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In the filter evaluation process, post-filtered pulse-pair

width estimates and power levels are also used to measure the

effectiveness of the filters.

The results presented support the use of an adaptive

clutter rejection filter for reducing the clutter induced

bias in pulse-pair estimates of windspeed. The adaptive

clutter rejection filter is also shown to perform better than

one clutter rejection filter commonly used in land based air

traffic control radar systems.



TABLE OF CONTENTS

TITLE PAGE ...........................................

ABSTRACT .............................................

ACKNOWLEDGEMENTS.....................................

LIST OF TABLES .......................................

LIST OF FIGURES ......................................

CHAPTER

I. MICROBURSTDETECTION .........................

Microburst .................................
Pulsed Doppler Weather Radar ...............
Pulse-Pair Estimator .......................
F-Factor ...................................
Statement of the Problem ...................

II. CLUTTERMODELING .............................

Introduction ...............................
ARMAModeling ..............................
AR Modeling ................................
Levinson-Durbin Algorithm ..................
Linear Prediction Error Filter .............
Lattice Prediction Error Filter ............
Coefficient Determination ..................

Burg's Block Implementation ..............
Adaptive Implementation ..................

Gradient Adaptive ......................
Least Squares Adaptive .................

Model Order ................................

III. THE EFFECTSOF CLUTTERIN ESTIMATING
WINDSPEED..................................

NASA Model .................................
Bias in Pulse-Pair Mean Estimates Due to

Clutter ..................................
Analysis of a Dry Microburst ...............
Validation of Mean Estimates ...............

Width Estimates ..........................
Power Levels .............................

Page

i

ii

iv

viii

ix

1
4
9

12
13

16

16
18
19
20
21
24
27
27
28
28
33
38

39

39

40
42
45
45
45



vi

Table of Contents (Continued)

Threshold Levels .........................

Clutter Analysis ...........................

IV. CLUTTER REJECTION FILTERS ....................

The Optimum Clutter Rejection Filter .......

The Complex Square Root Normalized

Recursive Least Squares Lattice

Estimation Algorithm .....................
10th Order AR Clutter Model ................

10th Order Complex Coefficient
FIR Filters ..............................

Analysis of Filtering Schemes ..............
Filters Based on the Clutter

in Each Range Cell .....................

Filter Based on the Clutter

in a Single Range Cell .................

Comparison with a Pulse Canceller ..........

V. CONCLUSIONS ..................................

APPENDICES ..........................................

Ao The Complex Square Root Normalized

Recursive Least Squares Lattice

Estimation Algorithm .........................

B. NASA Model Parameters ..........................

C. Fourier Spectral Estimates of a Dry

Microburst Plus Clutter ......................

D. Fourier Spectral Estimates of a Dry
Microburst Without Clutter ...................

E. Fourier Spectral Estimates of Clutter ..........

F. Magnitude Response of the 10th Order
FIR Filters ..................................

Go Phase Response of the 10th Order

FIR Filters ..................................

H, Filtered Spectrum Using the Appropriate
Model Based Filter Coefficients ..............

Page

48

49

54

54

55

6O

63

65

65

69

75

81

84

85

127

129

135

141

147

153

159



vii

Table of Contents (Continued)

I. Filtered Spectrum Using the Filter

Coefficients for Range Cell 20 ...............

J. Filtered Spectrum Using a Pulse
Canceller Filter .............................

LITERATURE CITED ....................................

Page

165

171

177



LIST OF TABLES

Table

I.

II.

III.

IV.

Vo

VI.

VII.

A-I.

A-II.

A-III.

A- IV.

Levinson-Durbin Algorithm ....................

Gradient Adaptive Lattice Algorithm ..........

Algorithm for Determining the AR Model
Coefficients Based on a Gradient

Adaptive Lattice Structure .................

Complex Least Squares Adaptive

Lattice Algorithm ..........................

Algorithm for Determining the AR Model

Coefficients Based on a Complex LS

Adaptive Lattice Structure .................

Complex Square Root Normalized Recursive

Least Squares Lattice Estimation

Algorithm ..................................

Algorithm for Determining the AR Model
Coefficients Based on a Normalized

Complex LS Adaptive Lattice

Structure ..................................

Complex Least Squares Adaptive

Lattice Algorithm ..........................

Complex Square Root Normalized Recursive

Least Squares Lattice Estimation

Algorithm ..................................

Algorithm for Determining the AR Model

Coefficients Based on a Complex LS

Adaptive Lattice Structure .................

Algorithm for Determining the AR Model

Coefficients Based on a Normalized

Complex LS Adaptive Lattice
Structure ..................................

Pag e

22

3O

31

34

36

56

61

104

113

121

125



LIST OF FIGURES

Figure

I .

o

Illustration of the outflow from a

microburst ...................................

"S" curve associated with a microburst .........

3. Doppler return from a moving target ............

4. Pulse modulation for a Doppler radar ...........

5. Block diagram of a coherent pulsed

Doppler radar ................................

. Fourier spectral estimate of a range cell

containing microburst and clutter
return .......................................

o Linear prediction error filter implemented as

a tapped delay line ..........................

8. Linear prediction error filter implemented as
a lattice structure ..........................

° Transfer function implemented as a lattice

structure for the gradient adaptive

prediction error filter case .................

I0. Least squares adaptive lattice prediction
error filter .................................

Ii. Transfer function implemented as a lattice

structure for the least squares adaptive
prediction error filter case .................

12. Pulse-pair mean estimates of the return from
a wet microburst and clutter .................

13. Pulse-pair mean estimates of the return from

a dry microburst and clutter .................

14. Pulse-pair mean estimates of the return from

a dry microburst .............................

15. Fourier spectral analysis of range cells 25,

27, and 29 containing a dry microburst .......

Page

2

5

6

8

I0

17

23

26

32

35

37

41

41

43

44



x

List of Figures (Continued)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Fourier spectral estimate of range cell 15
with a low SNR ...............................

Pulse-pair width estimates of the return from
a dry microburst .............................

Power levels associated with the return from

a dry microburst ..............................

Pulse-pair mean estimates of the return from

clutter ......................................

Fourier spectral estimates of range cells 6,

20, and 35 containing clutter ................

Pulse-pair width estimates of the return from
clutter ......................................

Power levels associated with the return from

clutter ......................................

Complex square root normalized least squares

adaptive lattice prediction error filter .....

Transfer function implemented as a lattice

structure for the complex square root

normalized least squares adaptive
prediction error filter case .................

Fourier spectral estimate of the clutter in

range cell 6 .................................

AR spectral estimate of the clutter in range
cell 6 .......................................

FIR clutter rejection filter implemented as

a tapped delay line ..........................

Pulse-pair mean estimates of filtered dry

microburst plus clutter data where the

appropriate filter based on the

clutter in each range cell

has been applied .............................

Page

46

47

47

50

51

53

53

57

59

62

62

64

66



xi

List of Figures (Continued)

29.

32.

33.

34.

35.

36.

Pulse-pair mean estimates of filtered dry

microburst plus clutter data where the

appropriate filter based on the

clutter in each range cell has

been applied compared to

estimates given in the

case of a dry

microburst

without

clutter ......................................

Filtered spectrum of range cell 7 ..............

Pulse-pair width estimates after filtering using

the filter coefficients obtained from

the clutter in each range cell ...............

Power levels after filtering using the filter
coefficients obtained from the clutter

within each range cell .......................

Magnitude response of the filter designed for

range cell 20 ................................

Phase response of the filter designed for

range cell 20 ................................

Pulse-pair mean estimates after filtering

using the filter coefficients for

range cell 20 ................................

Pulse-pair mean estimates after filtering using

the filter coefficients for range cell 20

compared to estimates given in the

case of a dry microburst without

clutter ......................................

Page

66

68

68

7O

72

72

73

73

37.

38.

39.

Pulse-pair width estimates after filtering using

the filter coefficients for range

cell 20 ......................................

Power levels after filtering using the filter

coefficients for range cell 20 ...............

Magnitude response of a pulse canceller

filter .......................................

40. Phase response of a pulse canceller filter .....

74

74

76

76



xii

List of Figures (Continued)

41.

42.

Pulse-pair mean estimates after filtering using
a pulse canceller ............................

Pulse-pair mean estimates after filtering using

a pulse canceller compared to estimates given

in the case of a dry microburst without
clutter ......................................

Spectrum of range cell 24 after filtering ......

Power levels after filtering using a pulse

canceller ....................................

Pag e

77

77

78

8O

45.

A-Z.

A-2.

a-3.

A-_.

A-5.

Pulse-pair width estimates after filtering

using a pulse canceller ......................

Decomposition of projections by oblique

projection ...................................

Least squares adaptive lattice prediction

error filter .................................

Complex square root normalized least squares

adaptive lattice prediction error

filter ......................................

Transfer function implemented as a lattice

structure for the least squares adaptive

prediction error filter case ................

Transfer function implemented as a lattice

structure for the complex square root

normalized least squares adaptive

prediction error filter case ................

80

95

105

114

122

126



CHAPTERI

MICROBURSTDETECTION

Microburst

The contribution of microbursts to aircraft accidents

was first recognized by Fujita [i] in the late 1970's while

investigating the crash of Eastern 66 on June 24, 1975 at

John F. Kennedy Airport in New York City. Between 1964 and

1985, an estimated 26 major aircraft accidents resulting in

626 fatalities and over 200 injures have been attributed to

the microburst described by Fujita. Based on these figures,

the FAA and NASA have proposed the use of airborne Doppler

weather radar for the detection of a microburst in the

vicinity of airport runways [2].

