The s://ntrs.nasa.gov/search.jsp?R=19900004961 2020-03-19T23:41:36+00:00Z (C.A. William), ۲۵۷۵ (C.A. William), ۲۵۷۵

LMSC-HEC TR F268780

TECHNICAL REPORT

FLUID FLOW ANALYSIS OF THE SSME HIGH PRESSURE FUEL AND OXIDIZER TURBINE COOLANT SYSTEMS

JULY 1989

Contract NAS8-36284

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER MARSHALL SPACE FLIGHT CENTER. AL 35812

(NASA-CR-183736) FLUID FLOW ANALYSIS OF THE SSME HIGH PRESSURF FUEL AND OXIDIZER TURBINE COOLANT SYSTEMS (LMSC) 67 p CSCL 21H

N90-14277

Unclas 63/20 0231737

Lockheed

Missiles & Space Company, Inc.

Huntsville Engineering Center

4000 Bradford Blvd., Huntsville, AL 35807

TECHNICAL REPORT

FLUID FLOW ANALYSIS OF THE SSME HIGH PRESSURE FUEL AND OXIDIZER TURBINE COOLANT SYSTEMS

July 1989

Contract NAS8-36284

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER, AL 35812

> by G.A. Teal

LOCKHEED MISSILES & SPACE COMPANY, INC. HUNTSVILLE ENGINEERING CENTER HUNTSVILLE, AL 35807

FOREWORD

This document presents the results of work performed for NASA-Marshall Space Flight Center by the Computational Mechanics Section of the Lockheed Missiles & Space Company, Inc., Huntsville Engineering Center. This work was performed for NASA-MSFC under Contract NAS8-36284, with Dr. Helen McConnaughey serving as technical monitor.

CONTENTS

<u>Section</u>		Page
	FOREWORD	ii
1	INTRODUCTION AND SUMMARY	1-1
	1.1 Objectives 1.2 Summary	11 11
2	GENERAL THEORY OF FLUID FLOW RELATIONS	2-1
	2.1 Flow Equations 2.2 Bearing Model 2.3 Labyrinth Seal Model 2.4 Thermodynamic and Transport Properties	21 25 2-5 2-5
3	HIGH PRESSURE FUEL TURBINE COOLANT ANALYSIS	3-1
	 3.1 Turbine Coolant System 3.2 Model Improvement 3.3 Results 3.4 Program Input Guide 	3-1 3-1 3-3 3-3
4	HIGH PRESSURE OXIDIZER TURBINE COOLANT ANALYSIS	4-1
	 4.1 Turbine Coolant System 4.2 Model Improvement 4.3 Results 4.4 Program Input Guide 	4-1 4-1 4-20 4-20
5	REFERENCES	5-1
	LIST OF TABLES	
Table		Page
2-1 3-1 3-2 3-3 4-1 4-2 4-3	Pressure Loss Factors (K) HPFTP Turbine Coolant Analysis (FPL) HPFTP Turbine Coolant Analysis (104%) HPFTP Turbine Coolant Analysis (MPL) HPOTP Turbine Coolant Analysis (FPL) HPOTP Turbine Coolant Analysis (104%) HPOTP Turbine Coolant Analysis (MPL)	2-2 3-4 3-7 3-10 4-21 4-26 4-31

LIST OF ILLUSTRATIONS

Figure		Page
3-1	HPFTP Turbine Coolant System Schematic	3-2
4-1	HPOTP Turbine Coolant System Schematic Diagram	4-2
4-2a	Station 6 to the Turbine Seal Region at Station 131	4-14
4-2b	Flow Passage of Hydrogen from the Coolant Manifold at Station 6 to the Struts at Stations 149 through 153	4-15
4-2c	Flow Passage of Mixed Coolant from the Mixing Chamber at Station 8 to the First Stage Rotor at Stations 22	4-16
4-2đ	and 28 Flow Passage of Mixed Coolant from the Mixing Chamber at Station 8 to the Turbine Stator Region at Stations 63	4-10
4-2e	and 66 Flow Passage of Mixed Coolant from the Mixing Chamber at Station 8 to the Turbine Housing at Stations 42 through	417
4-2F	50 and Exit Strut Region at Stations 75 through 90 Flow Passage of Mixed Coolant from the Mixing Chamber at	4-18
7-61	Station 8 to the Second Stage Rotor at Station 109	419

iv

1. INTRODUCTION AND SUMMARY

1.1 OBJECTIVES

The objective of this study is to provide improved analysis capability for the Space Shuttle Main Engine (SSME) high pressure fuel and oxidizer turbine coolant systems. Each of the systems was analyzed to determine fluid flow rates and thermodynamic and transport properties at all key points in the systems.

1.2 SUMMARY

Existing computer codes developed by Lockheed for NASA-MSFC were used as a baseline for these analyses. These codes were modified to provide improved analysis capability. The major areas of improvement are listed below.

- A review of the drawings was performed, and pertinent geometry changes were included in the models.
- Improvements were made in the calculation of thermodynamic and transport properties for a mixture of hydrogen and steam.
- A one-dimensional turbine model for each system is included as a subroutine to each code. This provides a closed loop analysis with a minimum of required boundary conditions as input.
- An improved labyrinth seal model is included in the high pressure fuel turbine coolant model.

The modifications and the analysis results are presented in detail in the following sections.

2. GENERAL THEORY OF FLUID FLOW RELATIONS

The fluid flow model solves the steady state continuity, momentum, and energy equations to obtain thermodynamic and transport properties at various stations in the coolant systems. The models compute changes in fluid flow properties between stations using coolant system geometrical data, pressure loss factors, heat transfer rates, and bearing and labyrinth seal models discussed below.

2.1 FLOW EQUATIONS

The mass continuity, momentum, and energy conservation equations are cast in one-dimensional, incompressible form to describe the fluid flow from station to station. The continuity equation states that the fluid flow rate is con served from station to station. The momentum equation is cast in the form

$$P_{T2} = P_{T1} - \Delta P_{loss} + \Delta P_{cen}$$

where

 P_{T2} is the total pressure at the downstream station P_{T1} is the total pressure at the upstream station T1 ΔP_{1055} is the change in pressure due to friction or turbulence

and

 ΔP_{con} is the change in pressure due to centrifugal effects.

The term $\Delta P_{\mbox{loss}}$ depends on the type of flow passage involved and is evaluated using the relationship

$$\Delta P_{loss} = K (\rho V_F^2 / 2 g_c)$$

where

 ρ is the fluid density

 $V_{\rm F}$ is the fluid flow velocity (excluding centrifugal components) g is the gravitational constant

and

K is a pressure loss factor that depends on the type of flow.

The values of K for several types of flow may be obtained from Ref. 1 and are presented in Table 2-1. The dynamic pressure term $\rho V_F^2/2 g_c$ is evaluated at the station with the smaller flow area.

Type of Passage	Value of K (Ref. 1)	Remarks
Smooth Pipe (Darcy Weisbach)	K = fL/D	f = 0.184/R ^{0.2} L = length D = hydraulic diameter R = Reynolds number
Mitered Bend	$K = fL_e / D$	L = equivalent length e (See page A-27 of Ref. 1)
Sudden Expansion	$K = [1 - (D_1/D_2)^2]^2$	D ₁ = smaller hydraulic diameter D ₂ = larger hydraulic diameter
Sudden Contraction		See page A-26 of Ref. 1
Entrance from Large Volume	K = 0.50 K = 0.23 K = 0.04	Sharp-edged entrance Rounded entrance Well-rounded entrance
Exit to Large Volume	K = 1.0	$V_{\rm F} \simeq 0.0$ (small flow velocity)

Table	2-1	PRESSURE	LOSS	FACTORS	(K)

The resultant pressure changes ΔP_{loss} may be modified by an expansion factor (Y) for compressible fluid flows. Expansion factors for several types of passages may be obtained from pages A-21 and A-22 of Ref. 1; the change in pressure becomes

$$\Delta P_{loss} = \Delta P_{loss} / Y^2$$

This expansion factor may be ignored for $\Delta P_{loss} / P_{T1}$ values of less than 10% and for up to 40% if the fluid density is replaced by the average density between stations 1 and 2 (Ref. 1)

The term ΔP also includes the pressure losses that occur in bearings and labyrinth seals. These pressure losses will be discussed in subsequent paragraphs.

The term ΔP accounts for pressure changes due to centrifugal effects of the spinning fluid and may be computed from the relationship

$$\Delta P_{cen} = K_{c} \rho (V_{T2}^{2} - V_{T1}^{2})/2 g_{c}$$

where V_{T1} and V_{T2} are the upstream and downstream tangential velocities. The term K_c is a frictional loss factor equal to unity for frictional dissipation.

For flow about spinning disks the pressure change is computed from the relationship

$$dP_{s} = \rho w_{s}^{2} \eta^{2} R dR/g_{c}$$

where

-

dP = differential static pressure
s
w = shaft angular velocity
n = ratio of fluid to shaft angular velocities
R = radial distance from spin axis.

Relationships for η may be obtained from Ref. 2 for inward and outward flows through smooth and bladed disk/housing configurations. The effect on total pressure ΔP must be determined from dP and dynamic pressure.

These various contributions to pressure changes also affect the energy of the fluid through the energy equation

$$H_{T2} = H_{T1} + \frac{\dot{Q}_{1-2}}{m} + \Delta H_{cen}$$

where

Ξ.

 H_T = total enthalpy per pound of fluid \dot{Q}_{1-2} = heat transferred to the fluid ΔH_{cen} = change in total enthalpy due to centrifugal effects.

Changes in pressure due to centrifugal effects result in a change in total enthalpy equal to

$$\Delta H_{cen} = \Delta P_{cen} / \rho$$

For spinning disks the heat generation term ΔH becomes (Ref. 2):

$$\Delta H_{cen} = \left(\frac{2\pi N}{60}\right)^3 \left(\frac{1}{12}\right)^5 \frac{\rho (R_1^5 - R_2^5)}{4 g_c J} C_m$$

where ${\tt C}_{\tt m}$ is a coefficient depending on disk/housing configuration,

and
$$J = 778.2 \ lbf-ft/Btu$$

The above equations represent solutions to the general flow equations which will adequately describe the flow in the coolant systems.

2.2 BEARING MODEL

The bearing model computes the pressure drop in the fluid flowing through ball bearings. The pressure loss term ΔP_B is computed by solving the quadratic equation

$$\alpha(\Delta P_B)^2 - \hat{m}^2 (\Delta P_B) - \beta \hat{m}^2 = 0$$

where

$$\alpha = 288 \rho g_c A^2 C^2$$

$$B = \rho (RK)^2 \frac{(2\pi N/60)^2}{288 g_c}$$

$$N = \text{shaft rpm}$$

The coefficients A, C, R, and K are bearing constants supplied by NASA-MSFC.

2.3 LABYRINTH SEAL MODEL

The labyrinth seal model now used by the high pressure fuel turbine coolant model is an empirical leakage prediction program for straight-through labyrinth seals developed for NASA-MSFC by Texas A&M University (Ref. 3). This program is included as a subroutine in the fuel turbine coolant program.

2.4 THERMODYNAMIC AND TRANSPORT PROPERTIES

The high pressure fuel and oxidizer turbine coolant systems are complex flow systems comprising several flow paths in which the fluid is pure hydrogen and other flow paths containing a mixture of H₂ and H₂O. Thermodynamic and transport properties for hydrogen are computed from the GASP computer code (Ref. 4).

To evaluate real thermodynamic properties for H_2/H_2^0 gas mixtures the WASP computer code (Ref. 5) is used to calculate H_2^0 properties. The gas

components are assumed to occupy the entire volume at the mixture temperature and pressure, and the thermodynamic properties are mass fraction weighted to obtain mixture properties. The compressibility factor is assumed to obey the law of additive volumes and is computed accordingly.

To obtain thermodynamic properties for a mixture containing H_2^0 in the liquid phase, the following procedure is employed:

- P_M and H_M are the known thermodynamic properties (except at turbine inlet and discharge stations where P_M and T_M are known)
- Assume T_M and compute P_V
- Check if $P_{H_2O} > P_V$ (two-phase if true)
- Compute a gas phase mole fraction required to give $P_{H_2OG} = P_V$
- Compute XL and X_G
- $H_{TM} = X_H H_H + X_L H_L + X_G H_G$
- Iterate on T_M until $H_{TM} = H_M$.

This procedure is extended to include the solid region when P_{M} and H_{M} are known. However, in the solid region, the thermodynamic state cannot be defined by P_{M} and T_{M} alone.

In general, the properties routine evaluates thermodynamic properties of H_2O for four separate regions:

- 1. $T_M > T_{crit}$ Composition is all gas, properties evaluated at P_M and T_M
- 2. $T_{M} < T_{crit}$, $P > P_{M}$ Composition is all gas, properties evaluated at P_{M} and T_{M}
- 3. $P_V < P_M, P_V > P_{H_20}$ Composition is in vapor state. Enthalpy is evaluated by computing liquid enthalpy at P_M and T_M and adding the heat of vaporization. Transport properties are evaluated for saturated vapor only.

4. $P_V < P_M$, $P_V < P_{H_20}$ Composition is two phase

Liquid/vapor
Liquid
Vapor phase is negligible
Solid/liquid
Vapor phase is negligible
Solid

Vapor and liquid phases negligible

where

= mixture temperature Тм = mixture pressure Рм T_{crit} = critical temperature of H_2 = vapor pressure of H_2^0 at T_M Pv = H₂O partial pressure based on total mixture P_{H_2O} mole fraction $P_{H_2OG} = H_2O$ partial pressure based on gas phase mole fraction = the mass fraction of liquid H_20 in the XL total mixture = the mass fraction of H_2O vapor in the XG total mixture = H_2 enthalpy at P_M and T_M н = $H_{2}O$ liquid enthalpy at P_{M} and T_{M} H_{I.} = H_2 vapor enthalpy at P and T HG = mixture enthalpy Н = computed mixture enthalpy. Нтм

In the two-phase region, the mixture density computed by the program is the homogeneous two-phase density. The compressibility factor is computed for the gas phase only.

Transport properties are evaluated for a mixture of gases using the method of Wilke for computing viscosity and the method of Vanderslice for computing thermal conductivity (see Reference 6). Mixture transport properties are evaluated for the gas phase only.

3. HIGH PRESSURE FUEL TURBINE COOLANT ANALYSIS

3.1 TURBINE COOLANT SYSTEM

The existing high pressure fuel turbopump (HPFTP) turbine coolant system flow model developed by Lockheed for NASA-MSFC was used as a baseline for this analysis. This baseline model (shown in Figure 3-1) is documented in Reference 7. The turbine coolant system was modeled to evaluate the flow properties at each of the numbered stations shown in Figure 3-1 and to compute the flow rates along each of the flow paths in the system. Two additional flow paths have been added to compute flows through the turbine blade fir trees. These are the first stage blade fir trees (stations 95 through 98) and the second stage blade fir trees (stations 99 through 101). The model comprises 101 stations and 25 flow paths.

3.2 MODEL IMPROVEMENT

A review of current drawings was performed and pertinent geometry changes were included in the model. Operating clearances for the turbine blade platform seals, labyrinth seal, and the lift-off seal were supplied by NASA-MSFC.

A one-dimensional turbine model is included as a subroutine in the code. This provides a closed loop analysis with a minimum of required boundary conditions as input. Estimated platform seal leakage rates are input to the turbine model, and the turbine model is executed to provide pressures as boundary conditions for the coolant flow model (stations 35, 41, 64, and 72). The coolant model is then executed and new leakage flows are computed. An input option is provided for terminating the execution at this point or continuing with another pass through each model if greater accuracy is desired.

3-1

3-2

An improved labyrinth seal leakage prediction program developed for NASA-MSFC by Texas A&M University (Ref. 3) is included as a subroutine in the turbine coolant program.

An improved properties subroutine for computing thermodynamic and transport properties for a mixture of H_2 and H_2 0 has been added to the program. See Section 2.4 for a detailed description of this calculation procedure.

3.3 RESULTS

The fuel turbine coolant system was analyzed at full power level (FPL), 104% and minimum power level (MPL), using Rocketdyne engine balance data obtained from Reference 8. The results of these analyses are presented in Tables 3-1 through 3-3. These results are for a balance piston high pressure orifice gap of 0.004 inch.

3.4 PROGRAM INPUT GUIDE

This section describes the input data file required for execution of the HPFTP turbine coolant program.

Column	Parameter	Description
Line number 1,	Format (8E10.4)	
1-10	GAP	Balance piston high pressure orifice gap, in.
Line number 2,	Format (8E10.4)	
1-10	RDEFO	Housing radial deflection at high pressure orifice, in.
11-20	RDEFI	Impeller radial deflection at high pressure orifice, in.
21-30	XDEF	Impeller axial deflection at high pressure orifice, positive toward turbine, in.

