L
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by NASA Technical Reports Server

Software Engineering and Ada
Training: An Implementation Model
for NASA

X B> o~
Doz
O > >
mo ow
=~ ~>
2L
now
a5 Sue LeGrand
zsg
RO SofTech, Inc.
» R~
New ok
—~ -
T3 Glenn Freedman
o E D
w T . .
= University of Houston - Clear Lake
383>
LI *]
c m
3 »
-z m
< Z
LEae June 27, 1988
o2
~om
N M
£z
A Cooperative Agreement NCC 9-16
c Research Activity No. ET.4
~ -f X»
-2
o o9
< 0z
o
o
W
< o =
> 2N
[
oC z
i~ D B el
&0 <
- =] l
- b
QO wn i N = = 7
p— v ~——F ==
Research Institute for Computing and Information Systems
University of Houston - Clear Lake
I

T-E-C-H-N-I-C-A-L R-E-P-O-R-T

https://core.ac.uk/display/42825432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The
RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

Software Engineering and Ada
Training: An Implementation Model
for NASA

Preface

This research was conducted under the auspices of the Research Institute for
Computing and Information Systems by Sue LeGrand, Program Manager for
SofTech, Inc. - Houston Operations. Glenn Freedman, founding Director of the
Software Engineering Education Center (SEPEC) of the University of Houston -
Clear Lake, provided overall technical direction for this research.

Funding has been provided by the Spacecraft Software Division in the Mission
Support Directorate, NASA/JSC through Cooperative Agreement NCC 9-16
between NASA Johnson Space Center and the University of Houston - Clear Lake.
The NASA Technical Monitor for this activity was Steve Gorman, Deputy Chief of
Space Station Office, Mission Support , NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

SOFTWARE ENGINEERING AND
Ada™ TRAINING:
AN IMPLEMENTATION MODEL
FOR NASA

Presented by

Sue LeGrand

SofTech, Inc.
Houston, TX

Dr. Glenn Freedman
University of Houston at Clear lake

Presented at
Washington Ada™ Symposium
Washington, D.C.

June 27, 1988

™Ada is a trademark of the U. S. Government, Ada Joint Program Office (AJPO).

TP 271

SOFlecH

Software Engineering and Ada Training:

An Implementation Model for NASA

by
Sue LeGrand, SofTech, Inc.

Dr. Glenn Freedman, University of Houston at Clear Lake

Abstract

The choice of software engineering with Ada for projects such as the Space
Station has resulted in government and industrial group considering training
programs that at once assist workers to become familiar with both a software
"culture™ and the intricacies of a new compute language. Training costs can be
high and management is often reluctant to invest in something as nebulous as
"software engineering" training. T"After all," a manager might ask, "isn’t Ada
just another language? Why can’t we teach it in three days, like FORTRAN?"
Clearly, software engineering with Ada requires more than three days in class
and three hours on a computer. But, how much time does it take? How much should
an organization invest in training? How should the training be structured?

Software engineering is an emerging, dynamic discipline. Neither industry,
government nor university programs are well established in this area, nor is
there consensus about who should know what and when should they know it. The
Information Systems Services Group of the NASA Space Station Program Office
(SSPO) asked for expert advice regarding Software Engineering and Ada
training. The authors set out to provide a quantitative assessment reflecting
the true requirements for training across NASA, and then to recommend an
implementation plan including a suggested curriculum with associated duration
per course and suggested means of delivery. Individual copies of the final
report of this study may obtained from:

Dr. Glenn Freedman, Director

Software Engineering Professional Education Center
University of Houston - Clear Lake

2700 Bay Area Blvd. Box 270

Houston, TX 77058-1088

(713) 488-9274

Software Engineering Life Cycle

Dr. Charles McKay {13]) defines software engineering as the establishment and
application of sound engineering environments, tools, methods, models,
principles, and concepts combined with appropriate standards, guidelines, and
practices to support computing which is correct, modifiable, reliable and safe,
efficient, and understandable throughout the life cycle of the application.

