
Software Engineering and Ada
Training: An Implementation Model

o z z ;
1 b> P

O C
iv Y
$ 0
w -

z
9

for NASA

Sue LeGrand
SofTech, lnc.

Glenn Freedman
University of Houston - Clear Lake

June 27,1988

Cooperative Agreement NCC 9-16
Research Activity No. ET.4

U U

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T * E * C * Ha M * l * C * A * L R * E * P * O * R * T

https://ntrs.nasa.gov/search.jsp?R=19900004650 2020-03-19T23:33:41+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42825432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The
MCIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC‘s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASAIJSC.

Software Engineering and Ada
Training: An Implementation Model

for NASA

Preface

This research was conducted under the auspices of the Research Institute for
Computing and Information Systems by Sue LeGrand, Program Manager for
Soffech, Inc. - Houston Operations. Glenn Freedman, founding Director of the
Software Engineering Education Center (SEPEC) of the University of Houston -
Clear Lake, provided overall technical direction for this research.

Funding has been provided by the Spacecraft Software Division in the Mission
Support Directorate, NASNJSC through Cooperative Agreement NCC 9-16
between NASA Johnson Space Center and the University of Houston - Clear Lake.
The NASA Technical Monitor for this activity was Steve Gorman, Deputy Chief of
Space Station Office, Mission Support , NASNJSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

SOFTWARE ENGINEERING AND
AdaTM TRAINING:

AN IMPLEMENTATION MODEL
FOR NASA

Presented by

Sue LeGrand
SofTech, Inc.
Houston, TX

Dr. Glenn Freedman
University of Houston at Clear lake

Presented at

Washington Adam Symposium
Washington, D.C.

June 27, 1988

mAda is a trademark of the U. S. Government, Ada Joint Program Office (AJPO). TP 271

Software Engineering and Ada Training:

An Implementation Model for NASA

Sue LeGrand, SofTech, Inc.

D r . Glenn Freedman, University of Houston a t Clear Lake

Abstract

The choice of software engineering w i t h Ada f o r projects such as the Space
Stat ion has resul ted i n government and industr ia l group considering t ra in ing
programs t h a t a t once a s s i s t workers t o become familiar w i t h both a software
"culture" and the in t r icac ies of a new compute language. Training costs can be
high and management i s often reluctant t o invest i n something a s nebulous as
"software engineering" t ra ining.
just another language? Why can't we teach it i n three days, l i k e FORTRAN?"
Clearly, software engineering w i t h Ada requires more than three days i n c lass
and three hours on a computer. B u t , how much time does it take? How much should
an organization i n v e s t i n training? How should the t r a i n i n g be s t ructured?

"After a l l , " a manager might ask, " i s n ' t Ada

Software engineering i s an emerging, dynamic discipl ine. Neither industry,
government nor university programs are well established i n t h i s area, nor i s
there consensus about who should know what and when should they know i t . The
Information Systems Services Group of t h e NASA Space S ta t ion Program Office
(SSPO) asked f o r expert advice regarding Software Engineering and Ada
t ra ining.
the t rue requirements for t ra ining across NASA, and then t o recommend an
implementation plan including a suggested curriculum w i t h associated duration
per course and suggested means of delivery. Individual copies of t h e f i n a l
report of t h i s study may obtained from:

The authors set out t o provide a quantitative assessment ref lect ing

Dr. Glenn Freedman, Director
Software Engineering Professional Education Center
University of Houston - Clear Lake
2700 Bay Area Blvd. Box 270
Houston, TX 77058-1088
(713) 488-9274

Software Engineering L i f e Cycle

application of sound engineering environments, tools , methods, models,
principles, and concepts combined w i t h appropriate standards, guidelines, and
practices t o support computing which i s correct, modifiable, r e l i a b l e and safe,
e f f ic ien t , and understandable throughout the l i f e cycle of the application.

