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ABSTRACT

The weak interaction plays a critical role in modern Big Bang cosmology. This review will

emphasize two of its most publicized cosmological connections: (1) Big Bang nucleosynthe-

sis and (2) Dark Matter. The first of these is connected to the cosmological prediction of of

Neutrino Flavours; N_ ,-_ 3 which is now being confirmed at SLC and LEP. The second is

interrelated to the whole problem of galaxy and structure formation in the universe. This
review will demonstate the role of the weak interaction both for dark matter cmadidates

and for the problem of generating seeds to form structure.
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INTRODUCTION

Some of the most critical problems in cosmology today involve the weak interaction,

in particular, Big Bang Nucleosynthesis and dark matter. The weak interaction is fun-

damental to all Big Bang Nucleosynthesis results such as neutrino counting and the limit

on cosmological baryon density. This latter limit is the crux of the argument leading to

non-baryonic dark matter. The leading dark matter candidates are weakly interacting and

some of the proposed seed mechanisms for forming structure also involve the weak interac-

tion. It is the arena of dark matter and galaxy formation where traditional astronominal

observations of cosmological relevence come face to face with elementary particle models,

both for predicting new and exotic types of matter and for predicting the origin of various

types of seeds that eventually produce the structure.

This overview will go through the Big Bang Nucleosynthesis arguments as to why

there must be dark matter in the universe and then discuss the types of dark matter

and the proposed structure formation mechanisms, and finally discuss observations and

experiments that will eventually determine the answers to the problem. Remember that

the key reason why the cosmology/particle interface is so vital today is the close interplay

between theory, observation and experiment, Unlike cosmology of past centuries or even

past decades, current models and ideas are indeed testable and those observations and

experiments are being carried out.

THE NEED FOR DARK MATTER

The arguments requiring some sort of dark matter fall into two separate and quite

distinct areas. One i%the argument using Newtonian mechanics applied to various as-

tronomical systems that show that there is more matter present than the amount that

• is shining. These arguments are summarized in the first part of Table 1. It should be

noted, that these arguments reliably demonstrate that galaxies have dark halos that carry

at least 90% of the total mass of the galaxy. In other words, the halos seem to have a mass

,-_ 10 times the visible mass. The arguments do not in any way imply that _ is unity from

dynamical considerations alone.

The other argument is what we choose to call the inflation paradigm. This is the

argument that the only long-lived natural value for I2 is unity, and that inflation or some-

thing like it provided the early universe with the mechanism to achieve that value and

thereby solve the flatness and smoothness problems, it should be remembered that it is

this latter argument, when confronted with the results of Big Bang Nucleosynthesis (see

Fig. 1 as well as Table 1), that tells us that f/in baryons fib is -,_ O.01 and therefore that

if f2 total is truly unity, then the bulk of the mass of the universe must be in the form of
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TABLE I

"OBSERVED" DENSITIES

Hofi p/pc where pc = 2.10-:gh02g/cm3and ho -- 100 kmlsecfmpc

Neutonian Mechanics

(cf. Faber and Gallagher 1979)

Qvisible "" 0.007 (_ factor of 2)

_binaries _-. 0.07 (-,_ factor of 2)
small groups
extended flat relation curves

_'_clusters "" 0.1 to 0.3

Big Bang Nucleosynthesis (with t_ _> 101°yrs.)

(c.f. Kawano, Schramm and Steigman 1988 and ref. therein)

O.03 < _ < 0.12

Preliminary Large Scale Studies

IRAS red shift study

(Strauss, Davis, Yahil 1989)

Density redshift counts
(Lob and Spillar 1988)

Inflation Paradigm

(Guth 1980, Turner 1986)

_ _> 0.3

_ ,_ 1=E0.6

°



some sort of non-baryonic matter. Thus, our need for exotica is dependent on inflation

and Big Bang Nucleosynthesis and not on the existence of dark galactic halos. This point

is frequently forgotten, _aot only by some members of the popular press but occasionally

by active workers in the field. Therefore, rather than spending any further time on the

dynamical arguments, I will focus my attention on a brief review of the argument for the

inflation paradigm and then concentrate on Big Bang Nucleosynthesis, since it is really

the pivotal argument that drives us to non-baryonic and, therefore, exotic solutions. We

will see that Big Bang Nucleosynthesis really depends crucially on the weak intereaction.

We will also focus on the point that Big Bang Nucleosynthesis not only requires non-

baryonic matter, but it also requires the bulk of the baryons in the universe to be dark.

