
A Final Report

for Year One of the Task

Methodology for Automating

Software Systems

Task I of the Foundations for

Automating Software Systems.

Prepared for Tim Crumbley

Nasa Marshall Space Flight Center

Redstone Arsenal, Alabama

.. , _)

/ .."

by

Dr. Warren Moseley

University of Alabama in Huntsville

Research Institute Room M34C

Huntsville Alabama, 35899

Report Number 814

https://ntrs.nasa.gov/search.jsp?R=19900004649 2020-03-19T23:33:37+00:00Z

I. General Introduction and Background for The Poor Man's Case
TooI(PMCT).

Research Platform CASE Environment.

The University of Alabama in Huntsville is in the eady stages of a five-year

intensive research program to establish a expedmental research platform for

software engineering. There will be a major emphasis placed on CASE and the

importance of CASE to the improvement of the practice of software engineering.

This project is a first step in establishing this research program, and first in a part of

this three year effort here at NASA.

Outline of major functions of our case tool

The operation of this system, Poor Man's CASE Tool, is based on the Apple

Macintosh system, employing available software including: Focal Point II,

Hypercard, XRefText and Macproject. These programs are functional in

themselves, but through advanced linking are available for operation from within

the tool under development.

The software industry is in need of maps, a plan where they want to go, how

they want to get there and something to measure their progress as they journey.

They need CASE tools. As hardware technology advances are reported on a daily

basis, true software advances are much fewer and farther between. The

technology required to dramatically increase the processing speed of a computer

produces very visible and objective results, but software improvements are often

subjective and very tenuous. Today the focus on software is no longer entirely

aimed at getting the job done, but, due to the rising cost of maintaining and

developing software, rather, to make the process of arriving at the solution more

efficient. Since applicable software theory is limited to the confines of the

hardware and operating systems available, and major breakthroughs are rarely

imminent, the only solution to this "software crisis" is some form of software

- 2

production engineering. This methodology would allow software to be synthesized

instead of "written" or even "built."

Computer Aided Software Engineering, CASE, is a tool well suited to this

concept. Software development has already gone through enough phases to

allow for reuse of design at the concept or even the code level. Such is the aim of

the Department of Defense mandating that all new software systems be written in a

standardized and certified Ada system. Thereby a new portability can be found in

one of the largest software development arenas in the world. This mandate also

implies some operation requirements on the hardware to be used. What has then

been ordained is an ability to employ "technology transfer" across development

lines. This allows for information and ideas to be reused, since, in the present

economy, it is far cheaper to use something that has already been done, than it is

to prepare a customized system. While the tendency used to be that a customer

would require a system to do the job just as he did it on paper, or by hand, today's

customers are more ready to accept something that works already and make some

modification to the process to be performed, whether it involves simply using a new

form or a new procedure. The task is not to get the old job done, but to produce

better results more efficiently.

The state of the software world is still predominantly made up of custom built

software systems, but as more modular languages, such as Pascal, C and Ada,

and operating systems, such as UNIX and UNIX derivatives, come into play,

generic function code segments no longer need to be rewritten. The programmer

need only pool his resources with those of others and find a routine that already

performs the required function. Fortunately, the availability of these routines and

access to them is steadily increasing through the use of Local Area Networks,

Bulletin Boards, software libraries and software warehouses. All of these facilities

encourage sharing software and are being relied upon more and more to cut down

- 3

on development time. Although much is being done about this problem, it still

remains. There are only so many concept changes than can be effected in the

current software development and use arenas, since there is such a large

distribution of effort and users in the field.

Standards, wisely chosen and stringently implemented, will help to set the

pace, but the volatility of the computer industry itself does not lend itself to a lot of

trust in committing to a specific system. Today, standards are more widespread,

but changes are still rapid, and necessary. As standards approach the concept

and implementation level, that is beyond specific coding routines and

methodologies, real, functional, progressive systems can be implemented at many

levels of service.

The term 'CASE TOOL' refers to a computer system tool which provides the

capability to perform software system design, i.e.. Computer-Assisted-Software-

Engineering. The approach represents the problem solving process at an

extremely high level of abstraction. I feel this is important since often the software

engineering process relies specifically on an outline of the complete problem

domain. After all, if the engineer cannot see 'the big picture' how can he be

expected to know exactly where the smaller entities and procedures should be

integrated. The development of CASE tools has been fairly recently introduced

into the software development community and has been met with a tremendous

amount of enthusiasm. The functionality of a CASE tool is based upon the general

structure of the software life-cycle and is built to allow a general specification for

each phase of the software engineering process. This capability provides a

flexibitity that cannot be found with other software design tools. From the

specification / requirements phase where data dictionaries / entity relationships

are constructed, to the maintenance phase where the system design can be

-- 4

m

restructured, the CASE environment provides a variety of tools to aid in the

construction of system software.

II. CASE Needs

The fact that CASE tools are in great demand is partially due to the change

in software needs: programs should be efficient, easily maintained and modifiable,

and are usually quite large. The size of programs especially calls for an efficient

organizational tool for the software engineering process. Many times, the design

process is documented on blackboards, and some even reside completely inside

one software engineer's mind. This causes an extremely difficult problem for the

implementation of large systems when many programmers are needed to complete

the task. Also, the diverse methods used by some designers do not allow for easy

access to program sections by other persons of the software development team.

The use of CASE tools, however, provides a means in which the entire task (be it

large or small) can be assigned to any number of designers on the team. This

capability allows documentation to be constructed while the system is being

constructed. Therefore, the integration of the entire system and changes to the

design can both be performed easily. Not only documentation, but when one

member of the team finds a need to access information from another team member,

that information can be accessed immediately from the same environment. This

has a psychological impact, in fact, when each member feels like 'part of the

whole', the system design process will be more expediently performed.

Artificial Intelligence and Software Engineering

The following diagram illustrates the relationship of Artificial Intelligence and

Software Engineering and how some of the components fit into an overall scheme

of problem solving.

5

(_rward Chain_

E]
Rules

Rules Manipulate

ancl Test Objects

and Logic

_ackward

IF THEN

Condi, _ns Hyp

Inference

Mechanism

Q
DO IAutomatic

Actions IGoal
/Generation

®
Classes Multipl

Inheri
_nlObjects Represent

_lThincjsorldeas I

nherit Up

IV/ Object Oriented

Representati ons

Database

Mapping

Order of Sources

If Change

Meta-Slots
Properties

This diagram is included in this report to give an overall road map to the

process involved in this section. It will be important in the future of an experimental

platform to have the ability to merge the two technologies, Software Engineering

and Artificial Intelligence. This is an important factor. In the first prototype of the

PMCT the sections of AI are not included. It is important to understand that phase

- 6

ORIGINAL PAGE

BLACK A_.'_ ' -'Tr_qQAPM
one of the task Methodology for Automating Software Systems includes the

establishment of the overall framework for the inclusion of all of the components.