Dr. Charles McKay [13] defines software engineering a s the establishment and

TP 271 1

The software life cycle has several phases, all of which must be
incorporate9 into an education and training program.
of input conditions that, when met, trigger an iteration through the phase.
There is a defined set of output conditions associated with each triggered
iteration. Each phase:

A phase is a defined set

o Has a distinct purpose,
o Has a distinctive set of documentation requirements as the interface to

the next phase,
o Is/Should be based upon a model of the requirements associated with

conducting the work of the phase,
o Should be complemented by a methodology which features good engineering

within the phase, and
o Should be supported by the methodology's own set of technical and

management tools to facilitate productivity and quality. [McKay [13]]

These phases, as presented by McKay [13] are consistent with the NASA Life Cycle
Model [17]. The seven phases are:

o P1 System's Requirements Analysis
o P2
o P3 Software-Hardware-Operational Specifications
o P4 Software-Hardware-Operational Design
o P5 Component Development and Integration
o P6 Acceptance Testing
o P7 Sustaining Engineering (Maintenance and Operations)

Software to Hardware to Operational Requirements

Education and Training Life Cycle

A review of Ada's history reveals that the language was developed to support
the goals and principles of software engineering.
coded as can any language.
practices, supported by Ada, or any other appropriate language tools, that
results in sound software systems.
education and training programs that result in sound software engineering
environments.

Indeed, Ada can be as poorly
It is the sound use of software engineering

Further, it is the implementation of

Just as there is a software life cycle, so too there is an education and
training life cycle for software engineering with Ada.
activities are similar: the consequences for abiding or not abiding by the
activities of the phases are also similar.

The record of Ada training in the United States has taught a number of
important lessons. One lesson is that many difficulties will be (or may be)
overcome by paying more attention to educational requirements definition,
analysis and design prior to instruction. Also, just as a good software manager
would not expect to reuse code without carefully considering the context and
consequences, so too should managers ask if a specific program developed for one
audience should be reused by another.

the Language Reference Manual for the Ada Programming Language.
effective use of Ada, or any other programming languages, is as a part of the

The phases and

For this report Ada is considered as a programming language, as specified in
The most

TP 271 2

discipline of software engineering.
that while it may take 5 days for a knowledgeable programmer to learn Ada
syntax, it takes 6-9 months to evolve into a software engineer who correctly
uses the language to support good design practices and good tool use to help
engineer software that is effective throughout its life cycle. Interviews with
project managers attest to the phenomena of experienced programmers, with years
of FORTRAN or C experience, bucking the transition to Ada. Meanwhile, recent
graduates, educated in software engineering, are quicker to adjust to Ada and
flourish. Clearly, both groups must be represented in the curriculum.

Recent Ada training reports have indicated

In summary, like software systems, education and training systems must be
well engineered, and they must be engineered for change.
curriculum will result in a means to develop and sustain personnel skills across
many diverse computing environments.

Education vs. Training

knowledge and highly generalizable skills needed to reason and solve
problems. Training, on the other hand, refers to teaching and learning, in the
narrower sense, to produce skills to accomplish a specific, practical goal. In
brief, education answers the question "Why" and training answers the question
"How." A second way of understanding the distinction is to view education as the
study of the past to prepare for the future, while training is the study of the
present to prepare for today's problems.
obviously, and answering one without the other results in an ill-prepared
employee. For this report, the emphasis is on training. Clearly, universities
emphasize education and should be included as partners in project
implementation.

A well engineered

Education refers to the processes used in teaching and learning to produce

Both questions are important,

To educate or train a software engineer, a curriculum must include
computing, engineering, project management, and human resource management. This
interdisciplinary approach helps explain why software engineering is having a
difficult time finding a clear academic home and helps explain why so few
universities have well defined software engineering curricula.
Engineering Institute is leading the way toward defining a university
curriculum, but in the absence of well-integrated, widely accepted academic and
training programs, industry and government have developed their own, albeit
generally incomplete, training programs.

The Software

Often, incomplete training programs have resulted from a misguided
perception that knowing Ada syntax means knowing Ada or knowing software
engineering. While certainly important, Ada syntax is but a part of a complete
software engineering environment that Ada supports. Thus one could possibly be
a software engineer without knowing Ada, but one could not use Ada effectively
without being a good software engineer. As Ada supports the principles and
goals of software engineering successfully, the relationship between Ada and
software engineering is quite compatible.

The Clear Lake nodel - for Software Engineering and Ada Curriculum

The ability to develop a comprehensive training program depends to a great
extent on the requirements definitions for the target audience.
field like software engineering, defining the requirements is akin to hitting

For an emerging

TP 271 3

the proverbial moving target.
for defining the field of software engineering in a manner that would allow for
flexibility across projects, job descriptions and computing environments while
retaining the stability necessary to define a curriculum.