TP 271 1 SOFlecH

The software life cycle has several phases, all of which must be
incorporated into an education and training program. A phase is a defined set
of input conditions that, when met, trigger an iteration through the phase.
There is a defined set of output conditions associated with each triggered
iteration. Each phase:

o Has a distinct purpose,

o Has a distinctive set of documentation requirements as the interface to
the next phase,

o Is/Should be based upon a model of the requirements associated with
conducting the work of the phase,

o Should be complemented by a methodology which features good engineering
within the phase, and

o Should be supported by the methodology’s own set of technical and
management tools to facilitate productivity and quality. [McKay [13]]

These phases, as presented by McKay (13] are consistent with the NASA Life Cycle
Model ([17]). The seven phases are:

Pl System’s Requirements Analysis

P2 Software to Hardware to Operational Requirements
P3 Software-Hardware-Operational Specifications

P4 Software-Hardware-Operational Design

P5 Component Development and Integration

P6 Acceptance Testing

P7 Sustaining Engineering (Maintenance and QOperations)

OO0 O0O0O0OO0OO0

Education and Training Life Cycle

A review of Ada’s history reveals that the language was developed to support
the goals and principles of software engineering. Indeed, Ada can be as poorly
coded as can any language. It is the sound use of software engineering
practices, supported by Ada, or any other appropriate language tools, that
results in sound software systems. Further, it is the implementation of
education and training programs that result in sound software engineering
environments.

Just as there is a software life cycle, so too there is an education and
training life cycle for software engineering with Ada. The phases and
activities are similar; the consequences for abiding or not abiding by the
activities of the phases are also similar.

The record of Ada training in the United States has taught a number of
important lessons. One lesson is that many difficulties will be (or may be)
overcome by paying more attention to educational requirements definition,
analysis and design prior to instruction. Also, just as a good software manager
would not expect to reuse code without carefully considering the context and
consequences, so too should managers ask if a specific program developed for one
audience should be reused by another.

For this report Ada is considered as a programming language, as specified in
the Language Reference Manual for the Ada Programming Language. The most
effective use of Ada, or any other programming languages, is as a part of the

TP 271 2 SOFrECH

discipline of software engineering. Recent Ada training reports have indicated
that while it may take 5 days for a knowledgeable programmer to learn Ada
syntax, it takes 6-9 months to evolve into a software engineer who correctly
uses the language to support good design practices and good tool use to help
engineer software that is effective throughout its life cycle. Interviews with
project managers attest to the phenomena of experienced programmers, with years
of FORTRAN or C experience, bucking the transition to Ada. Meanwhile, recent
graduates, educated in software engineering, are quicker to adjust to Ada and
flourish. Clearly, both groups must be represented in the curriculum.

In summary, like software systems, education and training systems must be
well engineered, and they must be engineered for change. A well engineered
curriculum will result in a means to develop and sustain personnel skills across
many diverse computing environments.

Education vs. Training

Education refers to the processes used in teaching and learning to produce
knowledge and highly generalizable skills needed to reason and solve
problems. Training, on the other hand, refers to teaching and learning, in the
narrower sense, to produce skills to accomplish a specific, practical goal. 1In
brief, education answers the question "Why" and training answers the question
"How." A second way of understanding the distinction is to view education as the
study of the past to prepare for the future, while training is the study of the
present to prepare for today’s problems. Both questions are important,
obviously, and answering one without the other results in an ill-prepared
employee. For this report, the emphasis is on training. Clearly, universities
emphasize education and should be included as partners in project
implementation.

To educate or train a software engineer, a curriculum must include
computing, engineering, project management, and human resource management. This
interdisciplinary approach helps explain why software engineering is having a
difficult time finding a clear academic home and helps explain why so few
universities have well defined software engineering curricula. The Software
Engineering Institute is leading the way toward defining a university
curriculum, but in the absence of well-integrated, widely accepted academic and
training programs, industry and government have developed their own, albeit
generally incomplete, training programs.

Often, incomplete training programs have resulted from a misguided
perception that knowing Ada syntax means knowing Ada or knowing software
engineering. While certainly important, Ada syntax is but a part of a complete
software engineering environment that Ada supports. Thus one could possibly be
a software engineer without knowing Ada, but one could not use Ada effectively
without being a good software engineer. As Ada supports the principles and
goals of software engineering successfully, the relationship between Ada and
software engineering is quite compatible.

