small value ,say 1%, may be acceptable. On the other hand W3

being the probability of a miss should indeed be zero, just as W4 = 1 i.e.
shutdown in failure mode.
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Various alternatives have been considered for implementing such a SAFD.

We shall consider the use of Pattern Recognition (PR) techniques for SAFD.

It should, however, be realised that PR in general is very time consuming

and real time applications of PR require special attention. We would

address this point with some detail.

It should also be pointed out that much of the data processing in PR, as

described below, can also be used for the other vital activities envisaged

for the future systems, namely, real-time control, health assessment and

condition monitoring (4,5).
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Pattern Recognition (PR)

The fundamental premise for applying PR techniques is the observation

that when systems fail due to internal causes there are always some

warning signs that preceed the event. Furthermore, the progression of a

system from normal operating mode to anomalous (failure) mode does not

happen at random but follows a pattern which can be analysed and

explained. The object of PR technique, described here, is to identify the

patterns that have led to failures and use this knowledge to look for

warning signs in future tests and predict failures well in advance of their

occu re nce.

The current practice is based on red-lining the sensor outputs. The

red-lining of n-sensors can be easily explained in terms of a polyhedron in

n-dimensions as shown in Figs. 3(a,b,c). Each sensor is assigned a lower-

and an upper-bound value for 'normal' operation and these define the two

'red-lines' for that sensor. For a 3-sensor case the state of the system, at

a given time, can uniquely be defined by a point in the rectangular

prismatic region of the $1-$2-S3 Space (S-Space), Fig. 3c. The collection

of these state-points at successive times would define a trajectory in the

S-Space. All the possible normal runs of the system would then be given by

trajectories that lie entirely within the 'red-lined' rectangular prism as

shown in Fig. 4. In principle, any trajectory that tends to approach a

boundary and exit to the outside region is an indication of an imminent
failure.

One can learn to detect the failure trends by examining the data of the 27

tests that resulted in failure and compare it with the normal test data. It

is quite possible that the failure trajectories will reveal their different

character (as compared to normal trajectories) even before coming close

to the red-line polyhedron boundary as shown in Fig. 5.

T _
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There are two points that have to be considered in this context, namely,

1. The straight forward fixed red-lines for a sensor are adequate only for
very special cases where no coupling among the sensors exists, i. e. the
red-line for a given sensor is independent of the values of all the other
parameters as measured by the rest of the sensors. Let rk be the red-line
for the kth sensor, then

rk = ck, where c's are constants

The software red-lines can be defined by replaing c's by functions fk so
that,

rk = fk(S1,S2,... Sn), where Sk is the kth sensor reading

In real-time this implies that as the test is progressing the readings Sk

are used to calculate the various rk's through fk's. This can become not

only computationally quite cumbersome but the explicit form of fk itself

has to be known perhaps from a simulation model of the system. In
principle, it is simple to build the simulation model in a modular manner
(6), however, the ad hoc nature of such models leads to different control
and real-time simulation models. By such models it is quite possible to
determine most of the fk's, however, some crucial gaps may exist in this

knowledge since not all the failure mechanisms are well understood.

2. Even if the fk's are known and the soft red-lines can be determined,

there is yet another serious problem. In principle all red-lines, soft or
otherwise, are based on a single time frame of the system without
considering how the system got to the state represented by the time
frame. Questions of the type; has the system reachgd i_- present state
thrcugh a transient, slow drift, ex_es'3,,ive noise nr L'nder -_ clos_-Y_,',_

command etc., are not considered by red-line methods. The method

proposed here considers the entire system trajectory and compares it with

other trajectories to detect failure prone trajectories.

The PR technique we propose to employ here has two important steps,

-- extension of the sensor-space into Feature Space

--Segmentation of the feature-space into normal- and failure-regions
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Feature Space

The sensor space discussed above has two major drawbacks, namely,

-- For a truly multi-sensor system such as SSME the total amount of data

is too large (about 100 Mbits) and can become too unwieldy for real-time

processing.