Hence, the course of action was to create a model

The Clear Lake Model for Software Engineering and Ada Curriculum has six
dimensions that must be considered when identifying individual needs and then a
curriculum appropriate for an organization or location (See Figure 1). The six
dimensions of the Clear Lake Model for Software Engineering and Ada Curriculum
are :

1) Job Description

3) Software Engineering Knowledge
4) Environments
5) Skill Levels
6) Project Size, Complexity and Extensibility

* 2) Job Activities

For a more complete discussion of the Model, see the NASA report [l]. To
apply the model to a given organization, one defines precisely the job
descriptions of the participants and the number of individuals in each job
category. For each job category, the activities of the jobs are then analyzed
according to the individuals' involvement in the lie cycle, in software control,
in management and in support activities.
software engineering knowledge can be mapped.

For those activities, the relevant

All of this information has to be considered in terms of the project size
and complexity.
from more size/complexity to less size/complexity.
education and training plans be handled similarly to software projects: with
full, careful life-cycle consideration.

One assumption we have made is that it is easier to scale-down
Thus we recommend that

Importantly, the model must be applied to each context for which a plan is
proposed. No two curricula, therefore, will ever be exactly the same, because
no two organizations or projects are the same. The Model, however, provides the
structure necessary to frame the curriculum.

TP 271 4

SOFWARE ENGINEERING WITH Ada:
A DEFINITION OF THE FIELD
WITH CURRICULAR OPTIONS

5. SKILL LEVEL: INTRODUCTORY, INTERMEDIATE, ADVANCED
6. PROJECT SIZE/COMPLEXIN/EXTENSIBILlfY: SMALL,

T

E 1 S

Figure 1

TP 271

I 1 I I I V
9 M L T A
E E A 0 9

C H Q L E
u o u s S
L O A S
T s o M
U E E
A S N
E T

S

T N O S

C
0
M
M
U
N
I
C
A
T
I
0
N
S

3. SORWARE ENGINEERING KNOWLEDGE I

Cleat Lake Model for Software Engineeting and Ada Curriculum

5

CuRRxCuLIJM

Software Engineering w i t h Ada Curriculum

A comprehensive l i f e cycle curriculum based on t h e Clear Lake Model assumes
that there i s a c lear sense of the job descriptions involved, a sense of
software engineering knowledge and a c t i v i t i e s , and knowledge of the spec i f ic
skill levels, computing environments, and projects, domains best defined i n the
context of a par t icular organization.
i n the model, a curriculum design can emerge.

Based on a def in i t ion of the requirements

To design NASA's comprehensive l i f e cycle Curriculum for software, a number
of other factors were considered beyond an analysis of the NASA environment.
The t ra ining curriculum is based on the analysis of NASA environments p l u s the
best of the ex is t ing software engineering and Ada education and t ra ining
programs generally and t h e needs of NASA specif ical ly . These programs include,
for example, those ident i f ied i n the Ada Joint Program Office's (A J P O ' s)
Catalogue of Resources f o r Education i n Ada and Software Engineering. The most
s ignif icant Ada and software engineering resources have been t h e Software
Engineering I n s t i t u t e , t h e now defunct Wang I n s t i t u t e of Graduate Studies,
Keesler A i r Force Training Comand, SofTech, a review of forty-seven commercial
vendor's programs and a review of courses from thirty-one univers i t ies .

Designing t h e t ra in ing curriculum for a complex, d i s t r ibu ted organization
such as NASA meant t h a t a three-tiered approach was needed t o ensure timeliness
and t h e proper target ing of audiences.
t ra in ing program was the core curriculum.
topics", featured intensive technical, work-related presentations. A t h i r d
crucial feature of a comprehensive t ra in ing program was one cal led "mentoring",
referr ing t o on-the-job t ra ining, support services, user guides, on-site gurus
and references t o name a few examples of technical mentoring.
a lso include management features, such as reinforcing good software engineering
practice through evaluations, walk-throughs, reviews, and meetings. The goal i s
t o make t h e software engineering w i t h Ada a part of t h e organizational culture
by infusing it i n t o every layer of software ac t iv i ty .
only a description of t h e core curriculum w i l l be considered. Both mentoring
and technical topics a r e considered i n more d e t a i l i n the f u l l report t o NASA
(11

The first feature of a comprehensive
The second feature, dubbed "technical

Mentoring may

For t h i s brief paper,

Based on these features and model's application t o t h e NASA context, a
curriculum map was prepared t h a t careful ly plotted a core curriculum for NASA.
Technical and mentoring a c t i v i t i e s tha t augment the core a re then based on t h e
needs of a spec i f ic software group. See Figure 2 .