The Clear Lake Model for Software Engineering and Ada Curriculum

The ability to develop a comprehensive training program depends to a great
extent on the requirements definitions for the target audience. For an emerging
field like software engineering, defining the requirements is akin to hitting

TP 271 3 SOFlecH

the proverbial moving target. Hence, the course of action was to create a model
for defining the field of software engineering in a manner that would allow for
flexibility across projects, job descriptions and computing environments while
retaining the stability necessary to define a curriculum.

The Clear Lake Model for Software Engineering and Ada Curriculum has six
dimensions that must be considered when identifying individual needs and then a

curriculum appropriate for an organization or location (See Figure 1). The six
dimensions of the Clear Lake Model for Software Engineering and Ada Curriculum
are:

1) Job Description

2) Job Activities

3) Software Engineering Knowledge

4) Environments

5) Skill Levels

6) Project Size, Complexity and Extensibility

For a more complete discussion of the Model, see the NASA report (1l]. To
apply the model to a given organization, one defines precisely the job
descriptions of the participants and the number of individuals in each job
category. For each job category, the activities of the jobs are then analyzed
according to the individuals’ involvement in the lie cycle, in software control,
in management and in support activities. For those activities, the relevant
software engineering knowledge can be mapped.

All of this information has to be considered in terms of the project size
and complexity. One assumption we have made is that it is easier to scale-down
from more size/complexity to less size/complexity. Thus we recommend that
education and training plans be handled similarly to software projects: with
full, careful life-cycle consideration.

Importantly, the model must be applied to each context for which a plan is
proposed. No two curricula, therefore, will ever be exactly the same, because
no two organizations or projects are the same. The Model, however, provides the
structure necessary to frame the curriculum,

TP 271 4 SOFlecH

SOFTWARE ENGINEERING WITH Ada:
A DEFINITION OF THE FIELD
WITH CURRICULAR OPTIONS

{1, JOB DESCRIPTION | MA;?ME/N/ / / / /
SUPPORT POSI/TI?‘S / / / / /

TECHNICAL
2.
A
C | urecrcLe
T
I | contrOL
Y
.'r MANAGERIAL
|
E SUPPORT ACTIVITIES
S
s M I T A c
E E A o s o
T N o) M
c H (e} L g "
u o u [S u
L D A L] N
T S (c] M {
v £ E ¢
A S N A
E T T
) 1
o
N
s

| 3. SOFTWARE ENGINEERING KNOWLEDGE |

4. ENVIRONMENT: HOST, TARGET, INTEGRATION

5. SKILL LEVEL: INTRODUCTORY, INTERMEDIATE, ADVANCED

6. PROJECT SIZE/COMPLEXITY/EXTENSIBILITY: SMALL,
LARGE COMPONENT, AI-BASED

Figure 1 Clear Lake Model for Software Engineering and Ada Curriculum

TP 271 5 SOFrECH

CURRICULUM

Software Engineering with Ada Curriculum

A comprehensive life cycle curriculum based on the Clear Lake Model assumes
that there is a clear sense of the job descriptions involved, a sense of
software engineering knowledge and activities, and knowledge of the specific
skill levels, computing environments, and projects, domains best defined in the
context of a particular organization. Based on a definition of the requirements
in the model, a curriculum design can emerge.

To design NASA’s comprehensive life cycle curriculum for software, a number
of other factors were considered beyond an analysis of the NASA environment.
The training curriculum is based on the analysis of NASA environments plus the
best of the existing software engineering and Ada education and training
programs generally and the needs of NASA specifically. These programs include,
for example, those identified in the Ada Joint Program Qffice’s (AJPO’s)
Catalogue of Resources for Education in Ada and Software Engineering. The most
significant Ada and software engineering resources have been the Software
Engineering Institute, the now defunct Wang Institute of Graduate Studies,
Keesler Air Force Training Command, SofTech, a review of forty-seven commercial
vendor’s programs and a review of courses from thirty-one universities.

