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This report presents the results of NASA Grant NAG-3-708, "Electrical

Performance Characteristics of High Power Converters for Space Power

Applications," for the period of January 1, 1988 to September 30, 1989. This

research was performed by The University of Toledo for the NASA Lewis

Research Center.
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I. INTRODUCTION

The purpose of this research was to study various electric transmission and

distribution (T&D) systems that would be suitable for nuclear powered spacecraft.

Both DC and 20 kHz systems were considered, and Fig. I-1 shows the block

diagram of a system that could be adapted to either of these alternatives. For 20

kHz operation, the system would be identical to that in Fig. I-1. In this case, the

source converter and the fixed frequency Schwarz converter are connected in

cascade to produce 20 kHz. The resulting output waveform will be trapezoidal in

shape, as described in [5,9-13,17]. A DC system can be achieved simply by
removing the Schwarz converter.

m

= _

v

t_

i

These systems are expected to operate at power levels in excess of 100 kw and

at rather low input voltages, e.g., 100 Vdc. The system in Fig. I-1 uses a

thermoelectric converter to transform heat from the nuclear reactor to electric

energy. To reduce the amount of radiation shielding and thus weight, it is

assumed that the nuclear reactor and thermoelectric converter will be located on

an extension arm away from the spacecraft. Since the typical source current will

exceed 1000 Adc, it is also desirable to place an electronic converter near the

reactor to increase the voltage and thus decrease cable weight. The system in Fig.

I-1 also includes another converter for controlling the power to a ballast load.

This is used to maintain a constant load on the reactor as the spacecraft load

varies.

Locating converters near the reactor creates other problems however, because

of the high temperature and radiation environment created by the reactor.

Because of the relatively high weight of the heat radiators, there is a strong

incentive to operate these converters at a relatively high temperature. This

implies that forced commutated converters should be used since the polypropolene

capacitors often used in resonant designs are limited to about 85oC.

The relationship between surface area

provided by Stefan's law,

and temperature of a radiator is
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Q = eoWA (T4- Ts4)

where Q = rate of emission of radiant energy (watts)

= emissivity of the surface (e.g., about 0.3 for Cu)

. (_ =.5.6699 x 10 -s in SI units

7 = configuration factor

A= radiator surface area

T = radiator temperature (°K)

Ts= sink temperature (assumed to be 273°K)

w

= =

For an 85°C system,

T_-TL=85°C+273°C=358°K

•". QL = eo_/AL(3584- 2734)

And for a 120°C system,

T - T H = 120°C + 273°C = 397°K

•". QH= A {3974-2734).

Assuming that Q and _, are the same for both systems,

QL = QH

.'. AL(1.087 x 1010) = AH(1.929 x 1010)

•". AL = 1.77 AH

w

.i

w

This indicatesthat the 85°C radiator would require 77% more surface area than

the 120°C radiator.

Bipolar power transistors with Tjmax = 200°C such as the Westinghouse D62T or

D7ST, conceivably could be operated with heat sink temperatures of 120°C and still

process a significant amount of power. Likewise, other circuit components such

as magnetics, filter capacitors, and control circuits also can be operated in the



120°C range. Thus, the resonant capacitor appears to be the device that'will limit

the maximum operating temperature of a resonant converter, and this motivates

the consideration of force commutated converters. These circuits may have

higher losses, but it is conceivable that they could be operated at higher

temperatures to decrease radiator weight and thus decrease total system weight.

Once it was decided to use force commutated (i.e., PWM) converters, the next

question was to determine which topology. Various topologies were considered for

the source converter in Fig. I-l, but the final choice was between the following

two:

1. Full bridge with current mode control (CCM)in Fig. I=2, CCM is needed

with a full bridge to prevent transformer saturation due to flux imbalance.

2. Push-pull current-fed (PPCF) in Fig. I-3.

PPCF requires higher transistor voltages, but it uses a much less complex control

circuit. (Part of the complexity of CMC results because its controller needs a very

accurate, noise-free replica of the instantaneous current waveform.) PPCF also

can be designed to deliver full output voltage at half power when the input voltage

decreases by 50%. This last option was considered to be importani because of the

possibility of a short circuit across half of the thermoelectric converter which

would remove half of the input voltage. Because of its relative simplicity and the

half power option, it was decided to use the PPCF topology. The higher transistor

voltage was not considered to be a serious problem because of the relatively low

input voltage in the 100 Vdc range.

The design of the ballast conyerter, which is controlled to operate as a shunt

regulator, was also investigated. Only designs capable of 120°C operation were

considered. Automatic redundancy was considered a useful option, and this

feature was explored in the shunt regulator design. Appropriate static and

dynamic models were developed and confirmed experimentally with a 2500-W 20-

kHz shunt regulator and a simulated thermoelectric converter.

A typical thermoelectric converter is known to have a high internal

resistance. Because of the negative input resistance of the regulated source

converter, there is a possible bistable mode of operation _r the system should the
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shunt regulator ever drop out. Simulation and experiment confirmed that a

momentary overload on the system could trigger an unfavorable operating point.

A simple preventative measure was found, however.

A final report is also presented on the experimental performance of the 2500 W

phase-controlled parallel-loaded resonant inverter described in the previous

report on this grant. Full-power fault-tolerant operation was obtained. Details of

the experimental setup used are presented along with scope photos showing the

short-circuit transient and its effect on the inverter.
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II. OPEN LOOP TRANSFER FUNCTIONS FOR THE PUSH-PULL CURRENT-

FED CONVERTER

Although the topology of the PPCF configuration in Fig. II-1 was first

reported several years ago [2-4], it appears that the equation for the small signal

open loop gain has never been published. If the secondary of L is connected to the

output instead of the input, the open loop gain will be the same as that of a

conventional buck regulator. This is not the case with the present circuit in Fig.

ILl however, so it was necessary to derive this equation in order to stabilize the

loop in an objective manner.

Voltage Regulation Loop

Fig. II-1 shows a simplified schematic of the PPCF converter in the voltage

regulation mode. The open loop transfer function can be derived using the state

space averaging and linearization procedure [14.]. The differential equations for

the two conduction intervals are as follows,

=--

W

f _

=--

w

S-

Interval #1 ; o _<t < dl T

_1 = x_22 V1 (II-1)-L+-L --

where

Xl x2 (II-2)
:_2 = -C- - RC

or _ = Alx + B1 Vl (II-3)

(ii-4)

(II-5)

8
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Interval #2; dlT < t < T

or

52 = x2
RC

x_ = A2 x + B2 V1

(II-6)

(II-7)

(II-8)

where
A 2 =

0 0

0 -1
RC

(II-9)

(II-10)

We can write the following approximate derivatives if the switching frequency is

high with respect to the natural frequencies of the circuit and any signal

frequencies,

2_o) = x (dlT) - _x(0) (II-11)
dlT

(diT} = x (T)- x (dl T)
(1-diT)

From the previous equations we have,

(II-12)

x (diT) = x (0) + diT (A1 x_(0) + B1Vi

x (T) = _ (dlT) +T(1-dl) (A2 x (diT) + B2Vi)

Substituting (II-13) into (II-14),

(ILl 3)

(II-14)

x (T) = _ (0) (1 + dlTAi) + diTB1V1] [1 + T (1-dl)A2] + T (1-di) B2Vi (II-15)

10



Re-arranging

x (T)- x (0)

T

(ILl 5),

x(o) [(1 - dl) A2 + dlAz + dzA1 (l-d1) A2T]

+ Vz [dlB1 + dlBz (l-d1) A2 T + (1-dz)B2] (II-16)

m

Assuming that a high switching frequency is equivalent to taking the limit of (II-

16) as T-+ 0,

lim
t_ix(T),7, x(0))'_ = _ =(diAl + (1-dl)A2] x + [dlB1 + (1- dl)B2_ Vl (II-17)

T--->0 /1 /

In order to linearize (II-17), we need to separate the dc part of x and dl from the ac

part,

x - xo + _ (II-18)

A

dz ---D_ + d1 (II-19)

where X_o and D1 are the dc components and_ and dz are the ac components.

Substituting (II-18) and (II-19) into (II-17) yields the dc equation,

0 = [A1DI+A2 (1 - D1)] xo + [BzDI+B2(1 - D1)] V1

and the ac equation,

= [AzDz + A2(1-D1)] _ + [(A1 - A2)xo +(B1- B2) V1]dz

where it is assumed that all products of ac terms are negligible.

Defining,

(II-20)

(II-21)

i

A 0 =A1D 1 + A 2 (1 -D 1)

Bo - B1D 1 +B2(1-D 1)

E -- (Az - A2) X_o+ (BI- B2) V1

(II-22)

(H-23)

(II-24)

w
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ll



Therefore,

0 = Ao xo + Bo V1

x=Ao__+Edl

Substituting (II-4) and (II-9) into (II-22),

. :]
and (II-5) and (II-10) into (II-23),

2 Dl-1
Bo = L

0

and(II-4), (II-5), (II-9) and (II-10) into (II-24),

x2o + 2Vl
E= L L

x1_..o
C

(II-25)

(II-26)

(II-27)

(m28)

(II-29)

Current Regulation Loop

We now need to find the relationships between V1, xxo, x2o and D1 for the

current regulation mode. The equivalent circuit for o < t < dx T is shown in Fig. II

2 (a) and for dlT < t < T in Fig. II-2 (b). If xx is continuous, the changes in the flux

linkage of L, A_. , during the on and off periods are,

A_.on = (V1 - x2o) D1T

AXoff= -Vl (1 - D1)T

since )_ remains bounded, it is necessary that,

A_on + AXoff = 0

.'. (V 1 - x20)D 1T- V1 (1- D1)T = 0

(II-30)

(II-31)

(II-32)

(II-33)

12



W

Drlve - 0 0 - °

- V1 + "-_'_1 L _

H2XI

D2

1..____ [ cA_
. q,

D3

X2

z 2

Wz2
IR:constont

L

°_#F-7....F-n

I dT T
t ----_

le

m

I

i
W

D

U

I

i

i

I

i

FIg. IZ-2. PVM

the

control

current

For PPCF converter

regu[ot Ion mode.

In

13



x2o=vl(2D :,} (II=34)

(D1 > .5 since D1 < .5 means that xl would be discontinuous). If PIN = POUT

represent the average input and output power,

PIN = VI xlo DI - V1 xto (1-DI) = VlxlO (2D1-1) (n-35)

POUT x_0 = V12 [2D1 --
= R R [ D1 1) 2 (17-36)

And if losses are ignored,

PIN = POUT

which yields,

V1 (2 D1- 1)
Xl0 ---

D12R

Substituting (II-34) and (II-38) into (II-29),

_V1 1

DIL

E= Vl(2Dl-1)

D12RC

(II-37)

(II-38)

(11-39)

w

Taking the Laplace transform of (II-26),

_s) = (SI- Ao) 1 E dl (s) CII-4O)

We know that dl cs} will depend on x2 (s) because of the voltage feedback loop. After

linearization, we can express the general control law in the following form,

31 (s)= F_) _(s ) (II-41)

From Fig. II-1 we have,

14



dl = Ve

Vp

Taking the Laplace transform,

dl (s) = Vp Vp

(II-42)

Therefore, for the time varying part, dl,

-K1(s_H1_2 (s)
dl (_) = Vp

F T =[0 -Kl(sgx'tll"'" (_) vv -]

(11-44)

(II-45)

We now wish to open the control loop mathematically be replacing x--(s) in (II-41)

with an independent vector _s). Thus,

and from (II-40) and (II-46),

_s) =(sI- Ao)aEF_)-_s)

(II-46)

(II-47)

Therefore, the general ac open loop transfer function matrix, Txu(s), is,

T_xu(s) = (sI- Ao)qEF{rs) (II-48)

From (II-39) and (II-45),

EF;)= I -V1KI(s)H1 1

0 D1LV P ....._.... -=_-=: (II-49)

0 -V1(2Dl- 1)Kll_)H1
D12RC Vp

w

1

r

NOW,

(sI- Ao)a =
.1

s 2 + --fi-+ D12
RC LC

D, ::i::L

D--L s
C

0_-5o)

15
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Substituting (II-49) and (II-50) into (II-48) yields,

[ (s÷1)+v,
D1LVp RC D1RLC Vp /

(V1K1 (s)H1 V1(2 D1 - 1) s K1 (s)H1)-_ LCVp + F# g6vF
Txu (s) = D12

s2 +R-_ + L---C

(II-51)

=--

? S

From (II-51) the small signal open loop voltage gain transfer function is,

VIKI(s)I--II[1 + s (2DI- 1)L]
= __L --D-19R--J

[DI" RD12 J

(II-52)

For the current regulation mode, (II-1) - (II-41) still apply except the duty

ratio will be designated d2 instead of dl. From Fig. II-2 we have,

ie (II-53)
d2 = _-p

Taking the Laplace transform,

_ le(s) K2 (s)IR -K2 (s)H2Xl (s)

d2 (s)- l--p--= Ip

Therefore for the ac part, d2 ,

d2 (s)---K2 (s_-[221(s)
Ip

•".F_s)=[: K2(s)H2 01
Ip

(11-54)

(11-55)

(II-56)

=_
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From (II-39) and (II-56),

EFt) =

- V1K2 (s_-I2

D2L Ip

- Vl(2D2- 1)K2(s)H2

D22RC Ip

0

0

(II-57)

Substituting (II-50) and (II-57) into (II-48) yields,

[ (s+ )Vl 2,s 2
D2L Ip

+

q
V1(2D2 - 1)K2 (s)H2_

D2RLC ip --in J

V1K2 (s_-I2

LC Ip

V1(2D2 - 1)K2 (s)I-I2s]
D22RC Ip J

D22s 2 + _ +
RC LC

0

(H-58)

0

From (II-58) the small signal open loop current gain transfer function is,

G(s)H(s)i = - Txu(s)11 =

RC
2(1- D2)K2 (s)H2V1 [1 + s(2(1 - D2))I

D23R Ip [s2LC + L___L+ 1]

[ D22 RD22 ]

(I1-59)

Discussion

An interesting result from (II-52) and (II-59) is the fact that both uncompen-

sated open loop transfer functions have a zero that offers the possibility of

canceling one of the poles. This has some similarity to current mode control

(CMC) which uses a zero to compensate for one of the poles and thus extends the

bandwidth [14.]. However, it remains to be seen if the zeros in (II-52) and (II-59)

can be utilized to stabilize the regulator since they vary with R.