Since the original prototype of MASS was done on the Macintosh, primarily

in Hypercard, the ability to launch application gives NASA the ability to invoke

Clips from any point in the process. Dan Rochowiak in his task, which is a part of

the overall UAH task, shows a demonstration of how Clips can be used in the

context of a Hypercard application. This concept will be explored in more detail in

phase II and phase II1.

The Sequence of Events section is the reference facility designed to start the

design and then keep it on track once design is in process.

First

The original proposal is entered into this section and it is modified only as

the customer deems necessary, beyond this, it is only used as a reference tool to

keep the project in line with the customer demands. The Tool also includes work

planning tools, including facilities to generate PERT charts and COCOMO cost

-7
ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

estimating models. These tools are industry standard job tracking references,

allowing new users with project control experience to use the system without

having to learn new methods of project tracking.

Another portion of the tool maintains the project database. Functions of this

portion include specification generation and analysis. These segments are

generated at the inception of the project and serve as benchmarks for the design

process. The Data Dictionary support environment is maintained through the use of

Hypercard and facilitates quick paging through data samples and formats. This

section is directly accessible through the Tool's main menu. The Screen Painter

serves as a user interface to the Data Dictionary. Using Focal Point II, it allows the

user to create data entry and query forms to be used against the dictionary.

Implementation support is a repository of functions to control and maintain system

software design. The functionality of this would also include traceability of software

modifications and other configuration management functions, such as binary

library maintenance. This portion also includes the DOD standard specifications

for software development, and a reusability subsystem, to prevent duplicate effort

on the same project.

Tool Integration is the Focal Point.

One of the main objectives of the Poor Man's Case Tool was to provide

access to a variety of tools for an integrated software development environment.

The idea that a system should be visually intuitive is the focus of this project. From

this point the user can get to any portion of the Case tool that is needed. One of

the important parts of this tool is the Project Monitoring function.It does not appear

on the main card or anywhere in the utilization of the tool. One of the ideas for this

project was to try to derive from simple work pattern study techniques the sequence

of events and underlying patterns that are an integral part of the software

engineering process.The project monitoring function is totally transparent to the

8

engineer that is using the tool.This places no burden on the engineer in the data

collection process.From studying the patterns, further research will be conducted

to help derive the conceptual structures that are a part of the thought process that

goes into the design of software products.

There are several major functions contained in our CASE tool, built for

NASA, they include capabilities to perform the following tasks:

Planning and Monitoring

Statement of Work

Status Reports

Pert Charts

Cost Estimation

Project Data Base Construction Tools

Flexible Drawing Tool

Data Dictionary Construction

Implementation Interface

Compiler Support

Configuration Management Support

Software Quality Assurance Support

Independent Verification and Validation

Complete Traceability

These components are the major tools used by software engineers for a

complete software design. They work together as illustrated. In order to visit any

section of the tool just point the mouse at the appropriate item and click the mouse

to select that item. The following screen is the main focal point of the entire Poor

Man's Case TooI(PMCT).

Important Change since Mid-Year Report.

9

There have been many additions since the generation of the first Mid-Year

Report. The first is the main screen and the approach for the software engineer,

and the approach to the entire software process.

_ull Me

UAH is Comp]ete]y Case Sens|t| Ye I

--I _ Io

I°°°°°°°°° I
IO0OO0OO0
I_OOOOO_

With the pull down menu in the above screen, the user has options not

before available. This Menu looks like the following.

Pull Me Down

Process

Plan

Repository

Help

- I0

Assume the user chooses I_)_ as the selection the following

screen would appear. A major change to the PMCT is that now the tool provides

methodology specific help and drawing tool aid. The current methods supported at

this time are Data Flow, Data Structured(Warnler-Orr), and Entity

Relationship approach.
I

Xelp is always available

In addition there is also the addition of process. A CASE tool will not

provide the desired result unless it is based on an adequate software process

model. The Current models available are IEEE, 2167a, and the NASA

Management Standard.

- 11

i--] A Software Development Process

Customer

CM

Audits

_ Requirements Stage) _-_, _i_

- Software Development

-- SSR ApprovaJ

Design StageIPDR APP_:_

and Evaluation Sta(

r"

I I<.SoftwareProjectLibrary

Implementation Sta(

Proj Mgl

One of the salient features that has been added to the PMCT since the mid-

year is the inclusion of a simple report generator. It was decided to use the

package REPORTS from Activision for the prototype, since it works easily with the

existing hypercard framework. The following is the new data dictionary setup in the

PMCT. It is this structure that allows for expanded control of the data dictionary.

When one is satisfied that the data dictionary is correct, or one wants to examine

the data dictionary, the person can

- 12

. Group Name _ B-'aHon _ I_

Actual Description i __.

tance Status i

Access Authority

Validity and Edit Rules

Definition Responsibility

Report Card

CNew DD Entru)

select a report card from the reporting section of the data dictionary stack. The

following is the standard reporting card. For further features see the Reports

Reference Manual.

_ 13

: Print

: Edit Layout

• Edit Script

• New Report

• Select Report

; Chain Reports

• Install Report Card

" Help

Description

The drawing tool assists in the creation of Data Flow Diagrams. The tool

provides buttons that generate fields to represent External and Storage nodes,

creates a button to represent a Process node and generates a field to contain the

Data Link. These objects allow the data flow diagram to be searched by button

links and text searches. A set of Macpaint tools is included to add additional text

and graphics to the diagrams.The objects can be modified or deleted at any time. It

should be noted that the user can select the option of using the embedded drawing

tool or they may chose to import into this drawing tool their favorite format.

Importance

The drawing tool provides a map into the design of the project. This map is

a high level plan toward achieving the project goal, describing the flow of data and

- 14

the relationship among components.The drawing tool is the map that guides the

creation of the other maps within the CASE tool.

Sample Example

The following will be a sample of the types of screens that will be available

from the drawing tool. The first is the main card. The entire drawing tool is

completely flexible to support many types of applications. It will make available

through selective buttons the ability to create and modify standard shapes, such as

oval, square etc. The user can just point the mouse at the buttons and click to

create that shape.

I Graph Desiqner I I',_n Di_nun otDFDDi_nuns

FI_O¢(S$

CCP

- 15

Notice the icon in the bottom of the screen, this is a sticky note. When the

user clicks on this it will pop open a note window for the user to collect and record

any thoughts on the subject at hand. The user can then easily tuck these away into

the existing diagram, by closing the window.

The Report Generator is also active in this section of the PMCT. There are

numerous reports that one can select from the PMCT.

Job Aid

All of the accessible functions in the Poor Man's Case Tool have their own

job aids. The idea was to make the initial training time minimal, and to provide a

level of context sensitive help facilities available to the novice user as well as the

experienced user.

Graph Desiqnerl
I I

Explore the Up Arrow s)

Externals are

Shadowed

Rectangles

Data Storage is

no shadowed

Rectangles

External Input Al I Oata Storaqe I,

&

Processes

are Rounded

Rectangles

('Th_ _ a Process Box)

_lick on these etmms, Twit you might

16

Data Dlctlonary Support Environment

Data Dictionary

Description

In PMCT the data dictionary is directly linked to the drawing and vice versa.