Designing the training curriculum for a complex, distributed organization
such as NASA meant that a three-tiered approach was needed to ensure timeliness
and the proper targeting of audiences. The first feature of a comprehensive
training program was the core curriculum. The second feature, dubbed "technical
topics”™, featured intensive technical, work-related presentations. A third
crucial feature of a comprehensive training program was one called "mentoring",
referring to on-the-job training, support services, user guides, on-site gurus
and references to name a few examples of technical mentoring. Mentoring may
also include management features, such as reinforcing good software engineering
practice through evaluations, walk-throughs, reviews, and meetings. The goal is
to make the software engineering with Ada a part of the organizational culture
by infusing it into every layer of software activity. For this brief paper,
only a description of the core curriculum will be considered. Both mentoring
and technical topics are considered in more detail in the full report to NASA

(1].

Based on these features and model’s application to the NASA context, a
curriculum map was prepared that carefully plotted a core curriculum for NASA.
Technical and mentoring activities that augment the core are then based on the
needs of a specific software group. See Figure 2.

TP 271 6 EOFTECH

TP 271

ORIGINAL PAGE i3
OF POOR QUALITY

Wil you use
NASA Standards?

Do you need 10
review compuling
besics?

Are you pariicipsting
in your first Ade

project in a technicel
or management role?

Do you need to hnow
how to code in Ade?

Will you be working
In software development
process?

WIil you be providing
life cycle support for
software development?

Wil you be providing
for susteining engl-
neering (as msintensnce
and operstions)?

Will you require

advanced or specisiized
information for managers?
(Select)

Wili you require
advenced or specislized
Information for technicsl
responsibiiities?
(Select)

Do your duties support
the software development
process?

Has five years elepsed
since you sclively worked
on any aspect of sofiwere
life cycie?

(If yes, return to sppropriate
decision dismond)

FIGURE 2

NO

NO

NO

NO

NO

YES

7

YES

YES

YES

YES

YES

YES

| NASA SOFTWARE LIFE CYCLE ANO

STANDAROS

SOFTWANE SYSTEMS
| REVIEW

SOFTWARE ENGINEERING AND
THE TRANSITION TO Ade

Ads PROGRAMMING LANGUAGE

SOFTWARE ENGINEERING DESIGN
Wil Ade METHOOOLOGIES AND
TOOLS

1

SOFTWARE DESIGN SPECIFICATION
METHOOOLOGIES AND TOOLS

)

SYSTEM REQUIREMENTS ANALYSIS
METHOOOLOGIES AND TOOLS

LIBRARY ANO OBJECT BASE

MANAGEMENT

i

QUALITY MANAGEMENT

t

CONFIGURATION MANAGEMENT
ANO INTEGRATION MANAGEMENT

SUSTAINING ENGINESRING

MANAGING Ads PROJECTS

]

Ads AS A COMMON PROGRAM
DESIGN LANGUAGE

Ade AEAL TIMNE ISSULS

f

WILAOPERADILITY
AND INTERFACES

SOFTWARE ENGINEERING WITH
Age FOR NON-TECHNICAL STAFP

CURRICULUM MAP

SOFlecH

Core Curriculum

The transition to software engineering with Ada is a transition to a mind
set, often called the Ada culture. This culture establishes norms for how good
software should be developed and sustained. To achieve successful software
engineering and Ada project results, planners must consider technical training,
education and on-the-job support as a complete plan. It is easy for one to be
seduced by code-centered individualistic approaches to software engineering, but
the case histories emerging from large, complex, distributed systems indicate
that approaches that perhaps worked well on smaller projects may not scale up to
a major software project like the Space Station.

While the Ada programming language is sometimes criticized by detractors as
"overly complex™ and with "relatively underdeveloped tool sets,"™ each passing
month offers new Ada success stories and new, more powerful tools and
environments. What does take time and effort is making the significant
organizational cultural changes required for a software engineering environment
that most effectively leverages Ada. Like any programming language, Ada is a
tool. The larger, more significant long-term questions are: How will this tool
be used? How rigorous will the engineering environment be? It is safe to assume
that rigor is required for hardware development. No less rigor should be
tolerated for software. Like all engineering, software engineering requires
commitment, effort, and a willingness to adhere to the principles, concepts and
models agreed to.

Training hundreds or thousands of practicing programmers to become
proficient in correctly applying software engineering principles, in the true
sense of the term, will take a major resource commitment. To oversimplify the
challenge, for the sake of making a point, one might argue that the problem is
akin to taking lifelong house carpenters and expecting them to become architects
overnight, with the requisite skills to design, say, a hospital complex. It can
possibly be done, but not overnight, not without high cost and risk. 1In
addition, significant training is required beyond the technical skill necessary
to do the job.