The term "microburst" was first used by Fujita to

describe the vertical flow of wind which results in an

horizontal outflow in all directions upon impact with the

ground (Figure i) . The horizontal outflow may extend in all

directions within a 4km radius. The duration of a microburst

is usually less than i0 minutes. This limited duration and

the geographical boundaries of the horizontal outflow permit

microbursts to go undetected by non-Doppler radars or

ground-based anemometers [i]. Horizontal outflows extending

in radius greater than 4km are termed macroburst and are

easier to detect due to their large physical size.
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Figure I. Illustration of the outflow from a microburst.



The aviational hazard associated with a microburst

exists on final approach to a runway or on takeoff (Figure

i) . Headwinds are encountered by an aircraft on final

approach as it moves through one side of the microburst. The

pilot must then compensate to bring the aircraft down to the

glide slope. At this point, the pilot has reduced his speed

and is vulnerable to the unexpected downflow and tailwinds

associated with the other side of the microburst. On

takeoff, the downflow and tailwinds associated with the

microburst combine to reduce the necessary lift required by

the aircraft.

Microburst can be subdivided into two categories based

on the amount of precipitation present. A microburst

containing high levels of precipitation is defined as being a

"wet microburst" A low level of precipitation within the

microburst leads to the term "dry microburst" A high cloud

base may allow time for evaporation in dry regions leading to

the low levels present in the dry microburst.

The precipitation present in a microburst provides the

necessary targets for a Doppler weather radar which can be

used to measure horizontal components of wind speed with

respect to the aircraft. A wet microburst contains a

sufficient target base to provide radar returns

representative of the relative windspeed within the

microburst. The detection of windspeed within a dry

microburst is hampered due to the decreased target

concentration.
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A signature based on average horizontal components of

windspeed relative to position within a microburst can be

defined. This signature develops as the horizontal component

of windspeed increases with distance from the center of the

microburst. Figure 2 gives an example of the characteristic

"S" curve which relates the average horizontal component of

windspeed within a microburst to distance from the center of

the microburst. The Doppler weather radar proposed by the

FAA and NASA is intended to obtain information about average

windspeed versus range and thus identify the presence of a

microburst.

Pulsed DopDler Weather Radar

A Doppler weather radar is based on the Doppler effect

defined by Christian Johann Doppler. The Doppler effect,

applied to radar, relates the frequency shift in an

electromagnetic signal to the relative motion of the target.

The linear approximation between the frequency shift, fd, and

the speed of the target, v, is given by

fd = 2ftv/c- (I)

The slope of this line is twice the ratio of the transmitted

frequency, ft, to the speed of light, c. Figure 3

illustrates the shift in frequency of an electromagnetic

signal incident upon a target with velocity, v.

A Doppler radar can also be used to supply ranging

information. This is accomplished by pulse modulating the
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-v 0
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Figure 2. "S" curve associated with a microburst.



ft

transmitted signal

target

e

ft - fd

negative Doppler shift

-V

positive Doppler shift

ft + fd
+V

Figure 3. Doppler return from a moving target.



transmitted waveform and gating the return signal at equal

time intervals corresponding to successive target ranges

(range bins or range cells) before the next pulse is

transmitted. This is illustrated in Figure 4. The pulse

repetition frequency, PRF, limits the maximum unambiguous

range, Ru, where

R u = c/2PRF (2)

shows that the transmitted signal must traverse its path to

and from the target during the time interval allotted by the

PRF. The ability to resolve two targets, a distance, D,

apart, is also related to the PRF through

D = c (r/2) (3)

where r is the pulse width.

The pulse modulation of the transmitted signal requires

a coherent phase between pulses in order to extract frequency

shift information. This is accomplished by maintaining a

coherent oscillator (COHO) within the radar. The output from

the COHO is at an intermediate frequency, IF, and is mixed

with a stable local oscillator (STALO) to reach the required

transmission frequency (RF). The signal to be transmitted is

then pulse modulated and amplified.

The return signal, received during the gating process,

is demodulated using the STALO in order to convert to the IF.

In order to resolve the sign of the frequency shift, a second

IF signal is formed which has a 90 degree phase shift with
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Figure 4. Pulse modulation for a Doppler radar.



respect to the received IF signal. The two channels are

termed inphase (I channel) and quadrature (Q channel)

corresponding to the received IF signal and the 90 degree

phase shifted version, respectively. A second demodulation

is required to convert the IF signal to the Doppler frequency

range. This is accomplished by mixing the COHO with the I

and Q signals. The gated return is finally sampled and its

value stored for future processing. Figure 5 shows a block

diagram of a coherent pulsed Doppler radar [3].

The samples taken for a particular range cell over

successive pulses are stored and then processed to determine

the average target speed at that range. The pulse repetition

frequency is also the sampling frequency for the range cell

data since one sample is obtained per pulse per range cell.

This sampling frequency, PRF, is small compared to the

sampling frequency between successive range cells and

therefore provides the smaller bandwidth needed to resolve

the Doppler frequencies using conventional Fourier analysis

or parametric spectral estimation.

Pulse-_aiv Estimator

The precipitation present in a microburst yields

multiple point targets within a range cell. The radar return

from a range cell therefore consists of the sum of the

returns from the individual targets (raindroplets). Fourier

spectral analysis of this range cell data reveals that the
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estimated windspeed distribution can frequently be described

as Gaussian in form with an associated mean and width [4].

The pulse-pair algorithm developed by Rummler [5] can be

used to estimate the windspeed mean and width within a range

cell. The algorithm uses estimates of the zeroth and first

lag of the autocorrelation to determine the mean and width

estimates. The pulse-pair width estimate, w, for the range

cell data described previously can be written as

(PRF)2 [ IR(1) I ]w = 2 1 (4)
2 (n) R (0)

The autocorrelation lags in Equation 4 are estimated using

i N-I
R(1) = 7 V*(n)V(n+l) (5)

N n=0

and

1 N-I
R(0) = - 7. V* (n)V(n) (6)

N n=0

where V(n)

total number of samples.

takes the form

is the sampled complex time series and N is the

The pulse-pair mean estimate, f,

(PRF) {ARG [R(1)]}
f = (7)

2n

In comparing the pulse-pair method to Fourier based methods

for estimating the mean and width, it can be shown that the
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pulse-pair method is superior in cases where the

signal-to-noise ratio, SNR, is small [6]. The pulse-pair

method also offers an advantage in terms of calculation speed

over Fourier based methods.

F-Factor

A hazard index or F-factor has been defined by Bowles

[7] to measure the danger associated with microburst. The

F-factor takes the form

F = W'x/g Wh/V (8)

where W' x is the rate of change of the wind velocity along

the flight path, v is the relative speed of the aircraft, g

is the acceleration due to gravity, and W h is the vertical

component of wind velocity along the flight path. A

forward-looking Doppler radar can only measure radial

velocities of wind along the flight path of the airplane and

therefore estimates of W h can not be obtained. The radial

component, FR, can be written as

FR = (v/g) (AWx/AR) (9)

where AW x is the change in radial velocity between range bins

and AR is the distance between range bins. Estimates of the

average radial veloctiy, Wx, can be obtained from the return

data using the pulse-pair algorithm.
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Statement of the problem

The ability of an airborne Doppler radar system to

detect a microburst in the near terminal area depends heavily

on the capabilities of that system to measure the horizontal

component of windspeed versus range. The reflectivity

associated with the precipitation present in the microburst

is not the only contributing factor in this detection

problem. Clutter return from objects in the near terminal

area contributes to a loss in the signal-to-noise ratio and

can impose a bias on estimates of windspeed. This thesis

looks at reducing the effect of ground clutter on the

pulse-pair mean estimates of windspeed through the use of

clutter rejection filters based on modeling the clutter

return in the near terminal area.

The modeling techniques and coefficient estimation

algorithms used in this thesis are discussed in Chapter II.

Emphasis is placed on modeling the clutter as an

autoregressive process and using an adaptive least squares

prediction error lattice filter for determining the values of

the model coefficients. Block processing and gradient

adaptive algorithms are also discussed as alternative means

for determining the model coefficients.

In Chapter III, a model is used to generate microburst

and clutter return data. The model was developed by NASA and

uses actual clutter data taken from the Denver-Stapleton

airport. Inputs to the model include microburst and radar

system parameters. Using data generated from this model,
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analysis of the pulse-pair estimates and power levels of a

dry and a wet microburst are made in order to develop test

cases for evaluating the performance of the adaptive clutter

rejection filters. Spectral analysis and pulse-pair estimate

analysis of the clutter returns are also given in Chapter

III. The model clutter is observed to have the majority of

its power contained in a narrow band of the Doppler spectrum

and centered around zero. The clutter spectrum for this data

set does not contain specular components as in the case of

return from traffic on a nearby highway but this scenario

should not be ruled out.

The optimum clutter rejection filter is defined in

Chapter IV, based on modeling the clutter in each range cell

as an AR process. A complex normalized form of the least

squares adaptive prediction error lattice filter, which

offers possible fixed point implementation and involves fewer

update equations than the unnormalized form, is used to

determine the model coefficients. Analysis of pulse-pair

estimates and power levels after filtering reflects the

ability of the filters to remove the clutter without further

biasing the pulse-pair estimates. Two other filtering

schemes, one based on modeling the clutter to obtain a single

filter for use over several range cells, and one based on

conventional filtering techniques used in land based air

traffic control radar systems, are also evaluated.