3-3

Table 3-1 HPFTP TURBINE COOLANT ANALYSIS (FPL)

ZFAC	2.5359 2.4326	1.9919	1.8528	1.84/1 1 6068	1.6684	1.6594	1.8457	1.6449	1.6343	1.6342	1.8602	1.6601	1.6599 1.6506	1.6575	1.8551	1.6548	1.6540	1.6448	1.6236	1.5992	1.5988	1.6036	1.6023	1.6011	1.6012	1.6001	1.5687	1.5817	1.5367
RACTIONS H20	0.000 0.000	0.000	0.000	0.000 0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MASS FR H2	1.000 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
FLOW RATE (LBM/SEC)	6.608 6.608 6.608	6.608	6.608	6.608 A Ade	6.608	6.608	3.821	3.821	3.821	3.821	2.787	2.787	2.787	2.787	2.787	2.787	2.787	1.887	1.887	1.887	1.887	1.102	1.102	1.102	1.102	1.102	0.639	0.639	Ø.639
SONIC VEL (FPS)	5904.5 5836.9	5310.4	5158.3	5151.3 4033 7	4873.9	4857.3	4828.3	4826.8	4806.2	4806.0	4859.0	4859.0	4858.3	4853.7	4848.6	4848.1	4846.6	4827.3	4783.3	4730.0	4729.2	4740.4	4737.5	4734.9	4735.0	4732.8	4661.2	4645.9	4587.1
TANG VEL (FPS)	1209.3 935.5	7.4.7	668.8 700 0	593.9 0 0	185.6	178.4	529.8	529.8	321.2	321.2	178.4	297.4	323.6	291.5	272.8	272.8	272.8	533.0	349.0	79.3	79.3	39.7	111.4	148.5	198.3	0.0	102.6	102.6	107.4
VELO- CITY (FPS)	256.2 186.1	1388.9	68.1	32./	480.3	136.7	258.5	258.6	55.8	7.5	57.7	57.7	80.02	96.3	157.6	157.6	22.7	104.7	105.9	362.9	362.9	28.6	40.5	28.3	7.2	7.2	515.4	62.3	468.2
Δ		~	*		0	8	0	Ø	ø	ø	ø	0	55	0	ø	ø	0	ø	0	0	8	ø	8	~	5	0	Ø	ю	ø
FLUI	1.00	1.06	- - -	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			1.0	1.6	1.6	1.0	1.0	1.0	1.0	1.0	ч. Ю	- 0	1.00	1.0	1.0	1.0	1.0	1.0
. DENSITY FLUI QUAL (LBM/FT3)	5.028 1.00 4.944 1.00	4.598 1.60	4.366 1.06	4.000 1 000	3.963 1.0	3.938 1.0	3.917 1.6	3.915 1.0	3.886 1.6	3.886 1.0	3.939 1.0	3.939 1.0	3.939 I.10 2 038 1 0	3.933 1.0	3.929 1.6	3.929 1.6	3.926 1.0	3.911 1.0	3.866 1.0	3.821 1.0	3.821 1.0	3.823 1.04	3.821 1.04	3.819 1.06	3.820 1.00	3.816 1.0	3.769 1.0	3.743 1.0	3.704 1.0
TEMPER- DENSITY FLUI ATURE QUAL (R) (LBM/FT3)	92.3 5.028 1.00 97.2 4.944 1.00	99.1 4.598 1.06	112.4 4.366 1.04	113.9 4.000 1.00	133.5 3.963 1.0	134.8 3.938 1.64	134.9 3.917 1.0	134.9 3.915 1.0	136.4 3.886 1.0	136.4 3.886 1.0	134.9 3.939 1.0	134.9 3.939 1.0	134.9 3.939 L.0 134.0 2.038 1.0	135.1 3.933 1.0	135.1 3.929 1.6	135.1 3.929 1.6	135.2 3.926 1.0	135.4 3.911 1.0	136.8 3.866 1.0	137.4 3.821 1.0	137.4 3.821 1.0	138.0 3.823 1.0	137.9 3.821 1.0	137.9 3.819 1.06	137.9 3.820 1.00	138.1 3.816 1.0	137.5 3.769 1.6	139.0 3.743 1.0	138.5 3.704 1.0
TOTAL TEMPER- DENSITY FLUI ENTHALPY ATURE QUAL (BTU/LBM) (R) (LBM/FT3)	228.1 92.3 5.028 1.00 228.1 97.2 4.944 1.00	228.1 99.1 4.598 1.06	228.1 112.4 4.366 1.06	133.9 4.0407 1.052 1.0407 1.04	288.5 133.5 3.963 1.0	288.5 134.8 3.938 1.6	293.5 134.9 3.917 1.0	293.5 134.9 3.915 1.0	293.5 136.4 3.886 1.0	293.5 136.4 3.886 1.0	288.5 134.9 3.939 1.0	289.7 134.9 3.939 1.0	230.0 154.9 3.939 1.0 204 2 124 0 2 2 228 1 A	290.2 135.1 3.933 1.0	290.2 135.1 3.929 1.0	290.2 135.1 3.929 1.0	290.2 135.2 3.926 1.0	294.4 135.4 3.911 1.0	294.4 136.8 3.866 1.0	294.4 137.4 3.821 1.0	294.4 137.4 3.821 1.0	294.4 138.0 3.823 1.0	294.4 137.9 3.821 1.0	294.4 137.9 3.819 1.04	294.8 137.9 3.820 1.06	294.8 138.1 3.816 1.0	295.0 137.5 3.769 1.0	295.00 139.00 3.743 1.00	295.0 138.5 3.704 1.0
STATIC TOTAL TEMPER- DENSITY FLUI PRESS ENTHALPY ATURE QUAL (PSIA) (BTU/LBM) (R) (LBM/FT3)	6262.6 228.1 92.3 5.028 1.00 6224.0 228.1 97.2 4.944 1.00	4828.4 228.1 99.1 4.598 1.06	4837.4 228.1 112.4 4.366 1.06	403/.7 220.1 113.9 4.647 1.64 4837.7 287.9 133.9 4.647 1.64	4696.5 288.5 133.5 3.963 1.0	4688.6 288.5 134.8 3.938 1.0	4627.2 293.5 134.9 3.917 1.0	4624.3 293.5 134.9 3.915 1.0	4611.2 293.5 136.4 3.886 1.6	4611.2 293.5 136.4 3.886 1.0	4693.7 288.5 134.9 3.939 1.0	4693.6 289.7 134.9 3.939 1.0	4034.1 290.0 154.9 3.959 1.0 4691.6 200.2 134.0 2.038 1.0	4686.3 290.2 135.1 3.933 1.0	4675.8 290.2 135.1 3.929 1.0	4674.9 290.2 135.1 3.929 1.6	4674.7 290.2 135.2 3.926 1.0	4636.2 294.4 135.4 3.911 1.0	4569.2 294.4 136.8 3.866 1.0	4467.3 294.4 137.4 3.821 1.0	4465.7 294.4 137.4 3.821 1.0	4501.3 294.4 138.0 3.823 1.0	4494.6 294.4 137.9 3.821 1.0	4488.6 294.4 137.9 3.819 1.06	4489.0 294.8 137.9 3.820 1.00	4488.9 294.8 138.1 3.816 1.0	4326.9 295.0 137.5 3.769 1.0	4325.3 295.0 139.0 3.743 1.0	4195.4 295.0 138.5 3.704 1.0
TOTAL STATIC TOTAL TEMPER- DENSITY FLUI PRESS PRESS ENTHALPY ATURE QUAL (PSIA) (PSIA) (BTU/LBM) (R) (LBM/FT3)	7091.7 6262.6 228.1 92.3 5.028 1.00 6712.6 6224.0 228.1 97.2 4.944 1.00	6063.8 4828.4 228.1 99.1 4.598 1.00	5051.3 4837.4 228.1 112.4 4.366 1.06 Eanale 4837.7 228.1 112.4 4.366 1.06	12004-0 403/./ 220.1 113.9 4.537.7 287.9 133.9 4.007 1 00	4810.2 4696.5 288.5 133.5 3.963 1.0	4710.1 4688.6 288.5 134.8 3.938 1.0	4774.6 4627.2 293.5 134.9 3.917 1.0	4771.7 4624.3 293.5 134.9 3.915 1.0	4655.9 4611.2 293.5 136.4 3.886 1.6	4654.6 4611.2 293.5 136.4 3.886 1.0	4708.7 4693.7 288.5 134.9 3.939 1.0	4732.7 4693.6 289.7 134.9 3.939 1.0	4/39.4 4032.1 290.0 154.9 3.959 1.0 4741.6 4691.6 2007.2 124.0 2.028 1.0	4726.3 4686.3 290.2 135.1 3.933 1.0	4717.9 4675.8 290.2 135.1 3.929 1.6	4717.0 4874.9 290.2 135.1 3.929 1.0	4706.5 4674.7 290.2 135.2 3.926 1.0	4761.1 4636.2 294.4 135.4 3.911 1.0	4624.8 4569.2 294.4 136.8 3.866 1.0	4524.3 4467.3 294.4 137.4 3.821 1.0	4522.7 4465.7 294.4 137.4 3.821 1.0	4502.3 4501.3 294.4 138.0 3.823 1.0	4500.4 4494.6 294.4 137.9 3.821 1.0	4498.1 4488.6 294.4 137.9 3.819 1.04	4505.2 4489.0 294.8 137.9 3.820 1.00	4489.0 4488.9 294.8 138.1 3.816 1.0	4439.6 4326.9 295.0 137.5 3.769 1.0	4331.1 4325.3 295.0 139.0 3.743 1.0	4287.9 4195.4 295.0 138.5 3.704 1.0

(Continued)
(EPL)
ANALYSIS
COOLANT
TURBINE
HPFTP
3-1
Table

_

ZFAC	1.5315 1.0529 1.0539	1.0529 1.0529 1.0528	1.0518 1.0502 1.0487	1.0518 1.0516 1.0524	1.6047	1.4341 1.4899 1.5114	1.49/9 1.4979 1.4982	1.0524 1.0525	1.0524	1.4979 1.4959	1.0516	1.0468 1.0478
RACTIONS H20	0.000 0.472 0.541 0.541	0.472 0.472 0.472	0.494 0.541 0.541	0.494 0.494 0.446	0.000	0.000 0.000 0.000	0000 0000 0000 0000 0000	0.446 0.446 0.446	Ø.446 Ø.435	0.000 0.000	0.435 0.435	Ø.435 Ø.435
MASS FF H2	1.000 0.528 0.459 0.459	0.528 0.528 0.528	0.506 0.459 0.459	Ø.506 Ø.506 Ø.554	1.666	1.000 1.000 1.000	1.000 1.000 1.000	0.554 0.554 0.554	Ø.565	1.000 1.000	Ø.565 Ø.565	Ø.585 Ø.585
FLOW RATE (LBM/SEC)	6.639 3.862 3.376	3.862 3.862 3.862 3.862	5.632 1.770 1.770	5.632 5.779 6.391	Ø.786 Ø.786	0.786 0.786 0.786	0.612 0.612 0.612	6.391 6.391 6.201	6.391 6.565	0.174 0.174	6.565 6.468	3.39Ø 3.39Ø
SONIC VEL (FPS)	4575.2 5408.2 5578.8 5637.1	5407.9 5408.9 5408.9	5485.6 5550.4 5556.5	5485.6 5483.8 5260.5	4558.8	4404.4 4474.1 4527.9	4495.5 4496.3 4496.3	5260.6 5263.1 5263.0	5263.1 5192.7	4495.8 4490.3	5192.7 5190.5	5150.8 5203.6
TANG VEL (FPS)	107.4 415.6 2547.0 716.7	415.6 1385.4 1385.4	415.6 358.8 356.5	415.6 415.6 351.2	666.8 666.2	682.1 964.1 276.4	276.0 285.5	351.2 0.0 9.9	0.0 380.7	276.Ø 276.Ø	380.7 410.9	424.5 437.2
VELD- CITY (FPS)	19.0 297.0 1151.4 1954.7	296.9 181.7 181.7	195.9 1161.9 1050.7	195.9 403.0 111.4	1.6 974.8	97.1 97.1 8.0 4.0 8.0 4.0	13.7	111.4 68.4	68.5 139.3	3.9	139.3 382.1	1620.8 24.4
FLUID QUAL	1.00 1.00 1.00 1.00	1.66	1.00 1.00 1.00	1.00 1.00	1.00	1.00	1.60		1.00	1.00 1.00	1.00 1.00	1.00 1.00
DENSITY (LBM/FT3)	3.682 Ø.851 Ø.788	0.851 0.850 0.850	0.828 0.836 0.808	0.828 0.826 0.888	3.825 3.696	3.573 3.573 3.601	3.536 3.536 3.536	0.888 0.888 0.888	0.887 0.905	3.536 3.531	0.905 0.903	Ø.846 Ø.832
TEMPER- DENSITY ATURE (R) (LBM/FT3)	139.8 3.682 1524.6 Ø.851 1817.Ø Ø.889 1852.3 Ø.788	1524.4 0.851 1524.9 0.850 1524.9 0.850	1620.1 0.828 1796.8 0.836 1799.8 0.808	1620.1 0.828 1618.9 0.826 1398.8 0.888	137.9 3.825 137.1 3.696	144.4 3.601 148.6 3.601	148.6 3.536 148.6 3.536 148.6 3.536	1398.9 Ø.888 1400.0 Ø.888 1399.9 Ø.887	1399.9 0.887 1349.8 0.905	148.6 3.536 148.7 3.531	1349.8 Ø.905 1348.8 Ø.903	1327.2 Ø.846 1348.1 Ø.832
TOTAL TEMPER- DENSITY ENTHALPY ATURE (BTU/LBM) (R) (LBM/FT3)	295.0 139.8 3.682 3135.1 1524.6 0.851 3549.0 1817.0 0.889 3549.0 1852.3 0.788	3134.7 1524.4 0.851 3169.5 1524.9 0.850 3169.5 1524.9 0.850 3169.5 1524.9 0.850	3237.9 1620.1 0.828 3381.1 1796.8 0.836 3381.1 1799.8 0.808	3237.9 1620.1 0.828 3237.9 1618.9 0.826 2959.2 1398.8 0.888	294.4 137.9 3.825 312.6 137.1 3.696 312.8 141.0 2.609	312.8 143.8 3.573 312.8 143.8 3.573 326.9 144.4 3.601 328 0 148 8 2 5 2 5	326.9 148.6 3.536 327.1 148.6 3.536	2959.2 1398.9 Ø.888 2959.2 1400.0 Ø.888 2959.2 1399.9 Ø.887	2959.2 1399.9 0.887 2892.5 1349.8 0.905	326.9 148.6 3.536 326.9 148.7 3.531	2892.5 1349.8 0.905 2893.0 1348.8 0.903	2893.2 1327.2 Ø.846 2893.4 1348.1 Ø.832
STATIC TOTAL TEMPER- DENSITY PRESS ENTHALPY ATURE (PSIA) (BTU/LBM) (R) (LBM/FT3)	4195.3 295.0 139.8 3.682 4224.4 3135.1 1524.6 0.851 4709.5 3549.0 1817.0 0.889 4232.0 3549.0 1852.3 0.788	4224.5 3134.7 1524.4 0.851 4219.9 3169.5 1524.9 0.850 4219.7 3169.5 1524.9 0.850	4216.2 3237.9 1620.1 0.828 4363.2 3381.1 1796.8 0.836 4219.5 3381.1 1799.8 0.808	4216.2 3237.9 1620.1 0.828 4203.3 3237.9 1618.9 0.826 4202.2 2959.2 1398.8 0.888	4508.0 294.4 137.9 3.825 4113.1 312.0 137.1 3.696 405.4 312.8 141.0 2.600	4852.1 312.8 441.9 3.573 4832.1 312.8 143.0 3.573 4183.0 326.9 144.4 3.681 4189.7 376 0 146.6 2.526	4191.0 327.1 148.6 3.536	4202.2 2959.2 1398.9 0.888 4201.8 2959.2 1400.0 0.888 4200.2 2959.2 1399.9 0.887	4199.7 2959.2 1399.9 0.887 4198.3 2892.5 1349.8 0.905	4189.3 326.9 148.6 3.536 4179.5 326.9 148.7 3.531	4198.3 2892.5 1349.8 0.905 4185.1 2893.0 1348.8 0.903	3843.3 2893.2 1327.2 Ø.846 3843.2 2893.4 1348.1 Ø.832
TOTAL STATIC TOTAL TEMPER- DENSITY PRESS PRESS ENTHALPY ATURE (PSIA) (PSIA) (BTU/LBM) (R) (LBM/FT3)	4200.0 4195.3 295.0 139.8 3.682 4248.4 4224.4 3135.1 1524.6 0.851 5504.8 4709.5 3549.0 1817.0 0.889 4600.5 4232.0 3549.0 1852.3 0.788	4248.4 4224.5 3134.7 1524.4 0.851 4399.1 4219.9 3169.5 1524.9 0.850 4398.8 4219.7 3169.5 1524.9 0.850	4235.1 4216.2 3237.9 1620.1 0.828 4498.1 4363.2 3381.1 1796.8 0.836 4326.9 4219.5 3381.1 1799.8 0.808	4235.1 4216.2 3237.9 1620.1 0.828 4233.2 4203.3 3237.9 1618.9 0.826 4215.2 4202.2 2959.2 1398.8 0.888	4507.9 4508.0 294.4 137.9 3.825 4678.3 4113.1 312.0 137.1 3.696 4310.6 405.4 0 312.8 141.0 2.600	4236.2 4652.1 312.8 44.4 5573 4505.3 4183.0 326.9 144.4 3.601 4218.4 4189.7 376.0 148.6	4218.3 4189.2 326.9 148.6 3.536 4222.3 4191.0 327.1 148.6 3.536	4215.2 4202.2 2959.2 1398.9 0.888 4202.2 4201.8 2959.2 1400.0 0.888 4201.6 4200.2 2959.2 1399.9 0 887	4200.2 4199.7 2959.2 1399.9 0.887 4214.4 4198.3 2892.5 1349.8 0.905	4218:4 4189:3 326.9 148.6 3.536 4208:5 4179.5 326.9 148.7 3.531	4214.4 4198.3 2892.5 1349.8 0.905 4215.8 4185.1 2893.0 1348.8 0.903	4099./ 3843.3 2893.2 1327.2 0.846 3860.4 3843.2 2893.4 1348.1 0.832

Table 3-1 HPFTP TURBINE COOLANT ANALYSIS (FPL) (Concluded)

(1.0515 (1.0515 (1.0515 (1.0514 (1.5533 (1.5533) (1.5533) (1.5533) (1.6234 (1.6233) (1.6234 (1.6234) (1.2220 (1.22518) (1.4112) (1.4327) (1.4327) (1.4257) (.5012 .0514 .0520 .0516 ZFAC WASS FRACTIONS 435435 H20 엎 (LBM/SEC) FLOW RATE 860 896 .147 0.147 096 5193.2 5193.2 5193.2 4678.2 4658.2 4655.2 4655.2 4655.2 4555.2 4555.2 4553.2 4533.1 4287.6 4487.6 447.6 447 4044.7 4044.7 4178.2 4178.2 4177.9 4178.1 4178.1 4178.1 4178.1 4703.3 4701.7 4701.7 4701.6 339.9 4339.9 4339.9 3391.6 3391.6 4606.2 4606.7 4561.1 4559.7 4559.7 5192.9 5192.9 4172.7 4708.3 SONIC VEL (FPS) 13369.51 12269.55 12069.55 12069.55 12069.55 12069.55 12069.55 120 TANG VEL (FPS) Ø.7 75.8 36.7 36.7 46.8 98.2 98.2 98.2 1367.9 1.8 1.8 1.8 1.8 1.1.6 71.6 71.6 71.6 71.6 19.1 1 3.6 VELO-CITY (FPS) FLUID (LBM/FT3) DENSITY 6.962 6.962 6.962 6.962 6.962 6.982 6.799 8.854 8.854 8.854 8.854 8.854 8.854 8.854 8.854 8.854 8.854 8.854 8.1771 1.77711 1.77711 1.7771 1.7771 2.970 2.703 2.599 2.054 2.053 3.678 3.677 3.674 3.538 FEMPER-ATURE (R) 1349.8 1213.5 1213.5 1349.8 1349.8 1349.8 136.5 136.5 136.5 136.5 136.5 136.3 3155.3 33155.3 333155.3 33155.3 33355.5 33355.5 33355.5 33355.5 33355.5 33355.5 33355.5 33355.5 33355.5 33355.5 33355.5 33355.5 3355.5 35555.5 3555.5 355 349.7 349. 361. TOTAL ENTHALPY (BTU/LBM) 2927.1 2594.8 2594.8 2594.8 2594.8 2596.2 25 2921.8 2921.8 **4182**.7 **4182**.6 **4182**.6 **4182**.6 **4183**.5 **5181**.3 **5581**.5 **5692**.5 **5692**.5 **57**.5 **57**.5**5**.5**5**.5 **57**.5 **57**.5**5**.5**5**.5 **57**.5 **57**.5**5**.5**5**.5 **57**.5**5**.5**5**.5 **57**.5**5**.5**5**.5 **57**.5 **57**.5**5**.5**5**.5**5**.5 **57**.5**5**.5 STATIC PRESS (PSIA) TOTAL PRESS (PSIA) 4366.8 4366.7 4366.7 4146.9 4146.9 4146.9 4146.9 3596.5 33596.6 33596.6 33596.6 33596.6 33537.6 33638.8 33637.9 33638.8 33637.9 3377.9 33637.9 3377.9 3377.9 3377.9 3377.9 3377.9 3377.9 3377.9 3377.9 3377.9 3477. 3608.0 3599.5 4282.0 4862.4 4862.7 3611.8 1271.5 4353 . 4341 . STA