It is important and mandatory to establish this link between graph and dictionary.

The data dictionary is a storehouse of information for data fields. The data

dictionary is responsible for describing many aspects of the total system.The data

dictionary includes many cross references between data elements and program

modules. The cross references also include modules, the reports they generate,

and the variables used in them. The information that the dictionary contains is

broken down into three parts.

The sections of the PMCT

o Start

m

up procedures

ao

b.

C.

d.

e,

f.

g.

Who is doing the project

Scope of Project

Project Start

Scheduled Completion

Why is the project being done

Who says what the project will encompass

Who is going to pay for the project

Perso

a.

b.

C.

d.

e.

f.

g.

nnel

Group Name

The Database Administrator

Individual member of the group

The individuals job title

The company that the individual works for

The address of the company

Phone numbers for contacting the individual

3. Variables and Data

- 17

a,

b

C.

d.

e.

L

g.

h.

Project ID

Group Name doing the project.

Variable name

Variable length and range

Vadable type

Modules accessed

Reports generated

Module Creation and Update

Importance:

The importance of the data dictionary is to limit the confusion that occurs

during major programming tasks. The standards are set up in the data dictionary

that the project will use. The data dictionary allows everyone access to the

standard format of the data and the standard usage of the data. In this respect the

data dictionary directly supports software development and maintenance.

Sample Example

The following are sample examples from the data dictionary section of the

PMCT(Poor Man's Case Tool). The first screen is the main screen to select the

type of information to go into the dictionary.

- 18

.......... . .. ,,,, ,,,....,.,, ,,,,, ... ,,.., ,,.,,. ..

Data Dictionary

Personnel information I I -up 1

I JOB AID 1

_L. I Drawing Tool Link 1

The next information is the personnel assigned to the project and the

information pertinent to each of those personnel. Notice that the Job Aids are

always accessible from any place.

- 19

,Job

C •rap a_¥

_qtr'eet

Clty

,I_i. L..I

I ... I

¢

Work Phone

Home Phone t...1

II

The report generator can generate reports from the data dictionary.

Reports TM _Zt_RW_aE'FROM_ACTIVI SION•

For Data Flow Diagrammer

Unpaid Invoices

I
I
I
I
I
II
II
II

(To edit report buttonpress optionkeg while clicking.)

Print

Edit Layout

Edit Script

New Report

Select Report

Chain Reports

Install Report Card

Help

This customizing process is quite simple and flexible in the framework of the

hypercard environment.

- 2O

Name ef Fleld I
Alias

Actual Description

_]i l_r 4J

Acceptance Status I

Definition Responslblllty I

Access Aulhorlty

Validity and Edit Rules I

Consistency Checklng I

Reasonableness Checks I

Usage Propagation I

Validation Propagation I

Functlon

I]
(New DO Entru_

]

Job Aid

It is an important feature to remember that all screens contain a link to the

job aids for that section of the project. It is also important to indicate that in the job

aids themselves there is the ability for the end user to have on-line note-taking

capability, so they can enhance the job aids.

Screen Painter

Linked directly to the data dictionary and contained in the Reports section of

the PMCT is the ability to select fields into a temporary schema and produce a

painted screen or mock report. This utilizes a tool called Reports. Reports is a

simple easy report generator available inside hypercard.

Implementation Support

Standards

21

The standard supported by PMCT are NASA Management Standards for

Space Station, DoD STD 2167 and associated companion document DoD STD

287.

This will be a system and format designed to maintain coordination of

development of project components. A statement of this standard follows::

The above is a sample of the the main screen in the on line version of 2167.

Currently the process is in place to move to 2167a and 287.

Importance

- 22

The importance of this aspect of the Tool following this standard is that it will

allow for more structured and traceable code development. Since this standard

will become the model for all new code development for military projects,

government contracting corporations will be required to present their development

work in this format.This standardization for such a large industry will lead to a more

evenly distributed development process for all software development undertakings.

Sam Exam

DID Cross Reference

Applicable DID 1_o.
>DI-CMAI_-80008 <

DI-HCCI_-80030

The next section of the implementation part of PMCT is the Compiler Support

interface. This would allow the users to select the compiler of their choice.

Sample Example

The following is a sample example of the compiler interface card.

- 23

I Compilers, I

Light Speed C Light Speed C Job Aid

Light Speed Pascal Light Speed Pascal Job Aid

Job Aid

The following is one of the job aids that is available in the PMCT.

aid for Lightspeed Pascal.

WELCOME TO THE LIGHTSPEED PASCSAL JOB AID.

It is the job

INTRODUCTION ***

THE PURPOSE OF THIS JOB AID WILL BE TO GIVE A GENERAL

INTRODUCTION TO THE USE OF LIGHTSPEED PASCAL IN

GENERATING AND RUNNING A SIMPLE PROGRAM THROUGH THE

COMPILER.

THE OBJECT OF THIS JOB AID IS NOT TO BE AN INSTRUCTION

MANUAL, BUT RATHER A GUIDE THAT MAY BE USED IN SYSTEM

CONFIGURATION BUILDING.

24

Reusability Component Library Interface

Description and Importance.

Reusability is not a new concept in the world of software engineedng.

Software engineering has reached a "software crisis', (an overwhelming increase

in the demand for software that is reliable, efficient, maintainable, understandable,

delivered on time and at "reasonable" costs), that has brought reusability into the

spotlight.This "software crisis" has made the reusability of software an issue that

must be reconciled. Reuse is the use of previously acquired concepts and objects

in a new situation.

Reusability is a measure of the ease with which one can use those previous

concepts and objects in the new situation."With both software production costs and

the amount of new software produced escalating annually, the application of

reusability to software development offers the potential for vast improvements in

programmer productivity which will be a key to solving the "software crisis'.lf

current trends continue, in the near future many companies that have not adopted

software reuse as a standard will find themselves in a situation where they can no

longer be competitive in the contracts arena.Boehm 1 has stated that, "the demand

for new software is increasing faster than our ability to supply it, using traditional

approaches."

With systems today being too large for a single individual to comprehend

and increased pressure to keep development costs less than system complexity

growth, and the cost of software being an exponential function of its size, there is

the creation of a no win situation for software developers using the traditional

approaches referred to by Boehm. This, and the serious shortage of qualified

25

programmers to meet these demands, will become a driving force behind

reusability.

The Software Engineering Repository Retrieval System (SERRS) provides a

mechanism for the cataloging and retrieval of various repository components. This

system implements the design methodology of hypertext. SERRS is implemented in

XREFTEXT running on top of HYPERCARD as defined previously.