On the other hand most of the data is of routine nature and a tremendous

amount of data compression can be achieved by isolating and analysing only

the deviations from the norm or the steady state. The norms can be defined

as those values which can be calculated or predicted (assuming normal

SSME operation) from a few key parameters e. g. power level, MCC

pressure, throttle position etc. In the simplest case, only the deviations in

sensor values, as compared to a moving average defined over a certain

interval, are to be used for further analysis. This may even include

deviations caused by closed- or open-loop control commands as may happen

during throttling.

-- The sensor space, as based only on the sensor values, may not highlight

the features important for SAFD.

This is based on the fact that the raw sensor readings, along with their

red-lines, may themselves be not good indicators of impending failure.

Further processing is often required to calculate features which are

directly related to the failure modes. In Fig. 6 we show some of the

features that can be defined for a given sensor. Starting with the raw

value one can calculate first an average over a certain interval and then

the deviation from it. From these one can also calculate the signal to noise
ratio S/N which could be another feature. To detect drifts one can also

calculate the local gradients as another feature. Similarly Fourier

Transform of the si._,..._i (or the deviation), over a given time window, cP.n

be another feature, as shown in Fig. 6. One can also detine 'compound'

features involving data from more than one sensor. Thus, if needed, the net

thermal flux, which may not be measured by a single sensor, can be

calculated from the presure, flow velocity and temperature as measured by
sensors in the MCC and it can be used as a feature for failure detection.
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Based on the above discussion, the sensor space is replaced by a

feature-time space, where a feature is defined as the deviation from the

norm or steady-state as calculated from some key parameters or by

averaging over a specified interval. The state of SSME, at any given time

will thus be represented by a state point in the feature space. In Fig. 7 a

normal SSME run is shown in a two-feature space. In a normal run, all the

state points cluster around the time axis as shown, since no large

deviations are encountered.

Value Devatn

V V'=V-<V>

Grad
dv,/dt FT(v°)

Fig. 6 Sensor Values & Features

F2

mUO uO • -, a 6 a •U _ _ _ UauOuU o •

,// °Time

Fig. 7 Feature Space Representation
Normal SSME Test

of
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Segmentation

Segmentation is the process of partitioning the feature space into clusters

that can be identified with definite states of the system e. g. pre-failure

or normal. An idealised illustration of this is shown in Fig.10 where the

entire feature space has been projected along the time axis. All the points

representing the normal runs should lie in a small region, cluster 1, around

the origin. During normal runs there are large deviations caused by genuine
excursions such as throttling etc. Such states of the system might show up

as another region, cluster 2. It is anticipated that the deviations due to the

failure modes will be of different nature and hopefully form another

distinct region, cluster 3. An another form of the same situation is

depicted in Fig.11 where an entire run is represented by a trajectory. A

steady run trajectory would then lie entirely within cluster 1 whereas a

controlled excursion in a run might cause the trajectory to migrate to

cluste 2, but eventually return to cluster 1 after the steady state has been

reached.

In practice, the situation may not be quite so clean cut, the clusters may
not have so well defined boundaries and they may overlap. A number of

powerful statistical techniques is available to locate cluster boundaries in

such cases It is also possible to assign to each state point, the

probability of membership to a given cluster. One can also define a

distance metric in the feature space to group points in clusters. In Table 2.

(7) some of the commonly employed distance measures and the associated
error bounds are shown. This description and the metrics have been used in

an earlier study (8). It was, however, found that these techniques are still

too complex for real time applications. We have attempted a simpler

approach.
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the steps employed in the above technique are;

-- definition of the features and construction of the feature space

-- plotting of ground test data (of both normal and failure tests) as

trajectories in the feature space

-- segmentation of trajectories into failure and normal runs.

The technique that we have developed is based on a very simple

observation that multi-dimensional single component data can be easily
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represented by a set of radial lines in a polar coordinate system. Each

polar line representing one sensor. The red lines for each sensor output can

be normalised to two fixed values. These 'normalised red lines' in the polar

system will represent two circles as shown in Fig. 10.

Fig. 10. Sensor data representation

The heavy line represents at some given time the sensor values normalised

to the two circles as discussed above. A history of the sensor output can

be made by stacking the polar graphs as shown in Fig. 11.