To investigate the effect of the zero in (II-52) and (II-59), the following

calculations were performed for a PPCF converter with the following parameters:

Frequency = 10kHz, transformer turns ratio = 1:4.87, inductor turns ratio = 1:1,

L=1.215 mH, C = 0.22gfd

Case 1;

R = 205_, D = .73

17



L reflected to transformer secondary = L' = (4.87)2(1.215) = 28.8 mH

LC = 1.19 x 10 -s, L = .26 x 10 -3
D 2 RD 2

m

!

.-. poles

D2R

(2D- !)L

2(I -D)

RC

= 16.84 x 103, 4.96 x 103 rad./sec.

= 2.68 KHz., 789 Hz.

- 8.25 x 103 rad./sec.

= 1.31 kHz = voltage loop zero

= 12 x 103 rad./sec.

= 1.91 kHz. = current loop zero

Case 2:

L

for R = 1025£2 ,RD 2 = .052 x 10 -3 (assuming that D remains almost unchanged for

continuous current)

I

D

m

The poles are now complex, but the resonant frequency is still

COn-- __ = 9.2 x 103 rad./sec.

fn = 1.46 kHz

D2R = _ 41.25 x 103 radJsec.

(2D - 1)L = 6.57 kHz. = voltage loop zero

g

I

m

I

J

_2 ..... T

2 (1 - D) = 2.4 x 103 rad./sec.

: RC : := 380 Hz. - cu_ent lo0p zero .......

For the voltage loop, Case 1 indicates that the zero is helpful at full load

because it compensates for the phase shift of one of the poles. HoWever, at 20%

load the zero frequency is so high that it is of little use, and the regulator may be

m

U

w

18



_r_

=

unstable at light loads unless it is lag compensated so that the gain is much less

than 1.0 at 1.46 kHz. This was observed experimentally when KI(_) originally had

a transfer function of the form,

(,
K1 (s) = A1 s

With the above Kl(s), the circuit was stable at full load because the zero kept the net

phase shift below 180 ° at the unity gain frequency. However, at light loads, the

zero was at such a high frequency that it provided no significant compensation,

and the converter was unstable. Stability over the full load range was achieved by

changing Kl(s) to a lag compensator of the form,

K1 (s) = -_

This attenuated the gain to well below 1.0 at the natural resonance frequency.

Equation (II-59) and the two above eases indicate that the current loop should

be easier to compensate since the zero of the uncompensated loop decreases with

the load, and the de open loop gain also decreases with load.

L _

w

m
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III. STABILITY ANALYSIS OF TWO BUCK CONVERTERS IN PARALLEL

= =

____.

In high power applications it is often convenient to modularize a DC power

supply by connecting several identical converter modules in parallel.

Modularized designs also possess a reliability advantage in that faulted modules

may be removed so that operation may continue at a somewhat reduced power

level. These systems operate in the conventional manner where one module

provides voltage regulation, and the others will either be cut-off or operate in their

current limit mode. It is also good practice to synchronize the switching

frequency for each module to reduce EMI induced errors in the controllers.

To analyze the stability of these systems, it is often assumed that it is

adequate to simply measure the open loop gain and phase of the individual

modules. The assumption is that if the individual modules are stable, the system

will be stable when the modules are connected in parallel. This usually seems to

work in practice, but there appears to be no analytical basis for this assumption.

This conclusion can be illustrated by the linearized state space model for two buck

converters in parallel. Buck converters were chosen for this analysis because,

1. Their small signal open loop gain is identical to a PPCF converter with

the secondary of its inductor connected to the output.

2. The small signal open loop gain of the buck is adequate to show the

problems involved, and it is less complex than the PPCF with the

inductor secondary connected to the input.

Voltage Regulation Loop

Fig. III-1 shows the simplified schematic for a buck converter, which is

assumed to be in the voltage regulation mode. Various references such as

Mitchell [14.] have presented the small signal open loop gain function, which can

be derived using state space averaging and linearization,

VlZl(s)H1

G(s)H(s) V _ Vp (IH- 1)

LCs 2 + _ + 1
R

2O
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Fig. III-2 shows a small signal equivalent circuit for the open loop transfer

function given by (III-1). Note that this model includes a voltage source that is

dependent on X2(s).

Current Regulation Loop

The simplified schematic for a buck converter in the current regulation

model is shown in Fig. III-3. The differential equations for the two conduction

intervals are,

Interval #11 0 < t < d2T

Xl = x2 V1- --+ -- (III- 2)
L L

±2 - xl x2
--C-" RC (III-3)

L__

F

w

IntCrvol #2; d2T < t _<T

where

or X = A1 x + B 1 V 1

A 1 =

Bl=

0

!
C

.1
L

.!
RC

Xl = "x2
L

x2 = xl- x--_-2
C RC

or _ = A 2 x + B 2 V 1

where A2 = A1
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m

0 ] (III-11)B2=[ 0

We can write the following approximate derivatives if the switching

frequency is high with respect to the natural frequencies of the circuit and any

signal frequencies,

x (d2T) - Y40)

_0)= -d2 T (III-12)

_x(d2T) = x (T)- x (d2 T) (III-13)
1 - d2 T

From the previous equations we have,

x (d2T) = Y_0) + d2 T (A1 x_(0) + B1 Vl ) (III-14)

_W) = x (d2T) + T (1- d2)(A2 x (d2T) + B2 V1) (HI-15)

Substituting (III-14) into (III-15),

_T) =[x-(0} (1 + d2 T A1)+ d 2 T B 1 V1][1 + T (1 'd 2) A2]

+ T (1- d 2) B 2 V 1

Re-arranging (I11-16),

X-(T) - Y40)= x(0)[( 1 .d2)A 2 + d2 A1 + d2 A1 (1 -d2)A 2 T]
T

+ Vl[d2 B1 + d2 B1 (1- d2) A2 T + (1- d2) B2J

(III-16)

(III-17)

Assuming that a high switching frequency is equivalent to taking the limit (III-

17) as T -_ 0,

lim (_W)_- _0)/___ = [d2 A1 + (1-d2) A2]_
(III-18)

T _ 0 _ T ! + [d2 B1 + (1 - d2) B2J Vl

(iiI-18) can then be written,

xL= Ax x + B1 d2 Vl (III-19)

We now assume that x and d2 can be:divided into consl_ant (x o, D2) and time

varying (__, d2) components,

J

m

lw

g

I

g

g

I'

=

W

m

U
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x=x0+_, d2=D2+d2 (111-20)

(III-19) becomes,

D. C. component:

A. C. component:

= A1 (xo + __)+ B1 (D2 + d2)V1

0 = A1 xo + BoV1

Bo - B1 D2where

,&

x=A1E+Ed2

(III-21)

(m-22)

(m-23)

0II-24)

whr
Taking the Laplace transform of (III-24)

_s) = (sI - A1) 1 E d2 {s) (III-26)

We know that d2(s) will depend on _1 (s} because of the current feedback loop.

After linearization we can express the general control law in the following form,

d2(s) = F_) _s) (III-27)

From Fig. (III-3) we have,

Taking the Laplace transform,

d2 =ie (III-28)
Ip

.==._

le¢s_____2)= K2{s} VR K2(s) H2 X1 (s}
d2{s) = Ip Ip

Therefore, for the time varying part, d"2,

K2 (s) H2 Xl (s}
d2 (s) = - Ip

From (III-27) and (III-30),

26
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F_s)--[-K2(s)H2 0] (ItI-3I)Ip

We now wish to open the control loop mathematically by replacing _s) in (III-27)

with an independent vector V_4s) • Thus,

and from (III-26 and 32),

.__js}= (SI - A1) -1 EF_} V_Y_(s}

(III-32)

(III-33)

Therefore, the general ac open-loop transfer function matrix, Txv (s), is,

Txv (s) -- (sI - A1)1 E F_s) (III-34)

From (III-25) and III-31),

- K2 (s) H2 V1 0
IpL

0 0
(III-35)

NOW,

(sI- Al) -1

1_ s
C

1s2 +s_ +
L---CRC

(III-36)

(sI- A:) -1E F_s}=

__!_

K2(s) H2 Vl (s + RC )
IpL

- K2 (s)H2 V1

IpLC

S 2 + _C + L-_C

(III-37)

From (III-37) the small signal open loop current gain transfer function is,

K2ts) H2 V1 (sRC + I)

G(s) Hts)i = Ip R (III-38)

s2LC + sL + 1
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Equation (III-38) can be used to derive the small signal equivalent circuit shown

in Fig. III-4. Note that this model includes a voltage source that is dependent on

Xl(s).

Parallel Operation

If the outputs of the two circuits in Figs. III-2 and 4 are connected in

parallel, the circuit in Fig. III-5 results. Note that the current from the voltage

regulated converter is now designated x'l to distinguish it from the current of the

current regulated converter. It is seen that the system complexity has increased

considerably because the two circuits now load each other, and superposition

cannot be applied directly to the two dependent voltage sources. However, it is

possible to simplify the system somewhat by deriving equivalent circuits for that

portion to the left of a a' and to the right of b b'. The simplified equivalent circuits

and definitions of terms are shown in Fig. III-6. From Fig. III-6(a.),

-x' 1 = (x2 ÷ A1 x2- VRI) Yl = (x2- VR1)Yl + x2 (A1 Yl) (III-39)

which yields the equivalent circuit in Fig. III-7 (a.). From Fig. III-6 (b),

-xl = (xz + A2 xl - V_2) Yl (III-40)

-Xl (1 + A2 Yl) = x2 Yl - VR2 Yl (III-41 )

(el) (yl)-xl = x2 i + A2 y( - VR2 1 + A2 Yl

which yields the equivalent circuit in Fig. 11I-7 (b.).

(III-42)

The equivalent circuits from Fig. III-7 can now be used in Fig. III-5 to

produce the result in Fig. III-8. The closed loop transfer function for the

equivalent system in Fig. III-8 can be derived by writing a single nodal equation

( Yl ) VR2Yl (III-43)using x2, x2 y_ + A1 Yl + Y2 + 1 + A2 Yl = VR1 Yl _ 1 + A2 Yl

re=mr

x2 = Vkl Yl (1 + A2 Yl) + VR2 Yl (HI-44)
2yl + A1 Yl + Y2 + A2 yl 2 + A1 A2 yl 2 + A2 Yl Y2
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The characteristic equation of the system is obtained by setting the denominator of

(III-44) equal to zero,

2yl + A1 Yl + Y2 + A2 yl 2 + A1 A2 yl 2 + A2 Yl Y2 = 0 (III-45)

Thus we know that the system will be stable if and only if none of the roots of (III-

45) are in the right half s-plane or on the imaginary axis. This can be determined

by using Routh's criterion or by using a computer program to calculate the roots.