Ø.23Ø82E+Ø6

Ø.1775ØE+Ø6-Ø.17Ø33E+Ø6

FROT1,FROT2,FNET=-0.95813E+04-0.84818E+04-0.66364E+05

,F2,F3,F4,F5=-Ø.16430E+05-0.26986E+06

Ľ

Table 3-2 HPFTP TURBINE COOLANT ANALYSIS (104%)

ZFAC		2.4495	2.3519	1.9315	1.8011	1.7960	1.6547	1.6273	1.6188	1.6050	1.6043	1.5940	1.5939	1.6196	1.6195	1.6193	1.6190	1.6171	1.6149	1.6147	1.6140	1.6052	1.5846	1.5618	1.5614	1.5658	1.5646	1.5636	1.5636	1.5626	1.5360	1.5301	1.5090
RACTIONS	Н20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MASS FF	H2	1.000	1.600	1.600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.800	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
FLOW RATE	(LBM/SEC)	6.336	6.336	6.336	6.336	6.336	6.336	6.336	6.336	3.760	3.760	3.760	3.760	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	1.736	1.736	1.736	1.736	1.002	1.002	1.002	1.002	1.002	0.575	Ø.575	0.575
SONIC	(FPS)	5794.5	5725.4	5216.4	5062.4	5055.7	4838.1	4781.1	4764.5	4735.3	4733.8	4712.8	4712.7	4766.2	4766.2	4765.6	4765.1	4761.3	4756.6	4756.2	4754.8	4736.1	4692.6	4642.2	4641.4	4651.5	4648.9	4646.5	4646.6	4644.4	4583.9	4570.3	4521.1
TANG VEL	(FPS)	1170.6	904.0	690.7	646.4	574.0	0.0	179.3	172.4	512.0	512.0	310.4	310.4	172.4	287.4	312.7	329.6	281.7	263.7	263.7	263.7	515.1	337.2	76.8	76.6	38.3	107.8	143.5	191.6	0.0	99.1	99.1	103.7
VELO- CITY	(FPS)	246.8	178.6	1328.2	65.2	31.4	119.9	458.3	130.9	254.0	255.5	54.6	7.4	53.5	53.5	74.2	31.9	89.3	146.2	146.3	21.1	96.3	97.2	333.0	334.9	26.1	36.9	25.8	6.5	6.5	461.5	55.7	418.6
FLUID QUAL		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DENSITY	(LBM/FT3)	4.982	4.899	4.566	4.342	4.331	3.983	3.946	3.922	3 900	3.899	3.869	3.869	3.922	3.922	3.922	3.921	3.917	3.913	3.913	3.911	3.896	3.851	3.809	3.808	3.810	3,809	3.807	3.807	3.804	3.764	3.741	3.709
TEMPER- ATURE	(R)	89.8	94.5	96.3	108.5	1.09.1	128.8	128.4	129.6	129.7	129.7	131.2	131.2	129.7	129.7	129.7	129.7	129.9	129.9	129.9	130.0	130.2	131.5	132.0	132.0	132.6	132.5	132.5	132.5	132.7	132.2	133.5	133.0
TOTAL ENTHALPY	(BTU/LBM)	208.4	208.4	208.4	208.4	208.4	264.4	265.0	265.0	269.7	269.7	269.7	269.7	265.0	266.1	266.4	266.6	266.6	266.6	266.6	266,6	270.5	270.5	270.5	270.5	270.5	270.5	270.5	270.9	270.9	271.0	271.0	271.1
		~	_	~	ശ	2	2	m.	.1	~	s S	ŝ	9.0	0	6.4	3.6	3.1	8.5	9.5	8.8	38.6	3.3	0.7	0.0	8.9	9.4	3.6	4.8	9.7	۲. %	с. З	3.2	s. 2
STATIC PRESS	(PSIA)	5834.6	5796.1	4518.3	4516.	4517.	4517.	4388	4380	4321	4318	4305	4305	4385	438	438	438	437	436	436	436	433	427	418	417	420	420	419	419	4198	4065	406	3962
TOTAL STATIC PRESS PRESS	(PSIA) (PSIA)	6604.1 5834.6	6249.9 5796.1	5649.8 4518.3	4715.8 4516.	4672.4 4517.	4523.4 4517.	4492.1 4388	4400.0 4380	4459.6 4321	4456.7 4318	4347.1 4305	4345.9 4305	4398.8 4385	4421.1 4384	4427.3 438	4429.6 438	4415.5 437	4408.0 436	4407.2 436	4398.2 436	4449.3 433	4322.1 427	4228.8 418	4227.4 417	4210.3 420	4208.9 420	4207.2 419	4213.8 4190	4198.7 4198	4159.3 4065	4071.4 4060	4036.7 3962

(Continued)
(104%)
ANALYSIS
COOLANT
TURBINE
HPFTP
ble 3-2
Та

l

i and

. Marrier

ZFAC	.5045 .0503 .0517 .0469 .0503	.0502 .0502 .0494 .0483	.0494 .0494 .0495 .0495	4685 4685 4648 4648 4729 4729 4729	
SNDI	0000 5300 5300 466 1 5330 1 466 1 260 1	466 466 486 1 530 1 530 1 1	4 4 8 8 6 7 1 1 7 8 8 9 7 9 8 9 8 9 7 9 8 9 9 9 9 9 9 9	0000 1 0000 1 0000 1 0000 0 0000 0 0000 0 0000 0 0000 0 0 0000	4446 4446 4446 4446 4446 4446 4446 444
FRACT H2	00000	00000			<i>0000000000000000000000000000000000000</i>
MASS H2	1.000 0.534 0.470 0.534 0.534	0.534 0.534 0.514 0.514	0000 000 0000 0000 0000 0000 0000 0000	200 200 200 200 200 200 200 200 200 200	0.500 0.500 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.5700 0.5700 0.5700 0.5700 0.5700 0.570000000000
FLOW RATE (LBM/SEC)	0.575 3.582 3.147 3.147 3.582	3.582 3.582 5.252 1.669	1.669 5.252 5.391 6.734 6.734	0.734 0.734 0.734 0.734 0.736 0.568 0.568	5.959 5.959 5.959 5.959 6.125 6.125 6.125 8.036 3.168 3.168
SONIC VEL (FPS)	4510.3 5383.4 5543.5 5604.1 5383.0	5384.0 5384.0 5457.3 5517.0	5523.1 5457.3 5455.5 5455.5 5227.5 4853.4	4491.5 4422.1 4412.4 4431.0 4431.0 4431.0	5227.6 5230.0 5230.0 5230.0 5154.8 4431.0 4425.9 5154.8 5154.8 5154.8 5152.6 5152.6 5152.8 5168.8
TANG VEL (FPS)	103.7 401.6 2508.6 692.6 401.6	1338.8 1338.8 401.6 379.7	344.5 401.6 401.6 339.4 64.4	643.8 659.1 659.1 873.7 266.7 266.7 266.7 266.7	330 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
VELO- CITY (FPS)	16.9 285.9 1134.5 1885.2 296.7	175.1 176.3 189.7	1024.7 191.9 391.9 109.3 1.5	903.1 404.9 904.9 56.7 16.2 12.7	107.7 66.5 66.5 66.6 68.6 68.6 38.2 3.7 3.7 134.7 134.7 134.7 1560.7 23.5
FLUID QUAL	1.00 1.00 1.00 1.00	000	1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	000.1111111100000000000000000000000000
DENSITY (LBM/FT3)	3.691 0.814 0.850 0.756 814	0.813 0.813 0.792 0.801	6.775 6.792 6.791 6.851 3.812	.698 .602 .585 .585 .613 .546 .548	8552 8556 8556 8556 8545 8545 8545 8545 8545
1					, , , , , , , , , , , , , , , , , , ,
TEMPER ATURE (R)	134.0 1495.3 1759.3 1794.9	1495.6 1495.6 1583.4 1740.8	1743.8 1583.4 1582.4 1369.3 132.5	131.9 136.1 137.1 142.4 142.4 4 3 3 4 2 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	136994 137064 137064 137064 132069 132069 1320699 1319999 1319919 1319919 1319919 1319919 1319919 131911
TOTAL TEMPER ENTHALPY ATURE (BTU/LBM) (R)	271.1 134.0 3096.1 1495.3 3486.0 1759.3 3486.0 1754.9 3495.7 1495.9	3128.3 1495.6 3128.3 1495.6 3128.3 1495.6 3192.6 1583.4 3325.3 1740.8	3325.3 1743.8 3192.7 1583.4 3192.7 1582.4 2917.0 1369.3 270.5 132.5	286.9 131.9 3 287.7 136.1 3 287.7 137.1 3 300.9 138.4 3 300.9 142.4 3 300.9 142.4 3	2917.11 2917.11 2917.11 2917.11 2917.11 1370.4 2917.11 1370.4 1370.4 1370.4 1370.4 1370.4 1370.4 142.4 3. 2849.6 1320.9 142.4 3. 2849.6 1329.9 0 2849.6 2849.6 2849.6 2849.6 2849.6 2849.6 13299.9 0 0
STATIC TOTAL TEMPER PRESS ENTHALPY ATURE (PSIA) (BTU/LBM) (R)	3961.2 271.1 134.0 3989.1 3096.1 1495.3 4431.1 3486.0 1759.3 4000.2 3486.0 1794.9	3989.6 3128.3 1495.6 3983.6 3128.3 1495.6 3989.4 3192.6 1583.4 4118.4 3325.3 1740.8	3986.0 3325.3 1743.8 3981.4 3192.7 1583.4 3969.7 3192.7 1582.4 3968.7 2917.0 1369.3 4212.7 270.5 132.5	3885.8 286.9 131.9 3 3832.6 287.7 136.1 3 3830.6 287.7 137.1 3 3954.0 300.9 138.4 3 3957.2 300.9 142.4 3 3957.2 300.9 142.4 3	3969.5 2917.1 1369.4 0 3968.8 2917.1 1370.4 0 3966.8 2917.1 1370.4 0 3966.4 2917.1 1370.4 0 3965.1 2848.9 1370.4 0 3965.1 2848.9 1370.4 0 3965.1 2848.9 1320.9 0 3965.1 2848.9 142.4 3 3965.1 2849.4 1319.9 0 3965.1 2849.6 1319.9 0 3965.1 2849.6 1319.9 0 39645.0 2849.6 1319.9 0 3641.2 2849.8 1319.1 0
TOTAL STATIC TOTAL TEMPER PRESS PRESS ENTHALPY ATURE (PSIA) (PSIA) (BTU/LBM) (R)	3965.6 3961.2 271.1 134.0 4010.6 3989.1 3096.1 1495.3 5168.3 4431.1 3486.0 1759.3 4332.2 4000.2 3486.0 1794.9	4143.5 3983.8 3128.3 1495.6 4143.5 3983.6 3128.3 1495.6 3997.4 3980.4 3192.6 1583.4 4245.1 4118.4 3325.3 1740.8	4084.6 3986.0 3325.3 1743.8 3998.2 3981.4 3192.7 1583.4 3996.7 3969.7 3192.7 1582.4 3996.2 3968.7 2917.0 1369.3 3980.2 3968.7 2917.0 1369.3 4214.4 4212.7 270.5 132.5	4386.0 3885.8 286.9 131.9 3 4067.8 3832.6 287.7 136.1 3 4063.2 3832.6 287.7 136.1 3 4063.2 3830.6 287.7 137.1 3 4264.6 3964.9 360.9 137.1 3 3284.7 3957.2 360.9 142.4 3 3984.5 3957.2 360.9 142.4 3 3984.5 3957.2 360.9 142.4 3	3981.2 3989.5 2917.1 1369.4 0 3968.1 3968.8 2917.1 1370.4 0 3968.1 3968.8 2917.1 1370.4 0 3966.8 3966.4 2917.1 1370.4 0 3966.8 3966.4 2917.1 1370.4 0 3966.8 3966.1 2848.9 1370.4 0 3975.5 3966.1 2848.9 1320.9 0 3980.4 5 3960.9 1422.4 3 3980.8 3968.1 2849.9 1320.9 0 3986.8 3966.9 1320.9 0 3 3986.8 3968.9 1319.9 0 0 3986.8 3965.0 2849.6 1319.9 0 3875.8 3645.0 2849.6 1299.9 0 3875.8 3641.2 2849.8 1319.9 0

Table 3-2 HPFTP TURBINE COOLANT ANALYSIS (104%) (Concluded)

F1,F2,F3,F4,F5=-0.15384E+05-0.25485E+06 0.16758E+06-0.16089E+06 0.21805E+06

FR0T1,FR0T2,FNET=-0.86645E+04-0.76779E+04-0.61823E+05

3~9

Table 3-3 HPFTP TURBINE COOLANT ANALYSIS (MPL)

ZFAC	00100	1 8464	1.5234	1.4469	1.4439	1.3609	1.3380	1.3327	1.3231	1.3227	1.3167	1.3167	1.3333	1.3333	1.3330	1.332/	1.3288	1.3286	1.3280	1.3205	1.3048	1.2837	1.2832	1.2890	1.2877	1.2865	1.2866	1.2860	1.2459	1.2401	1.2080
ACTIONS H20	000 0	0.000 0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0000	0,000 0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MASS FR H2		1 0000	1 . 000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.660	1.000	1.000	1.000	1.000	1.666	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
FLOW RATE (LBM/SEC)		4.100	4 760	4.760	4.760	4.760	4.760	4.760	2.526	2.526	2.526	2.526	2.234	2.234	2.234	2.234	2.234	2.234	2.234	1.537	1.537	1.537	1.537	0.897	0.897	0.897	Ø.897	0.897	0.577	0.577	0.577
SONIC VEL (FPS)		1.0010	4660 2	4497.1	4490.2	4274.2	4228.5	4213.1	4192.7	4191.7	4174.0	4173.9	4214.2	4214.2	4213.6	4213.0	4204 0	4203.6	4201.8	4185.3	4146.8	4098.4	4097.3	4107.4	4104.7	4102.2	4102.3	4100.1	4013.1	3989.4	3916.6
TANG VEL (FPS)		101 - 100 100 - 10	500 A	495.4	440.0	0.0	137.5	132.2	392.4	392.4	237.9	237.9	132.2	220.3	239.7	252.6 215 0	C 10.0	202.1	202.1	394.8	258.5	58.7	58.7	29.4	82.5	110.0	146.9	0.0	76.0	76.0	79.5
VELD- CITY (FPS)		0.201	1034 7	50.3	24.2	961.8	348.1	99.2	172.0	172.6	36.9	5.0	46.8	46.8	64.9	21.9	1.01	127.8	18.4	85.9	86.2	294.7	297.5	23.5	33.2	23.2	5.9	5.9	466.2	56.4	425.7
FLUID		00.T	201 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	001	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DENSITY FLUID QUAL (LBM/FT3)		4./50 I.00	4,000 L.20	4.231 1.00	4.223 1.00	3.939 1.66	3.911 1.00	3.892 1.00	3.877 1.00	3.876 1.00	3.854 1.00	3.853 1.00	3.892 1.00	3.892 1.00	3.891 1.00	3.891 1.66	3.00/ 1.00 2 883 1 040	3.883 1.00	3.880 1.00	3.868 1.00	3.832 1.00	3.794 1.00	3.794 1.60	3.795 1.00	3.794 1.00	3.792 1.00	3.792 1.60	3.789 1.00	3.735 1.00	3.701 1.00	3.655 1.60
TEMPER- DENSITY FLUID ATURE QUAL (R) (LBM/FT3)		13.3 4.750 I.900	77 7 A 410 1 60	85.3 4.231 1.00	85.6 4.223 1.00	97.4 3.939 1.66	97.1 3.911 1.00	97.8 3.892 1.00	97.9 3.877 1.00	97.9 3.876 1.00	98.7 3.854 1.00	98.7 3.853 1.00	97.9 3.892 1.00	97.9 3.892 1.60	97.9 3.891 1.60	97.9 3.891 1.00	90.00 3.000/ 1.000 09.01 2.893 1.000	98.0 3.883 1.00	98.1 3.880 1.00	98.2 3.868 1.00	98.9 3.832 1.00	99.1 3.794 1.00	99.1 3.794 1. 6 0	99.6 3.795 1.00	99.5 3.794 1.00	99.5 3.792 1.00	99.5 3.792 1.00	99.7 3.789 1.00	99.0 3.735 1.00	100.3 3.701 1.00	99.7 3.655 1.00
TOTAL TEMPER- DENSITY FLUID ENTHALPY ATURE QUAL (BTU/LBM) (R) (LBM/FT3)		04.0 /3.3 4.00 I.00	34.0 //.10 4.000 1.200 04.6 77 7 4.410 1.660	94.6 85.3 4.231 1.00	94.6 85.6 4.223 1.00	127.6 97.4 3.939 1.66	128.0 97.1 3.911 1.00	128.0 97.8 3.892 1.00	130.7 97.9 3.877 1.00	130.7 97.9 3.876 1.00	130.7 98.7 3.854 1.00	130.7 98.7 3.853 1.00	128.0 97.9 3.892 1.00	128.6 97.9 3.892 1.00	128.8 97.9 3.891 1.60	128.9 97.9 3.891 1.00	126.9 96.6 3.007 1.000 100.0 08.6 3.883 1.660	128.9 98.6 3.883 1.66	128.9 98.1 3.880 1.00	131.2 98.2 3.868 1.00	131.2 98.9 3.832 1.00	131.2 99.1 3.794 1.00	131.2 99.1 3.794 1.60	131.2 99.6 3.795 1.00	131.2 99.5 3.794 1.00	131.2 99.5 3.792 1.00	131.4 99.5 3.792 1.60	131.4 99.7 3.789 1.00	131.5 99.0 3.735 1.00	131.5 100.3 3.701 1.00	131.5 99.7 3.655 1.00
STATIC TOTAL TEMPER- DENSITY FLUID PRESS ENTHALPY ATURE . QUAL (PSIA) (BTU/LBM) (R) (LBM/FT3)		3002.2 34.0 /3.3 4./00 1.000 2522 1 01 6 17 1 660 1 80	3030/1 34.0 //.10 4.000 1.200 0760/1 04.6 77.7 4.410 1.60	2778.3 94.6 85.3 4.231 1.00	2778.6 94.6 85.6 4.223 1.00	2778.6 127.6 97.4 3.939 1.66	2705.0 128.0 97.1 3.911 1.00	2700.4 128.0 97.8 3.892 1.00	2672.0 130.7 97.9 3.877 1.00	2670.7 130.7 97.9 3.876 1.00	2664.8 130.7 98.7 3.854 1.00	2664.8 130.7 98.7 3.853 1.00	2702.8 128.0 97.9 3.892 1.00	2702.7 128.6 97.9 3.892 1.00	2701.7 128.8 97.9 3.891 1.00	2701.4 128.9 97.9 3.891 1.00	203/.3 I26.3 36.6 3.00/ 1.100 06011 1.000 08.61 2.823 1.640	2031.1 120.3 30.6 3.883 1.60	2690.4 128.9 98.1 3.886 1.60	2668.6 131.2 98.2 3.868 1.60	2631.7 131.2 98.9 3.832 1.00	2569.8 131.2 99.1 3.794 1.60	2568.3 131.2 99.1 3.794 1.60	2592.0 131.2 99.6 3.795 1.00	2587.8 131.2 99.5 3.794 1.66	2584.2 131.2 99.5 3.792 1.00	2584.4 131.4 99.5 3.792 1.00	2584.3 131.4 99.7 3.789 1.00	2452.1 131.5 99.0 3.735 1.00	2449.6 131.5 100.3 3.701 1.00	2343.1 131.5 99.7 3.855 1.00
TOTAL STATIC TOTAL TEMPER- DENSITY FLUID PRESS PRESS ENTHALPY ATURE . QUAL (PSIA) (PSIA) (BTU/LBM) (R) (LBM/FT3)		4042.5 3052.2 34.0 /3.3 4.750 1.900 2704 2 2532 1 04 8 77 4 4 660 1 40	3/34,3 3530,1 34,0 //.º 4,000 1.ºv 242E / 576A 1 0/ 6 77 7 4 410 1 60	2422.2 2778.3 94.6 85.3 4.231 1.00	2867.4 2778.6 94.6 85.6 4.223 1.00	2782.1 2778.6 127.6 97.4 3.939 1.66	2764.4 2705.0 128.0 97.1 3.911 1.00	2711.9 2700.4 128.0 97.8 3.892 1.00	2749.2 2672.0 130.7 97.9 3.877 1.00	2747.8 2670.7 130.7 97.9 3.876 1.00	2689.0 2664.8 130.7 98.7 3.854 1.00	2688.4 2664.8 130.7 98.7 3.853 1.00	2711.0 2702.8 128.0 97.9 3.892 1.00	2724.0 2702.7 128.6 97.9 3.892 1.00	2727.6 2701.7 128.8 97.9 3.891 1.00	2728.5 2701.4 128.9 97.9 3.891 1.00	2/20.0 209/.9 126.9 96.0 3.00/ 1.00 2715 A 2601 1 126 0 08 A 2 823 1 AA	2714.5 2696.5 128.9 98.6 3.883 1.66	2707.6 2690.4 128.9 98.1 3.880 1.00	2737.0 2668.6 131.2 98.2 3.868 1.00	2662.6 2631.7 131.2 98.9 3.832 1.00	2607.0 2569.8 131.2 99.1 3.794 1.00	2606.0 2568.3 131.2 99.1 3.794 1.00	2592.6 2592.0 131.2 99.6 3.795 1.00	2591.1 2587.8 131.2 99.5 3.794 1.00	2589.3 2584.2 131.2 99.5 3.792 1.00	2593.2 2584.4 131.4 99.5 3.792 1.00	2584.4 2584.3 131.4 99.7 3.789 1.00	2542.7 2452.1 131.5 99.0 3.735 1.00	2453.2 2449.6 131.5 100.3 3.701 1.00	2417.5 2343.1 131.5 99.7 3.855 1.60