In fact, locating the dark baryons may be a very important way of discerning the nature

of the non-baryonic component as we shall see. Recently, some clever possible loop holes

in the Big Bang Nucleosynthesis argument have been proposed. These shall be discussed

and shown probably not to be as critical as they initially seemedl

THE INFLATION PARADIGM

The flatness problem is a well known cosmological problem for any classic Big Bang

cosmology. It basically notes that the density parameter of fl evolves with time. If ft is

> 1, ft will eventually go toward infinity; if ft is < 1, it will eventually go to 0. Only

if _ is exactly equal to 1, does it remain at that value indefinitely. The time scale on

which fl changes is the gravitational time scale which is approximately the age of the

universe. Thus, at the present time, _ is changing on a time scale of tens of billions of

years if _ is significantly different than unity today. However, back at the time of Big

Bang Nucleosynthesis, fl was changing on a time scale of seconds. If we extrapolate as far

as any rational person has confidence, back to the Planck time, then g/was changing on

time scales of ,-_ 10 -43 per second. Therefore, in order for us still to be here today and

talk about it, fl had to be fine tuned to be equal to unity to nearly 60 decimal places at

the Planck time. Another way of saying this is that since our existence is not compatible

with _2 of 0 or infinity, the only long term value that fl can have is unity. Hence, baring

the possibility of our living at an epoch in cosmic time when fl has just dropped below

unity for the first time, but is still far from 0, we would otherwise say that fl is unity.

These arguments went on long before inflation provided us the natural physical mech-

anism to drive fl to unity in the first moments of the universe. Thus, it did not have to

rely on some arbitrary fine-tuned initial condition. Inflation 1] is the rapid expansion of the

early universe that would take a wide range of initial conditions and convert them to condi-

tions where fl was unity to a high accuracy. Although the detailed physical mechanism for

driving the expansion is not well determined and differs in different grand unified theories,



a basic point is that any scalar field present in the early universewill causein_flationfl

Inflation provides us with a plausabtemechanism to set the initial conditions and avoid

special fine tuning. This.drives most cosmologiststo believe fl must be unity todav.

BIG BANG NUCLEOSYNTHESIS

Figure 1 showsthe abundancesversesbaryon density for standard homogeneousBig

Bang Nucleosynthesis.The actual Big Bang calculations themselvesare natural evolution

from the early primitive work of Alpher, Bethe and Gamows] evolving through the almost

complete picture used by Alpher, Follin and Herman*] and receiving only minor physi-

cal modifications since the first post 3K discovery calculations with numerical reaction

networks of Peebles, 5] Wagoner, Fowler and Hoylefl However, it should be remembered

at the time of Wagoner, Fowler and Hoyle, that the only nucleus produced in the Big

Bang that was thought to be of significance was 'tHe. Fowler, Greenstein and Hoyle 7] had

argued that the other light elements were made in protostellar processes. Thus, during

the 1960's the abundances of deuterium, 3He, and VLi produced in the Big Bang were

merely a curiosity, and were not seriously utilized for cosmological purposes. That situa-

tion changed dramatically in the 70's, when a variety of events occurred affecting Big Bang

Nucleosynthesis.

The first point of significance was a demonstration, not only that the Fowler, Greenstein

and Hoyle process failed, s,9] but the eventual dramatic statement that deuterium cannot be

produced in significant quanities in any astrophysical location other than in the big bang

due to its basic nuclear fragility. 1°] The development of these nuclear arguments, coupled

with the development of the observations, in particular the Copernicus satellite finding

deuterium in the interstellar medium TM and the implications for deuterium from solar

wind observations13! on the moon and meteoritic observations, 14] cemented deuterium's

use as a powerful density constraint. This helped support, for example, the arguments of

Gott, Gunn, Schramm and Tinsley. 11]

Once deuterium was established as cosmological, similar but more complex procedures

were applied to establishing the cosmological releyance of3He and 7Li as demonstrated

by Yang, Rood, Steigman and Schramm 15] following the important SHe work of Tinsley,

Rood and Steigman. 16] In particular, it was eventuMly shown that 3He plus the 2H that

is converted to of 3He in stars provides a strong lower bound on density, since 3He is also

manufactured in stars) T] Furthermore, it was noted in the series of papers by the Chicago

15,17,18]Group and their collaborators that the only allowed value for Li consistent with the

3He and deuterium observations will be a value of Li near the minimum of its abundance

curve, namely, Li/H of approximately 10 -l°. At the time this was first noted, it seemed

somewhat problematic because Li in Pop I objects and in the interstellar medium seemed



to imply a value an order of magnitude higher. However,agruments were made that the
Pop I abundancemight have been significantly enhancedby later production processes.

The definitive observation camein 1980when the Spites19]measuredthe Li in the extreme

Pop II stars and found the higher surface temperature Pop II stars all had the same Li

abundance, and it was at the level of 10 -1° in agreement with the minimum derived from

the Big Bang Nucleosynthesis agruments.

With 7Li as a keystone, standard Big Bang Nucleosynthesis was fitting abundances

all the way from 4He at 25% by mass down to 7Li at 10 -l° by number; a range of over

9 orders of magnitude. Such quantitative agreement not only seconded the 3K back-

ground's establishment of the basic Big Bang model, but also led to the establishment of

the particle/cosmology connection. It said that we understood the universe not just at

the epoch of the background decoupling (t _ 105yrs.), but also at the epoch of Big Bang

Nucleosynthesis (t ,,_ lsec.).