Fig. 14 Time _tack cf normalised ,_ensor output

The stacked sensor output for each run would generate a solid. Each SSME

run would thus generate a 'solid'.representing the entire history. It is

expected that abnormal run solids will have some identifiable features

which can be detected prior to failure. The computational calculations

involved in this not very complex and hence it is possible to implement it
in real time.

Implementation of these steps in practice is discussed nelow.
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Results and Conclusions

the data from a run is stored on a number of magnetic tapes the data for

a short interval (10-100 sec.} and from a few imortant ssrs is combined

into a single tape file. This tape file is read into a disk file which can be

accessed by application programs. Fig. 12 shows the header, or the

Run-Log, of the disk data file. This data, as can be seen from the first line,

is for the time period 320 to 392 secs. of the run #901-364 which

resulted in a failure. It also shows the ssr PID#, the engineering unit used

and the SSME component mnemonic.

981e364R=tt
367 AP
948 GP
395 GP
4t8 AP
48B GP

459 AP
764 RN
854 GP
858 GP
878 GP
879 IC
883 DP

320,8888e 392.t58Bg

MCCH.G. IN] PR
HPFPCLNT LX PR
HCCOX INJ PR

FPB PC NFD
OPBPC
HPFPDS PR NFD

HPFPSPD NFD
FnC OX FH DS PR
ENGOX IN PR t
HX INT PR
HX INT T

HX VENT DP

Fig. 12 Data File Header
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An interactive, menu driven program has been written to process the data

and extract the features. In Fig. 13 a beginning MENU of the program is

shown. Various types of operations are available by choosing the

appropriate code. these operations include both recursuve and
non-recursive filters, data compression, Logical Operations, FFT,

Look-Up-Tables etc.

3 395 GP HCCOX INJ PR
4 4te AP FPB PC HFD

5 480 GP OPBPC
6 459 AP HPFP DS PR NFD
? 764 RH HPFPSPD NFD
8 854 GP FAC OX FH DS PR

9 858 GP ENGOX IN PR J
t0 878 GP HX ]NT PR
tt 879 [C HX XNT T
JE 883 DP HX VENT DP

• " TYPE SEOt'S OF CONPONENTS,END NITH 0
J.
0
TYPE ! OF DATAPOINTS TO READ(LT.3080]. O=EXXT
3380
t | I I CHOOSEOPTIONBY TYPING ! I ! !

DATACOHPRESSe e e s t e =t
NON-RECFLTR e e = s e s =Z
RECURSIVEFILTER = e e e ,'3
HRH-0PRNS= = = = = , _ , =4
FFT ¢ = = = = = = = = s = =5
EXIT s s = = s = =6

Fig. 13 Operations MENU
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The first step is to read the raw data for a ssr by choosing the appropriate

PID#. In Fig. 14 the data for PID#367, for the entire duration of 320 to 392

seconds is shown

NC£ H. 6. INJ PR P364 PID367

1-10--'-_2-1

3658

3645

3648

3635

3638

3625

3628

3615

328 338 348 350 368 378 388 398

FILES: |=FOPSOI. DAT:486

Fig. 14. MCC H. G. INJ PR, PID #367, RUN 901-364

From the above figure it is clear that the data has some structure in the

form of some distinct features, however, the noise level is fairly high to

mask them. the first step we have taken is to reduce the 'observational
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sampling rate' through moving average. This is done in the following three

steps;
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1. Select a window size N = 0, 1, 2 ....

Let M = 2N + 1

2. Form signal averages -8-k from the raw signal S i

-8-k = _ Si/M:

where k = N+I, 2N+1, 3N+1, .2rN+l, . and

i = k-N, k-N+1, .k+N

3. Replace the original signal S i by -_-k. the sampling rate in the new signal,

, is reduced by a factor of N.