SERRS was created with the idea of allowing the maximum amount of

flexibility for traversal while maintaining a structured traversal method, and minimizing

maintenance complexities. Flexibility was built into the basic structure to allow

repositories to be added with minimal structure changes. The basic structure is a

modified hierarchical structure stored as a key word index stack. Each element on

the stack is known as a card. From the top of the structure, forward paths available

lead to more detailed levels of the repository, one level at a time. The backward

paths of the structure are less hierarchical in that all levels have paths that lead back

to the previous level, but there are also paths that return to the top levels. As the user

becomes more familiar with the stack, a selection can be made from the key word

index that allows the immediate selection of the desired card instead of traversing

SERRS from the top. An asterisk, (*), following a word indicates that this is a key word

for a card containing information specific to the key word. Selection of this word will

provide a forward or backward path to another level.

26

SERRS HIERARCHY

_'A'BEGI NN ING t_REUSABI L I Ty

I

_eposi tory

I

_SERRS

)ository I-

Component

Type l-n

)onent 1

Figure 3

omponent 1-

Source Co_

27

The first four cards, as shown in Figure 3, contain both introductory information

concerning software reusability and an informal table of contents. The title page and

credits for SERRS is contained on the A'BEGINNING card. The A'BEGINNING card is

the highest level of the hierarchy. From the A'BEGINNING card the user can exit

SERRS or select a forward path to the Reusability card for an explanation of the

principles of reusability, or the Repository card to traverse SERRS. The Reusability

card is only a definition card and exists as a side card from A'BEGINNING. Because

this card is not an intricate part of SERRS, the user must use the direction keys

provided on the top line of the screen to return to A'BEGINNING. The Repository card

details the various repositories and provides a brief description of the structure of

SERRS, with a backward path to the A'BEGINNING card and a forward path to the

SERRS card. The Repository card is the only means to return to the A'BEGINNING

card. The SERRS card provides a detailed listing of the high level break down of

SERRS, including access to the general copyright and disclaimer information. The

SERRS card can be read as an informal table of contents. The hierarchy breaks

down into three branches from the SERRS card that will be discussed separately.

These branches are: The Component Type, the Available Repositories, and the

Classification Characteristics, (refer to Figure 3).

The Component Type branch allows the selection of the following component

type cards: Artificial Intelligence (AI), Benchmarks, Common APSE Interface Set

(CAIS), Communications, Reusable Software Components, Database Management,

Documentation, Graphics, Project Management, Ada Software Development Tools

(ASDT), and Other Tools, see Figure 4. Each component type card provides a listing

28

of all components specific to a selected component type. From each component type

card a backward path is provided to the SERRS card, the Repository card, and to a

specific repository card. A forward path to all component cards applicable to the

component type is accessible from the component type cards (refer to Figure 3). The

traversal of the component cards is detailed in the final paragraphs.

 TABAS !

I MANAGEMENT ENTATION

IN_T_ TIFICAL B_CHMARKSLLEGENCE I

I
l I

Figure 4

The Available Repositories branch provides access to the various software

Repository cards that are available within SERRS, (refer to Figure 5). The repository

high-level qualifiers are shown in parentheses corresponding to the appropriate

repository. The repositories include: BMA Math (BMA), BOOCH (BOO), CAMP

(CMP), GRACE (EVB), QTC Math (QTC), and Simtel20 ($20). From a specific

repository card, there is a backward path to the SERRS card. The selection of the

- 29

Component Type cards provide the forward path within the specific Repository cards.

These Component Type cards are the same as the Component Type cards selected

in the Component Type branch, (refer to Figure 3). Only the Component Type cards

specific to a particular Repository card are accessible from that Repository card. From

the selected Component Type cards, a backward path can be selected to the SERRS

card, the Repository card, and to a specific repository card. A forward path is

provided to all Component cards under the component type, see Figure 3. Again, the

traversal of the Component cards is explained in the final paragraphs.

1
I 1 1t !

Figure 5

The Classification Characteristics branch accesses eight classification

characteristics levels of the Ada language. The eight Classification Characteristics

cards that can be selected are: the Generic Packages card, the Definition Packages

card, the Object-Oriented Packages card, the Tasks card, the Functions card, the

Procedures card, and the Programs card, (refer to Figure 6). A backward path can be

selected to the SERRS card. The forward paths are the selection of the various

- 3O

Component Cards meeting the selected characteristic, see Figure 3. Again, the

traversal of the component cards is explained in the final paragraphs.

GAENER IC

CKAGES

I IOBJ!CT-

Figure 6

Regardless of the path chosen, all paths terminate at an abstraction of a

particular component in the repository, excluding the documentation component

type. With the exception of the Reusable Components card, selection of a

Component card provides the user with a prologue explaining the operations

performed by the selected component and a list of all associated files residing in the

corresponding repository. The basic path structure provided for the component cards

is a backward path to a specific repository card, a backward path to the Repository

card, a backward path to a specific classification characteristics card, and/or a

backward path to a specific Component Type card as applicable. Due to storage

constraints, only selected Component cards have forward paths to the applicable

Component Source Code card, which makes up the bottom level of the hierarchy,

_ 31

(refer to Figure 3). From the prologue provided on the selected Component Card, the

Component Source Code card can be selected from the associated files list and

viewed. These files are identifiable by an "A" following the repository qualifier (i.e.

S20A'BIT). Only a backward path to the Component card is provided from the

Component Source Code card.

In the case of the Reusable Components card, a further hierarchical break

down is provided for math components and structure components. This further

break down is provided because of the interest in the components falling under

these categories. All other components listed on the Reusable Components card

are selected and traversed in the manner described above, so the traversal

method will not be re-iterated. From the Reusable Components Card, math

components and structure Components can be traversed by the Math card, the

Structures card, a Repository Math card, or a Repository Structures card, see

Figure 7. The backward paths for the Math card and the Structures card returns to

the Reusable Components card. The forward paths from the Math card are to the

Math Component Type cards. The forward paths from the Structures card are to

the Structures Component Type cards. The backward paths from the Math

Component Type cards are to the Reusable Components card, and the Math card.

The forward path is to the Math Component cards. The backward paths from the

Structures Component Type cards are to the the Reusable Components card, and

the Structures card. The forward path is to the Structures Component cards. The

backward path from the Repository Math card and the Repository Structures card is

to the Reusable Components card. The forward path from the Repository Math

card is to the Math Component cards. The forward path from the Repository

Structures card is to the Structures Component cards. Once either the Math

Component cards or the Structures Component cards have been selected,

traversal of these cards occurs exactly as traversal of the Component cards in the

32

ORIGINAL PAGE IS

OF, pOOR QUALITY

previous paragraph occurred. Refer to Figure 7 for a detailed description of the

forward paths within the Reusable Components card.

Planning Tools

The same planning tools are available with the addition of time

management. Added also is the feature of time management with the addition of

Focal Point II. Refer to the Focal Point II Manual and Job Aid for additional

information on the features of this tool.

Description.

33

The addition of Focal Point II to the planning scenario is to allow for a more

flexible monitorable planning process. Before discussion of the planning process it

is important to understand the importance of monitoring of the planning process in

the overall Software Engineering Scenario.