However, these methods are strictly analytical, and they do not provide

information about the relative stability such as the gain and phase margins that

can be verified experimentally from a Bode plot. If the voltage loop is opened and

excited by VT1 while the current loop is closed we obtain,

x.___Z_2= - A1 Yl - A1 A2 yl 2

VT1 2yl + Y2 + A2 yl 2 + A2 Yl Y2
(III-46)

And if the current loop is opened and excited by VT2 while the voltage loop is

closed,

x2 _ - A2 Yl
-- - (III-47)
VT2 2yl+Alyl+Y2

If the L.H.S. of (III-45) could be obtained from some combination of the R.H.S.'s of

(III-46) and (III-47), relative stability could be determined experimentally, but

there is no readily apparent way to do this.

Thus it appears that the stability analysis will depend on the calculated

values of the roots of (III-45) instead of phase and gain measurements. Time

constraints did not permit further study of this problem, but it should be

recognized that additional work is needed to provide more accurate methods for

determining the stability of parallel converter systems.
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IV. EXPERIMENTAL RESULTS FOR THE PUSH-PULL CURRENT-FED

CONVERTER

a
w

W

_=_

w

D

W

2700 Watt Push-Pull C_rrent-Fed Con_Terter Circuit Description

o System Block Dia_m, The block diagram of a 2700 watt converter system

is shown in Fig. IV-l, and individual schematics are shown in Figs. IV-3-9.

This system is composed of three 900 watt converter modules operating in

parallel in the conventional manner with current limit controllers. Since

there will always be a slight difference in the calibrated output voltages,

assume that V01 > Vo2 > Vo3. Therefore a light loads only Mod #1 is active,

and it regulates the output voltage at Vol. As the load increases, Mod #1

goes into current limit at I01, and Mod #2 regulates the output voltage at

Vo2. This continues for further load increases, as indicated in Fig. IV-2.

Eventually all three modules will be in current limit.

. (_onvert_r Module. The schematic for each of the three converter modules is

shown in Fig. IV-3. This circuit is a push-pull current-fed converter with

the secondary of the energy storage reactor, L1, feeding the input [2-4]. This

topology was chosen for the following reasons:

a.) As discussed earlier, a forced commutation circuit was chosen to

eliminate the rati_er _large Seri'es capacitor that is present with series

resonant designs. High frequency foil type capacitors such as

polypropolene have serious temperature limitations and also may be

quite vulnerable to the radiation within the vicinity of a nuclear reactor.

Naturally, other components also will be vulnerable to such an

environment, but it was decided that these capacitors should not be the
=

limiting component. Bipolar transistors were chosen over other types of

switches since their TJ max is commonly rated at 200°C instead of the

125oC or 150oC ratings of other devices.
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W

b.)

c.)

L1 provides a means of eliminating current transients due to

transformer saturation caused by a flux imbalance or simultaneous

conduction of Q1 and Q2. This allows the use of voltage mode control

instead of the somewhat more complex current mode control which

would be necessary with other topologies. As pointed out in [2-4], it is

also possible to connect the secondary of L1 to the output instead of the

input. Normally, this would be the preferred connection since the

stored energy in L1 is transferred to the load instead of being circulated

back to the input. Since all energy flows to the load, it is likely that this

alternate connection would be slightly more efficient. However, for the

output connection L1 needs a turns ratio that is about the same as T1,

which is 1:4.87. This means that D1 will experience reverse voltages in

the 1000 volt range. The output connection was attempted but was

discarded because of the difficulty in finding high speed switching diode

for D5 that had an adequate voltage rating. Diodes such as the Powerex

R502 series are available with trr=l.5 ps. and VRRM=1200 V., but their 80

amp rating is much larger than required, and they are much slower

than the MR1386 with a trr=0.2 ps. which was ultimately used.

With the proper controller, this circuit can be operated in the buck or

boost modes. This feature might be useful since a short circuit failure

in a thermoelectric module can reduce Vs to 0.5 Vs. If the converter is

specified to operate in the buck mode at the full value of Vs, it can

deliver half power in the boost mode for an emergency input of 0.5 Vs.

This is achieved without imposing any extreme specification penalties

on the components. This initial project was primarily concerned with

operation at full input, so only the buck controller was built and tested.

However, the option of buck-boost control could be implemented if the

need for it is deemed necessary. It should be mentioned that switching

losses for this topology are somewhat higher than those for a full bridge

converter. In a full bridge, energy trapped in the transformer primary

leakage inductance is circulated back to the input capacitor by means
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diodes in anti-parallel with the transistors. In the present circuit,

there is no way to recover the energy stored in the primary leakage

inductance of T1 and L1, so it must be dissipated by the snubbers. At 10

kHz, the unoptimized efficiency of this circuit was 91.1%. Another

disadvantage to this circuit is the relatively high vcr_) that appears

across the transistors. Even with no turn-off transient, this voltage is

about 3 VIN because of the voltage coupling of T1 and L1. The turn-off

transient will make vc_) even higher of course, especially because of

the trapped energy in the leakage inductance of L1 and T1. In

comparison, vc_,_)for a full bridge is only VIN plus the turn-off tran-

sient. For VIN=115 Vdc at full load vc_,m) for this circuit was about 400

volts peak. Power transistors are readily available in this voltage

range, but the selection will be much more limited for higher input

voltages.

I

I

I

I

I

I

I

b

I

+ Bipolar Drive Circuit. The schematic for each: of the six transistor drive

circuits is shown in Fig. IV-4. This circuit provides optical coupling to

isolate the control logic from the power circuit. This helps to prevent EMI

from the power circuit from interfering with the control logic. A negative

bias is also employed to minimize the turn-off time of the bipolars.

4. Vgltage Isolation Amplifier. This amplifier is shown in Fig. IV-5+ Its

purpose is to isolate the power output from the control logic to help prevent

EMI from interfering with the controller.

. ]?_k _urrent Limit_r, This circuit is shown in Fig. IV-6. As explained

earlier, average current limiting is employed for thermal protection and to

allow parallel operation of several converter modules. However, it is

doubtful that this circuit is fast enough to provide protection from the high

instantaneous load currents that result from an abrupt short circuit.

Therefore, the instantaneous current limit circuit in Fig. IV-6 is used to

provide rapid protection from an abrupt fault. If the instantaneous value of

I Isll, I Is21, or I Is31 reaches a specified value, the one-shot is triggered

z1

1

1

!

z

1

I

1

1

I
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and produces a 15 m.s. blanking pulse. This pulse simultaneously blanks

each controller (Figs. IV-7 and 8), and saturates the integration capacitors

in the current limit loop. After the end of the blanking pulse, the capacitors

discharge at a gradual rate which allows the duty cycle to slowly increase.

The load current also increases at a gradual rate. If the short is still

present the current limit will be activated before the current becomes

excessive. In other words, the gradual current buildup prevents the high

peak currents that might otherwise occur due to abrupt turn on after the

blanking pulse. Fig. IV-3 shows that the Hall effect current sensor actually

monitors the currents in the two L1 windings instead of the load current.

This was found to provide more reliable transient protection, and the

connection shown effectively rectifies the two currents for the sensor. Isl

could have been monitored instead, but since Isl is bi-directional, a - 15 VDC

supply would be needed for H1 along with a rectifier bridge at the H1 output.

.

consisting of parallel

individually for low EMI.

Master and Slave PWM Controllers, These circuits are standard 494 PWM

controllers whose schematics are shown in Figs IV-7 and 8. A2 and A3 are

slaved to A1 so that all three operate in synchronism at the same frequency.

In spite of all of the isolation precautions (optical coupling, Hall effect

devices, and the isolation amplifier), some interference between the three

controllers occurred initially. This interference persisted on a random

basis until the three controllers were moved to a distance of about 3 ft. from

the converter modules. Apparently, the slight differences in the three duty

cycles create noise that generates logic errors in the controllers. This

indicates that similar problems may occur in any high power system

modules unless the modules are packaged

w

7. Lo_c Power Supply. This circuit is shown in Fig. IV-9.

T_st Data for a Single 900 Watt Convert_r,



. Efficiency:

Tests were initially performed on a single converter operating at 20

kHz. Efficiency measurements were performed by measuring the DC input

and output voltages and currents with calibrated digital meters:

g

I

I

f = 20 kHz.

VIN -- 115.1 Vdc, IIN = 8.91 Adc

Vo = 410 Vdc (only 3 digit accuracy above 200 V.), Io = 2.20 Adc

Efficiency = 88%.

In an effort to increase the efficiency, the frequency was lowered to 10 kHz.

This produced significant audible noise, but this was not considered to be a

serious problem since the converter is not intended for locations where

personnel will be present for long periods of time. It also is quite likely that

spacecraft versions of this circuit would use a Ni-Fe core for T1 because of

the fragile nature of ferrite cores. If this is the case, previous studies [5]

have shown that a 10 kHz design does not represent a major weight increase

over 20 kHzl The efficiency was then measured in the same manner as

before:

f= 10 kHz.

VIN = 115.0 Vdc, IIN = 8.58 Adc,

Vo = 410 Vdc, Io = 2.20 Adc

Efficiency = 91.4%

I

R

u

!

!

z
I

I

.

Because of this significant increase in the efficiency, it was decided to

operate at 1 0 kHz.

_Vo!ta_ge Regulation:

Load regulation test results are as follows:

Io., 0 ' 0"5 ' 1'0 I1"5' ' 410 2"0 i 2"2 Adc
Vo , 410, 410 410 410 410 Vdc

I

I

z

J

48



w

w

. .Waveforms:

Figs. IV-10-14 slow various waveforms that were obtained with a

Tektronix 11401 digitizing oscilloscope. Fig. IV-10 shows vct and iE for Q1

where the vcE trace indicates the relatively high vce transient of = 400 volts

that occurs at Q2 turn off, even though VIN is only 115 Vdc. The currents in

the primary and secondary of L are shown in Fig. IV-11.

Transistor energy loss measurements can be obtained from the following

information:

Turn-on energy loss from Fig. W-12:

Eon = (VCE, (0 x iQ1 (t)) dt

w

L

m

u

m

m

Conduction energy loss for from Fig. IV-13:

tcon

Eeond. = (vCE1 (t) X iQ1 (t)) dt

Turn-off energy loss from Fig. IV-14:

toff
Eofr = (VCE1 (t) x iQ1 (t)) dt

A convenient way to obtain these area measurements is to use the Area (-)

calculation that is available on the Tektronix 11401 digital scope. The oscilloscope

first calculates the (VCEI xiQ1 ) waveform and then measures the area under this

curve for the three time intervals. If the curve has areas above and below the zero

reference level, Area (-) is calculated as follows:

Net Energy in = Area (-) - (Area above)- (Area below)

This should correspond to the net energy dissipation since (Area above)

represents energy flowing into the switch while (Area below) represents energy

flowing out. In this case (Area below) should be zero since energy only flows into
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the switch.

Another problem that must be considered is the proper scaling factor for the

Area (-) calculation. This factor is obtained in the following manner:

Current probe: ( 5 A, / = 500 A./V.10 inV.!

Voltage probe: 1:1

.'. Scale factor = SF = 1 x 500 = 500

Thus if Channel I (V1) is connected to the current probe and Channel 2 (V2) is

connected to the voltage probe, the scope is programmed to perform the following

calculation,

(VCEI x iQ1 ) = V1 * V2 * 500

The vertical scale on the product waveform (lower trace of Figs. IV-12-14) will

then be,

1 U = 1 watt

so the trace indicates instantaneous power vs. time.

The area (-) calculations will be in Joules. On the scope these units are

designated as Us, where in this case, 1 Joule = 1 Us. Figs. IV-12-14 indicate the

losses are as follows:

=_

m

w

m

Turn-on loss = 115.9 x 10 -6 J.

Conduction loss = 2.634 x 10 -3 J.

Turn-off loss = 1.393 x 10 -3 J.

(Fig. IV-12)

(Fig. IV-13)

(Fig. IV-14)

To obtain repeatable results, it is necessary to define the boundaries of tON, tcon,

and tOFF. Ton and tOFF were defined in the following manner:

toN, tOFF = interval where VCE1 x iel > 0.1 VCE1 X iEl(max.)

The beginning and end of the conduction interval tend to be fairly distinct points,

so these were used to define tcon, as indicated in Fig. IV-13.

Measurements of switching and conduction losses become quite useful for

estimating total transistor losses at different operating frequencies. Energy losses

such as those in Figs. IV-12-14 can be converted to average power loss in the

following manner:
Ploss = Eon + Econ + Eoff

T , where T = period
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For the losses in Figs. IV-12-14 at 10 kHz,

Ploss = (.116 + 2.63 + 1.39) x 10 3
0.1 x 10 .3

= 41.4 watts @ 10 kHz.

If the frequency is increased to 20 kHz., one would expect the switching energy

losses to be about the same, but the conduction energy loss should decrease by 50%

because of the 50% decrease in the conduction time. Therefore for 20 kHz,

P{oss = (.116 + 1.39 + 0.5 x 2.63) x 10 -3 = 56.4 watts @ 20 kHz.