In Fig. 15 the sampling rate of the data in Fig. 14 has been reduced by N=9,

or compressed by a factor of 9. the program allows an interactive choice of

N. the data in Fig. 15 still seems to have some noise which can be removed

by various filtering techniques. As an illustration Fig. 16 shows the result

of applying a non-recursive to the data of Fig. 15.

the data in Fig. 16 seems to have two distinct features, namely, a

predominant frequency and a 'drifting background'. To separate these two

components one can determine local averages over an interval larger than

the hi-freq, wavelength as shown by the background line in Fig. 17. from

this one can determine the zero-crossing points. A smooth curve can be

fitted to these points to determine the background, as shown in Fig. 18.

the background level, as found in Fig. 18 can now be subtracted from Fig.16

to give the hi-freq, component of the signal, as shown in Fig. 19. This

signal can further be 'smoothed' to yield a '_'.leaner' hi-freq, signal, as

shown in Fig. 20.
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Fig. 15 Reduced Sampling Rate Data, PID#367

3658 I

R365 3.3K/10

1-10-----_2-1

3645

3646

3635

3638

3625

3620 , ,

320 336 346 _50 36e 370 380 390
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Fig. 16 High-Pass Filtered Data, PID#367

R364 3.3K/18 RECr-4

I-IO-_'-'Q3-1

_644-

3642

3648-

3638-

3636-

363

363

363

362

362

3624

328 33_ 340 350 368 378 388 398

FILES: I=FORSOI.DRT_495
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OF POORQUALITY

Fig. 17 Zero Crossing Points, PID#367

3658

3645

3648

3635

3638

3625 ,,_

3620

"_2 ¢J

,it - ;v,-10COMP-4REC

t - ' ':*----'3 2 - 1 X-----K .3- 1

_t

338

!

[y y

' ,. i

J

I

, , 1
I

?40 :;50

i

"'70

i

?30

FLIES: 1 =FOR881 . DHT : -1:-: ":
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Fig. 18 Background Trend, PID#367

R364 3. 3K/18 RECF-4_,RECF-18

1 - 1 (_--'--_ 4 - 1

3644-

3642 L

3648-

.

3638

3636

3634

3632

3638-

3628 -j

3626_

36241
• !

°

1

"l

32B 336 348 358 368 378 388 398

FILES: I=FORegi. DAl:495
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Fig. 19 High Frequency Data, PID#367

°!

R354 3.3K/_8 REC4-_ECJB

1-10---_5-!
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Fig. 20 Smoothed Hi-Freq Data, PID#367

R364 3,3K/le R3[R4-(R4*Ri8)]

I-IG_---E)6-1

1 8e

0 75

-e 75

-1 O0
1J

V

-I 25

320

'I I
I
I

' I/I,
V vv

^Ill
ill/.
I/1/-

! i !

330 340 350 360 320 380 390

FILES: 1 =FOROOI. DFII = 49?
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the original signal of Fig. 14 can now be said to have two distinct features

as represented by Figs. 18 & 20. the former is a slow drift with with

plateaus, whereas the latter is a high frequency jitter, which, if needed,

can be Fourier analysed. This drift and the high frequency can now be taken

as features for representation in the feature space as discussed earlier.

This technique, though developed earlier (8) and outlined here for the sake

of completeness, was not tested for re,_l time applications. We have now

made repeated attempts to test its feasibility as a real time code. it has

not been possible to realise fast execution, as compared to the data

collection time 20-40 ms.

Fig. 21, the 'stacked data representation of a simulated run on a

Supercomputer Ardent/Titan. shows the evolution of a run from time t = 0
to some final value. Variations in sensor output as also the collective

behaviour of all the sensors can be seen at a glance. This technique is much

faster than the other two developed earlier and discussed here. The real

data could not be used for it since the tape data was in a different Format

and could not be accessed by the Supercomputer

ADNFNL 2 9



Fig. 21 Evolution of 'data stack' in time.

ADNFNL 3O
OF POOR Qt:,_LiTY



Conclusions

From this study we conclude that a real-time system for the analysis of

SSME data, based on the data visualisation scheme introduced here can be

realised.

-- A feature space description of the SSME ground test data has been

realised.

-- Two different approaches have been attempted, one of which is
selected.

-- A real time implementation of the selected approach has been made.

-- Simulated data tests give very encouraging results.

-- A design of a more comprehensive program has been made to;

A. Survey a large number of normal runs (about 50), and

B. Survey all the failed runs (27) and compare them with the above.

-- Considering that an overall comprehensive review of neither the normal

nor the failed runs exists it is highly recommended that an analysis

environment of the type discussed above, should be implemented.
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