TP 271 6

ORIGINAL PAGE IS
OF POOR QUALITY

A:

E:

C:

0:

E:

F:

Q:

n:

I:

J:

K:

TP 271

Wll l you US.
NASA Slondrrdr?

Do you nood Io
rovlow compullng
b o I c s ?

A i r you porllclprllng
In your flrrl Ado
prolocl In r lochnlcol
or manrgomonl rolo?

Do you no04 Io know
how lo cod0 In Ado?

Wll l you bo worklng
In ooflworo dovdopmonl
procoor?

Wll l you bo provldlng
Ill. eye10 oupporl for
rof1waro dmvolopmonl?

Wll l you bo provldlng
for ouololnlng ongC
noorlng (00 molnlononco
ond oporollons)?

Wlll you roqulro
odvrneod or ap.clollzod
Informotlon for managarat
(SdUl)

Wll l you rmqulrm
odroncod or Op.clallt~d
Inlormollon lor tochnlcol
rorponalb(llllrr?
(S O l U l)

00 your dullor rupporl
tho ooflworm dov.lopmmnl
p rocr r r t

nor IIVO yeor8 o ioprd
rlncr you u l l v r l y workod
on any orpoet of rollworm
llf. cyck?
(If yrr, rmlurn to rpproprloio
drclolon dlomond)

1

I No

1 -

I

FIGURE 2 CURRICULUM PAP

7

Core Curriculum

The t r a n s i t i o n t o software engineering w i t h Ada i s a t r a n s i t i o n t o a mind
s e t , often cal led the Ada culture. T h i s culture es tabl ishes noms for how good
software should be developed and sustained.
engineering and Ada project resul ts , planners m u s t consider technical training,
education and on-the-job support as a complete plan.
seduced by code-centered individual is t ic approaches t o software engineering, bu t
the case h i s t o r i e s emerging from large, complex, d i s t r ibu ted systems indicate
that approaches tha t perhaps worked well on smaller projects may not scale up t o
a major software project l i k e the Space Station.

To achieve successful software

It is easy for one t o be

While t h e Ada programming language i s sometimes c r i t i c i z e d by detractors as
"overly complex" and w i t h "relat ively underdeveloped tool sets," each passing
month o f f e r s new Ada success s tor ies and new, more powerful too ls and
environments.
organizational cu l tura l changes required for a software engineering environment
tha t most e f fec t ive ly leverages Ada.
too l . The larger , more significant long-term questions are: How w i l l t h i s tool
be used? How rigorous w i l l t h e engineering environment be? It i s safe t o assume
that r igor i s required for hardware development.
tolerated f o r software. Like a l l engineering, software engineering requires
commitment, e f f o r t , and a willingness t o adhere t o the principles, concepts and
models agreed t o .

What does take time and ef for t i s making t h e s ignif icant

Like any programming language, Ada i s a

No l e s s r igor should be

Training hundreds o r thousands of practicing programers t o become
proficient i n correct ly applying software engineering pr inciples , i n the t rue
sense of t h e term, w i l l take a major resource commitment. To oversimplify the
challenge, f o r t h e sake of making a p o i n t , one might argue t h a t t h e problem is
akin t o taking l i fe long house carpenters and expecting them t o become archi tects
overnight, w i t h t h e requis i te s k i l l s t o design, say, a hospi ta l complex. It can
possibly be done, but not overnight, not without high cost and r i s k . In
addition, s ignif icant t ra in ing i s required beyond t h e technical s k i l l necessary
t o do t h e job.

The curr iculum map developed for NASA is based on a set of ten questions
that would be posed t o an individual or a group of NASA employees.
the job descriptions, one can enter the curriculum a t the appropriate level,
then s e l e c t course modules by cycling through the curriculum
model. Prerequisites a re implied by the ordering of t h e courses and are not
mentioned spec i f ica l ly .
t ra in ing for NASA, across center and personnel. For example, a l l new hires
would be exposed t o G 1 : NASA Life Cycle and Standards.
however, might not need t o answer 'yes' t o any other question, except J: Do your
duties support t h e software development process? I n contrast , a lead designer
might need t o par t ic ipa te i n the e n t i r e curriculum.
modularized w i t h i n courses, so tha t organizations may select t h e most
appropriate material for t h e target audiences.
curriculum would be handled by the appropriate education s t a f f member i n
collaboration w i t h management and technical personnel.