Big Bang Nucleosynthesis was used to predict 2°] the number of fundamental particle

types, which explicitly substantiated the particle/astro connection by making a cosmo-

logical prediction about a quanitity of explicit interest to particle physicists and by en-

abling experimental tests in accelerator laboratories to be made regarding the Big Bang

model.21,22]

In the mid-1970's, when particle accelerators were finding more and more fundamental

particles, cosmologists 2°] argued that the number of families cannot continue to increase or

there would be a conflict between the observed Helium abundance and the Helium produced

in the Big Bang. The most recent re-evaluation of the cosmological limit using current

neutron lifetime measurements of rn = 890 4- 4 from Mampe et al.82] are shown in Figure

2. If the current best 83] primordial 4He abundances are used (Yp _ 0.232 4- 0.004), then

even four families appear to be excluded with three working fine. The new SLC results s4]

seem to experimentally support these cosmological results. Thus, particle accelerators are

now verifying cosmological predictions.

For dark matter, the important implication of nucleosynthesis was that _B was con-

strained to be between 0.03 and 0.12. Thus, the universe cannot be closed with baryons,

but furthermore the lower bound was greater than _2 visible. To obtain this lower bound

it should be noted that one has added the additional constraints 23] that the age of the

universe is greater than 10 I° years, which thus constrains any _ot,z = 1 model to have

an H0 of less than 70km/sec/Mpc. It was noted by Gott et al.,11] that the Big Bang

Nucleosynthesis derived f_B is in good agreement with the f_s implied by the dynamics

of galactic systems. Thus, to explain halos, one is not forced to look beyond some form

of baryonic dark matter. It is only if one goes to an fl of unity, or, to be more specific, f_



II II II

.J l, lit,,, I, I

?
0

2
I
0

"_ _
_-_

o,.=_ ..=,_

XO _

- _ ._ .__

I _ _'.= _

%"_ =.._=
I __

o"'i" i
[..,

m -_ c_

- ,_ __._
'_,_ _

. .oZ

0 '-- "_ ,-, _

I -,, ,-_

._ .._

uoT1o_4 4 snfl



> 0.12 for the standard homogeneous model, that one is really forced to exotic matter. 241

Before discussing such matter let us look at two possible loopholes in the argument.

These loopholes are: (1) fluctuations generated at the quark-hadron transition and (2)

alterations of nucleosynthesis by late decaying massive particles.

This latter model was developed most fully by Dimopoulos et al. 331 In it they noted

that if some massive unstable particle exsisted, and decayed shortly after the time of nor-

mal nucleosynthesis, it would regenerate nucleosynthetic results that were quite different

from the standard model and could even fit the observed abundances with somewhat dif-

ferent values of baryonic density and/or numbers of neutrinos. A key point about these

calculations, though, was that they predicted that the bulk of the lithium coming from the

Big Bang will be 6Li rather then 7Li. Following the arguments of Brown and Schramm, 34

the Li isotopic ratio has been examined in extreme Pop II stars by Hobbs, Pilachowski

and De Young. s_ They found no evidence for any 6Li in these stars. Thus, unless even

these stars destroyed their 6Li, it appears unlikely that the decaying scenario is valid.

As to the quark-hadron transition possibilities, much has been written. It was first

noted by Applegate, Hogan and Sherrer, 35] followed by work by Alcock, Fuller and

Mathews, 36] that if a quark-hadron transition were a first order phase transition, then

density fluctuations produced at the phase transition could yield inhomogeneities at the

time of nucleosynthesis. Furthermore, the differential diffusion of neutrons relative to pro-

tons out of the density inhomogeneities will yield a variable neutron/proton ratio, as well

as the previously studied density fluctuations. (For previous studies of inhomogeneities,

see Yang et al.17]) In the initial calculations, it was thought that one might be able to

obtain an 12B of unity while fitting all of the light abundances with the exception of Li,

which would have been over-produced by a significant amount. Later work by Fowler

and Malaney 3T] argued that when a more detailed treatment of the two-phase model was

carried out that included back delusion of the neutrons, then the Li could be depleted

to more acceptable values. However, work by Kurki-Suonio, and Matzner 39] and Alcock

et ai.40] showed that back delusion also resulted in high helium abundances. Whether

parameters could be found that enabled this He to be depleted is problematic among the

different groups. (Density contrasts > 104 may give lower He, but are they realistic? Can

variations in the detailed treatment of the phase boundary help, etc.?) However, they all

seem to be in agreement that, except for some very narrow range in parameter space, Li

and He axe usually over-produced for high f_s. In phase transitions, one usually expects

some distribution of parameters, not single values. That a phase transition would exactly

pick out those parameters that avoid excessive over-production of Li and He seems dill-

cult, especially when one realizes that the separation of the nucleation sites required is the



order of hundred_of meters for a phasetransition that operateson Fermi scaleprocesses.

However,until this is completely explored, there clearly remains a loophole that must be

investigated further.