.05 x 10 -3

Therefore, at 20 kHz the total increase in the loss for both transistors would be,

M

m

m

m

M

Estimated A PQ1, Q2 = 2(56.4 - 41.4) = 30.0 watts
W

Transistor loss measurements were not performed when the circuit was

originally operated at 20 kHz, but the overall measured efficiencies and losses at

both frequencies were,

m

U

Frequency Efficiency Total Loss

10 kHz. 91.4% 84.7 watts

20 kHz. 88% 123.54 watts

.'. Total measured AP = 123.54 - 84.7 = 38.84 watts

This result seems quite reasonable in light of the fact that losses in the other

components such as the magnetics will also increase with increasing frequency.

. Stability Analysis:

As derived in Section II, the open loop voltage gain transfer function for

the PPCF converter is of the form, [ s (2 D1- 1) L]

V1 Kl(s)H1 [1 +
G(s) H(s)v = D12 _

j

[ D1 RD12

(n-52)
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L
= :

_ =

If a simple integrator of the form,

Kv

K1 (s) = RIClS

is used, (II-52) indicates that the system should be easy to stabilize ifRIC1 is

large enough (lag compensation). This is verified by the gain-phase plots in

Figs. IV-15 and 16 for full and light loads, respectively. The maximum

phase shift in Fig. IV-15 is considerably less than that in Fig. IV-16 because

the zero in (II-52) is well above the measured frequency range for large

values of load resistance, R.

Although the plots in Figs. IV-15 and 16 indicate a stable system, the

transient response of the converter may be rather slow because the 0 db point

is only at about 100 Hz. If the integration capacitor, C1 = .033 pfd., decreased,

a wider bandwidth and faster transient response would result. This is

shown by the plot in Fig. IV-17 where C1 has been decreased to .0033 pfd to

increase the 0 db point to almost 1000 Hz. However, this system depends on

the zero in (II-52) to prevent 180 ° phase shift before the 0 db crossing point.

For large values of load resistance, R, this zero may become too high to

provide adequate compensation. This is indeed the case with the present

circuit, and for C1 = .0033 pfd, the system becomes unstable for IL < 0.57 Adc.

A more extreme example of this bandwidth-stability trade-off is shown

in Fig. IV-18 where C1 = .001 _fd. In this case the 0 db point has increased to

2 kHz, but the system becomes unstable for IL < 1.5 Adc.

In spite of the low bandwidth, the final system used C1 = .033 pfd in

order to provide large gain and phase margins. No gain or phase

measurements were taken with the three converter modules operating in

parallel since no method has yet been found for measuring the stability of

such a system (see Section III). No stability problems were experienced with

all three modules in parallel however.
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. Short Circuit Tests

All three modules were tested extensively by applying an abrupt short

circuit across the output. No failures were experienced once the final short

circuit protection design was established. Test results are shown in the

experimental results for all three modules in parallel since this is

considered to be the most severe test.

Test Data for Three Converters in Parallel

1. Efficiency:

Efficiency tests were performed at 10 kHz in the same manner as for the

single converter tests:

I

!
i

m

I

m

f= 10 kHz

VIN = 115.0 Vdc, IIN = 25.6 Adc, Vo = 409 Vdc, Io = 6.56 Adc

Efficiency = 91.1 % m

o

Load regulation test results are indicated below. As expected, the voltage

variation is slightly greater than for the single converter case. This is

because each converter regulates the voltage over a different portion of the

load range, and the voltage calibration points are slightly different for each

of the converters.

Io,o,lO,2oral3o!4o[5o]ooIoolAdeVol _11_ I_1 _o _o _ _ _ v_c

Short Circuit Test:

The system was tested extensively by applying an abrupt short circuit

while operating at a full 2700 watt load. No failures were experienced

during any of these tests. As indicated in the section describing the short

circuit protection, there are actually two current limit circuits, one for

steady state and one for transients. The steady state limiter is absolutely

necessary for parallel operation, and the transient limiter is a safety

precaution to provide a much faster response time than that of

i
g

m
m
I

J

m

I

!
B

m
!
m

U

m
g
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the steady state limiter.

Fig. IV-19 shows the current entering the center top of each

transformer primary for a 2700 watt load. Phase C is regulating the voltage

while phases a and b are in steady state current limit. Fig. IV-20 shows the

same waveforms during the transient current limit mode with a short

circuit across the output. The transient current limiter operates in the

following sequence:

L •

l

W

+

_J

= _

=
L •

1. All three converters are turned off immediately if the transient

current limit is exceeded in any of the three.

2. All three converters are held off for 15 M. S.

3. The currents are allowed to ramp up at a gradual rate.

4. If any of the three transients limits are exceeded during the ramp,

the sequence repeats.

For Fig. IV-20, the transient limits were set so that the limit cycle will

continue to repeat for a short circuit. If the time scale was increased, one

would observe an approximate series of 2 ms current bursts 15 ms apart.

This waveform was not included because the sampling rate of the digital

scope is too low to properly display each burst for this longer time scale.

However, the waveform is easily obtained on a conventional scope. Fig. IV-

21 shows an expanded view to indicate each current pulse in greater detail.

r

= +

w
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V. SHUNT REGULATOR FOR THERMOELECTRIC CONVERTER

Shunt Re e_lator Design

The design of an appropriate shunt regulator will be driven primarily by the

following factors:

o °

w

w

w

w

1. The need for high "efficiency" in a 120oC environment.

2. The tradeoffbetween a high-radiation design and high shielding mass.

3. The need to provide low output impedance over a given frequency band.

4. Requirements for modularity (with redundancy) and a means of isolating

a faulty module.

Item 1 is not initially apparent, because the purpose of the shunt regulator is the

dissipation of unneeded power. However, the system mass will be strongly

affected by the portion of power dissipated as switching and conduction losses on

the 120°C baseplate. This is so because the ballast resistors can be operated at a

high temperature with a small radiator, while the low-temperature (120oC)

radiator is dramatically larger. For example, if the ballast radiator is operated at

800oC, and the background temperature is assumed to be 273°K, the low-

temperature radiator would require an area 72 times that of the high-temperature

radiator for a given power. The "efficiency" of the shunt regulator is therefore

defined to be

power dissipated at high temperature
11 - (V-l)

total power dissipated

Care should be taken in the design of the shunt regulator to maximize _1. This can

be done by keeping switching-device conduction and switching losses as low as

possible.

Item 2 recognizes the fact that a thermoelectric system will produce

electricity at a low voltage level (100o200 V). Transmission and distribution at this

voltage level will necessarily require a high cable mass, so it is likely that power

processing in the vicinity of the thermoelectric heat source will be required. This
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heat source is assumed to be nuclear, thus a trade-off needs to be made between

radiation shielding mass and radiation-tolerant design of the shunt regulator

(and other power-processing equipment). This trade-off is complicated by the fact

that radiation-tolerant switching devices tend to have higher conduction losses,

thus increasing the mass of the low-temperature radiator. It is apparent that

there are at least three interacting factors to be considered: 1) cable mass, 2)

shielding mass and 3) low-temperature radiator mass. Proper consideration of

these alternatives will require the characterization of the switching and

conduction losses of suitable devices in a high-radiation environment. This work

is yet ongoing; therefore, this trade-off was not considered further.

Item 3 is one of the key specifications of any constant-voltage power source.

For small load-current perturbations, the shunt regulator output inpedance

characterizes the interaction between the regulator and its load. Because the

loads themselves will primarily be switching regulators, this small-signal output

impedance will affect the design and compensation of the switching regulator

control loops and input filters. In addition to a small-signal impedance

specification, there will also be transient output voltage limits for large load

current changes. These large-and small-signal specifications will determine the

minimum shunt-regulator switching frequency, bypass capacitor value and

control-loop design.

Item 4 is primarily motivated by concerns for reliability and the use of an

optimum module size to construct a large system. However, it will be seen that

there is also a trade-off possible among the number of modules, switching

frequency and output bypass capacitor size.

The experimental 2.5 kW shunt regulator was designed making an effort to

achieve low switching and conduction losses at 120°C. A state-space-averaged

large-signal (nonlinear) model was derived for the purpose of studying the large-

and small-signal output impedance characteristics. The shunt regulator was im-

plemented using three modules, any two of which provided full-power operation.

A controller which could automatically work around a failed module was demon-
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strated in the experimental hardware. Experimental data were taken verifying

these analytical results.

Proposed Switching Strategies

The proposed module arrangement is illustrated in Fig. V-1. The

thermoelectric converter is represented by its open-circuit voltage Vint and its

internal resistance Rint. Assuming maximum-power-transfer operation, the

nominal value of vo will be one-half Vint, and shunt resistor sections having a

combined value of Rint must be available for proper operation. Setting R equal to

Rint, N sections are required: N + M sections are shown, providing M spare

shunt sections.

The redundancy provided by the extra shunt sections improves the reliability.

An open-circuit failure of a ballast resistor can be compensated by "tagging" the

faulted unit and activating one of the spares in its place.

The most likely failure mode would be short-circuit of a switching device.

Operation could continue at reduced output rating in this case by omitting the

drive signal for the faulted unit and reprogramming the controller for N-1

switches (to prevent a dead zone from appearing in its transfer characteristic). If

a one-time circuit interrupter (such as an. explosive link) were provided to remove

a faulty shunt section, then full-power operation could be restored.

Three possible switching strategies were identified: 1) step-wise (discrete)

control of Vo, 2) individual pulse-width-modulation (PWM) control of the switches,

with N progressive phase displacements, and 3) one master controller providing

discrete control of N-1 switches with PWM control of the Nth switch. The discrete

control requires only a single controller making a quantized decision concerning

the number of switches to close or open to minimize the output voltage error. This

would be simple to implement using digital hardware and, in the steady state,

would incur no switching losses at all. The main disadvantage would be the

quantized nature of the available output voltage values. This method could only

work with a large number of switches and a loose tolerance on the output voltage.

An additional disadvantage would be a high incremental output impedance
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because no output voltage feedback could take place, except in discrete steps.

The second method considered, progressively-phase-displaced PWM, is

attractive because of its high degree of redundancy (each switch has its own

controller which could operate independently). The progressive phase displace-

ment permits a much smaller output capacitor Co due to cancellation of the first

N-1 harmonics of the switching frequency in the output ripple. The operation of

this switching strategy is illustrated in Fig. V-2, which shows the switch

existence functions (l=closed, o=open). The N controllers each apply the same

duty cycle d, but with progressive phase displacements of 2_/N. It will be shown

in the next section that this progressive phase displacement reduces the

switching-related ripple in the output. However, there would probably be some

technical difficulty is maintaining sufficiently accurate phase displacement and

section-to-section uniformity for large N. Also, the problem of resetting the

phases of the individual PWM controllers after the removal of a faulty ballast

section would have to be considered. Because a complete PWM controller is

associated with each ballast section, they could be operated independently if

necessary. The benefits of ripple cancellation would then be lost, however. :

The third switching strategy considered, and the one implemented in the

experimental hardware, combines the advantages of the previous two

approaches. In this method, the controller applies discrete control to the first N-1

usable switches, and PWM control to the Nth switch. This approach has the

advantage that N-1 switches incur no steady-state switching losses. The PWM

control applied to the Nth switch maintains infinite-resolution control of the

output voltage with low incremental output impedance. (The effective large-

signal output impedance depends upon the rapidity with which the controller can

change the states of large numbers of switches.) This "discrete/PWM" strategy

was found to have lower switching losses and to be relatively easy to implement. :

Control of the redundant ballast sections was found to be especially

straightforward. A more-detailed comparison of the three approaches considered

here is made in the next section.
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Comparison &Three Switching Strate_¢s

5_

= =

The first point of comparison to be made is the relationship among switching

frequency, number of ballast sections and bypass capacitor size for each of the

three switching strategies. The discrete control approach does not switch in the

steady-state: its bypass capacitor (if used) is therefore sized to provide a

sufficiently-low output impedance to the loads connected to it. The switching-

related output voltage ripple of the progressively-phase-displaced PWM and

discrete/PWM approaches is next estimated.

Assuming an output voltage ripple low relative to its dc value, the currents in

the individual ballast resistor sections of the progressively-phase-displaced PWM

ballast then have the waveforms of Fig. V-2, with amplitudes of Vo/NR. The

Fourier-series expression for the current in switch So is:

aso = d + - sin nd_ cos no% (V-2)
_-

n=l

The current in the kth switch is therefore

isk = _ d + _- n1-sin ndrc cos -
n=l

where k = 0, 1,... N-1.