Chapter V contains conclusions and recommendations for

future work. Appendix A contains a derivation of a complex
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least squares adaptive lattice structure. Appendix B

contains a listing of the parameters used in the simulation

model. Appendix C and D contain spectral estimates of dry

microburst returns with and without clutter, respectively.

Appendix E gives spectral estimates of the clutter return.

Appendix F and G give the filter magnitude and phase

response, respectively, based on modeling the clutter in each

range cell. Appendix H, I, and J contain filtered spectral

estimates where the filters were based on modeling the

clutter in each range, modeling the clutter in range cell 20,

and using a pulse canceller, respectively.



CHAPTERII

CLUTTERMODELING

_ntroduction

Data collected from a range cell may contain both

weather return and ground clutter (e.g. return from ground

structures). Figure 6 represents a range cell containing a

return from a microburst in addition to clutter. The clutter

tends to bias the pulse-pair estimates of windspeed mean and

width. Clutter may be centered around zero Doppler due to

stationary objects on the ground or very specular in nature

as in the case of traffic on a nearby highway.

With clutter and weather spectra separated in frequency,

a filtering scheme should be able to reduce the effects of

clutter on the pulse-pair estimates of windspeed. Haykin [8]

has suggested a means for modeling the clutter in the airport

terminal area as an autoregressive, AR, process. The model

can then be used to eliminate the clutter from the return

signal. Gibson [9] has also used this modeling technique to

design adaptive clutter rejection filters for use in an air

traffic enviroment. The clutter rejection filters based on

modeling the clutter offer a better estimate of the character

of the clutter spectrum than the traditional moving-target

indicator [9], MTI, filter. The MTI filter is a high pass

filter in the form of a pulse canceller. This filter is used
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Figure 6. Fourier spectral estimate of a range cell

containing microburst and clutter return.
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as a gross means for removing the clutter and does not take

into account the spectrum of the clutter other than the fact

that it is usually centered around zero Doppler.

ARMAModelinq

The AR process used for modeling clutter in the airport

terminal area is actually an extension of the autoregressive-

moving average, ARMA, model [i0] used to describe a

stochastic process. The ARMA model expresses the stochastic

process in terms of a linear difference equation

N M

YT = "7. a k YT-k + 7. d k u T_k
k=l k=0

(i0)

where d(0) = I. The input, u T, to the system is assumed to

be generated by a white noise process. The z-transform of

the transfer function between the input, u T, and the output,

YT, in Equation (I0) can be written as

D(z)
H(z) - (11)

A(z)

where

N

A(z) : 1 + 7. ak z -k
k=l

(12)

and

M

D(z) : 1 + 7. d k z -k

k=l

(13)
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The power spectrum of the output of the ARMAmodel, Py(eJ_°),

takes the form

Py(e j0_) = IH(e j_0) 12Pu(eJ _0) (14)

where Pu(eJ 00) and H(eJ £0) are z-transforms of the input and

transfer function, respectively, evaluated at z = eJ£0[Ii].

AR Modelinq

Wold's decomposition theorem [I0] allows for an

approximation of the ARMA model given in Equation (I0) . The

model of interest is an autoregressive, AR, model of the form

N

YT = 7_ ak YT-k + UT (15)
k=l

with an associated transfer function

1
H (z) - (16)
AR A(z)

Wold's decomposition theorem states that an ARMA model of

order (N,M) can be represented as an AR model of possibly

infinite order.

The power spectrum for the AR process in Equation (15)

can be written as

a2T
PAR (f ) = (17)N 2

I 1 +k_lak exp(-j27rfTk) I
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where _2 is the variance of the input white noise process,

and T is the sampling period. The input to the system was

assumed to be generated by a white noise process to allow the

frequency response of the input to be represented as a flat

spectrum of magnitude _2. The power spectrum given in

Equation (17) was also developed by Burg in maximizing the

entropy associated with estimating unknown autocorrelation

lags [12]. Park [13] discusses several advantages of Burg's

maximum entropy method, MEM, in spectral estimation over

Fourier based techniques. These advantages are revealed in

its high resolution capability and absence of leakage.

Levinson-Durbin Alqorithm

A method for determining the coefficients of the AR

model can be obtained from the Yule-Walker equations

N

ry(k) = 7. ajry(k-j) + o2 k = 0
j=l

N

ry(k) : 7. ajry(k-j) I < k < N
j=l

(18)

which relate the coefficients of

autocorrelation of the process, ry(k).

written in matrix form as

the model to the

Equation (18) can be
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ry(0) ry(-l) ... ry(-N)

ry(1) ry(0) ... ry(- (N-l))

ry(N) ry(N-l) ... ry(0)

m

1

a N

a I

k

0

0

(19)

Estimates of the negative autocorrelation lags can be

obtained from the fact that r*y(m) = ry(-m), m = 0,...,N, for

the stationary data case. The matrix on the far left of

Equation (19) is defined as Toeplitz due to the equal-valued

elements along each diagonal of this Hermitian matrix.

Equation (19) containing the Toeplitz matrix can be solved

using the Levinson-Durbin Algorithm [i0] which provides a

recursive method for determining the coefficients, {al, a2,

.... aN]. This algorithm is given in Table I. The

Levinson-Durbin algorithm provides coefficients, [al,l o21 }

... {aN,I...aN,N O2N} , for all orders of the model up to N.

Linear prediction Error F$1te[

The AR model in Equation (15) can also be interpreted as

a linear prediction error filter, LPEF, that estimates YT

based on previous samples of the output with an associated

estimation error, u T [ii]. The output from the prediction

error filter can be considered as samples from a white

process due to the definition of the input, u T, in the AR

model. Therefore, the filter in Figure 7 is sometimes termed



22

TABLE I

Levinson-Durbin Algorithm

_20 = ry(0)

al,l = -ry(1)/ry(0)

for i = 1,2 ..... N

i-i

k i = - [ry(i) + 7. ai_l,jry(i-j)]/a2i_l
j=l

ai, i = ki

ai, j = ai_l, j + kia*i_l,j_ 1 1 < j < i-i

o2i= (i Iki12)o2i_i

where

aj : aN, j 1 < j < N
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YT
[_ YT-I _._

u T

Figure 7. Linear prediction error filter implemented as a

tapped delay line.
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a whitening filter.

whitening filter

The resulting transfer function for the

HW(Z) = A(z) (20)

is just the inverse of that for the AR model in Equation

(16). This whitening filter is a finite impulse response,

FIR, filter which lends itself to the tap delay line

implementation as seen in Figure 7.

Lattice Prediction Error Filter

The Levinson-Durbin algorithm also provides insight into

another implementation of the linear prediction error filter

defined in Figure 7. This new implementation involves two

different errors, a forward linear prediction error, eN, T,

and a backward linear prediction error, rN, T, where

N

eN, T = 7. aN,mYT_ m
m=0

(21)

N

rN, T = 7 bN,mYT_ m
m=0

(22)

and aN, 0 = bN, N = i. The forward linear prediction error in

Equation (21) is the error in predicting YT based as N past

samples, {YT-I, YT-2, .... YT-N}- The backward linear

prediction error in Equation (22) is the error in predicting

YT-N based on N future samples, {YT, YT-I ..... YT-N+I} -

Haykin [ii] shows that for a stationary process the

coefficients for the backward prediction error are the
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complex conjugates of

coefficients,

the forward prediction error

bN,m = a*N,N_m+1 m = 1,2 ..... N (23)

in reverse order.

Based on the Levinson-Durbin algorthim, an order

recursive implementation of Equations (21) and (22) can be

formulated using the reflection coefficient, kn+l, [Ii] where

en+l, T = en, T + kn+irn,T_ 1 (24)

rn+l, T = rn,T_ 1 + k*n+len, T (25)

for n = 0 ..... N-I. This order recursive implementation of a

linear prediction error filter can be implemented as a

lattice filter, shown in Figure 8.

The lattice prediction error filter has several

properties which make it advantageous over the direct

realization of a FIR filter. Haykin [ii] shows that the

reflection coefficients, kn+l, must have magnitude less than

one and that this assures minimum phase for the filter (no

zeros outside the unit circle). Also, Friedlander [14]

refers to several studies which favor a lattice filter over a

direct realization in terms of the effects of roundoff noise

due to finite word length. Another major advantage is the

ability to obtain the outputs from the lattice filter for all

orders up to N using only N reflection coefficients. A

direct realization would require N2-2N coefficients in order

to implement the N required filter outputs.
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YT

e0

r0,T rl,T rN-I,T

,Te

rN,T

Figure 8. Linear prediction error filter implemented as a

lattice structure.
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Coefficient Determination

Burg's Block Implementation

The Burg algorithm [II] defines a block implementation

for determining the reflection coefficients from the actual

sampled data, YT- Once the reflection coefficients have been

determined, the Levinson-Durbin algorithm can be used to

compute the filter coefficients. Burg's method is based on

minimizing the sum of the forward and backward prediction

error energies. This cost function takes the form

M-I M-I

E n = 7. len,T 12 + 7. ]rn,T 12
T=n T=n

(26)

where M is the data length. This function is minimized with

the constraint that the Levinson-Durbin algorithm holds.

Taking the derivative of E n with respect to k i, i =

1,2 ..... N, and setting the result equal to zero yields [15]

k ,

l M-I

M-I *

-2 E r
T=i i-l'T'lei'l'T

2 2
I )7. (Ir i I,T_I I + ie.- 1-l,TT=i

(27)

The filter coefficients, for all orders up to N, can be

obtained by recursively implementing the Burg algorithm in

Equation (27), the Levinson-Durbin algorithm in Table I, and

the forward and backward error order updates in Equations

(24) and (25). The block implementation of the Burg

algorithm requires large amounts of storage space and

considerable computation.
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Adaptive Implementation

An adaptive approach to determining the reflection

coefficients reduces the large storage requirements needed to

process the data as a block of information. Two methods

which have found considerable use are the gradient adaptive

approach and an adaptive scheme based on least squares.