Ignoring this possible loophole (which now appearsfar lesscompelling than it did in
the initial papers), let us apply to the quark-hadron transiii0n the normal abundance

constraints that we have usedfrom nucleosynthesisand not relax the Li constraint. If we

apply our normal constraints we obtain 41] Figure 3. The parameter on the vertical scale

there is the separation of the nucleation sites measured in meters at the time critical for the

phase transition. The horizontal parameter is again the density in baryons. Once the Pop

II constraints on Li are put in, the highest baryonic density to be achieved is only slightly

higher than the standard models, regardless of separation of nucleation sites. Similarly,

the lower bound does not drop significantly. It should also be noted that these kinds of

arguments can be turned around to constrain the parameters of the phase transition, since

values of over one hundred meters appear to be excluded by nu_:leosynthesis. This same

kind of argument was also made by Reeves and Audouze 42] and Tarasawa and Sato. 3s]

Before leaving Big Bang Nucleosynthesis, it should be remembered that the quark-

hadron loophole is critically dependent on Li. One point that has been raised is that if

we are willing to use the Li for this argument, we should understand fully how Li evolves

in the galaxy. A key question for Li has been how to get from the Pop II abundance

of Li/H .,., 10 -1° to the Pop I abundance of Li/H ,',, 10 -9. Some 4°] have argued that

perhaps Li is depleted from some high initial value down to both Pop I and Pop II values.

However, recently Dearborn, Schramm, Steigman and Truran 43] have found that Li will

be produced in type II supernovae and thus will be enhanced in exactly the same objects

that produce the metal abundance of the Galactic disk. With this mechanism it is easy to

understand why the Pop I value is an order magnitude higher than the Pop II value and

why it appears constant for old as well as young Pop I stars that have not depleted their

surface Li. In fact, if Li can be proven to be made in supernovae, then it will be impossible

to reconcile successive high Li production and fib = 1 universes with the galactic evolution

of Li. Thus, Li evolution continues to be a critical point of study.

DARK MATTER CANDIDATES

Table 2 summarizes both the baryonic and non-baryonic dark matter candidates. Some

baryonic dark matter must exist since we know that the lower bound from Big Bang

Nucleosynthesis is greater than the upper limits on the amount of visible matter in the

universe. However, we do not know what form this baryonic dark matter is in. It could

either be in condensed objects in the halo, such as brown dwarfs and jupiters (objects with

0.08 solar masses so they are not bright shining stars), or black holes (which at the time
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TABLE II

"DARK MATTER. CANDIDATES"

Baryonic (BDM)

Brown Dwarfs and/or Jupiters

Blackholes

Hot intergalactic gas

Failed galaxies

Non Baryonic

Hot (HDM)
Low Mass Neutrinos

Cold (CDM)
Massive Neutrinos

Wimps, Lightest Supersymmetric

Particle (Photino, Gravitino, Sneutrino)

Axions

Planetary mass black holes

Quark nuggets

Topological debris (monopoles

higher dimensional knots, balls of wall, etc.)

M < 0.08Mo

M > 1Mo

M ,.., 1GeV, T ,._ 106K

M _> 105Me

My "_"20 4- 10eV

M. ,,_ 10-%V

M ,_ 10x59 - 10-S°g

M ~ 10aSg

M > 1016GeV

°."



of nucleosynthesis would have been baryons). Or, if the baryonic dark matter is not in

the halo, it could be in hot intergalactic gas, hot enough not to show absorption lines in

the Gunn-Peterson test,.but not so hot as to be seen in the x-rays. Evidence for some hot

gas is found in clusters of galaxies. However, the amount of gas in clusters is probably

not enough to make up the entire missing baryonic matter. Helfand 44] has argued that

the isotropic x-ray background may be due to hot intergalactic gas in sufficent density to

account for all the dark baryons. If verified, this would reduce the possibilities of halos

containing condensed dark baryons, since all the baryonic matter would be accounted for.

Another possible hiding place for the dark baryons would be failed galaxies, large clumps

of baryons that condense gravitationally, but did not produce stars. Such clumps are

predicted in galaxy formation scenarios that include large amounts of biasing where only

some fraction of the clumps shine.

Hegyi and Olive 45] have argued that dark baryonic halos are unlikely. However, they

do allow for the loopholes mentioned above of low mass objects or of massive black holes.

It is worth noting that these loopholes are not that unlikely. If we look at the initial mass

function for stars forming with Pop I composition, we know that the mass function falls

off roughly like a power law for standard size stars, as was shown by Salpeter. Or, even

if we apply the Miller-Scalo mass function, the fall off is only a little steeper. In both

cases there is also some sort of lower cut-off near 0.1M®. However, we do not know the

origin of this mass function and its shape. No star formation model based on fundamental

physics predicts it. We do believe that whatever the origin of this mass function is, that

it is probably related to the metalicity, since metalicity affects cooling rates, etc. It is not

unreasonable to expect that the initial mass function that was present in the primordial

material (which had no heavy elements but only the products of Big Bang Nucleosynthesis)

would be peaked either much higher than the present mass funtion or much lower; higher

if the lower cooling from low metals resulted in larger clumps, or lower if some sort of rapid

cooling processes ("cooling flows") were set up during the initial star formation epoch, as

seems to be the case in some primative galaxies. In either case, moving either higher or

lower produces the bulk of the stellar population in either brown dwarfs and jupiters or into

massive black holes. Thus, the most likely scenario is that a first generation of condensed

objects would be in a form of dark baryonic matter that could make up the halos and

could explain why there is this interesting coincidence between the implied mass in halos

and the implied amount of baryonic material. However, it should also be remembered

that to follow through with this scenario, one would have to have the condensation of the

objects occur prior to the formation of the disk. Recent observational evidence 46] seems to

show disk formation is relatively late, occurring at red shifts Z < 1. Thus, the first several



billion yearsof a galaxy's life may have been spent prior to the formation of the disk.