A major focus of activity will be on the importance of applying technology to the

improvement of the state of practice in software engineering. The goal of this program

is to develop an experimental software engineering platform that can serve as a

research vehicle to carry software research into the 90's and beyond. This project is a

first step in establishing this research program. There are two thrusts to this program,

one is Automation, and the other is Quality.

Quality in the software process is quite tenuous. This paper suggest some

criteria built in the supporting environment that rely on tried and proven methods for

the increase of quality demonstrated in other engineering disciplines. This study will

help insure quality in the software engineering process. Watts Humphry 1 in his book

"Managing the Software Process" describes five levels of software maturity. These

five levels are:

.

..

.

0

.

Initial - Until process is under statistical quality control, orderly
progress in process improvement is not possible. While there are
many degrees of statistical quality control, the first step is to achieve
rudimentary predictability of schedules and cost.
Repeatable - A stable process with repeatable levels of quality control,
by initiating rigorous project management of commitments, cost,
schedules, and changes.
Defined - The organization has defined the process as a basis for
consistent implementation and better understanding. At this point
advanced technology can be usefully introduced.
Managed - The organization has initiated comprehensive process
measurement and analysis. This is when the most significant quality
improvements begin.
Optimizing - The organization now has a foundation for continuing
improvement and optimization of the process.

1Humphrey, Watts, Managing The Software Development Process, Addison Wesley, 1989.

3,4

While there are other factors involved in the maturing of the software process,

the primary objective is to achieve a controlled and measured process for the

foundation. In the developing of the Software Assessment Procedures, the Software

Engineering Institute tried to establish guidelines that would help software developers

discover the level currently achieved, and to prescribe a formula for moving from one

level to another.

This aspect of the process explored in this paper is that of requirements

traceability, and the importance of requirements traceability as an integral part of the

soft ware process. Using a more traditional approach the idea of traceability belongs

in the area of documentation. It was up to the contractor to keep a traceability

mapping from requirements to test item, and to demonstrate conformance to the

customer. Instead of contributing to the overall accomplishment of the process this

tedious task puts an increased burden on the development process. The delivery of

the traceability part of the product is usually delayed until the latter steps in the

process. The clerical burden placed on the project was often a deterrent to the

progress of the product.

There is an increased demand for the inclusion of traceability at all levels of the

software development process. Computer Assisted Software Engineering research

has placed too much emphasis on trying to answer the questions concerning software

life-cycle support, and not on trying to define what the software process is all about. It

is of utmost importance to carefully distinguish between the idea of process and life-

cycle. A process will be thought of as an ongoing activity, where a life-cycle will have

specific beginning and ending tasks. The concept of traceability in a product belongs

to the life-cycle aspects of the project, but the idea of traceability is a process that must

transcend the individual process. It must be an integral part of the software

development environment, and it must become an integral component of the idea of

quality in the software engineering process.

- 35

If you would ask a fellow worker, student, or professor the question, "Are you for

quality?", they would overwhelmingly respond Yes. If everyone is for quality, and

quality is an integral part of the software process, then why is the production of quality

software so hard? The problem of quality in the production of software stems from

adoption of the philosophy of appraisal as a means of producing good quality

software, instead of prevention. "Quality is conformance to requirements". 1 Phil

Crosby symbolizes the process of quality by the establishment of four quality

absolutes. These are

1. A Definition of Quality - Conformance to requirements

2. A System for Quality - Prevention instead of inspection and appraisal

3. Performance Standards for Quality - Zero Defects

4. Measurement to the Performance Standards - The Price of

Nonconformance.

Crosby describes a process by the following diagram.

Process r'lodel

Quality Performance

Standard

Customer

Inputs

PROCESS

MODEL
Internal Actions

Equipment/J

Facilities

Procedures/
Process Definition

Custom er

Approved

Output

Training/

Knowledge

1Crosby, Phillip, Quality Improvement Through Defect Prevention: The Individual's Role. Phil

Crosby Associates, Inc., 1985.

-- 36

This is a simplistic diagram of what is usually a more complex phenomenon. It

is important to understand that the software process is the foundation for quality, and

the process is the target for knowledge capture in a knowledge-based CASE

Environment.

The term CASE refers to a computer system tool which provides the capability

to assist in the software development process, hence, Computer-Assisted-Software-

Engineering. The proliferation of CASE tools has fairly recently met with a

tremendous amount of enthusiasm from the software community. There are lots of

good CASE tools that are present in the marketplace today. The question arises "why

another CASE Tool?" The idea behind the Poor Man's Case Tool (PMCT)

currently under development at the University of Alabama in Huntsville is to establish

a research tool for exploring new ideas about Software Engineering. The CASE

vendors while providing a critical service to the software industry, have not provided a

low cost approach to an experimental platform for the study of the software process.

The idea of an experimental platform to explore new techniques, methods, policies,

and environments gives the software engineering community the ability to try new

approaches that would not be feasible within the constraints of the software process.

The fact that CASE tools are in great demand is partially due to the change in software

needs. Programs should be efficient, easily maintained and modifiable, however this

is not always the case. Large Embedded Software Systems such as the software for

NASA's Manned Space Station and the software support for the Strategic Defense

Initiative call for the support of an efficient organizational tool designed to support the

software engineering process. Many times, the process and the product are poorly

documented and this leads to problems in the conformance/non-conformance

determination. The use of knowledge-based CASE tools allows documentation to be

generated as an active part of the system construction and not be a burden to the

overall purpose. Therefore, the integration of, change of, re-evaluation of, and

_ 37

implementation of the entire system should be performed with the minimum amount of

effort. A fundamental objective of the research program at University of Alabama in

Huntsville is the introduction of quality as a measurable component of the software

support environment, and the inclusion of metrics to support level of improvements in

the Software Assessments.

In the first version the pert chart was the significant portion of the planning process.

This is implemented with MacProject II. It features schedule charts, calendars,

resource tables, fixed cost tables, cash flow charts, and task time _ines. The

schedule charts are made of task bosses joined together with lines to show the

sequence of events.The critical path is marked with a bold line, so the analyst can

easily see which task has to be done next for progress to continue smoothly.If a

task is a major point in the project it can be marked as a milestone. As the project

progresses tasks that are completed can be marked finished.You can list up to

eight resources per task, and because different resources will have different work

weeks, work week calendars are provided.In each project or subproject there are

eight calendars available, each of these calendars can be assigned to a particular

resource.MacProject II uses the calendars to calculate the expenses per week, and

that figure is entered automatically in the cash flow table.The fixed cost table is

used for one time expenses or income such as tools, equipment, and loans. The

fixed cost table is added to the cash flow table, so that the planner will know at any

one time how much money is available. The task time line is a graph showing the

progress of the project. It shows the percent completed of each task. This gives a

user a good idea where he stands and which tasks need more attention. Any

changes made in the number of resources or cost will automatically be reflected in

the appropriate tables and graphs.