The curriculum map developed for NASA is based on a set of ten questions
that would be posed to an individual or a group of NASA employees. Depending on
the job descriptions, one can enter the curriculum at the appropriate level,
then select course modules by cycling through the curriculum
model. Prerequisites are implied by the ordering of the courses and are not
mentioned specifically. Figure 2 illustrates the curriculum map for Ada
training for NASA, across center and personnel. For example, all new hires |
would be exposed to Gl: NASA Life Cycle and Standards. A person in legal,
however, might not need to answer ‘yes’ to any other question, except J: Do your
duties support the software development process? In contrast, a lead designer
might need to participate in the entire curriculum. The curriculum is
modularized within courses, so that organizations may select the most
appropriate material for the target audiences. The coordination of the
curriculum would be handled by the appropriate education staff member in
collaboration with management and technical personnel.

The Core Courses

TP 27 8 SOFTQCH |

In order to attain good software engineering with Ada, courses in both
software engineering and Ada are recommended. A course that teaches Ada syntax
is easily labeled an Ada course. Some courses are on the topic of Ada but treat
software engineering issues. They include:

o0 Managing the Transition to Ada
0 Managing Ada Projects
0 Ada as a Common Program Design Language

Other courses are taught for the purposes of training good software
engineers and the Ada language is used in the course. These courses should be
categorized as software engineering. The subjects include:

Software Systems Review

Software Design

System Requirements Analysis
Library and Object Base Management
Quality Management

Configuration Management
Integration Management

Sustaining Engineering

Real Time Issues

Interoperability and Interfaces

0O000DO0O0D0O0OO0OCO

Clearly, courses may be added, modified, or even deleted from the core
curriculum once the implementation stage begins, as a normal part of change to
meet new requirements.

The Implementation Plan

NASA is currently offering software engineering and Ada courses at its
centers. However, the courses are not yet coordinated nor have they been mapped
to the overall framework proposed herein. To maintain the NASA’s momentum and
take full advantage of the results of the study, the following 10 activities
have been suggested:

1. Prepare presentations to raise the awareness of the people concerned.

2. Create a feedback loop among the people concerned for tracking:
New developments and resources
Recommended improvements

3. Create a database template for centers to use to track the program.

4. Create a baseline set of mentoring resources such as:
Ada Language Reference Manual
Vendor List
Ada Organizations
Reference Texts
Experts

5. Assist in identifying programs needed for core, technical and mentoring
topics. |

TP 271 9 SDF,'ECH

6. Map existing resources into a matrix of requirements. Report the
differences.

7. Develop a strategy for building existing resources into a prototype
curriculum for core, technical and mentoring topics.

8. Report modifications needed in order to use existing training resources.

9. Develop a strategy for providing the remaining resources. Write a report
emphasizing integration, synergism and cost effectiveness.

10. Propose a schedule and budget to implement the plans.

Recommendations

The recommendations included in this study do not reflect other training
needs; for example, management, hardware and systems engineering and integration
issues are vital, but beyond the scope of the study.

Nonetheless, there are final recommendations that need to be enumerated:

1) Promote A Sound Software Engineering Environment. Ada will be most
effective if used in an appropriate software engineering environment.
Training must be geared to support that culture, including evaluation of
courses and instructors according to their contributions to the core
curriculum as it becomes fully operational. The work of NASA Software
Support Environment (SSE) must be monitored for requirments to update the
details of the curriculum,

2) Update the Curriculum on a Timely Basis. The core curriculum will become
dated within two to three years if there is no support for including new
material, tools, methods and approaches to it.

3) Build on What is Now Available. There are a number of ways to improve
existing Ada training programs to match NASA’s particular uses. For
example, SSE guidelines and procedures will make Ada a working language,
one that applies directly to the job.

Ada training templates, reusable components, (both design and code) and
library of objectives should be developed and used throughout the agency as a
means to demonstrating excellent code examples and for building a library.
Ideally, training would take advantage of a large Ada artifact, or a working
piece of software that can be enhanced, maintained and studied by the students.
Hence, wherever possible real-use examples should be established, especially for
documentation and mini-projects included as a part of the course work.