Besides reducing the storage requirements, the adaptive

schemes are able to track changes in a nonstationary

environment.

Gradien_ Adaptive

A complex gradient adaptive algorithm presented by

Symons [16] is based on the cost function

T

Hn+l, T = 7. [len+l,il 2 + Irn+l,il2]
i=l

where

(28)

and

en+l,T = en T kn+l, Trn, T- 1 (29)

= - k*rn+l,T rn,T-i n+l,Ten,T

The gradient of the cost function with respect to kn+l, T

yields

(30)

5H

n+l,T _ 2 I [ r* + * .e ]

_kn+l, T i=l en+l,i n,i-i rn+l,1 n,i
(31)
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An estimate of the gradient in Equation (31) can be obtained

by evaluating it at (i = T) to form an instantaneous estimate

[Ii] . The time update of the estimated reflection

coefficients, kn+l, T, can now be written as

kn+l,T+l = kn+l,T _n T[en+l,T r*, n,T-i

+ r n+l,Ten,T] (32)

where _n,T is the step size controlling the convergence

properties of the algorithm. Griffiths [14],[17] has chosen

_n,T to be inversely proportional to the prediction error

power, Rn, T. Table II gives one version of the gradient

adaptive implementation given by Giffiths which has been

modified based on Symons results to support complex data.

The associated lattice structure is equivalent to the one

given in Figure 8, but with the reflection coefficient, kn+ I,

replaced with the reflection coefficient, -kn+l, T .

Friedlander [14] provides a means for determining the AR

model coefficients from the estimated reflection

coefficients, shown in Table III, which is based on the

transfer functions, AN,T(Z) and BN,T(Z), between the input x T

and the errors, eN, T and rN,T, respectively, where

AN,T(Z) = 1 + aN, iz'l + aN,2 z-2 + ... + aN,N z-N (33)

BN,T(Z) = 1 + bN, l z-I + bN,2 z-2 + ... + bN,N z-N (34)

This lattice structure implemenation of the transfer

functions is given in Figure 9.
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TABLE II

Gradient Adaptive Lattice Algorithm

Initialization:

Kp,.l = 0 p = I,...,N

rp,_l = rp,_2 = ep,_l = 0 p = 0 ..... N

Rp, -I = a , o is an a priori estimate of
covariance

For each data point

e0 T = r0 T = YT
I I

Do for p = 0 ..... N-I

kp+l,T = kp+l,T 1 + _[ep+l T-I r*- , p-l,T-2

+ r*p+l,T_lep,T_ I] /Rp,T-I

ep+l,T = ep,T kp+l,Trp,T-I

= - k*rp+l, T rp, T- 1 p+l, Tep, T

Rp, T = _Rp,T_ 1 + [e2p, T + r2p,T_l ]

_: controls convergence rate

5: reduces influence of past data samples

the error
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TABLE III

Algorithm for Determining the AR Model Coefficients

Based on a Gradient Adaptive Lattice Structure

Initialize: bp,_l = 0, p = 0, .... N-I

For i = 0 ..... N:

a0,i = b0,i = [I for (i = 0), 0 for (i > 0)]

For p = 0 .... ,N-l:

ap+l, i = ap, i

bp+l, i = bp,i. 1

a i = aN, i

kp+Ibp,i-i

k*p+lap,i
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INPUT

A0 T(Z) AI,T(Z)
• o o °

-kl,

B0, T (z)

AN-I,T(Z) AN,T(Z)

BI,T (z) BN- I,T (z) BN,T(Z)

Figure 9. Transfer function implemented as a lattice

structure for the gradient adaptive prediction error
filter case.
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Least SQuares Adaptive

An exact solution for the reflection coefficient

order-time update can be found using a least squares, LS,

adaptive implementation. In the LS case, the sum of the

squared magnitude of the forward error, up to time T,

T

= _leN, tl 2 (35)
t=0

is minimized with respect to the coefficients [aN, i , i =

i, .... N} using the principle of orthogonality. The resulting

LS adaptive lattice implementation of the prediction error

filter [I0] is given in Table IV and the associated lattice

filter in Figure I0. A derivation of this LS adaptive

lattice algorithm can be found in Appendix A. The AR model

coefficients can be obtained in a similiar manner to that for

the gradient adaptive algorithm. Friedlander [14] provides

the algorithm in Table V and the associated lattice structure

in Figure ii. A derivation of this lattice structure

implementation of the transfer function is given by Honig and

Messerschmitt [18] for the real coefficient case. A

derivation for the complex coefficient case is given in

Appendix A. A major advantage of the LS adaptive

implementation over gradient adaptive methods lies in the

superior convergence rates of the LS implementation due to

the exact solution it gives for the adaptation [14].
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TABLE IV

Complex Least Squares Adaptive Lattice Algorithm

Input parameters:

N = maximum order of lattice

YT = data sample at time T

= exponential weighting factor

Do for T = 0 to Tma x

e0 T = r0 T = XT
r

Re0,T = Rr0,T = °uRe0,T-I + YTY*T

Y0,T = 1

Do for n = 0 to {min (N, T) -l}

kn+l, T = Ctkn+l,T_ 1 + e*n,Trn,T_i/Yn,T_ 1

Yn+l,T =Yn,T - r* -r nn,T R ,Trn,T

krn+l, T = kn+l,TR-rn,T_ 1

en+l, T = en, T k*rn+l,Trn,T-I

Ren+l,T = Ren, T krn+l,Tk*n+l, T

ken+l, T = R-en,Tkn+l, T

rn+l, T = rn,T_ 1 ken+l,Ten,T

- k*Rrn+l,T = REn,T_ 1 n+l,Tken+l,T

Note: Division by zero where y = y, R E, R e , set I/y = 0.

Initialize the variables k, r, R e , R E, and y to zero.
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YT

e0,T el,T
• o . •

e

-kl,

*r

-kl,

. ° o °

r0,T rl, T

eN-l'Te e_ 'T-kN, T

rN-I,T rN,T

Figure I0. Least squares adaptive lattice prediction
error filter.
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TABLE V

Algorithm for Determining the AR Model Coefficeints
Based on a Complex LS Adaptive Lattice Structure

For i = 0..... N do the following

bp,_l,T = 0 for p = 0 .... ,N-I

a0,0, T = b0,0, T = 1 for i = 0

c0,0, T = 0 for i = 0

a0,i, T = b0,i, T = c0,i, T = 0 for i > 0

For p = 0 ..... N-I

bp,i,T_ 1 = bp,i, T + Cp,i,Trp,T/Yp, T

Cp+l,i,T = Cp i T + bp i T R-r *, , , , p,T r p,T

ap+l,i, T = ap,i, T bp,i-l,T-iR-rp,T-Ik*p+l,T

bp+l,i, T = bp, i.l,T_ 1 ap,i,TR-ep,Tkp+l,T
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INPUT_
SECTION

1 SECTION

N

AN,T(Z)

___,T (z)

___,T (z)

(a) The overall structure.

Ap,T(Z)
%p+l, T (z)

_ ke
p+l, T

Bp, T (z)

_k r*
p+I,T

_p+l, T (z)

Cp, T (z)

rp, T i/yp, T

* TRp,rT

Cp+l,T(Z)

(b) A single section.

Figure Ii. Transfer function implemented as a lattice

structure for the least squares adaptive prediction errorfilter case.
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Model Order

In the AR modeling process the appropriate model order N

is usually not known a priori. The use of too low a model

order results in a smoothed spectral estimate and too high a

model order induces spurious detail into the spectral

estimate. A method for determining the correct model order

based on some error criterion can be devised. The

coefficient estimation techniques presented previously have

monotonically decreasing error powers which prevent the use

of the error power as the sole determining factor of the

correct model order. Akaike [19], [20] has developed two

criteria for determining model order selection. The first

criterion is based on minimizing the average error, E N, for a

one step prediction and is termed a final prediction error,

FPE, criterion. The FPE criterion takes the form

M+N+I ]FPEN = EN M-N-I (36)

where M is the number of data samples used. The model order,

N, is choosen so as to minimize FPE. This method has been

found to predict too low a model order in some cases. Akaike

has developed a second criterion which is based on minimizing

an information theoretic function assuming the process has

Gaussian statistics. The Akaike information criterion, AIC,

takes the form

AIC N = In(E N) + 2(N+I)/M (37)

where the model order, N, is choosen to minimize the AIC.



CHAPTERIII

THE EFFECTSOF CLUTTERIN

ESTIMATING WINDSPEED

NASA Model

To support the development of an airborne pulsed Doppler

radar system for the detection of microbursts in the near

terminal area, NASA [2] has developed a simulation model for

generating pulsed Doppler weather radar data containing

microburst and clutter returns. The model is designed to

allow for the input of clutter and microburst information as

well as radar system parameters. Appendix B gives a listing

of the possible input parameters to the model.

To study pulse-pair estimates of radial wind velocity,

two data sets were generated using the simulation model, one

set contained a wet microburst and one set contained a dry

microburst with the microburst centered 5km from touchdown.