In fact, if the first large objects to form are less than galactic mass,as many scenarios

imply (c.f. York et al.s.6]),then mergersare necessaryfor eventual galaxy size objects.

Mergersstimulate star formation while putting early objects into halosrather than disks.

Thus, while making halos out of exotic material may be more exciting, it is certainly not

impossible for the halos to be in the form of dark baryons. One application of William of
Occum's famousrazor would be to have us not invokeexotic matter until weare forced to

do so.

Non-baryonic matter can be divided following Bond and Szalay 47] into two major cat-

egories for cosmological purposes: hot dark matter (HDM) and cold dark matter (CDM).

Hot dark matter is matter that is relativistic until just before the epoch of galaxy formation,

the best example being low mass neutrinos with m_, ,_ 20eV. (Remember f_v V'__ I00 h 2 "1

Cold dark matter is matter that is moving slowly at the epoch of galaxy formation.

Because it is moving slowly, it can clump on very small scales, whereas HDM tends to

have more difficulty in being confined on small scales. Examples of CDM could be mas-

sive neutrino-like particles with masses greater than several GeV or the lightest super-

symmetric particle which is presumed to be stable and might also have masses of several

GeV. Axions, which, while very light, would also be moving very slowly 4s] and thus would

clump on small scales. Or, one could also go to non-elementary particle candidates, such

as planetary mass blackholes 49] or quark nuggets of strange quark matter, also found at

the quark-hadron transition. Another possibility would be any sort of massive topological

remnant left over from some early phase transition.

When thinking about dark matter candidates, one should remember the basic work

of Zeldovich, _°] later duplicated by Lee and Weinberg, 51] which showed for a weakly in-

teracting particle that one can obtain closure densities, either if the particle is very light,

,.., 20eV, or if the particle is very massive, ,._ 3GeV. That is because, if the particle is much

lighter than the decoupling temperature, then its number density is the number density of

photons (to within spin factors and small corrections), and so the mass density is in direct

proportion to the particle mass since the number density is fixed. However, if the mass

of the particle is much greater than the decoupling temperature, then annihilations will

deplete the particle number. Thus, as the temperature of the expanding universe drops

below the rest mass of the particle, the number density is depleted via annihilations. For

normal weakly interacting particles, decoupling occurs at a temperature of _ 1MeV, so

higher mass particles are depleated.

Before leaving the discussion of DM candidates, it might be noted that in addition

to the curious coincidence of the density of baryons being approximately equal to the



density implied by halos,there is another coincidencewhich may haveexactly the opposite

resolution. This is the coincidence in the ratio of halos to visible matter (-,_ 10), which

is the same as the ratio.of critical density to the baryonic density (also about 10). This

coincidence is nicely explained in CDM models with biasing, since in these models there

will be many clumps of baryons and CDM, but only some biased fraction would shine.

Once the ratio of CDM to baryons is set in the early universe, it would propagate in all

objects and thus would yield the same ratio of shining to non-shining matter everywhere.

Of course these "coincidences" are only good to factors of a few, so as observational data

improves, the "coincidences" may vanish.

GALAXY FORMATION MODELS

As much a part of any DM scenario as the DM itself are the seeds that enable the DM

and the baryons to form the observed clusters of galaxies and other structures. While many

statements are frequently made about the ability of one or another kind of DM to make

realistic structures, those statements are always made in the context of an explicit model

of galaxy formation. Since we do not really know how galaxies form, all such statements

need to be taken with several grains of salt. At the present time there are two basic

galaxy formation scenarios. One uses quantum induced Gaussian fluctuations generated

at the end of inflation. The other uses some topological remnant, again produced by some

new fundamental physics. It should be noted that each of these mechanisms involves new

fundamental physics, and it should also be noted that prior to the marriage of cosmology

with particle physics we had no models for generating the initial seeds, and fluctuations

were merely put in by hand. Now we have models that do relate the structure formation

seeds to fundamental physics, but the fundamental physics we need is not just the standard

model particle physics interactions.

The quantum induced Gaussian fluctuation model with the production of the Harrison-

Zeldovich spectrum has been the standard model for galaxy formation in the '80's. And

with that model, CDM is favored, since HDM is not able to make small galaxy-like struc-

tures fast enough. However, CDM with Gaussian fluctuations, as we will see, may run

into problems on the large scale side if present reported observations continue to hold up.