(V-3)

A conservative estimate of the

assuming that all of the ripple current passes through Co.

bution of all N ballast sections:

N-1

..... iR = _ isk.
k=0

Using (V-4), with the identity

switching-related ripple voltage is found by

Summing the contri-

(V-4)

Na ( o,n pN)y_.,cos(n t-kn )--
k=O N cos no3t, n = pN

(v-5)
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where p is any integer, gives

ill - d + 2 sin pNdrc cos pN%t (V-6)

The dominant harmonic in the output voltage is seen to be Ncos, due to the

cancellation of the first N-1 harmonics appearing in the individual ballast section

currents. The ripple voltage appearing across Co is then found by multiplying

phasor expressions for each harmonic component of the ripple current iR by the

corresponding harmonic impedance of Co. The dominant component is the Ncos

component: its magnitude is given by

IVR(NO_)I- 2 Volsin Nd_[ (V-7)
n: N2RO}s Co

This component maximizes at duty cycle values d such that

d = 2-_N' k any integer. _ :_ , (V-8)

The worst-case switching-related ripple component expected in the output voltage

therefore has the magnitude:

]VRI 2 VQ= Vpeak. (V-9)
x N2RmsCo

Thus there is a trade-off among switching frequency, number of shunt sections

and the size of Co for a given ripple requirement.

The discrete/PWM approach is next considered. In this strategy, only one

shunt section is switching cyclically in the steady-state; therefore, the ripple

voltage is found using (V-2) and the harmonic impedance of Co. The resulting

dominant component is at the switching frequency o_:

1VR(c031= 2 Vol sin drcl (V-10)
rc N R COsCo
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The magnitude of (III-10) maximizes at d -- 0.5, giving a worst-case ripple-

component magnitude of

= 2 V o Vpeak. (V-11)
[VR] _ N R co's Co

Comparison of (V-9) and (V-11) shows that for a given switching frequency and

number of shunt sections, the progressively-phase-displaced PWM requires a

smaller (by a factor of N) bypass capacitor than does the discrete/PWM hybrid

strategy.

The next comparison is made in the area of expected switch conduction loss.

The following nomenclature is introduced:

d = duty cycle of a given switch, 0 < d < 1

Esw = switching energy loss (per switch)

N = number of ballast sections needed for normal operation

PCOND = total switch conduction loss

Po = total rated output power
• " _ _ -- ,

Psw = total switching loss

Rsw = switch resistance (per switch)

Vsw = switch voltage drop

x = fractional ballast current, 0 < x < 1

The conduction loss is estimated using the average switch current, if constant-

voltage-drop is assumed, or the rms switch current, if resistive characteristics

are assumed. In the discrete strategy, the integer number of the N available

switches which best approximates xN will be closed. (The variable x is the

fraction of the maximum ballast current which is currently required.) Therefore,

the total conduction loss in the discrete strategy is

Vo } x Vsw V°2 (V-12)PCOND=(xN) _ (Vsw)= Vo R '

assuming constant:voltage-droP switches. Normalizing conduction losses with

respect to the rated output power, (V-12) becomes
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PCOND = x Vsw. (V-13)
Po Vo __

If resistive switches are assumed, the conduction loss for the discrete strategy

becomes

PCOND = x Rs_____w (V-14)
Po NR ..........................

The conduction loss for the progressively-phase-displaced PWM strategy is

next considered. In this case, each switch has a duty cycle d = x; therefore, the

switch average and rms currents are given by: -

• Vo and
lavg ----X

imas = ¢g Vo (V- 15)
NR" "

The total conduction loss for this case is therefore also given by (V-13), assuming

constant-voltage-drop switches, or by (V-14), assuming resistive switches.

In the case of discrete/PWM control, a number of the switches given by int

{xN} (the integer part of xN) are continuously on, while one operates with PWM

having the duty cycle d = xN - int {xN}. The remaining switches are continously

off. The total conduction loss assuming constant-voltage-drop switches is:

PCOND = int {xN} (_RR) (Vsw)

Vo
+ [(xN-int {xN})_--ff] (V_) .

If resistive switches are assumed,

PCOND = int {xN} IV°/2(Rsw)
- _NRI

(v-16)

+ [(_xN - int {xN}) _RR] 2 (Rsw) • (V-17)

-t

As before, (V-16) and (V-17) reduce to (V-13) and (V-14), respectively. There is

therefore no difference among these switching strategies in terms of conduction

losses.

The expected switching losses are next compared. In each case, the peak
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switch current is Vo/NR. The energy lost per switching event (Esw) is therefore

considered the same in each case. The steady-state switching loss with the

discrete strategy is zero. For the progressively-phase-displaced PWM strategy,

the total switching loss is

(Equal turn-on and turn-off losses are assumed.) In the case of the discrete-PWM

strategy, only one switch is actively switching in the steady-state, so for this case

Table V-1 summarizes this comparison of the three proposed switching

strategies. The discrete strategy provides the lowest loss and ripple possible; but,

due to its high output impedance and discretized output voltage, it is not

considered further. The progressively-phase-displaced PWM strategy provides

one-Nth the ripple and N-times the switching losses of the discrete/PWM strategy

for a given switching frequency. Therefore, neither approach has an advantage

(the discrete/PWM strategy could merely be switched at Ncos to become equivalent

to the progressively-phase-displaced PWM approach). The discrete/PWM strategy

was implemented experimentally because its controller is simpler, and it readily

works around a faulty ballast section.
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Table V-1. Comparison of Three Proposed Switching Strategies

i

Output Ripple-

Dominant Frequency

Output Ripple-

Magnitude Dom.
Component

Normalized

Conduction Loss

Discrete

Strategy

0

Vsw

x-- or
Vo

Prog.-Phase-Disp

PWM Strategy

No)s

2Vo Vpeak
_N2RcosCo

Discrete_Wl_

Strategy

COs

PCOND

Po

Switching
Loss

t3 $_,,

X
Rsw

NR

0

same

2N Esw fs

2Vo Vpea k
nNRcosCo

same

2 Esw fs
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Shunt Re_flator Controller

A simplified diagram of the proposed discrete/PWM switch controller is

shown in Fig. V-3. The shunt-regulator output voltage Vo is compared with the

reference voltage VREF, and then processed by a proportional-integral compen-

sator to form the control voltage Vc. The switch existence functions So... SN+M.1

are generated by comparison of Vc with the voltages Vto... Vt(N+M-1) appearing on

the resistor chain. Because the resistor chain is fed from the constant-current

source I, there is a progressive offset of IR in these voltages; therefore, increasing

control voltage will cause progressive turn-on of the switches. This is the discrete

portion of the control action.

The PWM portion of the control action is provided by the sawtooth reference

SR flip-flop and

The period of the

generator composed of the MOSFET switch, capacitor C,

comparators. The resulting waveforms are shown in Fig. V-4.

sawtooth reference is given by

: I'

Ts = T-RC ;
(V-20)

W

r

L --

its amplitude is given by

VSAW = I'R (V-21)

The control voltage vc is also shown in Fig. V-4, using a solid line for a steady-

state condition, and a broken line for a large transient. The switch existence

functions resulting from the steady-state waveforms of Fig. V-4 would be so=l,

S2 . . . SN+M-1-0 and sl=d(t); that is, So is on, sl is pulse-width modulated and the

others are off. Examination of the assumed rapid slewing of Vc (the broken line)

shows that this controller is capable of rapidly responding to a large transient

event, such as a large load step-change. In this case, it is possible for all switches

to operate within one switching period, even though this would not occur in the

steady-state.

Fig. V-4 is drawn assuming that I'=I, thus making the successive wave-

forms nearly continguous. This would normally be desirable in practice because
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it eliminates both a possible deadzone in the control action (if I' < I) and the

possibility of the application of PWM to two switches simultaneously (if I' > I).

(The latter case would correspond to a region of doubled incremental gain in the

control characte_stic.) The I'/I ratio was made adjustable in the experimental

controller so that •the deadzone could be trimmed out.

The discrete/PWM controller of Fig. V-4 is shown equiped for N + M switches,

of which M are redundant. Replacement of a failed switch is automatic: for

example, if ss-1 were to fail open-circuited, Vo would rise resulting in an increase

in v¢ and turn-on of SN. Failure of a switch in a short-circuit mode would be

handled in a similar manner. The deadzone in the control characteristic

resulting from failure of a switch could be tolerated, or one of the optional

switches ko... kN+M-2 could be closed to remove the deadzone by shorting the

appropriate resistor in the chain. It would also be possible to use a digital logic

array to redirect the control signal from a faulty switc h to one of the spares. If t h e

total number of sections N + M becomes large, this may be preferable, as it would

ease the analog design problems associated with a very long string of resistors.

(The bias currents and input impedances of the comparators disturb the voltages

Vto... Vt(N+M-1). Also, the magnitudes of these voltages must decrease with

increasing length of the resistor chain.) The circuit of Fig. _V-3 is conceptually

simple, however, and automatically and rapidly applies discrete or PWM control

to a ballast section as needed.

The schematic diagram of the controller as implemented experimentally is

shown in Fig. V-5. This controller can handle four switches as designed,

although only two were needed for the rated power of 2.5 kW. Three switches

were actually used in the experimental hardware, so that change-over to a spare

switch could be demonstrated. The switching frequency of the PWM switch is

approximately 20 kHz. This value was chosen somewhat arbitrarily, although it

is low due to the need to keep switching losses low. The two limiting factors were:

1) the use of BJT switches (the only switches available with Tj (max) = 200oC) and

2) the inductance in the cabling connecting the ballast resistors to their switches

(these resistors will certainly need to be remotely located).

Fig. V-6 illustrates the base-drive circuitry used in a shunt section. The main
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Fig. V-3. Simplified diagrams of discrete/PWM switch controller.
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switch is the MJ13330, which handles about 10A at 100V (resistive). As

mentioned previously, significant cabling inductance is anticipated; a zener

voltage clamp was found desirable. Proportional base drive is easily implemented

by proportioning the 2N6545 collector resisto r appropriately. A 5:1 IC/IB ratio was

used for the MJ13330 as a compromise between lowered conduction loss and the

avoidance of deep saturation with increased turn-off loss. Reverse base current is

provided for both the driver and switching transistors. The 1.6 _2 resistor limits

the reverse base current applied to the MJ13330 and damps a resonance involving

the cabling inductance and the base-emitter capacitance. The 5V zener clamp at

this base-emitter junction prevents reverse-breakdown of the junction due to this

inductance.

Fig. V-7 shows the power circuit of the complete shunt regulator. Three

shunt sections were built, one of which is redundant. The thermoelectric

converter was simulated using 200V in selies with 4f2. All power resistors were

remotely located (in water buckets) using cables approximately three feet long.

The MJ13330 and its 2N6545 driver were mounted on an aluminum plate with

heaters so that 120°C operation could be evaluated.

Steady-State Performance

The steady-state performance of the shunt regulator was verified in two

areas: 1) the controller operation, including automatic bypass of a failed shunt

section, was verified and 2) the base-drive waveforms and switching loss of a

shunt section were recorded. Because an integrating controller was used, the

steady-state accuracy of the output voltage was limited only by the accuracy with

which it was sensed.

Figs. V-8 and V-9 document the operation of the controller of Fig. V-5. The

sawtooth waveforms appearing in these figures are vt3 . . . Vto, from top to bottom.

The approximately horizontal line is the control voltage vc. All waveforms have

the same scale factor and offset (0.5V/div, baseline at bottom). The regulator is

shunting 5A at 100V, which requires only one section operating at approximately

50 percent duty cycle. Unlike the conceptual diagram of Fig. V-3, the shunt
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sections are activated in _ order in the actual circuit of Fig. V-5. This

means that the shunt current increases as Vc decreases. As implied by Figs. V-8

and V-9, switches s3 and s2 were unavailable during this experiment. In Fig. V-

8, the first available switch was Sl. Fig. V-9 shows the result of disabling Sl (by

open-circuiting it): v¢ decreases causing the controller to automatically pick-up so.

The switching noise apparent in Figs. V-8 and V-9 did not seem to affect the

proper operation of the controller. It would be reduced by a better circuit layout

technique (perf-board and point-to-point wiring was used).

Figs. V-10 to V-13 display the switching waveforms found in a shunt section

operating at about 50 percent duty cycle on a 40oC baseplate. The base and

collector currents (iB and ic), and collector-emitter voltage (VCE) of the MJ13330 are

shown in Fig. V-10. It may be noted that the peak collector current is constant (at

10A in this case) with regard to the duty cycle. This allows easy implementation

of proportional base drive: a forced beta of 5 was used here. Figs. V-11 and V-12

show details of turn-on and turn-off, respectively. Fig. V-13 shows the ic-vcE

product waveform at 100 W/div. Using the waveform measurement capabilities of

the oscilloscope, the switching and conduction loss data of Table V-2 were

determined. It should be noted that the current and voltage waveforms in Fig. V-

13 have been event-averaged to reduce their noise levels. The i-v product

waveform displayed in this figure is the product of these averaged waveforms.