.

³⁻¹⁰

Table 3-3 HPFTP TURBINE COOLANT ANALYSIS (MPL) (Continued)

ZFAC		1.2042	1.0326	1.0326	1.0307	1.0326	1.0325	1.0325	1.0286	1.0311	1 0386	1.0285	1.0516	1.2901	1.2032	1.1793	1.1769	1.1908	1.1908	1.1911	1.0516	1.0515	1.0515	1.0515	1.0553	1.1908	1.1894	1.0553	1.0552	1.0521	1.0515
RACTIONS	H20	000	0.364	0.480	0.480	0.364	0.364	0.364	0.396	Ø.480 2.02	0.480 0.305	0.396	0.336	000.0	0.000	0.000	0000.0	0.000	0.000	0.000	0.336	0.336	0.336	0.336	0.325	000.0	0.000	0.325	0.325	0.325	0.325
MASS FI	H2	1.000	0.636	0.520	0.520	0.636	0.636	0.636	0.604	0.520	075.0	0.604	0.664	1.600	1.000	1.000	1.000	1.666	1.000	1.000	0.664	0.664	0.664	0.664	0.675	1.000	1.000	0.675	0.675	0.875	0.675
FLOW RATE	(LBM/SEC)	0.577	2.027	1.539	1.539	2.027	2.027	2.027	2.802	0.775	9 800	2.891	3.412	0.640	0.640	0.640	0.640 0 840	0.640	0.521	0.521	3.412	3.412	3.412	3.412	3.531	0.119	0.119	3.531	3.480	1.995	1.995
SONIC	(FPS)	3897.8	4801.8	5413.7	5479.3	4801.7	4801.9	4801.9	5022.5	5399.5	5410.5	5021.2	4684.0	4110.1	3915.2	3826.0	3812.9 2056 7	3821.3	3821.3	3821.9	4684.0	4685.4	4685.3	4685.4	4645.4	3821.4	3817.3	4645.5	4646.2	4617.8	4632.9
TANG	VEL (FPS)	79.5	307.9	2262.8	530.9	307.9	1026.2	1026.2	307.9	526./	307.9	307.9	260.1	49.3	493.5	505.2	5005.2 880.7	204.4	204.4	211.5	260.1	6.9	0.0	0.0	282.0	204.4	204.4	282.0	304.3	314.4	323.9
VELO-	(FPS)	17.3	220.5	1026.9	1458.2	224.1	135.5	136.3	143.5	1014.8	145.9	298.7	82.9	1.3	792.3	356.6	4.04	14.3	11.8	16.2	81.5	50.5	88.0	50.5	104.7	2.7	1.3	102.9	284.2	1300.9	19.5
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.90	1.000	1.00	1.00	1.00	1.00	1.60	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DENSITY	(L.BM/FT3)	3.627	0.595	0.523	0.479	0.596	0.595	0.595	Ø.558 2 22	100.00	0.557	0.557	0.642	3.798	3.670	3.560	3.582	3.502	3.502	3.502	0.642	Ø.642 2 242	0.642	6 .642	0.853	3.502	3.498	Ø.853	0.851	0.815	0.611
TEMPER- DENSITY ATURE	(R) (LBM/FT3)	100.8 3.627	1065.4 0.595	1531.7 Ø.523	1567.3 0.479	1065.2 0.596	1065.5 0.595	1065.5 0.595	1191.1 Ø.558	1027.0 127201	1191.1 0.557	1190.5 0.557	931.5 0.642	99.5 3.798	98.5 3.670	101.7 3.560	103.3 3.567	105.6 3.502	105.6 3.502	105.6 3.502	931.5 0.642	932.1 Ø.642	932.1 0.642	932.1 0.642	899.5 0.653	105.6 3.502	105.6 3.498	899.6 Ø.653	899.9 0.651	888.9 0.615	894.7 0.611
TOTAL TEMPER- DENSITY FNTHALPY ATURE	(BTU/LBM) (R) (LBM/FT3)	131.5 100.8 3.627	2486.6 1085.4 0.595	3234.1 1531.7 0.523	3234.1 1567.3 0.479	2486.8 1065.2 0.596	2505.9 1005.5 Ø.595	2505.9 1065.5 0.595	2676.0 1191.1 0.558	100.0 1.2201 1.1100	2676.0 1191.1 0.557	2676.0 1190.5 0.557	2290.1 931.5 0.642	131.2 99.5 3.798	140.9 98.5 3.670	141.3 101.7 3.560	149.0 102.4 3.540 149.0 103.3 3.567	149.0 105.6 3.502	149.0 105.6 3.502	149.2 105.6 3.502	2290.2 931.5 0.642	2290.2 932.1 0.642	2290.2 932.1 0.642	2290.2 932.1 0.642	2219.8 899.5 0.653	149.0 105.6 3.502	149.0 105.6 3.498	2219.8 899.6 Ø.653	2220.0 899.9 0.651	2220.2 888.9 0.615	2220.3 894.7 0.611
STATIC TOTAL TEMPER- DENSITY PRESS ENTHALPY ATURE	(PSIA) (BTU/LBM) (R) (LBM/FT3)	2342.1 131.5 100.8 3.627	2358.1 2486.6 1065.4 0.595	2527.1 3234.1 1531.7 0.523	2363.4 3234.1 1567.3 0.479	2359.3 2486.8 1065.2 0.596	2357.5 2505.9 1065.5 0.595	2357.4 2505.9 1065.5 0.595	2356.1 26/6.0 1191.1 0.558	2367 4 2117 7 1528 5 0 100	2355.9 2676.0 1191.1 0.557	2351.2 2676.0 1190.5 0.557	2350.7 2290.1 931.5 0.642	2595.1 131.2 99.5 3.798	2316.0 140.9 98.5 3.670	22/2.2 141.3 101.7 3.560	22/0:0 149.0 102.4 3.540 2342.1 149.0 103.3 3.567	2343.6 149.0 105.6 3.502	2343.7 149.0 105.6 3.502	2344.6 149.2 105.6 3.502	2350.8 2290.2 931.5 0.642	2350.6 2296.2 932.1 6.642	2343.3 2230.2 332.1 0.642	2349.8 2290.2 932.1 0.642	2349.2 2219.8 899.5 Ø.653	2343.7 149.0 105.6 3.502	2338.9 149.0 105.6 3.498	2349.2 2219.8 899.6 Ø.653	2343.9 2220.0 899.9 0.651	2181.0 2220.2 888.9 0.615	Z1/3.1 ZZ20.3 894.7 0.611
TOTAL STATIC TOTAL TEMPER- DENSITY PRESS PRESS FNTHALPY ATLARE	(PSIA) (PSIA) (BTU/LBM) (R) (LBM/FT3)	2344.7 2342.1 131.5 100.8 3.627	2367.4 2358.1 2486.6 1065.4 0.595	2893.9 2527.1 3234.1 1531.7 0.523	2488.7 2363.4 3234.1 1567.3 0.479	2368.6 2359.3 2486.8 1065.2 0.596	2426.7 2357.5 2565.9 1665.5 0.595	2426.2 2357.4 2505.9 1065.5 0.595	2363.1 2356.1 2676.0 1191.1 0.558	2414.5 2402.1 3111.1 1322.1 0.500	2362.9 2355.9 2676.0 1191.1 0.557	2362.2 2351.2 2676.0 1190.5 0.557	2355.9 2350.7 2290.1 931.5 0.642	2596.1 2595.1 131.2 99.5 3.798	2667.4 2316.0 140.9 98.5 3.670	2420.6 22/2.2 141.3 101.7 3.560 2271 0 2276 2 11 2 10 2	2516.2 2342.1 149.0 103.3 3.569	2359.6 2343.6 149.0 105.6 3.502	2359.5 2343.7 149.0 105.6 3.502	2361.6 2344.6 149.2 105.6 3.502	2356.0 2350.8 2290.2 931.5 0.642	2350.8 2350.6 2290.2 932.1 0.642	2000.0 2040.9 2290.2 932.1 0.642	2349.9 2349.6 2290.2 932.1 0.642	2300.0 2349.2 2219.8 899.5 Ø.653	2359.5 2343.7 149.0 105.6 3.502	2354.7 2338.9 149.0 105.6 3.498	2355.6 2349.2 2219.8 899.6 Ø.653	2356.1 2343.9 2220.0 899.9 0.651	2300.9 2181.0 2220.2 888.9 0.615	2100.1 21/9.1 2220.3 894 7 0.611

Table 3-3 HPFTP TURBINE COOLANT ANALYSIS (MPL) (Concluded)

ZFAC	1.0552 1.0552 1.0711 1.2462 1.1981	1.0711 1.0647 1.0647 1.0633 1.1471 1.1471 1.1414 1.1356 1.1219	1.2779	1.2768 1.2763 1.2763 1.2761 1.1831 1.1193 1.1193 1.1193 1.1193 1.2079 1.2079 1.2079 1.2079 1.2078 1.1938 1.0552 1.0552 1.0552
RACTIONS H20	0.325 0.325 0.201 0.000 0.000	0.291 0.291 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MASS FF H2	0.675 0.675 0.709 1.000 1.000 1.000 1.000	0.709 0.709 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.675 0.675 0.675
FLOW RATE (LBM/SEC)	1.485 1.485 0.697 0.292	1.828 1.828 0.4050	6 6 6 6 7 7 6 6 6 6 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0
SONIC VEL (FPS)	4645.6 4645.6 5471.8 4010.4 3889.1 5471.8	54/1.8 5415.3 5476.8 3775.3 3766.6 3718.4 3347.8 3346.9	34996.4 34996.4 34996.4 34996.4 34996.4 34886.7 34886.7	4078.3 4078.3 4076.7 3532.7 3531.7 3531.7 3531.7 3531.7 3261.8 3318.6 3318.6 3318.6 3318.6 3318.6 3318.6 3318.6 3318.6 3318.6 3318.6 3318.6 3318.6 3318.6 3318.5 361.5 4657.5 4657.5
TANG VEL (FPS)	1014.5 1014.5 304.3 128.0 135.9 135.9		, , , , , , , , , , , , , , , , , , ,	20 20 20 20 20 20 20 20 20 20
VELO- CITY (FPS)	84.6 84.6 84.6 21.1 9.0	1686.4 17.7 639.4 633.2 643.2 643.2 6.6 6.6 91.1	130.0 74.6 29.5 29.1 29.1 232.5 232.5 209.0 209.0	65-6.900 652.7 787.3 787.3 78.6 78.6 78.6 78.6 78.6 78.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.7 73.6 75.6
FLUID QUAL	1.00 0.100 0.100 0.11.000 11.000 000 000	0.87 0.90 1.60 1.60 1.60 0.1 .60 1.60 0.00 1.60	1.00 1.00 1.00 1.00 00 1.00 00 1.00 00 00 1.00 00 00 00 00 00 00 00 00 00 00 00 00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DENSITY (LBM/FT3)	0,651 0,651 0,652 3,728 3,631 3,631 0,602	8.561 8.533 3.568 3.558 3.558 3.496 1.572 1.572	1.339 1.338 1.338 1.338 1.338 1.338 1.333 1.738 3.778	5007 E+000 5007 E+000 5007 E+000 5007 E+000 5007 E+000 5007 E+000 5007 E+000 5007 E+000 5007 E+0000 5007 E+0000 5007 E+00000 5007 E+0000000000000000000000000000000000
TEMPER- ATURE (R)	899.6 899.6 756.9 99.4 100.0			
•			266. 266. 266. 266. 266. 266. 266.	99.8 99.8 157.6 157.6 157.6 151.5 157.7 151.5 157.7 161.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 8995.5 8995.5 8995.5 8995.5 803.4 864-6
TOTAL ENTHALPY (BTU/LBM)	2238.7 2238.7 1839.1 128.9 128.9 1839.1	1839.3 1839.3 128.9 128.9 128.9 6665.9 6665.9 6665.9 222	769.3 266. 769.3 266. 769.3 266. 769.3 266. 769.3 266. 769.3 266. 769.3 266. 769.3 266. 769.3 266.	131.4 99.8 131.4 99.8 338.4 157.6 338.4 157.6 338.4 157.6 338.4 157.6 338.4 157.6 338.4 151.5 579.2 219.8 579.2 219.8 579.2 219.8 151.1 101.3 151.1 101.1 101.3 151.1 101.1 101.3 100.3 100.5 10
STATIC TOTAL PRESS ENTHALPY (PSIA) (BTU/LBM)	2343.1 2238.7 2343.1 2238.7 2342.4 1839.1 2458.1 128.9 2315.7 128.9 2316.7 128.9 2340.9 1839.1	2085.4 1839.3 75 2082.4 1839.4 76 2144.6 128.9 9 2126.8 128.9 9 2126.3 665.9 12 2126.3 665.9 22	2121.4 789.3 266. 2120.3 769.3 266. 2120.6 769.3 266. 2120.5 769.3 266. 2120.5 769.3 266. 2120.5 769.3 266. 2108.8 769.3 266. 2108.8 769.3 266. 2168.8 769.3 266. 266.7.6 131.4 99.	2555.8 131.4 99.8 2555.4 131.4 99.8 2555.2 338.4 157.6 2565.2 338.4 157.6 2108.4 338.4 157.6 2107.5 338.4 157.6 2107.5 338.4 157.6 2107.5 338.4 157.6 2107.5 338.4 157.6 2107.5 338.4 157.6 2107.5 338.4 157.7 2099.8 579.2 219.8 2059.3 135.1 101.3 2059.3 151.1 101.3 2356.1 151.1 101.3 2356.1 151.1 101.3 2356.1 151.1 101.3 2356.1 151.1 1061.3 2342.4 2235.8 903.4 7235.8 903.4 7235.8 903.4 7235.8 903.4
TOTAL STATIC TOTAL PRESS PRESS ENTHALPY (PSIA) (PSIA) (BTU/LBM)	2416.0 2343.1 2238.7 2416.0 2343.1 2238.7 2349.1 2342.4 1839.1 2464.8 2458.1 128.9 2323.0 2315.7 128.9 2347.6 2340.9 1839.1	2265.0 2085.4 1839.3 75 2088.5 2082.4 1839.4 75 2303.0 2144.0 128.9 5 2286.9 2126.8 128.9 9 2126.4 2126.4 128.9 10 2126.4 2126.3 605.9 12 2126.6 2124.2 605.9 22	2123.8 2121.4 769.3 266. 2121.1 2120.3 769.3 266. 2120.7 2120.6 769.3 266. 2120.6 2120.5 769.3 266. 2120.5 2120.5 769.3 266. 2120.5 2120.5 769.3 266. 2168.8 2108.8 769.3 266. 2168.8 2108.8 769.3 266. 2667.6 131.4 99.	2557.0 2555.8 131.4 99.8 2555.7 2555.4 131.4 99.8 2555.7 2555.4 131.4 99.8 2555.2 2555.2 338.4 157.6 2412.6 2107.5 338.4 157.6 2107.5 2107.5 338.4 157.6 2107.5 2107.5 338.4 157.6 2107.5 2107.5 338.4 157.7 2105.2 2099.8 579.2 219.8 2099.8 579.2 219.8 270.9 2704.4 2356.1 151.1 101.3 2704.4 2356.1 151.1 101.3 2704.4 2356.1 151.1 101.3 2704.8 2356.1 151.1 101.3 2704.8 2356.1 151.1 101.3 2702.3 2342.4 2235.8 903.4 7 2342.3 2235.8 903.4 7 7 2235.8 903.4 7 7 2235.8 903.4 7 7 2342.3

FR0T1 ,FR0T2 ,FNET=-0.34914E+04-0.31668E+04-0.33781E+05

Column	Parameter	Description
Line numbers 3	through 103, For	rmat (15,5X, 6E10.4)
1-5	IP	Flow type
11-20	A	Passage flow area, in ²
21-30	D	Passage hydraulic diameter, in.
31-40	XL	Passage effective length for frictional losses, in.
41-50	XR	Radial location, in.
51-60	XK	Flow loss coefficient
61-70	EFF	Ratio of fluid to shaft rotational speed.
Line number 104	, Format (8E10.	4)
1-10	BAREA	Bearing area, in ²
11-20	BRAD	Bearing pitch radius, in.
21-30	BC	Empirical constant
31-40	BK	Empirical constant.
Line number 10 Data for int	5, Format (215, terstage labyrin	7F10.5) th seal
1-5	N	Final tooth number, enter 4
6-10	J	Parameter not used; enter 0
11-20	CL	Radial clearance from drawings, in.
21-30	PL	Tooth pitch, in.
31-40	HL	Tooth height, in.
41-50	WL	Tooth width, in.
51-60	DSHF	Shaft diameter, in.
61-70	DCASE	Case diameter, in. = $DSHF+2(CL+HL)$
71-80	DCL	Change in diametral clearance at operating conditions, in.