38

Sample Example

The following represent the types of planning tools provided in the Poor

Man's Case Tool. The user when entering the planning will be given the option to

select from the job aids, the use of COCOMO, Macproject or a tutorial on

Macproject.

I COST ESTIMATION]

I MacProject I I

:_" MacProject II Tutorial :_"

I MacProject I I Job Aids I

All sections contain self-contained job aids. The following is a sample of the

card that is the key to the job aids on the pert chart. The user may select any option

or sequence of options for explanation on how to prepare a pert chart.

-- 39

The original agreement on the development of this tool was that we would

use no more than existing software that was on the Macintosh in Room A238 in

Building 4487 at NASA at the Marshall Space Flight Center in Huntsville, Alabama.

This is an example of the use of Macproject. We did not develop this just to

integrate this into the overall framework of the design of the PMCT. The following

chart is the standard pert chart. The numbers around the boxes are earliest start,

duration, latest finish, and latest start, starting at the top left and reading clockwise.

- 4O

3/17/89 0.68 4/7/89 0.4

313.189 0.45
" :_-<o_ Gather material for I Include

I Finish Mid Year} _,._ ._ Poor Man's Case _, Automated

l Report tX_"........ Document _J Status
I i-........ _ " Generator

....... _ 3/17/89 I _,.6./.89 4/28/89 _ /3/3/89 3 ._/_._89 3/16/89 I_.
__ I _. 89 _ _3 \

StartLastPart of i_:_...... "";_

/ _ draftusersl...... 5/12/8._

3 / 3 _ __ / 8 9 _ 4 _ 7I_ _;'_'_ _"_"_' /89 iil1_

I _ Fin

4/7/89 / o,9o_
I
I Man's Case

I En_iroment
N 4/14/89 5/, 1/89

3/3/_9 0.90

3/3/89 0

Macintosh

5/12/89 5/12/89

I Refine I

Prototype to _""_

Production Tool/
for ESS and I

5/12/89 e.bv 6/8/89
3/3/89 Of

Generate
Detailed Plan

for Second
Year

5/12/89 6/8/89

In order to monitor the planned process, the addition of the Project Manager

from Focal Point II was added in addition to Pert and COCOMO.

41

ORIGINAL F;:,G_ _3
OF POOR QUALITY

File Edit Go Stacks Launch Projects

[_ l'_ect.S..'L[..P....P..r.o.,to..t..YP.e...M.en_.le....m...e..,n.,t..................P_ect #...LO..O......................0 P_o,._
P.O.#0 P_ed:

[3 Client # ..L0...O......................Nam_ ...T..Lp,.SE..c..
c_ #]. Na.r._.h._].1....,B,._tn.U...m......................................T_ ...s...7.,s.-...3....s...3..,,6..........................
c m_,,_ #2 ...'z_ ..

In this frame you see the project overview. It gives project name, project #,

Client, Contact, Cost, Next follow-up time and status information. This frame will

break down into other frames.

Notice the Icon on the right column of the diagram that resembles a tree

structure. This is the task breakdown Icon. It can be used to model a traditional

work breakdown structure, but it adds many more features. After the specification

and the structure of the projects are constructed the project manager, or the

software engineer can do task assignment. This does not necessarily have to be

done by management. This tool can be viewed as just a productivity improvement

tool by the participating individuals on the task.

- 42

OF POOR QUALiTy"

File Edit Go Stacks Launch Tasks

il

E] lh_ect ..T,._,k Supervis_ ...w.._.r..r.._.LM.._._.e..1...e..y......................

Task Descn_ti, m ...

EEl Ttsk R..-p_ ..

DJd:e Ac_ed To DJd:e/Tbne Sent ..

Due DJd:e ...Revised Due Dale ...

sl...I ...I
EEl LJ,._'t]Repox4: DM:e ..C_d? 0 Yes _ No

m

m
I

Delel;llt:ed Sub-Tasks
¢ m_.t/_ D,ee ..I

I
I

m

I
I

In the task manager the above frame serves as a main menu. Observe the section

labelled Task Responsibility, and Last Report Date. Beside that section is a radio

box labelled completed. This is designed so that when a user finishes a task it can

be checked off, and when the report section of this program is run, it will generate a

status report of the completed task. Frame below shows those two sections

exploded. In the "To" box the person describes the reporting responsibility of the

person or persons assigned. The bottom is the actual project status, and this is the

weekly status reporting slot.

43

File Edit Go Stacks Launch Tasks

project ..Task Supervisor ...W...a...r...r..e..O.....N...o.._.e..1.._.y......................

Task Descxip4aima ...

(None)

.. .,°

1...I
No

In the project summary frame above there was a next follow up. The next frame

demonstrates the project follow up record.

,4,4

File Edit Go Stacks Launch Projects

i,_,ct #.J...o..Q........................

cuent Name ..N.ASA...

I'roject Ne.me .S.T..E.p....p._.o..t..o.t.._tp..e...Ma..n.._g.e...m...e.qt................................

8/2/89 ...M,_etjr).g..._l.'_.h..H..a.r.r..yTennant
8/15/89 _*PROJECT DUE **

I I

The many reports available from focal point are in addition to the many types of

reports that can be derived from Macproject. Just as all of the other parts of the

PMCT, this too has a job aid and a tutorial concerning its usage.

COCOMO Model for Cost Estimating

Description

Parameters of the COCOMO model.

AEXP - Application experience - rates the experience of the project team on

similar applications. A 'very low' rating is given for less than 4 month

experience and 'very high' for more than 12 years.

- ,45

ASCAP - Analyst capability - rates the analyst team in terms of analysis ability,

efficiency and the ability to co-operate.

BASIC MODEL

The basic model estimates the cost of a project in a quick and rough fashion.It is

used mostly for small to medium software projects, it uses three modes of software

development organic, semi-detached and embedded COCOMO.

CONSTRUCTIVE COST MODEL

Boehm's Constructive Cost Model (COCOMO) will be used for the software

cost estimation.COCOMO is a hierarchy of software cost-estimation models which

includes basic, intermediate and detailed models. Because the project

environment will be different for each project, cost drivers are used to make

estimation more accurate.

Sample Example

The following is a sample of the job aid on the COCOMO cost estimating

model.

45

The user can choose the level of difficulty of the system.

SUBJECTS

C BASIC MODEL)

_INSTRUCTIONS)

C INTERMEDIATE)

COSTDRIVERS) _ DETAILED)

They will be able to receive help and calculate any level of the COCOMO

cost estimating model. This was the model chosen to integrate into the prototype,

but in later editions the user will be able to select from other popular cost

estimating models, or to include their own into the structure.

- ,q7

DErACH]_DFORMU LA

MANPOWER COST

K(m) = 3.0 (S(k)**l.12)

K(m) is manpower cost inman.months.

S(k) is thesizeoftheproject expressed inthousands of delivered

source statements.