Appendix C contains Fourier spectral estimates of the

simulated dry microburst and clutter return. Each data set

included clutter based on actual clutter collected in the

vicinity of the Denver Stapleton airport. In each case the

data represented a stationary situation with the the aircraft

positioned 7km from touchdown on a 3 degree glide slope with

the first range bin recorded Ikm from the aircraft.

According to the simulated radar pulse width, successive

range bins were located 150m from each other. Radar returns
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were collected over 40 range bins from 512 pulses transmitted

by the radar at a pulse repetition frequency of 3723.0 Hz.

Other parameters related to the model for both the dry and

wet microburst can be found in Appendix B.

Bias in pulse-Pair Mean Estimates

Due to Clutter

Figure 12 shows the resulting pulse-pair estimates of

average windspeed for each range bin in the case of a radar

return containing a wet microburst plus clutter. Equation

(I) was used to convert the pulse-pair mean frequencies to

the corresponding Doppler velocities. This figure

illustrates the characteristic "S" curve associated with

microburst. Estimates of average windspeed go from positive

to negative as one moves through the microburst with zero

radial velocity near the center of the microburst, range cell

27. In the case of the dry microburst in Figure 13, the

familiar "S" curve is no longer distinguishable. Two

factors, bias due to clutter [21] and low signal-to-noise

ratios, SNR, contribute to these poor estimates of windspeed

within the dry microburst by the pulse-pair estimator. The

effect of the bias due to clutter is less evident in the case

of a wet microburst due to the expected higher

signal-to-clutter ratios, SCR's. Due to the overwhelming

effect of clutter and low SNR's on the pulse-pair estimates

of windspeed, the dry microburst will be choosen as the test
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Figure 12. Pulse-pair mean estimates of the return from a
wet microburst and clutter.
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Figure 13. Pulse-pair mean estimates of the return from a
dry microburst and clutter.
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case where any findings should also apply for the wet

microburst case with higher SNR's and SCR's expected in a

majority of the range cells.

Analysis of a Dry Microburst

A clutter rejection filter has been proposed as a means

for removing the bias in the pulse-pair estimates. Before

attempting to define this clutter rejection filter, a study

of the pulse-pair estimates of a dry microburst without

clutter is essential for interpreting the results after

filtering. In the dry microburst case, the windspeeds versus

distance from the of the center microburst are still

characterized by the familiar "S" curve. Pulse-pair

estimates in the presence of the dry microburst without

clutter should therefore reflect this physical phenomena.

The model is now used to generate the same dry

microburst but without clutter. The pulse-pair mean

estimates for this set of data are shown in Figure 14. Range

cells 23 through 32 in Figure 14 are indicative of the "S"

curve associated with the microburst. A spectral analysis,

using a 512 point DFT, of range cells 25, 27, and 29, shown

in Figure 15, reveals that these range cells do indeed

contain microburst information with SNR's on the order of 20

dB. As a note of reference, all Fourier spectral analysis

presented in this thesis will be based on 512 data samples

with no zero padding and will be normalized by the number of

data points.
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Figure 14. Pulse-pair mean estimates of the return from

a dry microburst.
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Figure 15. Fourier spectral analysis of range cells 25, 27,

and 29 containing a dry microburst.
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In Figure 14, range cells outside of 23 through 32 have

what appear to be random estimates of mean windspeed. Figure

16 provides a spectrum of range cell 15 and is typical of the

spectral content in these range cells where the SNR's are

very low. This low SNR can be used to explain the random

mean estimates of windspeed found in these range cells [6].

Spectral estimates for all 40 range cells are given in

Appendix D for the dry microburst without clutter case.

Validation of Mean Estimates

Width Estimates

A method for determining valid pulse-pair mean estimates

may be found by examining pulse-pair width estimates and

power levels. Large widths estimates may indicate the

presents of a bi-modal distribution or low SNR and serve as

an indicator of questionable estimates on a range cell by

range cell evaluation. This concept is supported by the

width estimates of the dry microburst data without clutter

given in Figure 17. The large width estimates (approximately

13 meters/sec) in the range cells away from the center of the

microburst (range cell 27) are indicative of the low SNR

expected in the dry microburst environment.

Power Levels

Power levels may also provide a level of significance

that can be associated with the pulse-pair mean estimates of

windspeed. Figure 18 gives the power levels associated with

the dry microburst data without clutter. The power levels
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Figure 16. Fourier spectral estimate of range cell 15
with a low SNR.
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Figure 17. Pulse-pair width estimates of the return from

a dry microburst.
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Figure 18. Power levels associated with the return from

a dry microburst.
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were computed as a sum of the squared magnitudes of the IQ

radar return samples. The resulting power levels in this

thesis are therefore normalized by the sampling period. The

range cells near the center of the microburst (24-30) have

approximately a 10dB to 20dB relative gain in power compared

to range cells away from the center of the microburst. This

gain can be associated with the higher target concentrations

near the center of the dry microburst. The low levels of

power indicate the presence of noise only.

Threshold Levels

The analysis given in the previous two sections suggests

that the power levels and the pulse pair width estimates may

be useful in forming a statistic to identify the levels of

significance to associate with the pulse-pair mean estimates.

The threshold power levels can be obtained based on

statistics of noise and clutter power levels. After

filtering, the power in the return data can be contributed

two sources: noise and weather information. Thresholds for

width estimates may be defined by statistical analysis of

radar returns in windshear situations. The actual statistic

will not be formulated in this thesis, but the power levels

and pulse-pair width estimates will be used as guides for

evaluating the significance of pulse-pair mean estimates.
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Clutter Analysis

At this point, a study of the clutter may reveal

possible filtering techniques for removing the bias imposed

by the clutter on the pulse-pair estimates of windspeed. The

radar simulation model can be used to generate range bins

containing clutter only. Pulse-pair estimates of mean

clutter speed, where "clutter speed" refers to the Doppler

spectrum associated with the clutter, are given in Figure 19.

The clutter tends to be centered around zero Doppler due to

stationary objects along the flight path, but a slight shift

in speed to negative Doppler occurs in the first few range

cells. This shift can be contributed to returns from

sidelobes which contain information from objects at close

range which have a different relative velocity with respect

to the aircraft than objects along the intended flight path.

The demodulation of the return signal to Doppler frequencies

is based on the relative ground velocity of the aircraft

along the intended flight path.

Figure 20, containing range cells 6, 20, and 35, is

typical of the spectral estimates of the clutter for this set

of 40 range cells. Appendix E contains Fourier spectral

estimates of the clutter for all 40 range cells. This

particular set of clutter return data does not contain any

specular clutter away from zero Doppler which may result from

traffic on a nearby highway, but this scenario should not be

ruled out. Even though the clutter tends to be centered

around zero Doppler, the actual width and power associated
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Figure 19. Pulse-pair mean estimates of the return

from clutter.
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Figure 20. Fourier spectral estimates of range cells 6, 20,

and 35 containing clutter.
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with the clutter varies from one range cell to the next.

This variation can be seen in Figures 21 and 22 which

represent the power and width estimates, respectively,

associated with each range cell. These width estimates were

obtained using the pulse-pair algorithm. The large width

estimates in some of the range cells may be the result of low

power levels within the these range cells which effect the

performance of the pulse-pair estimator [6]. The actual

clutter will also vary from airport to airport and even from

runway to runway due to the varied physical environments.

This imposes a problem in designing an optimum filter to

remove the clutter from the radar return data.
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Figure 21. Pulse-pair width estimates of the return
from clutter.
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Figure 22. Power levels associated with the return
from clutter.



CHAPTERIV

CLUTTERREJECTION FILTERS

The Optimum Clutter Rejectio_ Filter

Based on observations of the variation in the simulation

model clutter spectra over many range cells it appears that

the optimum filtering scheme for removing the clutter from

the return data in a particular range cell would need to be

based on the geographical location of the range cell. Even

for a given runway, periodic updates of the filters used on

final approach would need to be obtained due to glideslope

flight path variations and also changes in the physical

environment of the airport terminal area. This scenario

suggests some type of adaptive modeling process to define the

clutter in each range cell with updating as warranted.

Adaptive modeling can be accomplished using the AR model

defined in Chapter II implemented as an adaptive LS lattice

structure in order to determine the model parameters. The

lattice structure was chosen for its ability to provide

coefficients of the model recursively for all orders up to N.

This provides the ability to use different model orders for

each range cell based on the requirements mandated by the

clutter. The adaptive LS lattice structure implementation

for determining the model coefficients is choosen for its

superior convergence rates over gradient adaptive schemes.

The lattice structure also insures that the resulting filter
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will be stable. The model parameters could be obtained on

approach to a runway on days when favorable weather

conditions exist. In the presence of a microburst or other

source of windshear, the best possible filters could then be

available to remove unwanted ground clutter from the return

data, enhancing the ability to detect windshear.

The Complex SQuare Root Normalized Recursive

Least Squares Lattice Estimation Alqorithm

An alternative form of the adaptive LS lattice structure

given in Chapter II can be obtained, involving fewer update

equations and potential for fixed point implementation. This

alternative implementation is termed a normalized recursive

LS lattice structure. A complex form of the algorithm,

needed to process the I and Q data, was not available in the

literature. A modification of the normalized recursive LS

lattice algorithm for real data given by Lee [22] has been

developed to handle complex data. The derivation is given in

Appendix A. Table VI gives the necessary equations needed to

implement the complex square root normalized recursive least

squares lattice estimation algorithm given in Figure 23.