The advantages of the CDM plus Gaussian model are that it is easy to calculate; it has

been explored in far more detail than any of the other models; and it does amazingly well

considerating the rate at which new observations are being generated. The most detailed

work on these models have been the numerical simulations of Frenk, White, Davis and

Efstathiou. 5_]

The alternative of using topological remnants as the seeds, as opposed to density fluc-

tuations in the matter, is best epitomized in the cosmic string scenarios, first noted by



TABLE III

GALAXY FORMATION SEEDS

1. Quantum Induced Gaussion Adiabatic Fluctuations

with Harrison-Zeldovich Spectrum (c.f. Guth and Pi)

2. Cosmic Strings (Kibble, Zeldovich, Vilenkin)

A) Accreting (Turok and Albrecht, Bennett and Buchet)

B) Exploding Superconducting

(Ostriker, Thompson and Witten)

3. Late Time Phase Transitions (Hill, Schramm and Fry)



Kibble and Zeldovich 53] and later developed by Vilenkin. 54] The last few years these sce-

narios have divided themselves into two sub-catagories. One is the gravitationally accreting

string, developed most fully by Turok and Albrecht, 5S] with recent interesting simulation

being carried out by Bennett and Buchet. 56] The other variant of this has been the explod-

ing seed scenario, where the strings are superconducting. This model has been put forth

by Ostriker, Thompson and Witten. 57] In the exploding scenario, instead of the strings

being gravitational accretion points, the strings radiate and push the baryons about, thus

creating a segregation between the baryonic matter and the non-baryonic matter. The

exploding scenario is in some way a natural outgrowth of the earlier model of Ostriker and

Cowie, ss] but in the earlier model they had no energy sources strong enough to push mat-

ter about on cluster scales. The superconducting strings provided them with that energy

source.

A new alternative using topological remnants has recently been developed by Hill,

Schramm and Fry. _9] In this variant, instead of coupling them to a phase transition back

in the primitive early moments of the universe, it ties the topological remnants to a phase

transition that occurs late, alter decoupling. In this scenario, the late phase transition

produces domain walls, strings, etc., which can be the seeds of structure formation. Because

the transition occurs after decoupling, it produces the minimum possible fluctuations in

the microwave background for a given structure that is produced. Since there would be no

fluctuations on the surface of last scattering, the only induced fluctuations in the microwave

background in this model are due to the propagation of the microwave photons through

the potential wells in the transparent media and due to the Seeds themselves changing

during the propagation. If the universe were static and not expanding, the differential

red shift/blue shift would cancel and there would be no net effect. However, because the

universe is expanding while the photons are propagating, the red shift and blue shift do

not quite cancel. It can be seen that in late time transitions, larger structures, giving a

larger differential between the red shift and blue shift; would yield the largest microwave

fluctuations. The maximum size structure that could be created in such a model can,

in principle, be up to the horizon at the time of the phase transition, and that horizon

is larger than any presently observed structure, including the giant structures noted by

Tully, 6°1 Geller and Huchra. 61] However, it should also be remembered that if the evolution

of the late-time structures leads to larger and larger structures, then this model may have

the problem that will produce too much power on large scales, which would be exactly

the opposite problem of the quantum fluctuation scenario. However, producing larger

structures and consequently _ depends on the details of how the walls, strings, et-c.

evolve with time. Simulations of the type that were carried out for cosmic strings need



to be carried out for late time phasetransitions. Preliminary simulation work has been

begunby Kawano,62]and Press,Ryden and Sperge183].In any modelfor the simulations of
domain wall evolution, one needs to make assumptions about the number of minima which

produce the numbers of different types to domains. Futhermore, one also needs to make

assumptions about the intercommutability of the domain walls which is yet to be proven,

and one needs to look at the possibility that the vacuum minima are not all degenerate, but

that there may be some weakly broken symmetry yielding one vacuum slightly preferable

over the others. This latter possibility will mean that eventually the walls could disappear.

If they were there long enough to generate structures and then disappear, one would avoid

having the problem of too much power on large scales. In this latter possibility one might

still retain small "balls of wall," which would behave like non-topological solitons, n4] Non

topological solitons produced by such a late time phase transition could be very good seeds

for making galaxy and structure, with the seeds distributed in some pattern depending on

the evolution of the phase transition. 65]

Recently, Hill, Schramm and Widrow sT] have argued that Sine-Gordon walls seem to

work very well and avoid the pitfalls of one wall dominating, as was seen in the simulation

of Press et al. These !ate-time phase transitions are the most recent of the ideas for seeds

and thus the least explored. However, as we will see if present trends and observations are

verified and continue, this may be an extremely promising model. For example, Stebbins

and Turner 66] have shown that this model and variations of it might easily give large scale

velocity fields.

Before leaving the discussion of this model it should also be noted that the physics

that could produce such a late time phase transition is probably no more ad hoc than

the physics that is invoked to enable inflation to work and still obtain sufficiently small

primordial fluctuations. In both cases there is some tuning and in both casesvne is invoking

a phase transition based on "new" physics. The toy model proposed in the initial paper sg]

was actually motivated not to try to solve this problem but rather the solar neutrino

problem, where it was noted that, if MSW mixing is right, then neutrinos have masses

of ,,_ 10-2eV. If that mass is generated out of some vacuum energy, then you naturally

have a phase transitlonat the order of ,-_ 10-2eV. If that phase transition is related to

a GUT scale having GUT scale coupling of ,-_ 101SGeV, then the compton wave length

of the resulting Psuedo-Goldstone particles is ,,- 1Mpc, thus yielding cosmological scales