.

Description Parameter Column Line number 106, Format (215, 7F10.5) Data for first two teeth of turbine seal Final tooth number, enter 6 1--5 N 6-80 Same parameters as above. Line number 107, Format (215, 7F10.5) Data for next three teeth of turbine seal Final tooth number, enter 9 1-5 N 6-80 Same parameters as above. Line number 108, Format (215, 7F10.5) Data for final three teeth of turbine seal 1 - 5Final tooth number, enter 12 N 6-80 Same parameters as above. Line number 109, blank card image. Line number 110, Format (815) = 1 Fixed blade coefficient and 1-5 IOPT iterates to determine flow rate = 2 Fixed flow rate and iterates to determine blade coefficient 6-10 IOPTX1 = 1 Enter total pressures in pump input data = 2 Enter static pressures in pump input data 11-15 ITURB = 1 Uses programmed turbine leakage flows and makes one pass through turbine and coolant flow models = 2 Uses computed leakage flows from first pass and makes an additional pass through each model 16-20 KPUMP = 1 Reads input impeller inlet and discharge conditions and bypasses pump head rise model = 2 Computes impeller inlet and discharge conditions using pump head rise model.

<u>Column</u>	Parameter	Description
Line number 111,	, Format (8E10.4)	
1-10	WPIO	Pump inlet flow rate, lbm/s
11-20	PIOF	Pump inlet pressure, psia Total pressure if IOPTX1 = 1 Static pressure if IOPTX1 = 2
21-30	TIOF	Pump inlet temperature, °R
31-40	POOF	Pump discharge pressure, psia Total pressure if IOPTX1 = 1 Static pressure if IOPTX1 = 2
4150	TOOF	Pump discharge temperature, °R
51-60	ETAP	Pump efficiency
61-70	RPM	Pump speed, rpm
71-80	XPL	Power level ratio.
Line number 112	, Format (8E10.4)	
1-10	PKNOWN(1)	Impeller discharge total pressure, psia
11-20	TKNOWN(1)	Impeller discharge temperature, °R
21-30	RKNOWN(1)	Impeller discharge density, lbm/ft ³
31-40	VTKNON(1)	Impeller discharge fluid tangential velocity, ft/s.

Line number 113, Format (8E10.4)

1-10	PKNOWN(2)	Impeller inlet	total pressure, psia
11-20	TKNOWN(2)	Impeller inlet	temperature, °R
21-30	PKNOWN(2)	Impeller inlet	density, lbm/ft ³
31-40	VTKNON(2)	Impeller inlet velocity, ft/s	fluid tangential

.

Column	Parameter	Description
Line number 114	, Format (8E10.4)	
1-10	WDPB	Turbine inlet flow rate, 1bm/s
11-20	РРВ	Turbine inlet total pressure, psia
21-30	TPB	Turbine inlet total temperature, °R
31-40	НРА	Turbine horsepower, hp
41-50	TFTD	Turbine discharge total temperature, °R
51-60	PFTD	Turbine turnaround duct discharge total pressure, psia
61-70	ETANZ	Nozzle efficiency, K_n^2
71-80	ХКВ	Blade coefficient, K _b .
Line number 115	, Format (8E10.4)	
110	OF	Preburner mixture ratio.
Line number 116	6, Format (8E10.4)	
1-80	WDLEG	Legs 1 through 8 estimated flow rate at FPL, 1bm/s.
Line number 117	7, Format (8E10.4)	
1-80	WDLEG	Legs 9 through 16 estimated flow rate at FPL, 1bm/s.
Line number 118	3, Format (8E10.4)	· · · · · · · · · · · · · · · · · · ·
1-80	WDLEG	Legs 17 through 24 estimated flow rate at FPL, 1bm/s.
Line number 119	9, Format (8E10.4)	
1-10	WDLEG	Leg 25 estimated flow rate at FPL, lbm/s.

.

-

4. HIGH PRESSURE OXIDIZER TURBINE COOLANT ANALYSIS

4.1 TURBINE COOLANT SYSTEM

The existing high pressure oxidizer turbopump (HPOTP) turbine coolant system flow model developed by Lockheed for NASA-MSFC was used as a baseline for this analysis. This baseline model (shown in Figures 4-1 and 4-2) is documented in Reference 9. The turbine coolant system was modeled to evaluate the flow properties at each of the numbered stations and to compute the flow rates along each of the flow paths in the system. Four additional stations have been included in the model for computational purposes. These are at the first stage blade exit (station 159), second stage nozzle exit (station 160), second stage blade exit (station 161), and primary turbine seal inlet (station 162). The model comprises 162 stations and 27 flow paths.

4.2 MODEL IMPROVEMENT

A review of current drawings was performed, and pertinent geometry changes were included in the model. Operating clearances for the interstage seal and turbine seal were supplied by NASA-MSFC. The flow path supplying coolant hydrogen to the turbine seal region at station 131 (see Figure 4-2a) has been modified and now supplies mixed coolant from the mixing chamber. The cold hydrogen supply has been blanked off, and mixed coolant is now introduced at old station location 122 shown in Figure 4-1m. This flow path now consists of stations 120 through 131.

A one-dimensional turbine model is included as a subroutine in the code. This provides a closed loop analysis with a minimum of required boundary conditions as input. Estimated leakage rates into the primary turbine flow path are input to the turbine model, and the turbine model is executed to provide pressures as boundary conditions for the coolant flow model (stations 29, 159, 160, and 161). The coolant model is then executed and new leakage

4-1

Figure 4-1 HPOTP Turbine Coolant System Schematic Diagram

.....

Figure 4-1b

Figure 4-lc

т 1

> ; :

-

Figure 4-1d

Figure 4-le

Figure 4-1h

Figure 4-1i

-

Figure 4-lj

Figure 4-1k

Figure 4-12

2...:

Figure 4-1n

Figure 4-10

Figure 4-1p

Figure 4-lq

Figure 4-1r

Figure 4-1s

--

Flow Passage of Hydrogen from the Coolant Manifold at Station 6 to the Turbine Seal Region at Station 131

at Station 6 to the Struts at Stations 149 through 153 Flow Passage of Hydrogen from the Coolant Manifold Figure 4-2b

LOCKHEED-HUNTSVILLE ENGINEERING CENTER

Flow Passage of Mixed Coolant from the Mixing Chamber at Station 8 to the First Stage Rotor at Stations 22 and 28 Figure 4-2c

4--16

LMSC-HEC TR F268780

LOCKHEED-HUNTSVILLE ENGINEERING CENTER

_

flows are computed. An input option is provided for terminating the execution at this point or continuing with another pass through each model if greater accuracy is desired.

An improved properties subroutine for computing thermodynamic and transport properties for a mixture of H_2 and H_2 0 has been added to the program. Refer to Section 2.4 for a detailed description of this calculation procedure.

4.3 RESULTS

-

- --

The oxidizer turbine coolant system was analyzed at FPL, 104%, and MPL using Rocketdyne engine balance data obtained from Reference 8. The results of these analyses are presented in Tables 4-1 through 4-3.

4.4 PROGRAM INPUT GUIDE

This section describes the input data file required for execution of the HPOTP turbine coolant program.

Column	Parameter	Description
Line numbers	1 through 158,	Format (15, 5X, 6E10.4))
1–5	IP	Flow type
11-20	A	Passage flow area, in ²
21-30	D	Passage hydraulic diameter, in.
31-40	XL	Passage effective length for frictional losses, in.
41-50	XR	Radial location, in.
51-60	ХК	Flow loss coefficient
61-70	EFF	Ratio of fluid to shaft rotational speed.

Table 4-1 HPOTP TURBINE COOLANT ANALYSIS (FPL)

ZFAC		1.0691	1.0686	1.0685	1.0679	1.1376	1.4658	1.4233	1.1376	1.1375	1.1375	1.1375	1.1374	1.1374	1.1311	1.1305	1.1270	1.1234	1.1206	1.1205	1.1061	1.1054	1.1018	1.1308	1.1261	1.1250	1.1250	1.1057	1.1019	1.0611	0.0000	0.0000	1.1017
FRACTIONS	Н20	0.474	0.474	0.474	0.474	0.303	0.000	0.000	6.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.474	0.000	0.000	0.303
MASS	Н2	0.526	0.526	0.526	0.526	0.697	1.000	1.000	0.697	Ø .697	0.697	0.697	0.697	0.697	Ø.697	0.697	0.697	0.697	0.697	6.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.526	1.000	1.000	0.697
FLOW RATE	(LBM/SEC)	1.609	1.609	1.609	1.609	2.518	Ø.9Ø8	ø.9ø8	2.518	0.800	0.800	0.800	0.800	0.800	0.117	0.117	0.117	0.117	0.117	0.117	0.117	0.117	0.800	0.683	0.683	0.683	0.683	0.683	0.800	65.430	0.000	0.000	0.145
SONIC	(FPS)	5448.2	5444.8	5448.0	5444.3	4720.5	4871.2	4707.2	4720.4	4720.1	4720.1	4720.5	4720.3	4720.5	4712.8	4708.4	4712.7	4713.3	4721.8	4721.7	4681.1	4679.9	4740.9	4712.3	4713.9	4726.9	4726.9	4673.9	4740.0	5258.8	0.0	0.0	4740.8
TANG	(FPS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	3376.0	0.0	0.0	1059.5
VELO-	(FPS)	196.1	481.0	214.4	547.0	1.0	73.3	1061.0	1.0	133.8	133.9	1.0	103.9	1.0	1100.8	1107.0	941.4	963.4	852.8	658.8	2116.6	2134.5	1.0	1130.7	1162.0	138.7	139.5	2197.3	1.0	968.1	0.0	0.0	145.9
FLUID		1.00	1.00	1.00	1.60	1.00	1.00	1.00	1.00	1.00	1.60	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.60	1.60	1.00	1.00	1.00	00.00	0.00	1.00
DENSITY	(LBM/FT3)	1.087	1 . Ø81	1.079	1.072	1.375	2.751	2.636	1.375	1.374	1.374	1.374	1.374	1.374	1.321	1.316	1.287	1.257	1.233	1.233	1.105	1.098	1.072	1.318	1.279	1.272	1.271	1.101	1.072	0.891	000.0	000.0	1.071
TEMPER-	R)	1561.3	1669.2	1560.8	1558.5	903.7	279.0	275.7	903.6	903.5	903.5	903.7	903.6	903.7	900.2	899.8	900.3	900.5	904.1	964.0	889.4	888.9	912.4	900.1	900.8	906.3	906.3	886.7	911.6	1451.4	0.0	0.0	912.4
TOTAL	(BTU/LBM)	3200.8	32000 8	3200.8	3200.8	2361.2	873.6	873.6	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2362.8	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	3201.0	0.0	0.0	2385.2
STATIC	(PSIA)	5594.4	SSE3 B	5548.1	5501.2	5500.8	5987.1	5505.4	5501.6	5497.6	5497.0	5497.0	5494.6	5494.6	5235.4	5209.3	5083.3	4947.7	4862.0	4860.3	4230.9	4198.5	4191.5	5221.8	5049.4	5045.1	5044.9	4199.0	4191.6	4190.8	0.0	0.0	4187.8
TOTAL	(PSIA)	5599.7	SERG 8	5553.5	5536.1	5500.8	5988.7	5830.6	5501.6	5500.3	5499.6	5497.0	5498.2	5494.6	5409.2	5384.0	5207.1	5074.4	4919.2	4918.1	4769.7	4741.9	4191.5	5404.7	5237.3	5047.8	5047.6	4776.2	4191.6	5583.9	0.0	0.0	4320.1
STA		-	• •	1 07	4	· LO	60	~	00	o	10	11	12	13	4	15	16	17	18	19	20	21	22	23	24	25	28	27	28	29	30	31	32

LMSC-HEC TR F268780

Table 4-1 HPOTP TURBINE COOLANT ANALYSIS (FPL) (Continued)

<u>م بـ z</u>
(FP 474
5 474
9.5 474
0.0 501 2 2 20
0.01 4/2 0.01 4/2
0.0 472
0.0 472
0.0 472
0.0 472
0.0 472
0.0 472
0.0 472
0.0 472
0.0 472
0.0 472
0.0 4/2 9.0 4/2
0.0 472
0.0 472
0.0 471
0.0
0.0
0.0 471
0.0 471
0.0 472
0.0 471
0.0 471
0.0 463
0.0 463
0.0 501
0.0 457
0.0 456
0.0 483

Table 4-1 HPOTP TURBINE COOLANT ANALYSIS (FPL) (Continued)

ZFAC		1.0445	1.0404	1.0360	1.0356	1.0355	1.0354	1.0353	1.0654	1.1371	1.1370	1.1005	1.0987	1.0880	1.6870	1.0870	1.0866	1.1026	1.0983	1.0882	1.0878	1.0869	1.0868	1.0865	1.0864	1.0864	1.1366	1.1365	1.1366	1.1364	1.1354	1.1353	1.1342	1.1341
FRACTIONS	H20	0.408	0.408	0.386	0.386	0.386	0.386	0.386	0.342	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303	0.303
MASS	H2	0.592	0.592	0.614	0.614	0.614	0.614	0.614	0.658	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697
FLOW RATE	(LBM/SEC)	1.845	1.845	2.342	0.301	0.301	0.301	0.301	0.642	0.159	0.159	080.0	0.080	0.080	0.080	0.080	0.080	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.159	0.159	0.341	0.341	0.341	0.341	0.341	0.341	0.341	0.341
SONIC	(FPS)	5000.6	4968.9	4806.7	4799.5	4806.1	4812.8	4819.6	4854.6	4718.8	4720.8	4588.0	4560.7	4745.0	4740.6	4740.6	4747.4	4582.9	4569.0	4745.1	4745.8	4741.1	4741.0	4747.5	4747.4	4747.5	4716.9	4716.9	4717.7	4717.8	4718.4	4718.4	4719.0	4719.0
TANG	(FPS)	0.0	0.0	0.0	1059.5	1059.5	1059.5	1059.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VELO- CITY	(FPS)	1092.3	1732.7	1.0	411.7	413.6	416.5	419.5	1.0	320.8	18.2	3199.7	3252.9	261.9	694.9	600.8	1.0	3064.3	3190.0	254.9	256.9	580.9	586.3	1.0	91.0	1.0	465.4	468.3	415.1	414.8	415.3	417.9	418.1	420.8
FLUID	•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.60	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DENSITY	(LBM/FT3)	Ø.893	6.842	0.842	0.838	0.832	0.826	0.820	0.867	1.371	1.370	1.049	1.032	Ø.945	0.936	0.935	0.933	1.068	1.028	0.947	0.944	0.935	0.934	Ø.932	0.931	0.931	1.367	1.366	1.367	1.365	1.357	1.356	1.348	1.347
TEMPER- ATURE	(R)	1261.5	1235.3	1200.9	1199.4	1198.7	1198.0	1197.3	1039.4	903.0	903.8	845.6	843.5	913.5	911.5	911.5	914.5	852.1	846.7	913.5	913.7	911.7	911.7	914.5	914.5	914.5	902.2	902.2	902.5	902.5	902.8	902.8	903.0	903.0
TOTAL ENTHALPY	(BTU/LBM)	2764.3	2764.3	2678.7	2701.2	2701.2	2701.2	2701.2	2521.8	2361.2	2361.2	2361.2	2381.2	2361.2	2361.2	2361.2	2361.2	2361.2	2381.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2	2361.2
STATIC PRESS	(FSIA)	3969.5	3671.1	3666.4	3643.3	3615.3	3587.0	3558.5	3558.3	5477.8	5477.7	3797.9	3722.1	3656.7	3609.6	3606.3	3606.3	3905.3	3720.4	3663.7	3649.8	3605.0	3602.2	3602.2	3600.9	36.00.9	5453.4	5450.3	5456.8	5450.1	5412.0	5409.3	5370.9	5367.0
T0TAL PRESS	(FSIA)	4075.1	3946.1	3666.4	3760.7	3732.3	3703.4	3674.3	3558.3	5493.1	5477.8	4967.8	4911.4	3663.8	3645.7	3642.8	3606.3	4997.1	4857.0	3670.4	3656.5	3639.4	3636.9	3602.2	3601.8	3600.9	5485.5	5482.6	5482.2	5475.5	5437.4	5434.9	5396.5	5392.8
STA		87	68	69	70	11	72	73	4	75	76	17	78	79	80	81	82	83	84	86	88	87	88	6 80	8	5	92 9	80	40	90	96	16	86	66

Table 4-1 HPOTP TURBINE COOLANT ANALYSIS (FPL) (Continued)