SUMMARY
A software engineering and Ada curriculum for training and education and a
proposed implementation plan has been presented that can be adapted for each

NASA center according to the needs dictated by each project.

This report is based on a survey taken by meetings, telephone interviews and

TP 271 10 SOFlecH

written media of the major NASA centers’ project and education offices. It is
also based on previous research and discussions among education leaders at the
Software Engineering Institute (SEI), the Ada Software Engineering Education and
Training Team (ASEET), Armed Forces Communications and Electronics Association
(AFCEA) [2] and the Research Institute for Computing and Information Systems
(RICIS).

ACKNOWLEDGMENTS

The authors wish to thank Lisa Svabek of the Software Engineering
Professional Education Center, University of Houston Clear Lake, for her
assistance in conducting interviews and summarizing the results [21].

TP 271

1 SOFlecH

BIBLIOGRAPHY

(1] A Report on NASA Software Engineering and Ada Training Requirements,
SofTech, Inc., November 15, 1987.

(2) Armed Forces Communications and Electronics Association, Ada Education and
Training Study, Volume 1, 22 July 1987.

[3] Basili, V.R., "The Experimental Aspects of a Professional Degree in Software
Engineering" paper presented at the Software Engineering Education: The
Educational Needs of the Software Community workshop, 27-28 February 1986.

(4] "Catalog of Resources for Education in Ada* and Software Engineering," Vol.
40, Ada Joint Program Office, May 1987, NTIS Ada 169 892.

(5] Crafts, R.E., ed. "Ada Training -- Selecting a Quality Program," Ada
Strategies, Vol. 1, #2, April 1987.

[6] Fairley, R., Software Engineering Concepts, NY McGraw Hill, 1985, p. 2.

{7] Freedman, G.B., A Comprehensive Software Engineering Curriculum Model,,
ASEET, Dallas, Texas, June 1987.

[8] Freedman, G.B., Curriculum Options for Transition to Ada, Report for
NASA/JSC for ET.1l: Software Engineering and Ada, May 1987.

(9] Gibbs, N.E., Fairley, R.E., editors, Software Engineering Education: The
Educational Needs of the Software Community. Published by Springer-vVerlag.

(10]) Godfrey, S., Brophy, C., et al., Assessing the Ada Design Process and its
Implications: A Case Study, SEL-87-004, July 1987.

[11]) LeGrand, S. and McBride, J., "Ada Language Suited to Space Station
Requirements®”, Government Computer News, September 25, 1987.

(12} Marlowe, G., A Software Engineering Curriculum Proposal, white paper,
Summer, 1986.

[13] McKay, C,W., A Proposed Framework for the Tools and Rules to Support the
Life Cycle of the Space Station Program, COMPASS Conference, June 1987.

{14] McKay, C.W., Charette, R. and Auty, D. "A Study to Identify Tools Needed to
Extend the Minimal Toolset, of the Ada Programming Support Environment (MAPSE)
to support the Life Cycle of Large, Complex, Non-Stop, Distributed Systems such
as the Space Station Program." NASA/JSC Task Order VHISC Bll, March 1986.

[15] Murphy, R. and Stark, M., Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, SEL-85-002, October 1985.

[16] Murphy, R. and Stark, M., Ada Training Evaluation and Recommendation,
Goddard Space Flight Center.

TP 271 12 SOFlecH

[17] "NASA Software Acquisition Life Cycle Chart", National Aeronautics and
Space Administration, Version 3.0, 15 October 86.

(18] National Space Technology Laboratories/Earth Resources Laboratory, NSTL’s
Ada Lessons Learned, white paper, March 1987.

[19] pietrasanto, A., Software Engineering Training: Lessons Learned, Ada Expo
86, Charleston, WV, December 1986.

{20] Shaw, M., Beyond Programming in the Large: The Next Challenges for Software
Engineering, Pittsburgh: SEI Annual Report, 1985, page 546.

[21] Svabek, L.A., The Development of a Software Engineering Professional
Education Center and its Impact on the NASA/JSC Community, white paper to be

published December 1987.

[22] Steiner, G.A., Strategic Planning: What Every Manager Must Know, The Free
Press, New York, New York.