The area under this product waveform was measured. The total loss was 973 _tJ

(20.1 W at the 20.7 kHz switching frequency). This loss was subdivided into turn-

on, turn-off and conduction-interval components using manual positioning of the

oscilloscope measurement cursors.

Fig. V-14 shows the switching waveforms obtained while operating on a 120oC

baseplate. These were also processed by event-averaging; the results are

displayed in Fig. V-15 with the resulting product waveform. Switching and

conduction loss data at 120°C are also listed in Table V-2. The transistor junction

temperature was estimated in each case based on the measured total power

dissipation, 0jc = 1 co/w and 0_ = 0.5cO/w.
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Fig: V-8. Sawtooth reference voltages vt3... Vto (top to bottom) and control

voltage vc (all at 0.5 V/div). PWM applied to sl.
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Fig. V-9. Sawtooth reference voltages vt3 . . . V_o (top to bottom) and control

voltage vc (all at 0.5 V/div). PWM applied to so.
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Table V-2

Losses in MJ13330 Shunt Switch

Item

Turn-On Loss

Turn-Off Loss

Conduction Loss

Total Loss

Junction Temperature*

Peak Current

Peak Voltage

Frequency

Baseplate Tern

40oC

3.7W

10.7 W

20.1 W

_erature

120oC

12.0 W

20.4 W

39.4 W

70oc

10A

100 V

20.7 kHz

179oC

same

same

same

*Estimated based on 0jc - 1C°/w and 0cs = 0.5C°/w.
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Fig. V-10. Switching waveforms from MJ 13330 at 40oC,

Top: iB at 1 A/div, Middle: i¢ at 5 A/div. Bottom: VCE at

50 v/div. Timebase: 5 i_ s/div.
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Fig. V-11. Detail of MJ13330 turn on. Top: iB at I A/div.

Bottom: i¢ at 2 A/div. and vCE at 20 v/div. " .......

Timebase: 500 ns/div.
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Fig. V-12. Detail of MJ13330 turn off. Top: iB at 1 A/div.

Bottom: ic at 2 A/div. and VCE at 20 V/div. Timebase: 500 ns/div.
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Fig. V-13. Switching and conduction losses of MJ13330 at 40oC.

Top: ic(t) vCE(t) at 100 w/div. Bottom: ic at 4 A/div. and VCE at 50 V/div.
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Fig. V-14. Switching waveforms from MJ13330 at 120oC.

Top: iB at 1 A/div. Bottom _c at 2 A/div. and vCE at 20 V/div.

Timebase 5ps/div.
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Fig. V-15. Switching and conduction losses of MJ13330 at 120°0.
Top: it(t) VCE (t) at 100 WT_v: t_0ttom: ic ai-4 A/d{v. and vCE at

50 Vldiv.
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Transient Modeling of the Shunt Regulator

w
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The application of the proposed TEC-shunt regulator will require a useful

transient modeling procedure. The switched nature of the shunt regulator

suggests the discrete modeling technique summarized in [6 ], although the much

simpler state-space averaging of[l] should be used instead, if it is applicable.

State-space averaging is justified by assuming that all of the state variables

have only a first-order time variation over a switching cycle. This permits the

replacement of a succession of switched circuits with a single "equivalent"

averaged circuit. The equivalent procedure in state-space notation is the

replacement of a succession of A and B coefficient matrices with their time-

weighted averages. The result is a time-invariant system, though it is nonlinear

due to the fact that the time-durations of the individual equivalent circuits are

normally control inputs. This nonlinear time-invariant system can then be

conveniently simulated on a general-purpose simulation program such as

SPICE, or it can be linearized to find a simpler incremental model. The first step

in the application of state-space averaging to the proposed discrete/PWM shunt

regulator should be a check of its validity for realistic component values.

The condition of validity for state-space averaging is that the time constant

associated with each switched circuit must be much greater than the duration of

that equivalent circuit [1]. In the discrete/PWM regulator, there is one state

variable in the switched portion of the circuit (Vo). The time constant associated

with this circuit varies according to the number of switches closed (see Fig. V-l),

but it is restricted by

-<Rint Co • (V-22)

If a maximum-power-transfer design is used (R = Rint), then the output ripple

requirement imposes the limit on Co(from V-11):

w Rint Co = 2 (V-23)

4

97



Combining (V-22) and (V-23):

g 1 Ts . (V-24)

Substituting values of peak output ripple (VR) ranging from 0.01 Vo to 0.1 Vo, and

numbers of sections (N) from 2 to 8, gives the range 2: < 0.13 Ts to 5.1 Ts. L •

This suggests that practical design values of Co might not meet the criterion for

state-space averaging.

State-space averaging is, however, still justified for both large-and small-

signal modeling of this regulator. The justification is that even though the time

constants may be small, they change little over a switching cycle, allowing their

average value to be used in an averaged equivalent circuit. To demonstrate this;

an exact solution for the natural response of Fig. V-1 over one switching cycle will

be computed and compared with that of the averaged model. The comparison will

be made for near-steady-state conditions, and also for the largest transient

possible.

Incremental signal levels are first considered. With the discrete/PWM

control method, only one switch changes state over a switching cycle in the near-

steady-state. The two resulting time constant are

2:1 -- nint Co and

2:2 = k _1 = (Rint I N Rint) C o .

L

(V-25)

In (V-25), the load has been assumed to contain infinite incremental resistance

and the regulator switches operating such that the largest change possible in z is

observed. For a change of condition of one shunt switch, the ratio of 2:2 to 2:1is:

k=_= N (V-26)
_1 N+I

With a certain duty cycle d, the natural response of Fig. V-1 over one switching

cycle would be found as follows:

"_o = .2:_1 Vo, 0 < t < dTs

m
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?o=-_.lVo , dTs-<t<Ts

1 -d T.
Vo (T_) = e'-_2 e-_T' vo(0) or

w

w

T8

vo(Ts) = e _--_Vo (0) where

X!_ -1

=--II'd + "c1/I (V-27)%
_x2

The equivalent time constant of (V-27) is that required of an unswitched

equivalent circuit to obtain the same natural response at the end of a switching

period as the actual circuit. The state-space-averaged system would be

"1., (vo), 0 < t _<Ts
(%)= (1-d}_2 + d xl

with the solution

W_

(Vo (Ts)) = e _a,, (Vo (0)) where

Tavg -(l-d) X2 + dXl • W-28)

u

The average time constant of (V-28) is that of the unswitched equivalent circuit

produced by state-space averaging. It is apparent that Tavg ¢ Seq •

The error in the propagation of the state Vo over a switching cycle is estimated

by di_iding the state-space-averaged result (V-28) by the exact result (V-27),

assuming equal initial conditions vo(0):

........vo(Ts) = _'_ = 1 + _--_- X_vg " (V-29)
== : == _ ..... , .......

The approximation in (V-29) is supplied in the expectation that the two results

_-ill be nearly equal. The fractional error term in (V-29) is restated using (V-26),

CV-27) and (V-28):
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vo(Ts)- (vo(Ts)) = T_ [1 - d . 1 ] (V-30)vo(Ts) _1 [ k + d (1 - d)k + d_ "

Equation (V-30) is differentiated with respect to duty cycle d; the result is equated

to zero, producing the expression for the worst-case value of d:

dwc = k-__=__. (V-31)
k-1

Substituting (V-31) back into (V-30) produces the expression for the worst-case

fractional error:

vo(T.)'(vo(T.))]

vo(Ts) Jw¢ =
T_ k 2 _ 2 k_- + 2_-- 1 (V-32)
zl k (k- 1)

If the output capacitor Co is sized according to (V-23), then substituting (V-25) into

(V-32) gives:

vo(Ts) Jw¢ [Vo l"
(V-33)
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As expected, (V-33) shows that the accuracy of state-space-averaging improves

with decreasing ripple in the capacitor voltage. Also, an application of

L'Hopital's rule shows that

lim [vo(Ws)-Ivo(Ws))] =0. (V-34)
k _ 1 [ vo(Ws) Jw¢

This is also expected, because k is the ratio of the two time constants in question,

and as k approaches unity, state-space-averaging becomes exact.

Fig. V-16 is a plot of the relative error produced by state-space-averaging over

one switching period. In the near-steady-state, Fig. V-16 can be consulted to

estimate the percentage error in the output voltage after one switching period.

(The value of k is related to the number0f switched sections N by (V-26)). A plot

similar to Fig. V-16 could also be constructed for the relative error in the apparent

time constant of the state-space-averaged model. The conclusion which is drawn

from Fig. V-16 is that for reasonable rippple levels in the design, state-space

averaging is accurate for even one or two switched sections and small signals.
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Fig. V-16. Relative error per switching period produced by state-
space-averaging versus number of switched sections. Small

signal conditions are assumed.
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The implications of using a state-space-averaged model for a large-signal

transient simulation are next investigated. Equation (V-33) was derived based on

an assumed ratio of time constants k and the choice of Co based on the number of

sections N and the ripple requirement IV_o° . In a large-signal simulation, k is no

longer constrained by (V-26); the worst-case value of k would occur if the regulator

control voltage Vc would slew so quickly that all switches went from open to closed

in one switching period. The value of k under this circumstance would be 0.5.

Substituting this value into (V-33) produces the large-signal result

v°(Ts)-Iv°(Ws))l_<1.693 N VR (V-35)
vo(Ts) Jw¢ ]_oo1"

Substituting design ripple values from 0.01 Vo to 0.1 Vo and numbers of sections

from 2 to 8 into (V-35) produces worst-case one-cycle simulation errors ranging

from 0.034 to 1.36. These results represent the departure of the state-space-

averaged simulation from the actual result over one switching period, assuming

the largest conceivable transient. For low-ripple designs having small N the

error is quite low, however, there will be some loss of accuracy with large N and

small Co. The state-space-averaged model is quite useful due to its simplicity and

ease of use, and was therefore used in this investigation. The results of this

modeling technique are next compared with the experimental performance of the

shunt regulator.

Dynamic Performance _ . .

The experimental dynamic performance of the shunt regulator is compared

with that predicted by a PSpice [7] simulation of the nonlinear state-space-

averaged model of the experimental hardware in two areas: 1) the incremental

output impedance and 2) the response to a large load current step change. The

averaged model is first presented in the form of an equivalent circuit used for

PSpice simulation. This is shown in Fig. V-17. The state-space-averaging has

taken place in representing three switched shunt resistor sets by the voltage-

controlled conductor "GISH". An exact model of the shunt resistor sections

would be the discrete model:
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Fig. V-17. Simplified PSpice simulation model of shunt regulator
with voltage regulator.
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n(t)

YSH = _NR ,n= 0, 1, 2, 3

andN--3 , R=2.78_.
(V-36)

This has been replaced in Fig. V-17 by the averaged model:

x(t) 0 _<x < 3YSH =
NR

and N = 3 , R = 2.78g_ (V-37)

[]

i

Note that the simulation model of Fig. V-17 is nonlinear due to the voltage -

controlled conductor. An incremental equivalent circuit could easily be derived;

in this work the incremental analysis capability of PSpice was used instead.

The incremental output impedance of the shunt regulator was first computed

using PSpice for Rint = 4.5F_ and two different values of Coi 80_F and 3801aF. The

80pF capacitor was composed of four paralleled polypropylene units and assumed

ideal. The 380pF capacitor was composed of the 80pF together with six paralleled

Sprague 39D electrolytic units. The latter were modeled by a 263_F capacitor in

series with 0.124_, based on a 10 kHz impedance measurement. The output

impedance with Co = 80_F is shown in Fig. V-18 (magnitude) and Fig. V-19

(phase). Experimental data points are indicated on each figure, showing good

agreement. The operating point used was a load current of 1Adc; even though the

circuit is nonlinear, the PSpice analysis showed negligible dependance of the

output impedance on the operating point. The output impedance with Co = 380_F

is shown in Fig. V-20 (magnitude) and Fig. V-21 (phase). The experimental data

points are also indicated on these figures, again showing good agreement. There

are two significant discrepancies between the experimental and predicted results:

1) the low-frequency phase measurements at 20 and 40 Hz and 2) the high

-frequency phase measurements above 10kHz. The former is believed due to

measurement error (inadequate signal level at the low-frequency limit of the

measuring equipment). The latter is believed due to incomplete modeling of the

ESR characteristics of the output bypass capacitor, because the output impedance

I
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i

I
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N

i

104



m

above 10kHz is dominated by this component.