DEVELOPMENT TIME

T(d) = 2.5 (K(m)**0.35)

T(d) Is the development time expressed in months.

K(m) is the manpower cost derived above.

BACK }

The following is a sample of the Organic Formula.

ORGANICFORMULA

MANPOWER COST

K(m) = 2.45 (S(k)*'I.05)

K(m) is manpower cost in man.months.

S(k) is the size of the project expressed in thousands of delivered
source statements.

DEVELOPMENT TIME

T(d) --2.5 (K(m)**0.38)

T(d) is the development time expressed in months.

K(m) is the manpower cost derived above.

(BACK)

- 48

Project Data Base

Specification

Specification

Generation and Analysis

Generator Tool

In the following frame the user can see the section which can contain the

project specifications. In the earlier version there is a specification data base, in

order to knit the pieces together the user must come to this frame in the planner

and then enter the Specification Tool, this allows for the monitoring of the

individual pieces.

File Edit Go Stacks Launch

Z ooBmm mm _,_........................._ l_Oeet #..1................................ I.L_: Upl._ 8/2/89

------ Client Name..T..,....D..S.E...G.. I_
Project Name .s.T..[.p....p..r...q.t.0..t.y_.e..M_.n._g.e.._.ent................................ -------

9pecaficat,ons

m

CLIEIIT._

49

Description

The project data base integrated with the data dictionary and the drawing

tool serves the focal point of the PMCT. It is the place where the user can store all

of the project documentation, link to all of the system drawings, and in turn to the

data dictionary.

Sample Example

The following is the main menu for the project data base. It is important to

be able to enter the documentation into the data base but be able to analyze the

existing specifications.

•System Doctunentation-

r

System

Documentation

• Both are implemented in Xreftek.

ISpecificatio

Analyzer" n1

50

When the user selects project documentation the user will be allowed to

view or enter any part of the document in any part of the system that is relevant.

is this hypertext feature that makes the storage of specifications elegant.

It

Add gword : Reindex :

A sample of the project data base is the configuration items card. Any field

that has an asterisk will be active and can be selected. If the user wants to go to

System Specification then they must just click on that item.

51

Configurationltems

SysternSpecification*

SoftvareProjectPlan*

SoftvareRequirernentsSpecifications*

Desi_Specification*

SourceCodeListir_*

Testir_*
MaintenanceDocuments*

Job Aid

There is also a self contained job aid on the use of the project data base.

52

Time and Motion Studies on The Software Engineering Process.

One of the salient features of the PMCT is that it is build on a hypermedia based

environment, and in the background there exists a monitor to determine the activities

for each utilization of the tool. One can monitor each frame, the time entered, the time

exited, the sections of the screen that were active in each of the user interfaces to the

system. The concept of measurement in the quality process demands that we have

time and motion data to help modify the process so that the user can produce quality

software. This leads to the section of this research on Requirements.

Building Requirements that are Conceptually Traceable

Requirements Traceability is a method of demonstrating the conformance or

non-conformance of the process selected. Usually this is demonstrated by some

mechanism that will show the links between the final product documentation and the

requirements document. This is usually done by the means of a requirements

traceability matrix. In DoD-Std-2167a, the Department of Defense has mandated that

traceability of requirements is a critical and required component when delivering

mission critical defense systems. Requirements traceability is a method to ensure that

not only is a software system correct, but that it is also complete. It gives a path from

requirements to code that the developer can trace in either direction. These

traceability links are essential in the verification of the component in question, but are

also a valuable tool in the assessment of a software change.

In light of the discussion of quality and Crosby's four absolutes, the problem of

the monitoring and mapping of conformance/non-conformance from the process to the

product is an important issue. In the use of static documents this is quite difficult. Here

we introduce into the experimental platform the concept of active knowledge bases as

software requirements. In the utilization of the PMCT a person does not build

documentation. This is a by-product of the knowledge capture process. Instead of

being a document for traceability the specification for a system is an active component

53

(a knowledge base) and this knowledge base is executable and the traceability

aspects of the problem are addressed in the explanation functions of the expert

system tool selected. There are typically two types of questions that an acceptable

expert systems shell should be able to answer. These are

1. Why did you arrive at this conclusion?

2. How did you derive such an answer?

These also are two important issues(questions) in the concept of traceability:

1. Why is this subcomponent necessary to conform to the requirement?

2. How does this subcomponent trace to its requirement?

The following is a design of a Computer Systems Configuration Item(CSCI) in a

real-time embedded system, created with the PMCT.

Module_

Module " uirement #

I Module 33

Module 339_n Process #2

Module 233 (_) uirement

Module 43

[Module 303

Module 37

n Process

:n Process #2;

Process

uirement

CSCl #15

It contains three major requirements which decompose into 4 designs which

decompose into 8 modules. Design processes are captured, put under configuration

5,4

control as each CSCI is defined, placed in the reusable repository, and put into the

active knowledge base which reflects the product to be delivered. Notice also that

design process #27 is a part of requirement #2 and requirement #3 also. Reusable

components (designs and code) are becoming an important issue in the design of

complex systems.

As each CSCI is deemed necessary, it is entered into the knowledge base.

This would provide the expert systems shell with a goal or hypothesis. As each

requirement was added to the functionality of CSC115 an entry would be made into

the the knowledge base. A first level rule would be as follows:

If Requirement1 and Requirement2 and Requirement 3 then 0S0115.

In the building of knowledge based systems there are two basic chaining

mechanisms that are important in the building of production rule knowledge based

systems, These are backward chaining and forward chaining. Backward chaining

starts with a goal and tries to determine if all of the subgoals and premises of the goal

are true. It starts with the then part of the clause and tries to get a true response from

all of the if parts of the production rules. In our example CSC115 would be the goal

and the three requirements necessary to satisfy that goal would be the subgoals.

These subgoals are necessary to prove that goal true. In determining the traceability

of components of a system, one would use backward chaining The three

requirements are now subgoals that must be true for the final CSCI to be deemed

true(met). As each requirement is addressed by a certain sequence in the design

processes, the knowledge base is expanded. The concept of explanation in

knowledge-based systems is one of the unique features of such systems. Consider a

different version of the above diagram. The areas in black indicate completion. If we

question the knowledge-based system as to the status of CSCI 15 it would reply that

- 55

CSCI 15 is not met. If we asked why it would conclude that Requirement #1 has been

meet, but that design process 27 is still not satisfactory to complete the requirement.

Module 43
n Process

n _rocess

uirement CSCI #I 5

uirement #3,)

Further examination would conclude that design process #2 of requirement #2

and and design process #99 of requirement #3 are complete, however module #43 of

design process #27 seems to be a problem. If asked how did the system determine

that conclusion, the backward chaining mechanism would point out that module 43 is

a part of design process #27 which is a part of both requirements #2 and requirements

#3. We could at this time focus attention on the module in question. Supposition,

Module #43 cannot be met.