ZFAC	1.1328 1.1327 1.1319 1.1319 1.1315	1.1316 1.1316 1.0968 1.0957 1.0957	1.0657 1.0657 0.0000 0.0000	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.1260 1.10160000000000	1.0979 1.0974 1.0875 1.0849 1.0849
FRACTIONS H20	0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303	66666 9666 9668 9668 9668 9668 9668 966	6.342 6.342 6.666 6.666 6.666		000 000 000 000 000 00 00 00 00 00 00 0
MASS I H2	0.697 0.697 0.697 0.697 0.697	0.697 0.697 0.697 0.697	Ø.658 Ø.658 1.000 1.000 1.000	6 8 8 9 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	0.697 0.697 0.697 0.697 1.000
FLOW RATE (LBM/SEC)	0.341 0.341 0.341 0.341 0.341	96663341 9411 9411 9411 9411 9411 9411 9411	0.598 0.598 0.000 0.000 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.165 0.165 0.165 0.297
SONIC VEL (FPS)	4712.7 4712.7 4723.5 4722.3 4722.3	4723.0 4556.3 4556.3 4558.3 4558.3 4558.3	4854.1 4854.1 6.0 6.0 6.0	47265.0 4712.2 4712.2 4555.6 4712.2 4713.3 4713.3 4713.3 4713.3	4721.6 4721.5 4699.0 4748.5 4878.3
TANG VEL (FPS)	00000 00000	000000 00000	000000 000000 000000	, , , , , , , , , , , , , , , , , , ,	000000 000000 00000
VELO- CITY (FPS)	742.5 749.6 1.6 281.6 282.3	196.1 196.0 3290.8 3322.8	27.1 4.7 8.8 8.8	6.6 6.6 6.6 1561.6 1561.6 3329.4 3329.4 33224.3 1624.3 1624.3 1624.3 1624.3 1624.3 1624.3 1624.3 1624.3	1056.6 1056.6 1064.6 2054.3 1.0 97.8
FLUID	1.00 1.00 1.00 1.00	1.000	1.00 1.00 0.00 0.00 0.00	88.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1.00
DENSITY (LBM/FT3)	1.335 1.334 1.328 1.328	1.326 1.326 1.014	0.869 0.869 0.000 0.000 0.000 0.000	0.000 0.000 0.000 1.278 1.278 1.278 1.037 1.0333 1.0333 1.0333 1.0333 1.0333 1.0333 1.0333 1.0333 1.0333 1.0	1.034 1.034 0.936 0.917 2.750
TEMPER- ATURE (R)	900 900 3 908 3 908 9 4 4 4 4	904.7 904.7 841.8 838.9 1038.5	1638.5 1638.5 6.6 6.6 6.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	903.6 903.5 914.9 279.0
TOTAL Enthalpy (BTU/LBM)	2361.2 2361.2 2361.2 2361.2 2361.2	2361.2 2361.2 2361.2 2361.2 2361.2 2520.6	2520.6 2520.6 0.6 0.0 0.0	2361.2 2361.2 2361.2 2361.2 2361.2 2361.2 2361.2 2361.2 2361.2 2361.2 2361.2 2361.2 2361.2	2361.2 2361.2 2361.2 2361.2 2361.2 873.6
STATIC PRESS (PSIA)	5298.2 5295.3 5295.3 5271.5	5282.3 5281.9 3642.7 3566.4 3566.2	3566.1 3566.1 6.6 6.6 6.0	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 8.1 2.1 .1 4.1 3.7 1.4 8.1 3.7 1.4 8.1 3.7 1.4 8.1 3.7 1.4 8.1 3.7 1.4 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	3978.1 3978.7 3549.8 3543.3 5984.4
TOTAL Press (PSIA)	5378.3 5378.1 5295.3 6289.6 5288.8	5287.8 5287.4 4839.1 4798.5 3566.2	3566.1 3566.1 8.0 8.0 8.0	60.00 60	4117.6 4097.2 3979.4 3543.3 5987.3
STA	100 101 102 103	106	1112		130 130 130 131

4-24

Table 4-1 HPOTP TURBINE COOLANT ANALYSIS (FPL) (Concluded)

ZFAC	1.4630 1.4023 1.4023 1.4072 1.4072 1.4072 1.4077 1.4076 1.4076 1.4076 1.2337 1.2337 1.2336 1.23356 1.23556 1.23556 1.23556 1.23556 1.23556 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566 1.235566666666666666666666666666666666666	1.1132
FRACTIONS H20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.075
MASS 1 H2	0000 0000 0000 0000 0000 0000 0000 0000 0000	0.925
FLOW RATE (LBM/SEC)	6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.211
SONIC VEL (FPS)	4866 3 4618 3 4618 3 4683 3 4683 3 4683 3 4683 3 4683 3 4683 3 4683 1 4683 1 4683 1 4683 1 4683 1 4683 1 4683 1 4683 1 4683 3 4683 1 4683 3 4683 3 46	4855.0
TANG VEL (FPS)	, , , , , , , , , , , , , , , , , , ,	0.0
VELO- CITY (FPS)	2996.0 1382.1 3394.7 3344.4 3344.4 3344.4 3344.4 3344.4 12.7 293.1 293.2 293.2 14.1 293.2 293.2 14.1 293.2 293.2 14.1 293.2 293.2 14.1 293.2 293.2 14.1 293.2 20.2 20	1.0
FLUID		1.00
DENSITY (LBM/FT3)	2.744 2.579	0.871
TEMPER- ATURE (R)	278.7 273.0 273.0 273.0 286.7 286.9 281.6 281.6 281.6 281.6 281.6 281.6 2881.3 2881.3 2882.3 2883.3	740.2
TOTAL ENTHALPY (BTU/LBM)	873.6 8773.6 8773.7 8775.7 87	2396.0
STATIC PRESS (PSIA)	5954.5 52564.5 55266.1 55456.2 55456.2 55467.3 55469.1 55469.1 33689.4 336813.9 33691.4 33691.4 33691.4 33691.4 33691.1 33691.1 33691.1 33691.6 3691.6 36	3566.2
TOTAL PRESS (PSIA)	5979.5 5891.9 5441.0 5441.0 5441.0 5441.0 5441.0 5441.0 5441.0 5418.2 5418.2 5418.2 5418.2 3661.4 3661.4 3661.4 3661.4 3661.4 3661.4 3661.4 3661.4 3661.4 3661.4 3661.9 36	3566.2
STA	1333 1335 1335 1335 1337 1337 1337 1337	162

Table 4-2 HPOTP TURBINE COOLANT ANALYSIS (104%)

ZFAC		1.0655	1.0651	1.0651	1.0646	1.1374	1.4325	1,3929	1.1373	1.1371	1.1371	1.1371	1.1370	1.1370	1.1316	1.1309	1.1270	1.1234	1.1206	1.1205	1.1082	1.1074	1.1027	1.1313	1.1287	1.1250	1.1250	1.1077	1.1028	1.0482	0.0000	0.0000	1.1026
FRACTIONS	H20	0.461	0.461	0.461	0.461	0.285	0.000	0.000	0.285	0.285	Ø.285	0.285	0.285	0.285	0.285	0.285	0.285	0.285	0.285	0.285	0.285	0.285	0.285	Ø.285	Ø.285	0.285	Ø.285	0.285	Ø.285	0.461	0.000	0.000	0.285
MASS 1	H2	Ø.539	0.539	0.539	0.539	0.715	1.000	1.000	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.715	0.539	1.000	1.000	0.715
FLOW RATE	(LBM/SEC)	1.394	1.394	1.394	1.394	2.255	0.861	0.861	2.265	0.761	0.761	0.761	0.761	0.761	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.761	0.649	0.649	0.649	0.649	0.649	0.761	61.760	0.000	0.000	0.132
SONIC	(FPS)	5391.6	5388.4	5391.7	5387.9	4653.4	4750.4	4593.8	4653.6	4655.4	4655.4	4655.8	4655.6	4655.8	4634.7	4835.7	4644.5	4845.7	4656.9	4656.8	4587.2	4586.6	4676.8	4633.7	4634.7	4662.3	4662.3	4581.1	4675.6	5202.9	0.0	0.0	4676.8
TANG VEL	(FPS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3301.6	0.0	0.0	1018.0
VELO- CITY	(FPS)	192.8	433.9	193.2	492.8	1.0	75.9	1041.1	1.0	131.5	131.7	1.0	102.2	1.0	1073.7	1082.8	923.4	946.1	641.0	647.4	2048.8	2063.8	1.0	1102.1	1137.0	136.4	137.2	2126.6	1.0	946.7	0.0	0.0	136.1
FLUID	l r	1.00	1.60	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.60	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.00	00.00	1.00
DENSITY	(LBM/FT3)	1,644	1.039	1.037	1.032	1.331	2.657	2.545	1.331	1.329	1.329	1.329	1.328	1.328	1.284	1.278	1.247	1.217	1.193	1.193	1.087	1.080	1.041	1.282	1.244	1.230	1.230	1.083	1.841	0.860	0,000	000.0	1.640
TEMPER- ATLIRE	(R) (R)	1501.4	1499.5	1501.1	1498.8	859.8	277.7	274.4	859.9	860.5	860.5	860.7	860.6	860.7	852.7	853.1	856.3	856.8	860.9	860.9	834.5	834.3	868.5	852.3	852.6	863.0	863.0	832.2	867.6	1397.5	0.0	0.0	868.4
TOTAL ENTHAL PY	(BTU/LBM)	3124.9	3124 9	3124.9	3124.9	2260.8	861.5	861.5	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	2282.5	2260.8	2260.8	2260.8	2260.8	2260.8	2260.8	3125.0	0.0	0.0	2283.2
STATIC	(PSIA)	5248.6	5216.8	5212.5	5175.9	5175.8	5625.1	5177.5	5173.9	5170.2	5169.6	5169.6	5167.3	5167.3	4926.7	4901.8	4784.1	4657.1	4577.0	4575.5	3995.9	3966.6	3960.3	4914.1	4752.7	4748.4	4748.2	3967.5	3961.6	3960.7	0.0	0.0	3957.2
TOTAL	(PSIA)	5253.0	5238 0	5218.7	5203.1	5175.8	5626.8	5479.9	5173.9	5172.7	5172.1	5169.6	5168.8	5167.3	5087.8	5064.3	4899.6	4775.4	4630.5	4629.5	4491.8	4466.2	3968.3	5083.7	4927.6	4750.9	4750.7	4498.8	3961.6	5240.3	0.0	0.0	4075.6
STA		-	• •	1 07	•	· u	8	~	00	00	10	11	12	13	44	12	16	1	18	19	20	51	22	23	24	25	26	27	58 78	29	30	31	32

Table 4-2 HPOTP TURBINE COOLANT ANALYSIS (104%) (Continued)

ZFAC	1.1025 1.1023 1.1022 1.1022 1.0412 1.1372 1.1372	1.1372 1.1372 1.1372 1.1372 1.1372 1.1372	1.1372 1.1372 1.1372 1.1372 1.1372	1.1372 1.1372 1.1372 1.1368 0.0000 0.0000 1.1368 1.1368 1.1365 1.16655 1.1665555555555
FRACTIONS H20	0,285 0,285 0,285 0,285 0,285 0,285	0.285 0.285 0.285 0.285 0.285 0.285	0.285 0.285 0.285 0.285 0.285	୧୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦
MASS F H2	0.715 0.715 0.715 0.601 0.715 0.715	6.715 6.715 6.715 6.715 6.715 6.715	0.715 0.715 0.715 0.715 0.715 0.715	6.715 6.725 6.715 6.725 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.755677 7.7556777 7.7557777777777
FLOW RATE (LBM/SEC)	0.132 0.132 0.132 0.132 0.142 0.142	0.142 0.142 0.142 0.142 0.142	0.142 0.142 0.142 0.142 0.142	2.155 2.155 2.155 2.142 2.142 2.1555 2.1555 2.1555 2.1555 2.1555 2.1555 2.1555 2.1555 2.1555 2.1
SONIC VEL (FPS)	4676.8 4676.9 4677.0 4896.8 4855.7 4655.7	4655.6 4655.7 4655.6 4655.7 4655.7 4655.7 4655.7	4655.7 4655.7 4655.7 4655.7 4655.7	46555.7 46555.7 46555.7 46555.7 46555.7 66.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6
TANG VEL (FPS)	1018.0 1018.0 1018.0 0.0 0.0 0.0	000000 000000	000000 000000	, , , , , , , , , , , , , , , , , , ,
VELO CITY (FPS)	136.2 136.4 136.5 1.6 1.9 52.1	52.1 52.1 52.1 2.1 10.8 1.3	11.6 2.1 2.5 14.3 12.9	294.0 294.0 294.0 294.0 294.0 294.0 294.0 366.5 389.4 366.5 389.4 366.5 389.4 2883.3 2883.3 296.7 1.0 3579.3 3579.3
FLUID	1.66 1.66 1.66 1.66 1.66	00000000000000000000000000000000000000	1.000	00000000000000000000000000000000000000
DENSITY (LBM/FT3)	1.639 1.639 1.638 0.898 1.336 1.336	1.330 1.330 1.330 1.330 1.330 1.330	1.330 1.330 1.330 1.330 1.330	9.233 9.233
TEMPER- ATURE (R)	868.5 868.5 868.5 868.5 1226.3 860.7 860.7	860.6 860.6 860.6 860.7 860.7 860.7	860.7 860.7 860.7 860.7 860.7 860.7	866.7 866.7 866.6 866.1 866.1 866.1 866.1 855.8 855.8 855.8 855.8 855.8 855.8 817.5 817.5 1225.7 795.7 795.7 795.7 795.7 795.7
TOTAL ENTHALPY (BTU/LBM)	2283.2 2283.2 2283.2 2764.8 2260.8 2260.8	2260.8 2260.8 2260.8 2260.8 2260.8 2260.8	2260.8 2260.8 2260.8 2260.8 2260.8	22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 22660.8 2611.1
STATIC PRESS (PSIA)	3953.0 3948.7 3944.5 3944.5 5173.9 5173.3	6173.3 5173.3 5173.3 5173.3 5173.3 5173.3	5173.3 5173.3 5173.2 5173.2 5173.2	51733.5 51733.9 51733.9 5165.2 6165.2 6165.2 6140.7 5140.7 5140.7 5180.2 5180.2 33956.3 33956.5 33648.7 35648.7 35648.7 35648.7 3566.5 3492.2 5
TOTAL PRESS (PSIA)	4071.4 4067.0 4062.7 3944.5 5173.9 5173.7	6173.7 6173.7 5173.7 5173.3 6173.3 6173.3	6173.3 6173.3 6173.3 6173.2 6173.2	51733.9 51733.9 51733.9 67.6 67.6 67.6 6.7 6.7 6.7 6.7 6.7 5129.9 5159.9 5129.9 5129.9 5129.9 4726.3 2433.2 4726.6 842.5 5129.9 5129.0 520.0
STA	38 36 38 38 38	0 0 1 0 0 4 0 0 1 0 0 4	14444 19444 19444 19444 19444 19444 19444 19444	8 8 8 8 8 8 8 8 8 8 8 8 8 8

-

Table 4-2 HPOTP TURBINE COOLANT ANALYSIS (104%) (Continued)

ZFAC	1.0385 1.0348 1.0271 1.0266 1.0266	1.0256 1.0251 1.0701 1.1368 1.1368	1.1009 1.0989 1.0883 1.0884 1.0884	1.0881 1.1035 1.0986 1.0895 1.0891	1.0880 1.0880 1.0880 1.0880 1.1363 1.1363 1.1364 1.1364 1.1363 1.1364 1.1363 1.1364
FRACTIONS H20	0.398 0.398 0.376 0.376 0.376	0.376 0.376 0.285 0.285	0.285 0.285 0.285 0.285 0.285	0.285 0.285 0.285 0.285 0.285 0.285 0.285	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
MASS I H2	0.602 0.602 0.624 0.624 0.624	6.624 6.624 6.715 6.715	0.715 0.715 0.715 0.715	00.715 00.715 0.715 0.715 0.715	0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715
FLOW RATE (LBM/SEC)	1.728 1.728 2.155 0.284	0.284 0.284 0.581 0.142 0.142	6.672 6.672 6.672 9.72	00000000000000000000000000000000000000	00000000000000000000000000000000000000
SONIC VEL (FPS)	4875.1 4847.5 4390.3 4389.8 4389.8	4391.4 4390.4 4812.9 4654.2 4656.0	5586.6 5577.4 4681.5 4678.0	4689.2 5689.2 5589.8 4681.5 4882.6	4684 3 4684 3 4684 3 4684 3 46652 7 46653 4 46653 4 46653 5 46653 9 46653 9 46653 9 46653 9
TANG VEL (FPS)	0.0 0.0 1018.0 0.0 1018.0	1018.0 1018.0 0.0 0.0	000000 000000	0000000 0000000 0000000	, , , , , , , , , , , , , , , , , , ,
VELO- CITY (FPS)	1056.7 1673.6 1.0 398.0	403.1 406.0 1.0 295.7 16.8	3728.9 3791.6 244.3 545.7 545.7	3568.3 3568.3 3707.1 238.7 234.6 534.6	534 534 534 534 534 534 534 534 534 53 534 53 53 53 53 53 53 53 53 53 53 53 53 53
FLUID	1.00 1.00 1.00 00 1.00	000 000 000 000 000 000 000 000 000 00	0.91 1.00 1.00 0.1 1.00 0.1	00000000000000000000000000000000000000	
DENSITY (LBM/FT3)	0.863 0.816 0.816 0.817 0.817 817	6.866 6.866 6.866 1.326	6.865 6.792 6.921 6.913 6.913	6.916 6.916 6.916 6.925 6.919 8.919	0.909 0.909 0.909 0.909 1.323 1.323 1.323 1.322 1.323 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.365 1.365 1.367
TEMPER- ATURE (R)	1216.3 1202.1 1164.2 1164.3	1164.2 1164.2 986.8 860.1 860.1	791 4 788.9 869.6 868.2	876.6 876.7 796.7 876.6 876.6 876.6	88866 8879 8879 8879 8879 88859 88859 8886 88859 8886 888 888 888 888 888 888 88 88 88 8
TOTAL ENTHALPY (BTU/LBM)	2704.3 2704.3 2616.0 2636.7 2836.7	2636.7 2636.7 2445.4 2260.8 2260.8	2260.8 2260.8 2260.8 2260.8 2260.8	2266.88 2266.88 2266.88 2266.88 2266.88 2266.88 2266.88 2266.88 2266.88 2266.88 2266.88 2266.88 2266.88 226.68 26 26 26 26 26 26 26 26 26 26 26 26 26	22660.8 2260.8 2260.8 2260.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8
STATIC PRESS (PSIA)	3751.2 3489.5 3485.4 3464.3	3412.2 3412.2 3385.9 5154.4 5154.4	3473.8 3473.8 3394.1 3467.2 3428.7 3428.7	3476.9 3425.9 3400.0 3474.1 3474.1 3462.7	51.01.1 50.01.1 50.01.1 51.33.5 51.33.5 51.33.5 51.33.3 51.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.01.1 50.00.0000000000
TOTAL Press (PSIA)	3855.8 3738.0 3485.4 3570.3 3570.3	3517.2 3490.3 3385.6 5166.9 5154.3	4691.7 4632.5 3473.1 3458.3 3455.8	3425.9 3425.9 4574.7 3479.6 3468.2 3468.2	5158.9 5158.9 5158.9 5158.9 5158.9 5158.9 5153.3 5123.3 5123.3 5123.3 5091.2 5088.2
STA	67 68 70 70 71 70	72 74 78 78	87 87 80 80 80 80 80 80 80 80 80 80 80 80 80	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888 48 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Table 4-2 HPOTP TURBINE COOLANT AMALYSIS (104%) (Continued)