The transient simulation of the model of Fig. V-17 was also verified experi-

mentally. A step application and removal of a 8.3g_ load resistance

(approximately half-load) was simulated using PSpice. Two different values of Co

were considered: Co = 80_F and Co = 380_tF. The same transient was then

observed experimentally. Fig. V-22 is a plot produced by PSpice; Fig. V-23 is the

corresponding experimental result. Each of these figures displays vo - 100, where

vo is the output voltage (the regulator setting is 100 V). The experimental result,

Fig. V-23, displays two traces: the upper is an unprocessed version of vo - 100 at 5

V/div, the lower is an event-averaged version ofvo - 100 at 2 V/div. (It can be seen

that event averaging reduces the switching noise obscuring the transient.) Figs.

V-24 and V-25 display expanded views of the same transient for the simulation

and experiment respectively. Good agreement is seen in Figs. V-22 to V-25 for

both amplitudes and times of the transient.

The same transient was studied with Co = 380_F (the model of the 380 _F

capacitor which includes the ESR previously referred to was used). The PSpice

simulation is shown in Fig. V-26; the experimental result is shown in Fig. V-27.

The unprocessed experimental waveform is shown at 5 V/div; the event-averaged

waveform is shown at 2 V/div as before. Good agreement is again obtained.
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Fig. V-23. Experimental load step-change with Co = 80pF.

Upper: Vo - 100 at 5 V/div (unprocessed). Lower: vo - 100

at 2 V/div (event-averaged). Timebase: 1 mS/div.
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VI. THERMOELECTRIC CONVERTER SYSTEM PERFORMANCE

Introduction

The simulation and experimental data presented thus far have shown that

the TEC-shunt regulator combination is a well-behaved, low impedance voltage

source under the conditions studied. However, the results of exceeding the

regulation range of the shunt regulator should be considered, because the system

has a high (1 pu) internal resistance when the shunt regulator drops out. The

typical load will be either a single dc-dc converter (with its own controller) or

possibly a distributed system composed of many dc-dc converters. Because of the

constant-power characteristics of such a load, which imply a negative

incremental resistance, dropout of the shunt regulator might trigger bistable or

unstable operation. For a similar system composed of a photovoltaic array, shunt

regulator and dc-dc converter, possible bistable operation has been demonstrated

[8]. This possibiliby was therefore investigated by simulation and experiment.

The results reported here will also be published in [16].

TEC - Shunt Re_m_lator

The TEC and shunt regulator of Figs. V-5 - V-7 were simulated using PSpice

and the model of Fig. V-17. Because the quasi-static characteristics of the system

were being examined, and the shunt regulator contains a proportional-integral

controller, the regulator terminal voltage tracked the reference voltage exactly,

except when the regulation range was exceeded due to an overload. When the

shunt regulator drops out, the TEC terminal characteristics become that of a 2 pu

voltage source with 1 pu internal resistance. It is convenient at this time to define

the following base quantities for the purpose of normalization:

VBASE = one-half the TEC open-circuit voltage,

IBASE = one-half the TEC short-circuit current, and

RBASE - the TEC internal resistance.

The expected TEC terminal voltage and current at full-load are both 1 pu, if a

maximum-power-transfer design is used. Fig. VI-1 displays the static i-v

characteristics of the TEC-shunt regulator combination in normalized form. The

w
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Fig. VI-2. Four cases: Thermoelectric

converter with load and regulator.
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design full-load operating point "P" is indicated in this figure.

Fig. VI-2 illustrates four possible systems configurations using a TEC. Case

1, Fig. VI-2 (a), shows the load connected directijt-othe TEC. In this case the load

voltage v will vary over a 2:1 range as the load current varies from 0 pu to 1 pu.

The resulting voltage regulation is not good, and the no-load TEC terminal voltage

reaches 2 pu, unnecessarily stressing its internal insulation. Case 1 is therefore

not considered useful.

Case 2, Fig. VI-2 (b), shows the addition of a switching converter, possibly to

raise the TEC output voltage for transmission purposes. This switching converter

could also be called on to provide load voltage regulation, but this would not reduce

the voltage swings at the TEC output terminals. In addition to the TEC

insulation, the converter's switching devices would also need to be rated for twice

the full-load voltage stress. Therefore, this case is also considered unworkable.

Case 3, Fig. VI-2 (c), shows the addition of a shunt regulator to the TEC. The

i-v characteristics of the TEC-shunt regulator combination are shown in Fig. VI-3

with several possible load characteristics superimposed. These are assumed to be

resistive. The equilibrium point of the system is the point of intersection of the two

characteristic curves. It can _be Seen that the syst_em drops out of regulation for a

load resistance less than 1 pu. At the rated-power-point P the shunt regulator is

drawing no current; its presence does not reduce the efficiency of the system at

full power, therefore. Case 3 represents a useful system, if the load character-

istics are resistive. This is not likely to be the case, however, because many types

of loads include internal switching converters (with regulators), which are best

modeled as c0nstant-power loads.

Case 4, Fig. VI-2 (d), is therefore considered next. The switching converter in

this figure is assumed to have a regulated output Voltage (VL = 1 pu), with the

restriction that it has both input and output current limiting set for 1.25 pu. The

nominal input-voltage-to-output voltage conversion ratio is 1.0 in the following

illustrations. However, the switching converter regulates by varying this

conversion ratio (by varying the duty cycles of its switches): the upper bound for

this conversion ratio N has been assumed to be 2.0, allowing for operation with a

TEC degraded to an output voltage of 0.5 pu, and the lower bound for N has been

assumed to be 0.1, perhaps due to a minimum duty cycle limitation. These
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assumed conversion ratios are based on the choices of nominal input and output

voltages; the converter illustrated here could therefore be implemented using

either a buck or a boost configuration, with or without an internal transformer.

The characteristics of the model used for the switching converter are explored

further in Fig. VI-4. Here the conversion ratio (N), the input current (i) and the

load voltage (VL) are plotted versus input voltage (v) for a load resistance of 1.25 pu.

At very low input voltage the conversion ratio of the switching converter is limited

to its maximum value, and the input characteristics are resistive. There is next a

re,me of input-current limiting, followed by output voltage regulation. These

three regimes are indicated on Fig. V-4. It can be noted that output current

limiting does not occur in this example, and that input current limiting is

sometimes omitted from the switching converter design, in which case it would

not appear here. The output voltage regulating (or output current limiting)

regime is seen to be characterized by a negative incremental input resistance. It

is well known that this complicates operation with a high-impedance source

because of the posssibility of instability. However, it will be shown here that this

negative-input-resistance characteristic also leads to three possible system

equilibrium points, only one of which is desired.

Fig. VI-5 shows two sets of TEC-shunt regulator i-v characteristics, one for

the nominal system, and another for a degraded TEC having a 25 percent

reduction in its open-circuit voltage. Superimposed on these curves are the

characteristics of the switching converter with two load resistances, 1.0 pu and

0.8 pu (an overload). The overload curve intersects the normal TEC-shunt

regulator curve at a below-nominal voltage of 0.8, as expected. The full-load curve

(RL = 1.0 pu) intersects the normal TEC-shunt regulator curve in three places,

however. Points A and C represent stable equilibrium points; point B is unstable.

The desired operation point is C, but the design of the system should include

preventing A, or returning to C if operation should inadvertantly shift to A.

Fig VI-5 suggests one possible mechanism by which operation could jump

from the desired to an undesired equilibrium point. Assume that stable operation

at C with RL = 1.0 pu is interrupted by a momentary overload, corresponding to RL

= 0.8 pu. The operating point will rapidly jump to A, and remain there after the

transient.overload passes. A controller for the system must then intervene if
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operation at C is to be re-established. Fig. VI-5 also suggests another much

simpler solution: a slight reduction of the switching converter input current limit

of 1.25 pu would eliminate points A and B in this illustration.

There are a number of interacting factors which determine the possibilities,

however. Fig. VI-6 shows a case in which the maximum conversion ratio has

been set to 2.5 (instead of 2.0). Load resistances of 1.0 and 2.0 pu are illustrated

here. If derated operation with a degraded TEC is to be obtained, the conversion

ratio should be wide enough to allow reduction in TEC voltage. In this figure,

operation with a degraded TEC and reduced load is attempted, resulting again in

two possible stable equilibrium points (D and F). Either a reduction of the input

current limit, or of the maximum possible convertion ratio, would eliminate the

undesired equilibrium points D and E in this example.

It is apparent that coordination of the _urrent-limit settings and

minimum/maximum duty-cycle limits in the switching converter with the i-v

characteristics of the TEC can eliminate the undesired equilibrium points, if the

TEC terminal characteristics are well defined. However, if the TEC i-v

characteristics are subject to drift (e.g. degradation or start-up), it may be

necessary to reprogram these settings throughout the life of the TEC.

Simulation Results

The possibility of two stable equilibrium points for the system of Fig. VI-2 (d)

was demonstrated by means of a quasi-static PSpice simulation. The TEC and

shunt regulator were modeled as indicated previously. The switching regulator

was modeled as a variable-turns-ratio transformer with 100-percent power

efficiency. A high-gain output voltage regulator was assumed, along with input-

and output-current limiting at 1.25 pu. (Fig. VI-4 was generated by simulating

this model.) A current load on the switching regulator was assumed to slowly

ramp up, then down.

The results of this system simulation are shown in Fig. VI-7. The upper

trace is a plot of switching converter output voltage vL versus switching converter

load current; the lower trace is a plot of the TEC terminal voltage v. Each variable

was normalized using the base quantities given previously. It can be noted that
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hysteresis "eyes" have appeared in this plot, the arrows indicating the traces

corresponding to the upward and downward sides of the ramp. Fig. VI-7 reveals

the presence of a disadvantageous operating mode in which the TEC terminal

voltage is less than 1 pu, even though the load on the system is below rated. The

unwanted mode was reached by having a momentary system overload, followed by

a reduction in load current. This is not an unlikely event for many systems. As

discussed previously, the location and extent of the hysteresis eye is a function of

the switching converter input-current-limiter setting and conversion ratio

restrictions, relative to the TEC terminal characteristics.

Experimental Result_

The characteristics of the TEC system which were simulated were also

verified experimentally. Because of limitations on the available dc power supply,

the TEC was emulated by a 220 V supply in series with a 9.2_ resistor, providing a

maximum available power of 1315 W. The shunt regulator and switching

regulator used were rated at 2500 W; however, the output current limit on the

switching converter was reset to the 1315 W level. The characteristics of the TEC

system are summarized in Table VI-1, along with appropriate normalization base

quantities.

The circuit of Fig. VI-2 (d) was used. Fig. VI-8 is a plot of the normalized

switching converter load and line voltages as the load current was cycled from 0 to

1 pu and back. The bistable behavior of the system is apparent. The appearance of

Fig. VI-8 is somewhat difference from that of Fig. VI-7 due to the low efficiency of

the switching converter, and the fact that it step-changed at the transitions

between the two operating modes. (The measured efficiency in the desired mode

was approximately 80-percent; in the undesired mode it increased to about 85-

percent, representing in effect a change in the load current at the boundary

points.) The simulation and experimental data do match qualitatively, and

demonstrate the importance of including a provision in the system controller for

dealing with this bistable phenomenon which would otherwise reduce the safely-

available power.
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Table VI-1. Experimental TEC-shunt regulator-

switching converter specifications.

t

g

TEC Simu]otgr

Open circuit voltage

Internal resistance

Maximum power available

Shunt Re_lator

Voltage setting

Maximum power

Switching frequency

Switching Converter

Input voltage

Output voltage

Power rating

]_0rmalization Ba_e Quantities

Voltage

Current

Resistance

220V

9.2fl

1315W

I10V

2500W

20 kHz

110V

400V
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VII. PHASE-CONTROLLED PARALLEL-LOADED RESONANT INVERTER

=

=

Introduction

The phase-controlled parallel-loaded resonant inverter (PC-PRI) has been

proposed for use as a power processor in a 20 kHz sinusoidal-voltage power

distribution system. Fig. VII-1 shows the power circuit of the 2.5-kW 20-kHz PC-

PRI which was built as part of this experimental investigation. A suggested

design procedure based on a fundamental-frequency phasor analysis was

included in the last report on this grant [9] along with an exact closed-form steady-

state solution. Experimental data taken in the steady state confirmed that the

phasor analysis was a reasonable approximation. The suggested design

procedure was also published in [15]. The experimental data agreed closely with

the exact solution. However, the experimental inverter could not be operated at its

rated input voltage, nor were any transient data taken.

Successful full-power operation of the PC-PRI has now been demonstrated.

The load-short-circuit transient has been studied. This section of the report

includes these additional results (with reference being made to [9]).