The complex square root

squares lattice estimation

equations per order update

normalized recursive least

algorithm requires only 3

compared to six in the

unnormalized version in Table IV. The normalizations also

restrict the magnitude of the normalized reflection

coefficients, F, forward errors, v, and backward errors, _ to
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TABLE VI

Complex Square Root Normalized Recursive Least
Squares Lattice Estimation Algorithm

Initialize:

R. 1 = O O is a small positive value

for T = 0,Tma x

RT = _RT-I + Y TYT

V0,T = q0,T = YT(RT)'I/2

for n = 0 to [min{T,N} -I]

rn+l, T = [I V*n,TVn,T]l/2 Fn+I,T_I

[l-q* n,T_lqn,T_l]I/2 + V*n,Tnn,T_l

F*Vn+l, T = [I F*n+I,TFn+I,T] -1/2 [Vn, T n+l,Tqn,T-l]

[I n n,T-Inn,T-l]-1/2

qn+l,T = [I - F* n+l, TFn+I, T] -1/2 [qn, T- 1 Fn+l, TVn, T]

[I - V*n,TVn,T ] -1/2

Note: Division by zero where y = i/x : x = 0 should result in

y = 0. Initialize the variables F, v, and q to zero.
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v0, T VI,T VN-l, T VN,T

"l 1

yT R_rl/2 - F1, T - FN,

-F* - FN,

.... __ °_
r]0,T T]I,T tIN-I,T T]N,T

c -1/2
x = [l-x'x]

Figure 23. Complex square root normalized least squares

adaptive lattice prediction error filter.
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values less than one. This conditioning of the variables

allows for fixed implementation.

The transfer function for the normalized recursive least

squares lattice estimation algorithm in Figure 24 can be

written as

_N,T (z) = aN,0 + aN, l z-I + aN,2 z-2 + --- + aN,N z-N (38)

_N,T (z) = hN,0 + hN, l z'l + hN,2 z-2 + --- + hN,N z'N (39)

_N,T (z) = _N,0 + _N,I z-I + _N,2 z-2 + --- + _N,N z'N (40)

The normalized transfer functions _N,T(z) and BN,T(Z)

correspond to the transfer functions between the normalized

input, YTRT-I/2, and the normalized forward, VN,T, and

backward, UN,T, errors, respectively. The normalized transfer

function _N,T(Z) corresponds to an auxillary variable

defined in Appendix A and is only needed for the

implementation of the normalized transfer functions AN, T(Z)

and BN, T(Z) as a lattice structure.

The coefficients for the transfer function of the AR

model defined in Equation (15) in Chapter II, and equally so,

those for the transfer function of the whitening filter

defined in Equation (20) of Chapter II, can be obtained from

the normalized transfer function given in Equation (38) as

AN,T(Z) = (aN,0/aN, 0 ) + (aN, i/aN,0)z-i + (aN,2/aN,0)z-2

+ -.- + (aN,N/aN,0)z-N

= 1 + aN, iZ-i + aN,2 z-2 + ... + aN,Nz-N (41)

An algorithm for obtaining the normalized coefficients is
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INPUT_ SECTION

1

A1 ,T (z) AN- I, T (z)

BI, T (z)

Cl, T (z)

--BN-I,T (z)

(a) The overall structure.

CN- i, T (z)9_

SECTION

N

,T (z)

,T(Z)

,T (z)

Ap,T(Z)

-F p+l,T

Fp+I,T

Ap+I,T (z)

_,T (z) B--p+1,T (z)

c Fc
_p,T p+l,T

_p,T

rlp,T

_p,T (z) Cp+I,T (z)

C

q
p,T

c -1/2
x = [1-x'x]

(b) A single section.

Figure 24. Transfer function implemented as a lattice
structure for the complex square root normalized least

squares adaptive prediction error filter case.
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given in Table VII. This algorithm is given by Honig [18]

and Friedlander [14] for the real data case. A derivation

for the complex case is given in Appendix A.

10th Order AR Clutter Model

Spectral estimates of the range cell clutter data using

the power spectrum of the AR process in Equation (17) can now

be compared to Fourier estimates to evaluate the ability of

the AR coefficients to model the clutter. Based on

preliminary evaluations a model order of 10 was chosen for

the AR process in modeling the clutter. This fixed model

order simplifies the modeling process with the constraint

that the model order is sufficient in a majority of the range

cells. Future evaluations based on Aikaike's criterion in

Chapter I or other model order determination techniques may

be used if the exact model order is vital for each range

cell.

Figure 25 contains a Fourier spectral estimate, based on

a 512 point DFT, of the clutter contained in range cell 6.

The ability to model the clutter with a 10th order AR model

is evident by comparing the model given in Figure 26 with the

corresponding Fourier spectral estimate. Note the ability

to model the clutter in Figure 26 even when the mode of the

clutter is shifted from zero Doppler. This ability to model

the clutter as a low order AR process satisfies the necessary
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TABLE VII

Algorithm for Determining the AR Model Coefficients Based
on a Normalized Complex LS Adaptive Lattice Structure

RT = aRT-I + x TXT

For i = 0 ..... N do the following

bp,_l,T = 0 for p = 0,...,N-I

a0,0, T = b0,0, T = RT-I/2 for i = 0

co 0 T = 0 for i = 0
; l

a0,i, T = b0,i, T = c0,i, T = 0 for i > 0

For p = 0 .... ,N-I

bp,i,T. 1 = [bp,i, T + cp,i,TUp, T]

[i-, p, T"p, T] -1/2

Cp+l,i,T : [Cp,i,T + bp,i,Tn p,T] [l'q*p,Tqp,T]-1/2

ap+l,i,T = [ap,i,T bp, i_ l, T. iF*p+l, T]

[I-F* -1/2p+l, TFp+I, T]

bp+l,i,T = [bp, i.l,T_l ap, i,TFp+l,T]

[l-F*p+l, TFp+I, T] -1/2

where

ap, i = ap,i/ap, 0



62

-80
Range Cell 6

-1O0

-120

-140

-16O -

-180
-30 30

I I I '

-15 0 15

meters/sec

Figure 25. Fourier spectral estimate of the clutter

in range cell 6.
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limitations on storage requirements in a real world

implementation, in that only a limited number of coefficients

need be stored and completely specify the model.

10th Order Complex Coefficient FIR Filters

The coefficients of the AR model can now be used to

filter the microburst plus clutter data. The whitening

filter defined in Equation (20) of Chapter II gives the

relationship between the model parameters and the filter

coefficients and can be used as a clutter rejection filter.

The discrete time filter takes the form

XT = YT + aN, IYT-I + --. + aN,NYT-N (42)

where YT is the radar return containing microburst plus

clutter data and x T is the result of the filtering process.

This filter is a finite impulse respone, FIR, filter which

can be implemented as a tapped delay line as seen in Figure

27. Another advantage of this type of filter is the complex

coefficients obtained from the modeling process, which define

the filter unit sample response as complex, provide the

ability to define filters with nonsymmetric magnitude

frequency responses. This is necessary when the clutter is

shifted away from zero Doppler or in the case of specular

clutter which may be due to moving objects on the ground.

The phase associated with this type of complex coefficient

FIR filter is not be constrained to linear. A linear phase,
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YT
r

YT-N+I r YT-N

Figure 27. FIR clutter rejection filter implemented as a

tapped delay line.
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however, is not necessary for this filter if the pulse-pair

algorithm is used to estimate windspeed mean and width in

each range cell [21].

Analvsis of Filterinq Schemes

Filters Based on the Clutter

in Each Range Cell

Using the filter defined in Equation (42), an analysis

will be made of the effects of filtering each range cell with

a 10th order complex coefficient FIR filter where the

coefficients are determined from the clutter using the

complex square root normalized adaptive least squares lattice

estimation algorithm. This analysis will be based on

simulated radar returns from a dry microburst plus clutter

data where the effect of bias on the pulse-pair mean

estimates of windspeed is significant. Any resulting

generalizations from this analysis can be applied in the wet

microburst case where the effect of bias is reduced due to

higher SNR's and SCR's. The magnitude and phase response of

the filters defined for each range cell are given in Appendix

F and G, respectively. The spectral content of the filtered

range cells is given in Appendix H. Figure 28 shows the

pulse-pair estimates of the post filtered data containing a

dry microburst plus clutter. The characteristic "S" curve is

now evident in range cells 23 through 32. The ability to

remove the clutter without further biasing the pulse-pair

estimates of the dry microburst is evident in Figure 29 by

comparing the post filtered estimates of windspeed to those
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Figure 28. Pulse-pair mean estimates of filtered dry

microburst plus clutter data where the appropriate filter

based on the clutter in each range cell has been applied.
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Figure 29. Pulse-pair mean estimates of filtered dry

microburst plus clutter data where the appropriate filter

based on the clutter in each range cell has been applied

compared to estimates given in the case of a dry microburst
without clutter.
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from the data containing a dry microburst only. The

fluctuating estimates of windspeed outside of range cells 23

through 32 in Figure 28 may be attributed to instabilities in

the pulse-pair estimator when the resulting filtered data

contains a very low SNR. A low SNR after filtering is

illustrated in Figure 30 with the filtered spectrum of range

cell 7.