ZFAC	1.1332 1.1331 1.1325	1.1322 1.1322 1.1323	1.1002 1.0988 1.0764	1.0704	0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 1.1281	1.1302 1.0976	1.0975	1.1051	1.0988	1.0983 1.0908	1.0874 1.4323
RACTIONS H20	0.285 0.285 0.285	0.285 0.285 0.285 0.285	0.285 0.285 0.329	6.329 6.329 6.800	0.000	6.000 6.000 8.000	6.000 0.000 0.285	Ø.285 Ø.285	Ø.285 Ø.285	0.285 0.285 0.285	0.285 0.285	Ø.285 Ø.285	0.285 0.000
MASS F H2	0.715 0.715 0.715	0.715 0.715 0.715 0.715	6.715 6.715 6.715	0.671 0.671	1.000	1.000 1.000 1.000	1.000 1.000 0.715	0.715 0.715	0.715 0.715	0.715 0.715	0.715 0.715	0.715 0.715	0.715 1.000
FLOW RATE (LBM/SEC)	0.297 0.297 0.297	0.297 0.297 0.297 207	0.297 0.297 0.581	0.531 0.531 0.631	0.000 000 000 000	0.000 0.000 0.000 0.000	8.000 8.000 9.152	Ø.152 Ø.152	Ø.152 Ø.152	0.152 0.152	Ø.152 Ø.152	Ø.152 Ø.152	Ø.152 Ø.281
SONIC VEL (FPS)	4649. <i>0</i> 4649. <i>0</i> 4658.4	4657.3 4657.3 4657.9 4657.9	5588.5 5588.5 4812.2	4811.7 4811.7	900 900	000 000 000	0.0 0.0 4621_0	4648.Ø 5551.3	5546.0 4650.2	4655.9 4657.0	4656.7 4657.8	4657.5 4610.1	4683.7 4749.6
TANG VEL (FPS)	000 000 000	0000 0000 0000	0000 00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	000 000 000	000 000 000	000	0.0 0.0	0 0 0 0	0 0 0 0	0 0 0 0	00.0 00
VELO- CITY (FPS)	667.5 672.4 1.0	252.6 253.1 175.8	3715.3	5 4 4 5 7 2 7 4 5 7 4 5 7 6	000 000 000	000 000 000	0.0 0.0 1405.0	766.4 3966.1	3995.0 952.0	946.1 970.2	976.5 998.5	1005.5 1898.7	1.0 95.8
PLUID	1.00 1.00 1.00	1.00 1.00 00 00 00 00	6.92 6.92 90	00.00 00.00 00.00	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00	0.90 1.00	1.00	1.00	1.00	1.00 1.00
DENSITY (LBM/FT3)	1.297 1.297 1.292	1.289 1.289 1.296	6.787 6.853	0.854 0.854	8.000 9.000 9.000	0.000 0.000 0.000	0.000 0.000 1 255	1.273	Ø.793 1.Ø68	1.061	1.032	1.000 0.931	Ø.903 2.657
TEMPER- ATURE (R)	858.1 858.1 861.6	861.2 861.2 861.4	793.0 791.2 088.0	985.8 985.8 985.8 985.8		000 000 000	0.0 0.0 0.0	857.7 783.1	782.Ø 858.2	860.3 860.7	860.5 860.9	860.8 842.8	870.3 277.7
TOTAL ENTHALPY (BTU/LBM)	2260.8 2260.8 2260.8	2260.8 2260.8 2260.8	2260.8 2260.8 2444 4	2444.4	000 000	000 000 000	0.0 0.0 2760 8	2260.8 2260.8	2260.8 2260.8	2260.8	2260.8 2260.8	2260.8 2260.8	2260.8 861.5
STATIC PRESS (PSIA)	5014.0 5011.8 5011.8	4998.4 4997.8 5001.6 5001.3	3464.2 3464.2	3392.1 3392.1 392.1	000 000	000	0.0 0.0 4772 A	4906.6 3318.8	3308.9 4029.6	4009.0	3889.0 3778.8	3760.1 3404.0	3397.8 5622.9
-1 ss €	6 - 8 9 - 8	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	440	1000	0 0 0 0 0 0 0	000 000	000	85.5 72.8	72.8 33.4	12.2 07.3	95.4 87.6	39.8 38.5	97.8 25.5
TOTA PRES (PSI)	507 501	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				50	44	4 4 1	44(5 8 5 8	386	33

Table 4-2 HPOTP TURBINE COOLANT ANALYSIS (104%) (Concluded)