derived from particle considerations. Numerous alternative particle models that also yield

late-time transitions have been proposed. For example, Dimopoulos 67] has noted that

if one uses a running coupling constant, analogous to QCD, one can have that running

coupling constant grow strong at some temperature such as 10-2eV, thus yielding a phase



transition. Another alternative hasbeenproposedby Fuller and Schramm,68]where they
note that if majorons exist and areproduced by a phasetransition at _<leV, the majoron

induced neutrino interaction enables those regions that first undergo the phase transition

to work like neutrino fly paper gobbling up any neutrinos in the vicinity, thus creating a

non-linear density enhancement. It is certain that many other late-time phase transition

models can exist that would have some sort of generic properties of the type needed. Thus,

just like the case of inflation where a variety of particle models can all inflate, we have here

a variety of particle models that can all yield late-time structures that could be interesting.

OBSERVATIONAL CONSTRAINTS

Table IV summarizes some of the constraints on different candidates. For example,

dark baryonic halos DBH are not compatable with CDM, since CDM would also cluster

on small scales and would thus be present in enough quanity to produce the halos. Any

large amount of DBH would then be unnecessary and difficult to understand. While there

are no direct observations of DBH, searchers using micro-lensing may resolve this. Recent

observations by Thuan, Gott and Schrader 69] argue that dwarf galaxies are distributed

in the same patterns as are the brighter galaxies. If this continues to be borne out, it

certainly will be a difficulty for any CDM plus biasing model, since such a model argues

that dwarfs are more uniform than big bright galaxies.

Observations of dark halos around dwarf galaxies are inconsistent with HDM as that

halo material, but HDM could well exist and only clump on much larger scales, so such

observations are not wide-reaching in their implications, in fact, DBH may be quite

appropriate for dwarfs in HDM models.

Peculiar velocites are certainly expected in all models on small scales (the earth goes

around the sun, the sun around the galaxy, galaxy around the local group). However, for

this peculiar motion to persist up to scales of the order of 50 Mpc, as the preliminary

observations of the 7 Samurai 7°] indicate and as the recent work of Dressler and Faber vii

supports, is very problematic for the CDM Gaussian fluctuation scenario, since that sce-

nario will build everything up from small scales. Similarly, observation of structures much

bigger than 50 Mpc, such as those claimed by Tully 6°] and Geller and Huchra 61] are very

problematic for models, building things up from small scales unless they are just a few

rare accidents.

An observation that has impact on any model that starts with quantum fluctuations

and the current limits on the anisotropy of the microwave background has to deal with the

number of condensed objects observed at red shift > 4. Any model that starts with small

fluctuations and requires linear growth has difficulty in producing large numbers of objects

at red shifts much greater than unity. While quasars are known to exist at high red shifts,



TABLE IV

CONSTRAINTS

Dark Baryonic Halos (DBH) (Brown Dwarfs, Jupiters, Blackholes)

Not compatible with CDM. Halos of Dwarfs require either CDM or DBH.

CDM

requires significant BDM in failed galaxies.

HDM

requires either cosmic strings or late time phase transitions; it is not compatible with quantum
Gaussian fluctuations.

CDM with Quantum Gaussian fluctuations

not compatible with

a. high cluster-cluster correlations

b. high large scale velocity flows

c. coherent structures _ 50 Mpc

d. dwarf galaxies being distributed like bright galaxies

Quantum Gaussian Adiabatic Fluctuations

not compatible with current limits on 6T/T and

large numbers of condensed objects at Z _> 4

Microwave Anisotropy Limits 6T/T _< 5 x 10 -6

If found only compatible with late-time transitions.

Submillimeter Excess

would require energy input at Z > 10. Need objects to form early or decay of particles or

topological defects, neither consistent with CDM plus quantum.



recent reports are that somegalaxy-like objects may exist back then. The question is: how

ubiquitous are these objects? If they are rare multi-sigma fluctuations, then all may still

be well. However, if they are truly common, that is, if standard structures really started

forming and yielded condensed objects at high Z, then we really are forced to some sort of

topological model.

Furthermore, if the microwave limits are continued to be brought down and eventually

are shown to yield fluctuation limits of only 5.10 -6, it would only be compatable with a late

time phase transition. All other models, including cosmic string models to produce struc-

tures, require the microwave background to have large magnitude anisotropies. Another

microwave constraint that is important is the sub-millimeter excess of the Berkeley-Nagoya

group. 72] If true, this requires a large amount of energy input at red shifts > 10. Such

energy input would either need objects to form at that enormously high red shift or have

decay with emission of energy from either particles or topological defects. None of these

possibilities is consistant with the standard CDM and primordial Gaussian fluctuation

scenario.

One important large scale structure constraint is the correlation of clusters. Bahcall

and Soneira 7s] have argued that clusters are more correlated than galaxies. Szalay and

Schramm 79] have pointed out that such correlations, if real, support some sort of fractal

initial seed patterns as opposed to Gaussian. In fact, string models may naturally yield

such correlations. 55] However, projection effects s°] may be responsible at least in part for

the previously reported correlations, but preliminary work from other groups also finds

strong correlations. 61] More work with new data is clearly needed.