Depending on

Figure 2 i l l u s t r a t e s the curriculum map f o r Ada

A person i n legal,

The curriculum i s

The coordination of t h e

The Core Courses

TP 271 8

I n order t o a t t a i n good software engineering w i t h Ada, courses i n both

Some courses are on the topic of Ada bu t t r e a t
software engineering and Ada are recommended.
is easi ly labeled an Ada course.
software engineering issues. They include:

A course tha t teaches Ada syntax

o Managing t h e Transition t o Ada
o Managing Ada Projects
o Ada as a Common Program Design Language

Other courses a re taught for the purposes of t ra in ing good software
engineers and the Ada language i s used i n the course.
categorized as software engineering.

These courses should be
The subjects include:

o Software Systems Review
o Software Design
o System Requirements Analysis
o Library and Object Base Management
o Qual i ty Management
o Configuration Management
o Integration Management
o Sustaining Engineering
o Real T ime Issues
o Interoperabi l i ty and Interfaces

Clearly, courses may be added, modified, o r even deleted from t h e core
curriculum once the implementation stage begins, as a normal par t of change t o
meet new requirements.

The Implementation P l a n

NASA i s current ly offering software engineering and Ada courses a t i t s
centers.
t o the overal l framework proposed herein.
take f u l l advantage of t h e results of the study, the following 1 0 a c t i v i t i e s
have been suggested:

However, the courses a re not yet coordinated nor have they been mapped
To maintain t h e NASA's momentum and

1.

2 .

Prepare presentations t o ra i se the awareness of t h e people concerned.

Create a feedback loop among the people concerned for tracking:
N e w developments and resources
Recon-anended improvements

Create a database template for centers t o use t o track t h e program. 3 .

4 . Create a baseline set of mentoring resources such as:
Ada Language Reference Manual
Vendor L i s t
Ada Organizations
Reference Texts
Experts

5 . Assist i n identifying programs needed for core, technical and mentoring
topics.

TP 271 9

6. Map existing'resources in to a matrix of requirements. Report the
differences.

7 . Develop a s t ra tegy for building exis t ing resources i n t o a prototype
curriculum for core, technical and mentoring topics .

8.

9.

Report modifications needed i n order t o use ex is t ing t ra in ing resources.

Develop a s t ra tegy for providing the remaining resources.
emphasizing integration, synergism and cost effectiveness.

Write a report

10 . Propose a schedule and budget t o implement the plans.

Recamendations

The recommendations included i n t h i s s tudy do not r e f l e c t other t ra ining
needs: for example, management, hardware and systems engineering and integration
issues a re v i t a l , but beyond t h e scope of the study.

Nonetheless, there a re f i n a l recommendations tha t need t o be enumerated:

1) Promote A Sound Software Engineering Environment.
effect ive i f used i n an appropriate software engineering environment.
Training must be geared t o support t h a t culture, including evaluation of
courses and ins t ruc tors according t o t h e i r contributions t o t h e core
curriculum as it becomes fu l ly operational.
Support Environment (SSE) must be monitored f o r requirments t o update the
d e t a i l s of t h e curriculum.

Ada w i l l be most

The work of NASA Software

2) Update t h e Curriculum on a Timely Basis.
dated w i t h i n two t o three years i f there i s no support for including new

The core curriculum w i l l become
_ _

material, tools , methods and approaches t o i t .

3) Build on What is Now Available. There are a number of ways t o improve
exis t ing Ada t ra in ing programs t o match NASA's par t icu lar uses. For
example, SSE guidelines and procedures w i l l make Ada a working language,
one tha t applies d i r e c t l y t o the job.

Ada t ra in ing templates, reusable components, (both design and code) and
l ib rary of objectives should be developed and used throughout t h e agency as a
means t o demonstrating excellent code examples and for building a l ib rary .
Ideally, t ra in ing would take advantage of a large Ada a r t i f a c t , o r a working
piece of software t h a t can be enhanced, maintained and studied by the students.
Hence, wherever possible real-use examples should be established, especially for
documentation and mini-projects included as a part of t h e course work.

A software engineering and Ada curriculum for t r a i n i n g and education and a
proposed implementation plan has bem presented t h a t can be adapted for each
NASA center according t o t h e needs dictated by each project .

T h i s report i s based on a survey taken by meetings, telephone interviews and

T P 271 10

written media of the major NASA centers' project and education offices. It is
also based on previous research and discussions among education leaders at the
Software Engineering Institute (SEI), the Ada Software Engineering Education and
Training Team (ASEET), Armed Forces Communications and Electronics Association
(AFCEA) [2] and the Research Institute for Computing and Information Systems
(RICIS) .