The pulse-pair mean estimates after filtering will now

be evaluated using pulse-pair width estimates and power

levels. Using the pulse-pair width estimates of the dry

microburst without clutter, shown in Figure 17, as a basis

for setting thresholds on valid mean estimates, assume that a

width estimate threshold of 7 m/sec is set. This choice of

threshold is not based on a statistical evaluation but is

used only for relative comparisons. Pulse-pair width

estimates from filtered dry microburst plus clutter data,

illustrated in Figure 31, reveal that range cells 23-26 and

28-31, which contain valid mean estimates, have width

estimates below this threshold. This correlates with the

previous estimates of returns from the dry microburst without

clutter. With this criterian, the mean estimate at the

center of the microburst (range cell 27) would be considered

questionable. A large width estimate of approximately

llm/sec is likely since the clutter and microburst

information would have the highest probability of occupying

the same frequency ranges near zero Doppler, and would both
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Figure 30. Filtered spectrum of range cell 7.
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Figure 31. Pulse-pair width estimates after filtering using
the filter coefficients obtained from the clutter in each

range cell.
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be extracted in the filtering process resulting in a very low

signal to noise ratio.

A minimum threshold for power level estimates might also

be defined using the dry microburst without clutter estimates

in Figure 18. For comparison, a -105 dB threshold will be

set. Based on this threshold, the power levels in Figure 32

define range cells 23-31 and range cell 40 as having adequate

return power levels to provide valid mean estimates. The

power levels for range cells 27 and 40 do not correlate with

the information provided by the width estimate analysis in

labeling range cells 27 and 40 as having questionable mean

estimates. This contradiction between width estimates and

power levels, concerning valid mean estimates, reflects a

need for comparing the results of one test against the

results of another before making a decision concerning the

validity of a mean estimate.

Filter Based on the Clutter
in a Single Range Cell

The 10th order complex coefficient filters designed for

each range cell were able to eliminate bias in the pulse-pair

mean estimates due to clutter while preserving the microburst

information. This ability to preserve the microburst

information after filtering is evidence by the resulting

output power levels and reasonable width estimates. An

alternative approach to designing filters for each individual

range cell is to define a single set of filter coefficients

that can be used for several adjacent range cells or over the



70

7_

-7O

-80

-90

-1 O0
..... u

-110

-120. , . , , . l • I
0 10 20 30 40

range cell number

Figure 32. Power levels after filtering using the filter

coefficients obtained from the clutter within each range

cell.
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entire set. The design of this filter could still be based

on clutter statistics. The filter designed for range cell 20

was choosen to test the effects of using one filter over

several range cells. The range cells selected for evaluation

are those around the center of the microburst which contain

clutter as well as microburst information. The magnitude and

phase response of this filter is given in Figures 33 and 34,

respectively. This filter has a stop band centered at zero

Doppler which is characteristic of the clutter in the

majority of these range cells as can be seen in Appendix F.

Figure 35 gives the pulse-pair mean estimates after

filtering with the clutter rejection filter designed for

range cell 20. A comparison in Figure 36 with the mean

estimates from the dry microburst without clutter seems to

support the possible use of one filter over range cells 23

through 32. The spectral content of the filtered range cells

is given in Appendix I. In order to evaluate the mean

estimates after filtering, an analysis of the power levels

and width estimates will be made based on the thresholds set

in the previous section.

Figure 37 gives the pulse-pair width estimates for the

filtered dry microburst plus clutter data. Based on a

threshold of 7m/sec, range cells 23-26 and 28-31 would be

defined as having valid mean estimates. This result compares

well with those found using the filters designed for each

range cell. The power levels resulting from filtering are

given in Figure 38 and are consistent with those found in the
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Figure 33. Magnitude response of the filter designed

for range cell 20.
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Figure 35. Pulse-pair mean estimates after filtering using

the filter coefficients for range cell 20.
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estimates given in the case of a dry microburst without
clutter.
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Figure 37. Pulse-pair width estimates after filtering using

the filter coefficients for range cell 20.
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previous case using the appropriate filter for each range

cell. These results suggest the possible use of one filter

over several range cells where the range cells are known to

have a similar clutter spectrum.

Comparison with a Pulse Canceller

In order to evaluate the filters based on modeling the

clutter, a comparison will be made using a pulse canceller

filter which is found in land based air traffic control radar

systems [9]. The pulse canceller takes the form of a first

order difference equation with input YT and output x T where

XT = YT YT-I (43)

The magnitude and phase responses of this filter are given in

Figures 39 and 40, respectively. Figure 41 gives the

pulse-pair mean estimates after filtering with the pulse

canceller. A comparison in Figure 42 with the mean estimates

from the dry microburst without clutter case reveals a larger

error in the mean estimates for range cells 23 through 31

when compared to that found in the case of using the filter

designed from the clutter within each range cell, Figure 28.

The spectral content of the filtered range cells is given in

Appendix J. For comparison, Figure 43 gives the filtered

results for range cell 24 using the filter designed for range

cell 24, the filter designed for range cell 20, and the pulse

canceller, respectively. This comparison reveals a larger

attenuation of the microburst information in the case of the
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pulse canceller. This is reflected in the lower power levels

given in Figure 44 for the pulse canceller case near the

center of the microburst. These resulting lower SNR's

contribute to the large width estimates found after using the

pulse canceller, shown in Figure 45. Only two range cells,

28 and 29, have width estimates within the 7m/sec threshold

previously set to define a valid mean estimate.
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CONCLUSIONS

The potential for disaster associated with low altitude

windshear in the near terminal area mandates the need for

some type of detection system. It is anticipated that an

airborne pulsed Doppler radar system used to measure radial

components of windspeed can help assess the hazard associated

with windshear particularly in the case of a microburst.

Clutter presents a major obstacle to the use of airborne

radar at low altitudes as a remote sensor of windshear.

Large clutter returns from objects in the terminal area can

impose a bias on estimates of the radial components of

windspeed. This thesis has addressed the use of adaptive

clutter rejection filters to eliminate the source of this

bias.

The adaptive clutter rejection filters investigated here

are based on modeling the clutter as a low order

autoregressive process. A low order filter offers

implementation advantages in terms of memory requirements and

computational load, both advantageous for real time

implementation. The adaptive property of these clutter

rejection filters offers the ability to continuously update

and improve the filters as new clutter return becomes

available. Because the filter coefficients are obtained from

a complex square root normalized recursive least squares
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lattice estimation algorithm, stable clutter rejection

filters are assured. The least squares adaptive method for

determining the filter coefficients also offers a faster

convergence rate compared to gradient adaptive methods, and

the normalization allows for implementation using fixed point

arithmetic further enhancing the potential for real time

implementation. Fast convergence rates are important since

the clutter return is generally non-stationary over the

long-term but is assumed stationary over short observation

intervals. Additionally, complex coefficient FIR clutter

rejection filters allow for non-symmetric magnitude

responses, required in cases where the clutter spectrum is

non-symmetric about zero Doppler.

Several filtering schemes used to eliminate the clutter

have been considered. One such filtering scheme defines a

model for each range cell at any point along the final

approach to a runway. These models can then be indexed by

geographical location for future use. It has been

demonstrated here that the same model may be used for several

range cells, thereby decreasing the amount of information to

be stored. More research is needed to make general

conclusions.

The pulse-pair algorithm has been used herein to

determine the average windspeed within a range cell from the

filtered return data. The resulting mean estimates tend to

be unstable or biased when the signal to noise ratio is

small. This thesis has proposed the use of pulse-pair width
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estimates and power levels to form a statistic for

establishing confidence in pulse-pair mean estimates.

Further research in the area of stationarity and

repeatability as applied to the environment being modeled is

warranted. Another area of research not addressed in this

thesis but needing further study is the determination of the

optimum model order. Further study of clutter environments

is also needed before defining the appropriate filtering

scheme to use. Particular emphasis will need to be placed on

dynamic clutter models.
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Appendix A

The Complex Square Root Normalized Recursive
Least Squares Lattice Estimation Algorithm

Introduction

The square root normalized recursive least squares

lattice estimation algorithm presented by Lee, Morf, and

Friedlander [22] was derived for the real data case. This

appendix looks at adapting the algorithm to process complex

data. The need for a complex form of the algorithm arises

when processing IQ data from a radar return or other sources

of data requiring quadrature sampling [16]. This appendix

will not discuss the advantages of the square root normalized

form of the algorithm, but references concerning the

advantages are given by Lee [22]. Honig [18] and Friedlander

[14] address the issue of obtaining the linear prediction

error filter coefficients from the normalized lattice

parameters for the real data case. A derivation will be

developed for the complex coefficient case based on that

presented by Honig.

This appendix is divided into six major sections. The

first section discusses the least squares approach to

estimating the complex coefficients in an autoregressive

model. The next two sections develop the order- and

time-updates required in a recursive lattice estimation

algorithm. A normalization is introduced in section four

that reduces the number of updates required in the lattice
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estimation algorithm. The fifth section is a summary of the

equations and intializations required to implement the

complex square root normalized recursive least squares

lattice estimation algorithm. The final section uses the

normalized lattice parameters to determine the complex

prediction error filter coefficients.