For future tests, beyond what we have already discussed, see Table V. Of course grav-

Rational lensing is a key in our search for DBH. Gravitational lensing might also help find

cosmic strings. Strings should produce pairs of images. A clump of pairs found by Cowie

and Hu has recently been found to have even more pairs (S. Lilly, private communication).

If verified, this may indicate a cosmic string still existing in that direction.

The x-ray background may also help us find the baryonic dark matter if it is not in

our halos. X-ray observations can also help tell us something about galaxy structure and

formation, since these early structures might inevitably produce x-rays. Thus, AXAF,

when it flies, may help us to find the baryonic matter. COBE, which will fly in the near

future, will be testing whether the sub-millimeter excess is real and will be pushing the

limits on anisotropy. If they find something, this will of course tighten the arguments and

point the direction for the models.

As to HDM, one of the best ways of finding it would be to find a mass for a neutrino.

Tritium end-point measurements should soon eliminate ue as a candidate. Already limits



TABLE V

Future Tests

Gravitational Microlensing -

Tests DBH

AXAF -

Tests hot x-ray gas and activityat time of galaxy and structure formation.

COBE -

Tests submiUimeter excess; pushes limits on 6TIT

Other Limits on 6T/T -

Could push limits to ..- 10-6; can also check for characteristic patterns for cosmic strings and

domain walls

Limits on mr

Tritium endpoint should soon eliminate v_. Limits on v, and v_ require either accelerator

mixing experiments or another supernova with a neutral current detector operating.

Supernovae

In addition to supernovae limiting neutrino masses, they also limit axions and other exotic

particles with M _ IOMeV.

Accelerator Tests

In addition to u-mixing, also searches for supersymmetry. Searches for Higgs could reveal

structure of vacuum. Identification of any new stable particle could yield the dark matter;

width of Z ° tests Big Bang Nucleosynthesis.

Antiprotons in cosmic rays

Limits constrain annihilationsof CDM in galactichalo

Laboratory Searches for CDM

Axion searches using resonant cavities. Limits on v's from annihilation in the Sun (and

Earth) - using underground detectors. Direct searches (cryogenic detectors, etc.) should be

able to detect WIMPs, if they exist.



from both laboratory experiments and the supernovaseemto show that the massof the

ve is _ 20eV. Experiments that are underway now will be able to push that limit down

to -_ 5eV, thus eliminating it as a candidate for the dominant matter of the universe.

However, the v, was never a serious candidate. Most likely the neutrino that would have

the most mass will be the neutrino associated with the r. Measuring the _, and v,- masses

requires either accelerator mixing experiments or another supernova with neutral current

detectors operating to pick out the distribution in time of these species. Supernovae also

could make a wonderful laboratory to further constrain other weakly interacting particles

with masses _ IOMeV, for example, supernova 1987a constrained axions. 73] The fact that

the supernova emitted neutrinos on a time scale of --_ 10s second argues that there is no

significant axion emission. These limits force the axion to have masses < 10 -3 electron

volts. That is, the only masses of the axion are the masses that would make it (if it exists

at all) an important DM candidate.

Accelerator tests in the future are also very important. In addition to the neutrino

mixing mentioned above, searches for super-symmetry could enable the dark matter par-

ticle to be found. Similarly, searches for the Higgs tell us something about the structure

of the vacuum itself which leads to the formation of the seeds. In fact, identification of

any new stable particle (even one not predicated) might reveal the dark matter. Of course

the width of the Z from accelerators tests the neutrino counting agruments from Big Bang

Nucleosynthesis and thus helps confirm our baryonic arguments.

Another observational test is the search for anti-protons in cosmic rays. These limits

constrain the annihilation of CDM in the Galactic halo, since massive CDM particles would

produce anti-particles via annihilation processes.

Perhaps the most exciting of all the dark matter constraining observations and experi-

ments are the direct laboratory searches for CDM. This is a wonderful example of how new

technology can be brought to play on an exciting problem. Axion searches using giant res-

ident cavities may find this elusive particle directly. Limits on neutrino fluxes that might

have been produced by the annihilation of CDM in the sun or even in the center of the

earth might be found in underground detectors. Already the constraints from these kinds

of experiments have eliminated and/or seriously constrained certain classes of models. 74,r5]

Perhaps the most exciting new detectors are the direct searches using cryogenic detectors

and superconductivity. These should be able to detect any form of weakly interacting

massive particle if it exists in the halo of our Galaxy. Details of the search possibilities are

summarized in an excellent review by Primack, Sadoulet and Seckel/_]



SUMMARY

The dark matter problem and its related problem of large scale structure generation

is one of the most exciting and vital problems in physical science today. It is being ap-

proached from many angles by particle theorists, by astrophysical theorists, by astronom-

ical observers at many wavelength regimes, and by particle experimentalists, both with

accelerators and with non-accelerator experiments. While the ultimate answer to all our

questions may not occur until we do experiments at the Planck scale (extrapolation of the

Livingston Curve reveals that such experiments might 77] occur in the year 2150), it does

seem that the important problem of finding out what the bulk of the matter of the universe

is may be resolved by the end of this century.
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