The Benefits of Resonant Power Conversion

Two salient benefits are usually attributed to resonant power conversion:

lowering of electromagnetic interference (EMI) due to the inherent filtering action

of the resonant tank, and improvement of the switching device i-v locus to lower

switching losses. It should be noted that these benefits are obtained at the cost of

increased switch conduction losses, due to the multiplied switch voltage and/or

current. One of the basic decisions in the design of a resonant converter is the

choice between zero-current switching and zero-voltage switching. In the case of

the PC-PRI, below-resonance operation results in zero-current switching, if the

load current is below some upper bound. Zero-current switching implies natural

quenching of the current in the controlled devices, thus allowing the use of

thyristors. Above-resonance operation results in zero-voltage switching, which

implies natural quenching of the voltage across a blocking switch prior to turn-on

of the controlled device. This permits the use of lossless snubbers.

The design procedure reported in [9, 15] showed that above-resonance design
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of the PC-PRI requires substantially increased tank volt-ampere ratings. The

experimental PC-PRI was therefore designed for below-resonance operation at 65-

to 70-percent of the resonant frequency. The tank elements were chosen to

guarantee zero-current switching for any load current having a magnitude below

the full-load rating. Although natural quenching of the MOSFET current

occurred, MOSFET turn-on caused a hard commutation of the antiparallel diode

current. Because the initial design used the MOSFET's internal body-drain

diodes, which had a lengthy reverse-recovery, this commutation was snubbed

with substantial commutating inductance[ This inductance then left the PC-PRI

vulnerable to even a transient commutation reversal: any interruption of the

current in the inductance resulted in a difficult-to-snub overvoltage spike. The PC

PRI was therefore not considered fault-tolerant when operated at its design input

voltage.

The solution implemented was the removal of the commutating inductors,

leaving only an estimated 350 nH of stray inductance. The MOSFET body-drain

diodes were blocked with a Schottky diode: Unitrode UES-2606 diodes were added

in antiparallel to the Motorola MTM 40N20 MOSFETs. Each inverter switch in

Fig. VII-1 was implemented using four paralleled MTM 40N20s and two

paralleled UES 2606s (four paralleled sections). The overshoot voltage was

controlled using a nonpolarized RC snubber (0.068_tF and 1.67gZ).

The PC-PRI with fast antiparallel diodes was tested near its rated loading of
.....................

2500 VA with its rated dc input voltage of 100 V and found to be load-short-circuit

tolerant. Operation with up to 120 Vdc was possible; the design value of 150 Vdc

was not achieved_clue_i_ the voltage overshoot caused by the 350 nH of stray

inductance under short-circuit conditions. A lower-inductance circuit layout

together with more-lossy Snubbers would have extended the inpUt voltage range.

Because the steady-state solution presented previously [9] was well verified, the

transient behaviOr Of flae updated experimental PC'PRi Will be :described next.

m

II

i

u

i

J

U

i

m

!

i

I

I

I

131

J

Z

I



w

!

w

w

C

+

6 x 2G_.r_2_V

_i All_ T,TT

0
_ 77,,7

6 x 20_F/200 V

I

LI

II_H

1

!

I

Fig. VII-1. Basic power circuit of phase-controlled parallel-
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ExpCrlm?ntal Transient Behovior
I

Two experiments were performed: one was a switched load resistance, and

the other a switched load-short-circuit. The experimental arrangement is shown

in Fig. VII-2. A timing signal synchronous with the PC'PRi s_tching frequency

was taken from the controller and fed to a divide-by-1000 counter. The output of

the counter was used to trigger a Wavetek 801 pulse generator. The output pulse

was used to control the MOSFET load switch. The pulse generator applied an

adjustable trigger delay and an adjustable output pulse width, thus allowing the

load switching to occur at an adjustable position in the inverter switching cycle,

and to have an adjustable time duration. The divide-by:i 000 counter allowed the

load switching event to be repetitive at a low frequency (20 Hz), thus permitting

display on a standard non-storage oscilloscope. The repetitive display of the

switching transient with adjustable duration and positioning within a switching

cycle was used to search for worst-case incidents. It was found that the transient

results depended s{gnificantly on the positioning of turn-on and turn-off within

the PC-PRI switching cycle.

The first set of data were taken with the original PC-PRI power circuit having

commutating inductors [9] and a switched load resistance drawing slightly more

than the design-full-load current corresponding to the dc input Voltage being

used. Fig. VII-3 displays the load voltage and current together with one of the

inverter switch currents. It should be noted that the PC-PRI was being tested at

one-half its rated voltage: the load voltage and current were therefore

approximately 80 Vrms and 9 Arms. It can be seen in Fig. VII-3 that steady-state

is reached both with the load switched on and off. Fig. VII-4(a) and VII-4(b)

provide expanded views of Fig. VII-3 at turn-on and turn-off.

The commutation of one of the PC-PRI switches can be seen on the lower

trace in Fig. VII-4(a). The negative switch current prior to turn-off indicates the

expected zero-current-switching sequence. The antiparallel diode reverse-

recovery current is also apparent at switch turn-off. It can be seen in this figure

that the antiparallel diode conduction interval nearly disappears during the

transient following application of the load. This would imply a commutation

failure in a thyristor-based inverter. Fig. VII-4(b) provides a detailed view of Fig.

VII-3 at turn-off of the load current. Interestingly, it can be noted that the peak
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transient switch current occurs after load turn-off.

Load-short-circuit transient data were recorded for the PC-PRI of Fig. VII-1.

The PC-PRI was operated at rated voltage (100 Vdc) with a resistive load drawing

rated load current (14.5 Arms). The full-load voltage was 154 Vrms; the resulting

loading was 2200 VA. The input conditions were 100 Vdc and 24.4 Adc; the power

efficiency was 90-percent, based on the measured phase angle of the resistor bank

(8 degrees). Fig. VII-5 shows the application and removal of a short circuit to the

loaded converter. The circuit of Fig. VII-2 was used, except for the omission of

the isolation transformer and the use of a 50 A/500 V Darlington transistor as the

shorting switch. Fig. VII-5 shows a short-circuit current cresting at 150 A, with

the somewhat sluggish response of the current limiter beginning after the fourth

cycle of the fault. Figs. VII-6 and VII-7 show the current in L, and the voltage

across switch S1 at three different times during the fault. The commutation

conditions in the inverter can be deduced from these.

Fig. VII-6(a) was taken at the inception of the short circuit. The opening of S1

can be detected by the rising edge of vsl; normal commutation requires diode

current at this time, which implies a negative-signed current. Several cycles in

which there is positive-signed current at switch opening can be seen, implying

current interruption by the controlled switch. Fig. VII-6(b) was taken later

during the load short-circuit. It can be seen here that the normal commutation

sequence has been re-established. Fig. VII-7 shows the transient occurring at

removal of the load short-circuit. In both Figs. VII-6 and VII-7 the modulation of

the dc-side voltage by the flow of large fault currents through the bypass

capacitors (and layout inductance) can be seen.

Discussion

The PC-PRI requires many of the design considerations common to all

voltage-sourced topologies; however, the diode-to-gated-switch commutation was

found to be particularly troublesome in the experimental hardware. This

commutation was improved by using the fastest available antiparallel diodes. A

snubbing inductor can be added to lower the diode reverse-recovery current while

extending the charge-recovery time; however, this inductor interfers with gated
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turn-off of the controlled switch. Present voltage-sourced-inverter design practice

minimizes the stray inductance while tolerating increased peak currents (and

switching losses). This is a good approach in a voltage-sourced inverter called on

to make "hard" commutations in both the diode-to-switch and switch-to-diode

sequences. However, the PC-PRI eliminates one set of hard commutations in _the

steady state, which should permit the use of large snubbers optimized to ease the

other set of commutations. This was found to be a good design approach based on

steady-state operation only, yet it renders the PC-PRI vulnerable to damage in the

event of load short-circuit.

The experimental photos show that reversed commutation on a transient

basis is a real possibility. The possibility of a reversed commutatfo_§e_Uence :was :

handled in the experimental inverter by avoiding the use of substantial snubbers,

and by providing fast antiparallel diodes. Unfortunately, thls:abandons one of the

benefits of resonant power conversion: to ability to use slow diodes. For the PC-

PRI there are at least two additional solutions, including above-resonance

operation and a controller which detects and prevents an impending reversed

commutation. Above-resonance operation will probably be ruled out due to the
= : :

high tank volt-ampere ratings that would be required. The use of additional

controller hardware will probably be mandatory in a high-power design, for

which the luxury of fast switching devices is not so readily available. In any case,

it is recommende d tha_t the experimental setup of Fig. VII-2 be used to verify the

fault-tolerance of any hardware built. It is important to keep in mind that timing

of the fault within an inverter switching cycle can have some influence on the

results, and that: a:lower-power inverter can easily have some tolerance for

reversed commutations, while a full-scale inverter might not. The circuit of Fig.

VII-2 permits an exhaustive search for the worst-case results of a fault in a

convenient manner.
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Fig. VII-2. Experimental arrangement for switched-load testing.
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Fig. VII-3. Switched resistive load. Upper: Load voltage at
300 V/div. Middle: Load current at 10 A/div. Lower: Inverter

switch current at 20 A/div, Timebase: 100 _s/div.
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Fig. VII-4(a). Detail of Fig. -3. Timebase: 20 _s/div.
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Fig. VII-4(b). Detail of Fig. -3. Timebase: 20 ps/div.
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Fig. VII-5. Short-circuit transient, PC-PRI gully loaded.

Upper: Load current at 50 A/div. Lower: Load voltage at

500 V/div. Timebase: 100 gs/div.
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Fig. VII-6(a). Current in L1, voltage on $1 at beginning of

load short-circuit. Upper: Inductor current il at 100 A]div.

Lower: Switch voltage vsl at 50 V/div. Timebase: 20 ps/div.

Fig. VII-6(b). Current in L1, voltage on $1 as load fault curent

levels off. Upper: Inductor current il at 100 A/div. Lower: Switch

voltage Vsl at 50 V/div. Timebase: 20 ps/div.
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VIII. SUMMARY

OP.|G_N_=L PAGE IS

OF POOR QUALITY

w

w

w

H

w

As described in the Introduction, the first goal of this project was to

investigate various converters that would be suitable for processing electric power

derived from a nuclear reactor. Fig. I-1 indicates the implementation of a 20 kHz

system that includes a source converter, a ballast converter, and a fixed frequency

converter for generating the 20 kHz output. This system can be converted to dc

simply by removing the fixed frequency converter. Since a 2.5 kW version of the

fixed frequency converter was developed as part of a previous project [9], this

present study emphasized the design and testing of the source and ballast

converters. A push-pull current-fed (PPCF) design was selected for the source

converter, and a 2.7 kW version of this was implemented using three 900 watt

modules in parallel. T_he steady state operation of this circuit has been analyzed

extensively in previous reTerences [2-4], but no references could be found on the

open loop transfer functions. Since this information is needed to properly Stabilize

the converter, it was necessary to derive these functions for both the voltage and

current regulation loops. Another problem that does not seem to have appeared

in the technical literature is the stability analysis of parallel converters. The

characteristic equation for two converters in parallel was derived, but this

analysis did not yield any experimental methods for measuring relative stability.

The three source modules were first tested individually and then in parallel as a

2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency

and regulation were acceptable; and the system was fault tolerant.

The design of a ballast-load converter, which was operated as a shunt

regulator, was investigated. The proposed power circuit is suitable for use with

BJTs because proportional base drive is easily implemented. A control circuit

which minimizes switching frequency ripple and automatically bypasses a faulty

shunt section was developed. A nonlinear state-space-averaged model of the

shunt regulator was developed and shown to produce an accurate incremental

(small-signal) dynamic model, even though the usual state-space-averaging

assumptions were not met. The nonlinear model was also shown to be useful for

large-signal dynamic simulation using PSpice. Experimental data were

presented confirming the automatic redundancy feature, and the large-and small
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signal simulation results. Operation at 2500 W with a 120oC baseplate

temperature (for the switching devices) was demonstrated.

Also investigated was the interaction of the TEC, shunt regulator and source

converter when operated as:a:system.: Both simu]ail0n and experiment showed

that the system was potentially bistable. A momentary overload on the source

converter could trigger a stable mode in which less-than-rated power was drawn,

but the shunt regulator was out of regulation. This undesirable mode of operation

can be prevented by providing an _ current limiter on the source converter,

with its setting coordinated with the TEC characteristics.

Final development and testing of the 2500 W phase-controlled parallel-loaded

resonant inverter described in the previous report [9.] under this grant was

completed. The validity of the proposed design procedure was confirmed for the

steady state. Load'fauit-tolerant operation was obtained {n the laboratory inverter,

but this required a snubberless design which gave up one of the benefits normally

associated with resonant power conversion: the use of slow antiparallel diodes. A

testing procedure for systematically verifying the transient short-circuit behavior

of the inverter was demonstrated. It is proposed that this be used to verify any

future inverter modifications intended to provide fault tolerance.
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