The authors wish to thank Lisa Svabek of the Software Engineering
Professional Education Center, University of Houston Clear Lake, for her
assistance in conducting interviews and summarizing the results (211.

TP 271 1 1

BIBLIOGRAPEY

[l] A Report on NASA Software Engineering and Ada Training Requirements,
SofTech, Inc. , November 15, 1987.
[2] Armed Forces Communications and Electronics Association, Ada Education and
Training Study, Volume 1, 22 July 1987.

131 Basili, V.R., "The Experimental Aspects of a Professional Degree in Software
Engineering" paper presented at the Software Engineering Education: The
Educational Needs of the Software Community workshop, 27-28 February 1986.

[4] "Catalog of Resources for Education in Ada* and Software Engineering," Vol.
40, Ada Joint Program Office, May 1987, NTIS Ada 169 892.

[SI Crafts, R.E., ed. "Ada Training -- Selecting a Quality Program," Ada
Strategies, Vol. 1, #2, April 1987.

[6] Fairley, R., Software Engineering Concepts, NY McGraw Hill, 1985, p. 2.

(71 Freedman, G.B., A Comprehensive Software Engineering Curriculum Model,,
ASEET, Dallas, Texas, June 1987.

[e] Freedman, G . B . , Curriculum Options for Transition to Ada, Report for
NASA/JSC for ET.l: Software Engineering and Ada, May 1987.

[9] Gibbs, N.E., Fairley, R.E., editors, Software Engineering Education: The
Educational Needs of the Software Community. Published by Springer-Verlag.

[lo] Godfrey, S., Brophy, C., et al., Assessing the Ada Design Process and its
Implications: A Case Study, SEL-87-004, July 1987.

[ll] LeGrand, S. and McBride, J., "Ada Language Suited to Space Station
Requirements", Government Computer News, September 25, 1987.

(121 Marlowe, G. , A Software Engineering Curriculum Proposal, white paper,
Summer, 1986.

[13] McKay, C,W., A Proposed Framework for the Tools and Rules to Support the
Life Cycle of the Space Station Program, COMPASS Conference, June 1987.

I141 McKay, C.W., Charette, R. and Auty, D. "A Study to Identify Tools Needed to
Extend the Minimal Toolset, of the Ada Programing Support Environment (MAPSE)
to support the Life Cycle of Large, Complex, Non-Stop, Distributed Systems such
as the Space Station Program." NASA/JSC Task Order VHISC B11, March 1986.

[15] Murphy, R. and Stark, M., Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, SEL-85-002, October 1985.

[16] Murphy, R. and Stark, M., Ada Training Evaluation and Recommendation,
Goddard Space Flight Center.

T P 271 12

(171 "NASA Software Acquisition Life Cycle Chart", National Aeronautics and
Space Administration, Version 3.0, 15 October 86 .

[18) National Space Technology Laboratories/Earth Resources Laboratory, NSTL' s
Ada Lessons Learned, white paper, March 1987.

[1 9] Pietrasanto, A . , Software Engineering Training: Lessons Learned, Ada Expo
86, Charleston, WV, December 1986.

[2 0] Shaw, M . , Beyond Programming i n t h e Large: The Next Challenges for Software
Engineering, Pittsburgh: SEI Annual Report, 1985, page 546.

[2 1] Svabek, L . A . , The Development of a Software Engineering Professional
Education Center and i t s Impact on the NASA/JSC Community, white paper t o be
published December 1987.

[2 2] Steiner, G.A. , S t ra tegic Planning: What Every Manager Must Know, The Free
Press, New York, New York.

[23] "Defense System Software Development", DoD-STD-2167, 4 June 1985.
Reference Manual for the Ada P r o g r d n g Language, Department of Defense,
January 1983.

[2 4] Reference Manual for t h e Ada Programming Language, Department of Defense,
January 1983.

TP 271 13

f l P
‘ I

I u

0
u)

P

k

a0 x
*N

. k c 3 d
ry *- Ts

i

a
6
0
0

ry

'ru
i

9,
%

I
U

0
UI

c

x
0
x
0

O N

L R

I
U

0
ut
P

h

P,

T
0
3r

6.0 x
x O N

t3
QJ
t, L x

s
i :I E F 0 0

6

a,

I
U

0 In
P