(23] "Defense System Software Development"™, DoD-STD-2167, 4 June 1985.
Reference Manual for the Ada Programming Language, Department of Defense,
January 1983.

[24] Reference Manual for the Ada Programming Language, Department of Defense,
January 1983.

TP 271 13 SOFlecH

HI3l40s
8861 ‘0¢ aun(

£861 STPVM

.0} pajuasald

aye] gmﬁo-:ouw:o.t Jo Msianiun ‘uvwipaad,] g uualn) “Ad
*ouJ ‘yoa]Jos ‘puvina ang ‘SW

:Aq poussaig

VSVN 404 THAOWN NOILVINAWATIN] NV
ONINIVY] PPV ANV ONIIHANIONH HIVMAIAOS

Jzdzs’

HI3|40s

0dSS 2Y: 01 uvjd uoyvusu]duil
PUD WNJNILLIND D SUIPUIUIWOIDA 110do1 | @

VSVN SSO40D SjuauiaAmmba. Sutuiwa) vpy puv
Su1122u18U2 2UDMIJOS fO JUIULSSISSD 24a1DINOND V' @

AdNIS AHI A0 SAALLDALLO

Jzdzs’

HI3l40s

1861 ‘Aedjo

-uopoddp ay3 Jo 21942 af11 a1
moy8no.ay; ajgupuvisiapun pup ‘quaiiffa ‘afvs puvo
ajqu1ya. ‘ajquifipout 122.L109 S1 Yorym Surndutod 1ioddns oy

saonov.d
pup ‘saujapind ‘spavpuvys 21014doddp Yym paurquiod

s3daouod puv ‘sajdrourid ‘sjpppows

‘spoypoul ‘s]00} ‘SIUDUWIUOLIAUD Surtaauidua punos
Jo uonponddp puv jusuiysiqisa ayg -

ONINAANIONH HIVMIAOS

e LONEONPY | J Oussubug Bemipg

—<

Jzdzs

H3J3|40s5

buriojuayy -
saoido]j jealuyoa] -
wn[naiiIny 9oy -

L0f unjg uonvuduw]dul] a4vdoid @

SDa4Y 140ddng pup 1DI1MUYI] ‘JUIUMISDUD P
U1 [oUUOSADJ LOf SHONDPUIUUIOI Y SUIUIDL] ULIO,] @

Sjuauiambay puv suvjJ vpy
1o uonpuLiofur 10f sao1ffo wvi3old YSYN £o44ng @

uoypuLIofu] SUIUIDA] pauuv]J
pup SN01aa.4d 10§ sa01fJ() uonponpg YSYN Laaing ¢

HOVOYdddV

Jzdzs

H3J3|40s

Sunuwd] pup UOUDINPT W3 [-SUOTT
‘PaINqLISI(T A0 SUu1122U13UI 24DMIJOS UL WNJNILLINY)
2A1SUIY2AdUI0) “‘P2422UIBU (194 © YSIqDISH O PIIN @

VSVN 40f 21quimg vjnorLn)
Suuiv.] pup uoyvonpy paysiqoisy [12M Jo Ao0T @

JuUIUOL1AU
1oddng aupmifos puv vpy 01 UONISUDLL S, VSVYN @

AdALS HHL A0 LXAINOO

Szdzs

HJ3l40s

121U27) 200d§ UoSUYO [/ VSV N IV Wni3odd 10]1d @

Miunwwoy burieauibug alempjos Jeuoliep -

| $19]Ud) VSVYN -

pieog Aiosiapy bBulisaulbuz pue 8oudIds YSYN -
pJeog Aiosiapy siobeuepy 108foid YSVN -

0] U2 110d3Y @

W do]242 (QUOND2IUD3A()
S2IUNO0SIY UDWNE] S42]40NDPDIL] YSVN 01 UODIUISIA] @

HLVdd[]

Szdzs

HIJ3l40s

EEH6-88¥ (€1L)
9C0// SDXI[‘UOISNOE]

'palg a4y Avg 00LT
a)e7 1ed|n-UuojsnoH Jo AlsieAiun
QQEN»»N&RN ﬁﬁ&@ .kQ

-SAIdOD ¥HAYO 0L

<

Jzdzs