į٠

ZFAC	1.4299 1.3734 1.3723 1.3723	1.3783 1.3784 1.3783 1.3783	1.3788 1.3786 1.3786 1.1996	1.2228 1.2226 1.2211 1.2269 1.2269	1.2203 1.2202 1.2198 1.2197 1.2197 1.2197 1.2197	1.2197 1.2197 1.0485 1.0422 1.0410 1.1098
FRACTIONS H20	0.000 0.000 0.000 000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.459 0.459 0.457 0.085
MASS F H2	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 6.541 6.541 6.543 8.543
FLOW RATE (LBM/SEC)	6.281 6.281 6.281 6.281	0.281 0.281 0.281 0.281	0.281 0.281 0.281 0.281	6.281 6.281 6.281 6.281 6.281	6.281 6.281 6.281 6.281 6.281 6.281	8.281 8.281 8.281 8.389 6.1.266 8.134 8.285 8.285
SONIC VEL (FPS)	4740.0 4509.9 4505.2 4587.7	4572.6 4572.8 4572.8 4577.2	4577.2 4576.5 4576.3 3773.5	4019.4 4018.5 4013.3 4012.7 4014.0	4011.7 4012.0 4009.8 4010.1 4010.1 4010.0 4010.0	4010.0 4010.0 5226.2 5148.9 5136.1 4770.8
TANG VEL (FPS)	0000 0000 0000	0000 0000 0000	0000 0000 0000	00000 00000 00000	00000000 00000000000000000000000000000	6.6 6.6 5.6 2252.6 143.3 143.3
VELO- CITY (FPS)	284.2 1353.2 1365.6 341.9	340.4 337.1 337.1 77.1	12.4 85.6 85.6 2572.4	321.8 321.9 286.5 287.6 287.6 1.0	138.4 1.0 1.0 1.0 1.0 38.9 38.9	13.1 1.6 1.6 1.6 932.8 813.4 1.6
FLUID	1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00
DENSITY (LBM/FT3)	2.650 2.491 2.487 2.498	2.482 2.483 2.483 2.483	482 482 482 862	861 860 852 851 849	2283333	. 4 4 8 9 9 9 1
			~~~			4400 60.41 60.42 60.42 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.60 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60.62 60 60 60 60 60 60 60 60 60 60 60 60 6
TEMPER- ATURE (R)	277.4 271.8 271.7 279.2	279.4 279.4 279.9	279.9 2 279.9 2 279.9 2 266.2 1	285 5 5 4 4 1 1 2 285 5 4 4 1 1 2 285 5 5 5 4 4 1 1 2 285 5 5 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	285.8 285.9 285.9 285.9 285.9 285.9 285.9 285.9 285.9 285.9 285.9 285.9 285.9	285.9 1.84 285.9 1.84 1464.5 6.85 1362.9 6.77 1351.1 6.76
TOTAL TEMPER- ENTHALPY ATURE (BTU/LBM) (R)	861.5 277.4 861.5 271.8 861.5 271.7 861.5 271.7 861.5 279.2	861.5 279.4 861.5 279.4 861.5 279.4 861.5 279.9	861.5 279.9 2 861.5 279.9 2 861.5 279.9 2 861.5 279.9 2 861.5 255.2 1	881.5 285.4 1. 881.5 285.4 1. 881.5 285.4 1. 881.5 285.5 1. 881.5 285.5 1.	861.5 285.8 1.8 861.5 285.9 1.8 861.5 285.9 1.8 861.5 285.9 1.8 861.5 285.9 1.8 861.5 285.9 1.8 861.5 285.9 1.8	861.5 285.9 1.84 861.5 285.9 1.84 2940.1 1404.5 0.85 2939.9 1362.9 0.77 2819.2 1351.1 0.76 2819.2 1351.1 0.76 2819.2 1351.1 0.76
STATIC TOTAL TEMPER- Press Enthalpy Ature (PSIA) (BTU/LBM) (R)	5595.2         881.5         277.4           4948.6         881.5         271.8           4935.5         881.5         271.7           133.9         861.5         279.2	5088.3 861.5 279.4 5089.0 861.5 279.4 5088.2 861.5 279.4 5099.0 861.5 279.9	5098.9         861.6         279.9         2           5097.0         861.5         279.9         2           5097.0         861.5         279.9         2           5093.3         861.5         279.9         2           3033.3         861.5         265.2         1	3455.8         861.5         285.4         1.           3453.2         861.5         285.4         1.           3453.2         861.5         285.4         1.           3436.8         861.5         285.5         1.           3434.8         861.5         285.5         1.           3434.8         861.5         285.5         1.	3429.1       861.5       285.8       1.8         3429.1       861.5       285.9       1.8         3423.4       861.5       285.9       1.8         3423.4       861.5       285.9       1.8         3423.4       861.5       285.9       1.8         3423.4       861.5       285.9       1.8         3423.3       861.5       285.9       1.8         3423.4       861.5       285.9       1.8         3423.3       861.5       285.9       1.8         3423.4       861.5       285.9       1.8	3423.0         861.5         285.9         1.84           3423.0         861.5         285.9         1.84           345.8         2940.1         1404.5         0.85           3945.8         2939.9         1362.9         0.73           3389.8         2819.2         1361.1         0.76           3389.8         2819.2         1351.1         0.76
TOTAL STATIC TOTAL TEMPER- PRESS PRESS ENTHALPY ATURE (PSIA) (PSIA) (BTU/LBM) (R)	6618.3       5595.2       861.5       277.4         5453.9       4948.6       861.5       271.8         5447.7       4935.5       861.5       271.7         5165.4       5133.9       861.5       279.2	5119.5 5088.3 861.5 279.4 5119.4 5089.0 861.5 279.4 5118.7 5088.2 861.5 279.4 5100.5 5099.0 861.5 279.9	5099.0         5099.0         5098.9         861.6         279.9         2           5098.9         5097.0         861.5         279.9         2           5098.3         5096.3         861.5         279.9         2           5098.3         5096.3         861.5         279.9         2           4517.5         3033.3         861.5         255.2         1	3476.7       3455.8       861.5       286.4       1.         3474.1       3453.2       861.5       286.4       1.         3453.2       3436.8       861.5       286.5       1.         3451.4       3434.8       861.5       286.5       1.         3451.4       3434.8       861.5       286.5       1.         3434.8       861.5       286.5       1.	3432.9       3429.1       861.5       285.8       1.8         3429.1       3429.1       861.5       285.9       1.8         3427.2       3423.4       861.5       285.9       1.8         3427.2       3423.4       861.5       285.9       1.8         3423.4       3423.4       861.5       285.9       1.8         3423.4       3423.3       861.5       285.9       1.8         3423.3       3423.3       861.5       285.9       1.8         3423.3       3423.3       861.5       285.9       1.8         3423.3       3423.0       861.5       285.9       1.8         3423.3       3423.0       861.5       285.9       1.8	3423.0       3423.0       861.5       285.9       1.84         3423.0       3423.0       861.5       285.9       1.84         3423.0       3423.0       861.5       285.9       1.84         4073.4       3945.8       2940.1       1404.5       0.85         4037.8       3487.2       2939.9       1362.9       0.77         3448.5       3389.8       2819.2       1351.1       0.76         3392.2       3392.2       2308.4       721.7       0.86

LMSC-HEC TR F268780

Table 4-3 HPOTP TURBINE COOLANT ANALYSIS (MPL)

ZFAC	1.0405	1.0403	1.0399	1.0401	1.0948	1.1935	1.1720	1.0948	1.0947	1.0947	1.0947	1.0946	1.0946	1.0914	1.0910	1.0890	1.0869	1.0855	1.0855	1.0782	1.0777	1.0762	1.0912	1.0885	1.0879	1.0879	1.0778	1.0782	1.6392	0.0000	0.0000	1.0762
FRACTIONS H20	Ø.353	0 353	0.353	0.353	0.200	0.000	0.000	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.201	0.200	0.200	0.200	0.200	0.200	0.200	0.353	0.000	0.000	0.201
MASS I H2	0.647	0 847	0.647	0.647	0.800	1.000	1.000	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.799	0.800	0.800	0.800	0.800	0.800	0.800	0.647	1.000	1.000	Ø.799
FLOW RATE (LBM/SEC)	0.716	a 716	0.716	0.716	1.262	0.546	0.546	1.262	0.406	0.406	0.406	0.406	0.406	<b>0</b> .059	0.059	0.059	0.059	0.059	0.059	0.059	Ø.Ø59	0.406	0.347	0.347	0.347	0.347	0.347	0.406	35.460	0.000	0.000	0.000
SONIC VEL (FPS)	4853.0	4853 0	4852.9	4853.0	5073.1	3922.7	3810.1	5072.8	5073.9	5073.9	5074.2	5074.0	5074.2	5057.7	5057.1	5062.7	5062.5	5069.8	5069.6	5016.6	5015.8	5080.1	5056.8	5056.2	5075.2	5075.2	5012.4	5077.0	4782.0	0.0	0.0	5080.2
TANG VEL (FPS)	0.0	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2745.2	0.0	0.0	709.9
VELO- CITY (FPS)	166.7	335 6	149.3	381.0	1.0	118.3	1045.5	1.0	114.9	115.1	1.0	89.3	1.0	931.8	938.7	798.7	817.3	553.3	558.5	1720.9	1737.2	1.0	958,9	986.9	118.5	119.3	1791.0	1.0	787.2	0.0	0.0	6.2
FLUID	1.00	1.60	1.60	1.00	0.86	1.00	1.00	0.86	<b>8</b> .88	0.86	0.86	0.86	Ø.86	Ø.86	Ø.86	0.86	0.86	Ø.86	Ø.86	0.85	0.85	0.87	Ø.86	Ø.86	Ø.86	0.86	0.85	0.87	1.00	00.00	00.00	0.87
DENSITY (LBM/FT3)	0,693	690	0.689	0.687	0.813	1.704	1.603	0.812	0.811	0.811	0.811	0.811	6.811	0.789	0.786	0.768	0.750	0.736	0.736	0.687	0.683	0.654	0.787	0.765	0.755	0.755	0.685	0.655	6.594	000.000	000.0	0.654
TEMPER- ATURE (R)	1091.6	1001 3	1.693.1	1090.7	696.0	289.5	285.0	695.9	696.1	696.1	696.2	696.2	696.2	691.8	691.6	692.8	692.5	694.1	694.1	680.4	680.1	695.3	691.6	691.2	695.7	695.7	679.3	694.7	1015.3	0.0	0.0	695.4
TOTAL ENTHALPY (BTU/LBM)	2581.3	2581 3	2681.3	2581.3	1842.3	873.2	873.2	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1843.7	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	2582.8	0.0	0.0	1853.7
STATIC PRESS (PSIA)	2875.8	2863.1	2861.4	2846.9	2846.8	3132.9	2849.1	2845.7	2844.0	2843.7	2843.7	2842.6	2842.6	2731.3	2719.0	2664.9	2601.6	2564.8	2564.1	2304.7	2290.1	2287.6	2724.9	2644.0	2642.0	2641.9	2289.1	2285.4	2287.6	0.0	0.0	0,0
TOTAL PRESS (PSIA)	2877.9	2871.6	2863.1	2857.7	2846.8	3135.5	3042.6	2845.7	2845.1	2844.8	2843.7	2843.3	2842.6	2805.8	2794.0	2718.1	2656.0	2589.4	2588.8	2526.4	2513.9	2287.6	2803.7	2725.1	2643.2	2643.0	2527.9	2285.4	2881.0	0.0	0.0	0.0
STA	٦	~	ŝ	4	S	8	1	80	თ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	28	27	28	29	30	31	32

Table 4-3 HPOTP TURBINE COOLANT ANALYSIS (MPL) (Continued)

ZFAC	1.0762	1.0762	1.0552	1.0947	1.0947	1.69.1	1.0947	1.0947	1.0947	1.0947	1.0947	1.0947	1.0947	1.0947	1.0947	1.0947	1.0947	1.0947	1.0944	0.0000	0.0000	1.0943	1.0942	1.0941	1.0936	1.0936	1.0812	1.0793	1.0552	1.0758	1.0737	1.0556
FRACTIONS H20	0.201 0.201	0.201	0.307	0.200	0.200 2.000	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	000.0	0.000	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.307	0.200	0.200	0.284
MASS H2	0.799 0.799	0.799	0.693	0.800	0.800 . 000	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	1.000	1.000	0.800	0.800	008.0	6.800	0.800	0.800	0.800	0.693	0.800	0.800	0.718
FLOW RATE (LBM/SEC)	0.000 0.000	0.000	0.934	0.079	0.079 0.079	<b>6.6</b> 79	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	Ø.695	0.695	0.524	0.000	0.000	0.624	0.524	0.524	0.275	0.275	0.275	0.275	0.934	0.249	0.249	1.184
SONIC VEL (FPS)	5080.2 5080.2	5080.2	4699.0	5074.2	5074.1 5074.1	5074.1	5074.1	5074.2	5074.2	5074.2	5074.2	5074.2	5074.2	5074.2	5074.2	5074.2	5074.2	5074.2	5072.8	0.0	0.0	5071.8	5071.8	5074.3	5071.8	5071.6	4993.7	4987.9	4698.4	4963.7	4949.3	4827.4
TANG VEL (FPS)	709.9 709.9	709.9	0.0	0.0	0 0 0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VELO- CITY (FPS)	0.2 0.2	6.2	1.0	1.7	- 1 <b>4</b>	47.7	47.7	1.9	<b>6</b> .6	1.2	10.1	1.9	13.0	2.3	11.8	0.8	15.0	25.9	280.3	0.0	0.0	349.1	349.4	1.0	372.3	373.9	2026.8	2078.3	1.0	2442.2	2500.8	1.0
FLUID QUAL	0.87 0.87	0.87	1.66	<b>9</b> .88	0.80 88	0.86	0.86	0.86	Ø.86	0.86	<b>6</b> .86	0.86	0.86	Ø.86	0.86	0.86	0.86	0.86	0.86	6.90	0.00	0.86	0.86	0.86	0.86	0.86	0.85	0.85	1.00	0.84	0.84	1.00
DENSITY (LBM/FT3)	0.854 0.854	0.854	0.630	<b>6</b> .812 <b>6</b> 515	6.812 6.812	0.812	0.812	0.812	0.812	0.812	0.812	0.812	0.812	0.812	0.812	0.812	0.812	0.812	0.810	0.000	0.000	0.809	0.808	0.806	0.803	0.803	0.718	0.703	0.630	0.679	<b>6</b> .663	0.595
TEMPER- ATURE (R)	695.4 695.4	695.4	899.7	696.2 200.2	6.969 6.969	696.2	696.2	696.2	696.2	696.2	696.2	696.2	696.2	696.2	696.2	696.2	696.2	696.2	695.8	0.0	0.0	695.8	695.6	696.2	695.5	695.5	675.2	<b>673.5</b>	888.4	664.9	663.6	847.1
TOTAL ENTHALPY (BTU/LBM)	1853.7 1853.7	1853.7	2282.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	0.0	0.0	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	2281.9	1842.3	1842.3	2186.6
STATIC PRESS (PSIA)	0.0 0.0	0.0	2313.9	2845.7	2845.4	2845.4	2845.4	2845.4	2845.4	2845.4	2845.4	2845.4	2845.4	2845.4	2845.4	2845.4	2845.7	2845.7	2835.3	0.0	0.0	Z.1582	2827.0	2827.0	2808.9	2808.6	2377.4	2316.9	2313.4	2184.9	2126.4	2119.8
TOTAL PRESS (PSIA)	0.0 0.0	0.0	2313.9	2845.1	2845.6	2845.6	2845.6	2845.4	2845.4	2845.4	2845.4	2845.4	2845	2845.4	2845.4	2845.4	2845.7	2845.7	2842.2	0 0 0	9.9 9	2841.9	2837.7	2827.0	2821.0	2820.8	2698.8	2646.5	2313.4	2625.0	2577.1	2119.6
STA	33 34	35	9 <u>1</u> 30	30	3 <b>6</b>	40	4	4	1 1 1		<b>4</b>		-	4 4	7) ( 	81	5	N 0	50	÷ i o i	0	81	2	8 ( 2	09 I 09 I	88	81	62	63	4	80	88

Table 4-3 HPOTP TURBINE COOLANT ANALYSIS (MPL) (Continued)

ZFAC		1.0531	1.0506	1.0565	1.0553	1.0550	1.0547	1.0544	1.0633	1.0944	1.0944	1.0755	1.0745	1.0709	1.0704	1.0703	1.0703	1.0767	1.0744	1.0710	1.0708	1.0703	1.0702	1.0702	1.0701	1.0701	1.0941	1.0941	1.0942	1.0940	1.0935	1.0935	1.0929	1.0929
FRACTIONS	H20	0.307	0.307	0.285	0.285	0.285	0.285	0.285	0.240	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.260	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
MASS	H2	Ø.693	0.693	0.715	0.715	0.715	0.715	0.715	0.760	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	6.866	0.800	0.800	0.800
FLOW RATE	(LBM/SEC)	Ø.939	0.939	1.189	0.152	0.152	0.152	0.152	0.322	0.079	0.079	0.040	0.040	0.040	0.040	6.640	0.040	6.039	0.039	0.039	0.039	0.039	0.039	0.039	0.079	0.079	0.171	0.171	0.171	0.171	0.171	6.171	0.171	0.171
SONIC	(FPS)	4698.8	4690.0	4627.4	4625.5	4625.7	4625.8	4626.0	5401.4	5072.7	5074.2	4950.9	4947.3	5076.8	5073.1	5073.0	5077.3	4968.3	4965.8	5076.8	5076.5	5073.3	5073.3	5077.3	5077.2	5077.3	5071.1	5071.1	5071.8	5071.8	5071.9	5071.9	5072.0	5072.0
TANG VEL	(FPS)	0.0	0.0	0.0	709.9	7.09.9	709.9	709.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VELO- CITY	(FPS)	812.9	1278.5	1.0	293.1	293.9	295.3	296.8	1.0	270.6	15.4	2469.4	2503.0	202.5	460.0	462.7	1.0	2375.0	2438.5	197.0	198.6	448.4	451.0	1.0	70.0	1.0	395.1	397.1	352.0	351.8	352.2	354.1	354.3	356.3
FLUID	r	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Ø.96	0.86	0.86	0.84	0.84	0.88	0.88	0.88	Ø.88	0.84	0.84	0.88	0.88	Ø.88	Ø.88	Ø.88	Ø.88	0.88	0.86	0.86	Ø.86	0.86	0.86	0.86	Ø.86	0.86
DENSITY	(LBM/FT3)	0.609	<b>Ø</b> .582	Ø.596	0.594	0.591	0.588	0.585	0.497	6.810	6.809	0.678	0.671	0.609	0.606	0.605	0.603	0.687	0.668	0.610	<b>Ø.60</b> 8	0.605	0.604	0.603	0.603	0.602	0.808	0.807	0.808	0.807	0.802	0.802	0.797	0.797
TEMPER- ATURE	(R)	899.5	896.1	847.9	847.2	847.2	847.3	847.3	763.5	695.8	696.2	664.2	663.2	693.8	692.9	692.9	693.8	666.6	665.2	693.9	693.7	692.9	692.9	693.8	693.8	693.8	695.4	695.4	695.6	695.8	695.5	695.5	895.5	695.5
TOTAL ENTHALPY	(BTU/LBM)	2281.9	2281.9	2189.6	2199.7	2199.7	2199.7	2199.7	2011.1	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1642.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3
STATIC PRESS	(FSIA)	2232.8	2121.1	2119.8	2111.5	2100.8	2090.0	2079.2	2079.1	2835.7	2835.7	21/9.8	2149.9	2124.6	2106.5	2105.2	2105.1	2220.7	2150.8	2126.3	2120.4	2103.2	21.02.1	2102.1	1.1012	1.1012	2825.2	2823.8	2826.6	2823.5	2807.2	2806.0	2/88/2	2181.9
T0TAL PRESS	(FSIA)	2276.6	2224.4	2119.8	2149.4	2138.6	2127.7	2116.8	2079.1	2842.1	2835.7	1.8202	A. 0002	2127.3	2120.4	2119.2	2105.1	2641.7	2583.0	2128.8	2123.0	2116.4	2115.4	1.2012	0.2012	1.1012	2838.9	2831.5	2837.4	2834.2	2818.0	2816.9	2.00022	2136.9
STA		67	89	69	01	11	72	13		2	2;		0 0	8	200		82	22	4 L		8	o d		A 6	<b>,</b>	10		0 v 0 v	4 L 2 (	88	88	20	8	<b>PP</b>

4-33

Table 4-3 HPOTP TURBINE COOLANT ANALYSIS (MPL) (Continued)

ZFAC		1 0020	02001	1.6918	1.0916	1.0916	1.6916	1.0916	1.0732	1.0725	1.0633	1.0634	1.0634	0.0000	0.0000	0.0000	00000	0.0000	0.0000	0.0000	0.0000	1.0894	1.0969	1.0758	1.0758	1.0797	1.0794	1.0778	1.0776	1.0781	1.0758	1.0715	1.0705	1.1936
FRACTIONS	H20	0 200	0.200	0.200	6.200	0.200	0.200	0.200	0.200	0.200	0.240	0.240	0.240	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.200	0.200	6.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.000
MASS	H2	800	0.800	0.800	0,800	0.800	0.800	0.800	0.800	0.800	0.760	0.760	0.780	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	1.000
FLOW RATE	(LBM/SEC)	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	Ø.322	0.261	0.261	6.660	0.000	0.000	0.000	6.000	0.000	0.000	0.000	0.080	080.0	0.080	0.080	0.080	0.080	0.080	0.080	080	0.080	0.080	0.080	0.155
SONIC	VEL (FPS)	5066.7	5066.6	5074.8	5073.7	5073.7	5074.2	5074.2	4944.0	4942.5	5401.5	5399.1	5399.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5046.3	5066.3	4954.6	4950.7	5064.5	5064.7	5064.6	5064.3	5064.3	5063.9	5033.1	5077.4	3923.1
TANG	VEL (FPS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VELO-	(FPS)	628.7	632.9	1.0	238.2	238.6	165.8	165.7	2538.8	2558.7	1.0	20.6	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1209.7	658.2	2450.4	2467.5	783.4	779.2	789.8	797.8	811.5	815.8	1498.8	1.0	82.4
FLUID		0.86	0.86	0.86	Ø.86	Ø.86	<b>8</b> .86	Ø.86	0.84	0.84	0.97	Ø.96	Ø.96	00.00	00.00	00.00	00.00	00.00	00.00	0.00	0.00	<b>8</b> .85	0.86	0,84	0.84	0.87	0.87	6.87	0.87	0.87	0.87	88.86	Ø.88	1.00
DENSITY	(LBM/FT3)	0.792	0.791	0.787	0.786	0.786	0.786	0.786	0.660	0.654	0.497	0.499	6.499	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.775	0.782	0.680	0.681	0.688	0.685	0.672	0.671	0.657	0.655	0.625	0.606	1.704
TEMPER- ATHRE	(R)	694.1	694.1	696.1	695.8	695.8	695.9	695.9	662.3	661.8	753.6	753.1	753.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	688.8	693.9	665.1	664.2	692.1	692.1	691.9	691.8	691.6	691.5	683.5	693.9	289.5
TOTAL Enthal Py	(BTU/LBM)	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	2010.3	2010.3	2010.3	0.0	0.0	0.0	0.0	0.0	0.0 0	6.9	0.0	1842.3	1842.3	1842.3	1842.3	1642.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	1842.3	613.2
STATIC PRESS	(PSIA)	2758.7	2757.5	2757.5	2750.2	2749.9	2751.9	2751.8	2109.2	2088.5	2080.4	1.0502	2080.4	0.0 .0	0.0	0.0	0.0	0.0	0.0	8 9 9	9.9	2662.1	2/23.1	1.1912	8.8812	4.000V	23/3.6	2321.5	2321.4	22/4.0	2265.4	2115.6	0.2112	0100.0
T0TAL PRESS	(PSIA)	2792.7	2791.7	2757.5	2755.1	2754.7	2754.3	2/64.1	25/1.8	2004.6	2000	1.0002	2 02 07	יפ	9 I 9 I	9 9 9	8.0 9.0	9 0 9 0	9 9 9	9 0 9 0	8. L.C.	2/85.3	2002	2030.10 2021 2	a. 0501	0.0110	0.0141	2.013.2	2.7052	0.1262	2312.6	2,0022	0.2112	h. FOTO
STA		100	101	162	103	101	160		100	001	1100			211	511	+ 1	911		\ 		7 T T	971	122	100	104		100	1 2 0	121	007	82T	121	120	707

Table 4-3 HPOTP TURBINE COOLANT ANALYSIS (MPL) (Concluded)

ZFAC	1.1926	1.1746	1.1727	1.1727	1.1729	1.1729	1.1728	1.1035	1.1151	1.1150	1.1145	1.1144	1 1144	1.1142	1.1140	1.1140	1.1140	1.1140	1.1140	1.1140	1.1140	1.0387	1.0372	1.0372	1.0741
FRACTIONS H20	0.000 0.000 0.000	0.000	0.000	0.000 0.000	000.0	0.000 0.000	0.000	0.000	000.0	000.0	0.000	0.000	0.000 0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.352	0.352	0.350	0.104
MASS H2	1.000 1.000	1.000	1.666	1.000	1.000	1.000 1 000	1.000	1.000	1.000	1.000	1.000	000 1	1 0000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.648	0.648	0.650	0.896
FLOW RATE (LBM/SEC)	0.155 0.155	0.155 0.155	0.155	Ø.155	0.155	0.155 0.155	0.155	0.155	0.155	Ø.155	Ø.155	Ø.155	0.100 0.155	0.155	0.155	0.155	Ø.155	0.155	0.155	0.155	0.155	35.866	35.207	36.238	0.141
SONIC VEL (FPS)	3917.8 3793.3	3790.6 3845.6	3837.9	3837.9	3841.0	3841.1	3840.6	3438.5	3661.7	3601.4	3599.5	3599.2	3599.4	3599.7	3598.6	3598.9	3598.9	3598.8	3598.8	3598.8	3598.8	4801.1	4784.9	4762.9	4765.9
TANG VEL (FPS)	0 0 0 0	00	0.0	0 0 0	0.0	00	0.0	0.0	0.0	0.0	0	0 0 0 0	9 6 9 6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	575.3	1813.9	236.1	0.0
VELO- CITY (FPS)	244.4 1166.3	1177.6 294.9	292.8	296.1	4.99	10.7	73.6	2173.3	271.1	269.9	240.2	241.0	115.9	1.0	116.0	1.0	11.8	32.6	32.6	11.0	1.0	847.3	751.3	647.4	1.0
FLUID	1.00 1.00	1.00 1.00	1.00	1.00	1.60	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Ø.93
DENSITY (LBM/FT3)	1.699 1.593	1.590 1.602	1.591	1.591	1.591	1.591	1.591	1.218	1.224	1.223	1.219	812.1	1.216	1.216	1.215	1.215	1.215	1.215	1.215	1.215	1.215	0.594	0.557	0.550	0.612
TEMPER- ATURE (R)	289.3 283.8	283.7 289.7	289.8 289.8	289.8	298.2	290.2	290.2	268.7	291.2	291.2	5.142	9 166 9 166	291.5	291.6	291.5	291.6	291.6	291.62	291.6	291.6	291.6	1024.1	1000.6	995.8	640.2
TOTAL Enthalpy (BTU/LBM)	873.2 873.2	873.2 873.2	873.2 873.2	873.2	873.2	873.2	873.2	873.2	873.2	873.2	013.2	873.2	873.2	873.2	873.2	873.2	873.2	8/3.2	8/3.2	873.2	873.2	2465.3	2469.2	2396.4	1914.8
STATIC PRESS (PSIA)	3120.5 2812.9	28 <b>86.</b> 3 29 <b>66.</b> 9	2877.2 2877.6	2877.2	2882.3	2881.3	2881.0	1922.5	2115.1	2113.9	21.00.3	2105.3	2102.6	2102.6	2100.0	2100.0	2100.0	0.9992	8.8892	8.8892	8. 6602	2313.9	2116.1	2083.4	2090.4
TOTAL PRESS (PSIA)	3131.5 3053.4	3050.2 2915.9	2892.0 2892.0	2891.6	2883.0 2992 2	2882.2	2881.9	2608.5	2124.8	2173 O	2112.9	2105.3	2104.4	2102.6	2101.8	2100.0	2100.0	a. 0012	0.0012	8.8892	8. 660Z	2384.0	2365./	2112.8	2080.4
STA	133	135 136	137	139	140	142	143		0 4 7 7 4 0		148	149	150	151	152	103				- 01 10 1	0 C 0 L 1 7	70 A	00T	101	707

Ų

.

U

Column	Parameter	Description
Line number 159,	Format (8E10.4)	)
1-10	SEALCL	Primary turbine seal operating clearance, in.
Line number 160,	Format (8E10.4)	
1-10	RPM	Pump speed, rpm
11-20	ROF	Preburner mixture ratio
21-30	XPL	Power level ratio.
Line number 161,	Format (8E10.4)	
1-10	WDPB	Turbine inlet flow rate, lbm/s
11-20	ррв	Turbine inlet total pressure, psia
21-30	ТРВ	Turbine inlet total temperature, °R
31-40	НРА	Turbine horsepower, hp
41-50	TFTD	Turbine discharge total temperature, °R
51-60	PFTD	Turbine discharge total pressure, psia
61-70	ETANZ	Nozzle efficiency, Kn ²
71-80	XKB	Blade coefficient, Kb.
Line number 162,	Format (815)	
1-5	IOPT	<ul> <li>= 1 Fixed blade coefficient and iterates to determine flow rate</li> <li>= 2 Fixed flow rate and iterates to determine blade coefficient</li> </ul>
6-10	ITURB	= 1 Uses programmed turbine leakage

Ξ

flows and makes one pass through
turbine and coolant flow models
= 2 Uses computed leakage flows from

first pass and makes an additional pass through each model.

Column	<u>Parameter</u>	Description
Line number 163,	Format (8E10.4	)
1-10	PKNOWN(2)	Hydrogen coolant supply pressure, psia
11-20	TKNOWN(2)	Hydrogen coolant supply temperature, °R
21-30	WKNOWN (2)	Estimated hydrogen coolant flow rate, lbm/s
31-40	RKNOWN (2)	Estimated hydrogen coolant density, 1bm/ft ³
41-50	VTKNON(2)	Coolant supply tangential velocity, ft/s.
Line number 164,	Format (8E10.4	<b>)</b>
1-80	WDLEG	Legs 1 through 8 estimated flow rate at FPL, 1bm/s
Line number 165,	Format (8E10.4	)
1-80	WDLEG	Legs 9 through 16 estimated flow rate at FPL, 1bm/s
Line number 166,	Format (8E10.4	)
1-80	WDLEG	Legs 17 through 24 estimated flow rate at FPL, lbm/s Leg 19 is no longer used, input 0.0
Line number 167,	Format (8E10.4	)
1–30	WDLEG	Legs 25 through 27 estimated flow rate at FPL, lbm/s.

Ξ

÷

=

د. . ن

#### 5. REFERENCES

- 1. "Flow of Fluids Through Valves, Fittings, and Pipe," Technical Paper No. 410, Crane Company, 1957.
- 2. H.F. Due and W.E. Young, "Investigation of Pressure Prediction Methods for Low Flow Radial Impellers," PWA FR-1716, Pratt & Whitney Aircraft, West Palm Beach, FL, February 1966.
- 3. G.L. Morrison et al., "Labyrinth Seals for Incompressible Flow," Seal-4-83, Texas A&M University, College Station, Texas, November 1983.
- R.C. Hendricks et al., "GASP-A Computer Code for Calculating the Thermodynamic and Transport Properties for Ten Fluids," NASA TN D-7808, February 1975.
- 5. R.C. Hendricks et al., "WASP-A Flexible FORTRAN IV Computer Code for Calculating Water and Steam Properties," NASA TN D-7391, November 1973.
- S. Gordon, B.J. McBride and F.J. Zeleznick, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, Supplement I - Transport Properties," NASA TM-86885, October 1984.
- 7. P.G. Anderson et al., "Fluid Flow Analysis of the SSME High Pressure Fuel Turbopump," LMSC-HREC TR D568931, Lockheed Missiles & Space Company, Huntsville, AL, April 1979.
- 8. M. Tamasu, "SSME Phase 2 Predicted Engine Performance," OL 87RC060638, Rockwell International, Rocketdyne Division, May 1987.
- 9. P.G. Anderson et al., "Fluid Flow Analysis of the SSME High Pressure Oxidizer Turbopump Operating at Full Power Level," LMSC-HREC TR D698083, Lockheed Missiles & Space Company, Huntsville, AL, August 1980.