We would like to be able at this point to assess the impact of this problem on the

entire design. Data-driven knowledge-based systems reason from premise to

conclusion, instead of from hypothesis to premise as in backward chaining. This

would be important to be able to do in assessing the impact of the design change on

the entire system. We could query the system to determine what requirements are

impacted by module 43. It is certain that module 43 impacts design process #27 in

requirement #2 and requirement #3. If this was a complex system, there could be

- 56

hundreds of cases that could possibly contain this scenario. It is very difficult to

manipulate that kind of information even if it is contained in a requirements traceability

matrix. By capturing the requirements, design and implementation in a knowledge

base, the specification becomes an active component in the system and not just a part

of the documentation.

Impasse-Driven Software Engineering

In the insertion of quality into the software process it is not just enough to

examine each of the premise action portions of the knowledge base. It is possible and

quite feasible that the premise could be traceable, but not correctly defined. This is

one of the more prevalent problems in the software development process. In the

knowledge capture process for a system that uses a basic absolute of quality that

"quality is conformance to requirements", the implementation of a wrong requirement

presents a problem with the entire approach to quality. There must be means to

analyze the requirements to determine the conceptual integrity of the individual

components. The first part of the knowlege-based approach to requirements

traceability depends on the capture of the knowledge into production rule format,

however this is the least important facet of the measurement process. This section of

the traceability will focus on the construction of software requirements and will

propose a radically new model of building and evaluating requirements. This

approach is described as Impasse-Driven Software Engineering.

In previous studies Guindon and Curtis 881 suggests that a software

methodology built on a cognitive model of learning has significant potential for making

1Guindon, Raymonde and Bill Curtis. 'Control of Cognitive Processes During Software Design:

What Tools are Needed', Proceeding of Human Factors in Computing Systems CHI '88,

Washington, D.C.: May 1988.

-- 57

the software development process simpler, and in turn allows the software developer

to work on more significantly complex domains with the same amount of cognitive toil.

Software Engineering task descriptions should include in the list student and

teacher. The knowledge capture process involved in the creation of a software

specification contains a learning/teaching dualism that interprets instructions, thereby

incorporating new information from the environment into the conceptual structure of

the learner. It is this incremental inclusion of information into the problem structure,

and the translation of this information into the solution structuring that drives the

software engineering process.

During the early phases of the design process, when requirements and

specifications are vague, initial design control strategies are based upon a cognitive

model of both knowledge sources and process sources. Guindon and Curtis have

examined software designers during this initial phase and have found that the design

process is partially controlled by recognition of partial solutions at different levels of

abstraction. This is considered an opportunistic design process and contains only a

minimum number of breakdowns which include:

Difficulty to merge partial solutions into a complete solution

Difficulty in remembering to return to postponed subproblems

The difficulties with the opportunistic design process can be further analyzed by

examining the learning process and design process as a knowledge communication

method. 'Getting stuck' while problem-solving is called an Impasse. VanLehnl

explains that the impasse occurs when the step that the student (or designer) should

execute next cannot be performed, and is not clearly understood. Inductive learning

lVanLehn, Kurt. 'Toward a Theoryof Impasse-Driven Learning', Learning Issues for Intelligent

Tutoring systems, Springer-Verlag New York: 1988.

58

occurs at these impasses. To enhance software engineering the support software

environment must have a vehicle which can produce a sequence of actions that will

force the student(designer) to this impasse.

Learning by Asking Questions

Requirements definition in the Software Engineering Process can be viewed as

the ability to ask proper questions to the proper person at the proper time, and then to

translate the question-answer sequences into the basis for the knowledge that must

be communicated to the persons that will implement the software system. Question-

answer sequences provide the means of evaluating current thought patterns and

mapping these patterns into the general concepts to be represented within the

problem domain. These sequences offer contributions to indicate the knowledge

structure needed, although some of these contributions may be relevant, while others

will not be relevant to the unique domain. The goal of the requirements-producing

process is to develop a knowledge-based computational model of the specified

problem domain by watching, listening, and questioning the end-user and by

incrementally testing the validity of the knowledge gained in each of these sessions.

In the past, much of this process has been ambiguous, dull, and boring, because of

the amount of redundancy in the communication process. This redundancy occurs

because of conceptual misunderstandings between designer and user. The

misunderstandings occur because there is an impasse between problem domain and

problem solution, and the designer needs help in the identification of the impasse and

help in repairing this impasse.

Conceptual Mapping of Software Specifications

To actually create the conceptual structure that will be a software specification

is one of the salient features of the PMCT. The conceptual aspect of meaning is

illustrated by a classification system designed by Peter Mark Roget in 1852. Best

known for his Roget's Thesaurus, Roget produced a list of 1,042 concepts and

- 59

identified the relationships among them as a hierarchy. He then mapped ordinary

natural language (English) words to these concepts. Roget called these concepts

"related areas of meanlng".

There exists one aspect of Roget's taxonomy, however, which demands

immediate attention, and that is the fact that his classification system is domain

independent. It not only contains information concerning tangible concepts like

PHYSICS and MATTER, but also intangible concepts like AFFECTIONS and

SENSATION. It, therefore, appears that Roget's Conceptual taxonomy has a wide

variety of application, especially in the application of Artificial Intelligence to the

Software Engineering Process.

Roget's taxonomy is explicitly referenced through our natural language, the

words we use everyday. Each one of us have different vocabularies and we use

different words to communicate an idea (or concept) than someone else might who

was referencing the same idea (or concept). The Word Mapping Process takes the

basic assumption that to communicate an idea, we choose words from our vocabulary

according to the conceptual relationships among those words. This implies that there

exists a "principle of commonality" among the words chosen to convey an idea, ie.

they must have a conceptual relationship to that idea being communicated.

Word Mapping and the Concept Induction Process© TM

Ausborn 1 introduced a process called the Concept Induction Process© TM, This

process of mapping of words to concepts can be achieved by the use of the 'related

areas of meaning' developed by Peter Mark Roget in 1852.2(Roget's hierarchy can

1Ausborn, Carolyn. 'Mapping Words to Concepts', Proceedings of Expert Systems: Solutions in

Manufacturing, Michigan: 1989. Society of Automotive Engineers

2 Chapman, Robert L.,ed. 'Roget's International Thesaurus', Harper & Row Pub., New York:

1977.

60

be found in Roget's International Thesaurus). The Concept Induction Process© TM is a

domain independent process to map words into specific concepts into classes of

concepts, and to allow the user to monitor, manipulate, and generate these conceptual

classes. After producing a conceptual representation, the user can determine the

point of contact in which a specification changes. It is this type of monitoring

mechanism that will not only lead to traceable requirements, but traceable correct

requirements. The traceability factor must include software requirements traceability,

but also the mapping of idea to concept to product. This in the past has been a very

difficult subject to research, but with the introduction of a CASE environment that

supports time and motion studies, demands active traceable knowledge components,

allows process to define tool needs as opposed to tools dictating what can be

accomplished, progress can be made in understanding just what is the software

process.

51