AutoreQressive Model

Least Squares Estimate

The task of fitting an Nth-order autoregressive model to

a complex set of data {x t, 0_t_T} involves finding a complex

set of coefficients {aN, i , i=l ..... N} to minimize the sum of

the squared prediction errors

]e] 2 = (x'* + AN'*X'*) (x + XA N) (A.I)

where

e = x + XA N (A.2)

x' = [x 0 ..... x T] (A.3)

AN' = [aN, l ..... aN,N] (A.4)

and

X

-0 0

x 0 0

x 0

0

0

0

x0

(A.5)

_XT- 1 XT- 2 XT- N
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X IThe transpose of a vector is noted as _ , and the complex

conjugate of a vector is noted as _* The minimization is

obtained by taking the partial derivative with respect to the

complex coefficient vector AN and setting the result equal to

zero. The steps required for complex differentiation are

discussed by Miller [23]. Expanding the product in Equation

(A.I)

[_1 2 = (_'*_) + (_'*XAN) + (AN'*X'*_) +

(AN'*X'*XAN) (A.6)

and taking the partial derivative with respect to AN yields

the following

[x'*_x]/_AN = 0

[x'*XAN] /_AN = X'x_*

[AN'*X' *x] /_AN = 0

[AN '*X'*XA N] /SAN = X'X*AN*

Setting the

(A.7), (A.8),

AN yields

(A.7)

(A.8)

(A.9)

(A.10)

sum of the partial derivatives in Equations

(A.9), and (A.10) equal to zero and solving for

AN [X' *X] -IX' *_= - x (A. ii)

the least squares estimate of the complex predictor

coefficients.
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Projection Operators

The complex coefficient vector in the prediction error

in Equation (A.2) can now be replaced by the least squares

estimate of the complex coefficient vector in Equation (A.II)

to yield

e = x X[X'*X] -iX'*x (A. 12)

Using the least squares estimate of the prediction error in

Equation (A.12), a projection operator can now be defined as

PN "- X[X'*X] -Ix'* (A.13)

This operator projects the vector x onto the subspace of past

observations (the columns of X). Its orthogonal complement

can be defined as

PN 1 = (I - PN) (A.14)

The orthogonal complement of the projection operator PN in

Equation (A.14) can now be used to define the prediction

error

e = PlN_X (A. 15)

as a projection of the observed data onto a subspace which is

perpendicular to the one containing past observations.

A property of projection operators that will be useful

is PNPN = PN and PINP_ N = PI N . A proof of this property

of projection operators is
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PNPN: X[X'*X] -I [X'*X] [X'*X] -ix'*

= X[X'*X]-Ix'*

= PN (A. 16)

Order-Update Recursions

Sample Space

This derivation of the square root normalized recursive

least squares lattice estimation algorithm will consider a

single channel complex data case where Lee [22] applied it to

a multichannel case for real data. An observation of time

samples {x t 6 C, 0_t_T} in vector form is defined as

ix> T = [x0, Xl ..... XT]'

Also, a delay operator, z "n, on Ix> T is defined as

(A. 17)

iz-lx>T - [0, x 0 ..... XT-l]' (A.18)

where x t, t<0 is assumed to be equal to zero.

The linear space H T containing ix> T is spanned by the

T+I observations vectors {IX>T, Iz-lx> T ..... Iz-Tx> T} The

vector inner product on H T is defined as

<xiY>T " (IX>T'*)(IY>T)

T

: 7_ xt*Y t
t=0

(A.19)

where Ix> T , IY>T E H T

For convenience, the transpose of Ix> T is defined as

T<Xl. A matrix composed of elements of H T will be defined as

IX> T where the matrix transpose is noted as T<X i , and the
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matrix inner product is defined as

<XIY>T " (iX>T' *) (IY>T) (A.20)

Subspace of Past Observations

The subspace of HT containing past observations is

denoted by Xl,n, T and is spanned by

{Iz'Ix>T ..... Jz-nx>T}, n N T (A.21)

where,

JXl,n> T = [Jz-lx>T, ...,Iz-nx>T]

The projection operator on the subspace Xl,n, T is

(A.22)

PI,n,T a IXl,n>T<Xl,nlXl,n>T-l<Xl,niT* (A.23)

Also, the orthogonal complement of the projection operator

defined on Xl,n, T is

P11,n, T = (I PI,n,T)- (A.24)

Coordinate Map

In order to extract the most recent time sample, a

coordinate map is defined such that n(Ix> T) = x T. A vector

form of this operator can be written as

In> T = [0,_3 .... , 0,I]' (A.25)

where (T<ni) (IX>T) = x T A coordinate projector can also be

defined in terms of In> T such that
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PTlX>T = [0,0, .-., XT]'

(A.26)

where

(A.27)

PT " In>T<nlT*

Forward and Backward Prediction Errors

Projecting IX>T onto the subspace of past observations,

XI,n,T ' yields an nth order forward prediction error

fen> T = IX>T - Pl,n, Tlx>T = Pil'n'TlX>T

The

which is orthogonal to XI,n,T but lies in X0,n,T"

forward prediction error covariance can be defined as

(A.28)

(A.29)

Ren,T = <enlen>T = <enlX>T = <xlen>T

An nth-order backward prediction error vector can also be

defined as

Irn> T = Iz-nx>T - P0,n.l,Tlz-nx>T

= pl0,n.l,TlZ-nX>T

A delayed version of the backward prediction error

iz-lrn>T = pil,n,Tlz-n'Ix>T

will be needed in the lattice recursions-

Rrn,T.l = <z-lrnlz'Irn>T = <rnlrn>T-I

(A.30)

(A.ZI)

ItS covariance is

(A.32)

Decomposition of Subspaces

The fact that len>T lies in X0,n,T and is orthogonal to

Xl,n,T leads to the direct sum of the subspaces such that
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X0,n,T = Xl,n, T (_ fen> T (A.33)

The projection operators can be updated in a similar fashion

wi th

P0,n,T = PI,n,T + Jen>T<enlen>T-l<enlT *

and its orthogonal complement

(A.34)

PI0 n T = Pil n T
,, I,

)en>T<enJen> T- l<eniT* (A. 35)

Using the delayed backward prediction error, the projection

operator, PI,n,T, can be updated as

PI,n+I,T = PI,n,T + Iz irn>T<Z IrnJz irn> T l<z irnJ T

and its orthogonal complement as

(A.36)

Pll,n+l, T = Pll,n, T Iz" irn>T<Z- Irnl z- Irn> T- l<z- irnIT*

(A.37)

Error Order-Update

Equation (A.37) is an expression for the projection

order-update at time T. The order-update of the forward

prediction error is obtained by operating on Jx> T using

Equation (A.37) to yield

fen+l> T = fen> T Iz-lrn>T<z-lrnlz-lrn>T-l<z-lrnlen>T

(A.38)

At this point, a reflection coefficient, kn+l,T, will be
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defined as

kn+l,T " <enlz-lrn>T (A.39)

Using the forward prediction error covariance in Equation

(A.32) and the reflection coefficient in Equation (A.39), the

forward prediction error order-update in Equation (A.38) can

be written as

en+l,T = en,T rn,T-iR-rn,T-ik*n+l,T (A.40)

while looking only at the Tth component. Comparing this to

Lee [22], a conjugate of the reflection coefficient in

Equation (A.40) is required for complex data due to the

definition of the inner product in Equation (A.19) and the

reflection coefficient in Equation (A.39). The covariance

order-update for the forward prediction error in Equation

(A.38) is given by

<en+llen+l> T = <enien> T <eniz-lrn> T

<z-lrnlz-lrn>T-l<z-lrnlen>T (A.41)

or

Ren+l,T = Ren,T k n+l,TR-rn,T_ikn+l,T (A.42)

Using Equation (A.35), a similar order-update can be

obtained for the backward prediction error. Operating on

Iz-n-lx> T yields

Irn+l>T = z'Irn>T ien>T<enlen>T-l<eniz-lrn>T (A.43)
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or

rn+l, T = rn,T_ 1 en,TR'en,Tkn+l,T

The covariance order-update for the backward prediction

error is

<rn+llrn+l> T = <z-lrnlz-lrn>T - <z-lrnten>T

<enien>T'l<enlz-lrn>T

(A.44)

A.45)

or

Rrn+l,T = Rrn,T_l kn+l,T*R-en,Tkn+l,T (A.46)

Time-Update Recursions

Decomposition of Projections

A geometric approach will be taken to formulate the

time-update for the least squares lattice algorithm. A

simple example of projecting a vector IY>T onto a vector

Ix> T, in a three dimensional real space (Figure A-l), by

decomposing ix> T into its past and present components will

facilitate the development of the projection time-update.

Using the coordinate projector defined in Equation (A.26),

two new vectors, containing the past and present components

of ix> T , will be defined as

IXn> T - PTIX>T = [0,0 .... , X T] ' (A.47)

and

Ix_> T -= PITiX> T = [x0,x I ..... XT_l,0]' (A.48)
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Figure A-I.

projection.

Decomposition of projections by oblique
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Several important relationships pertaining to Equations

(A.47) and (A.48) are <YnlXn> T = <YnlX> T = <ylxn> T and

<y_ Ix_> T = <ylx_> T = <y_Ix>T, respectively.

Taking a step in the opposite direction, the vector IY>T

may be decomposed into lYn>T and ly_> T and then projected

onto ix> T such that

PxlY> T = PxlY_> T + PxlYn>T (A.49)

At this point the time index, T, will be dropped.

Equation (A.49) yields

Expanding

Ix><xlx>-l<xly> = Ix><xlx>-l<xly_> + ix><xlx>-l<xlYn >

= Ix><xlx>-l<x_ly> + ix><xlx>-l<xnlY>

(A.50)

The second equality of Equation (A. 50 ) reveals a

decomposition of Ix> into Ixn> and Ix->.

In order to develop a projection update in terms of Ixn>

and ix_>, an oblique projection needs to be defined. An

oblique projection is a vector composed of the product of the

magnitude of an orthogonal projection of my> onto Ix.> and

Ix>. The oblique projection takes the form

Px-lY> " Ix><x-ix->-l<x- ly> (A. 51)

A correction component based on the present time sample Ixn>

is needed to complete the projection of ly> onto Ix>.

The decomposition of PxlY> based on the oblique

projection in Equation (A.51) yields
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PxIY> = Px-lY> + PxPTPIx-ly> (A. 52)

where the second term on the right-hand side of Equation

(A.52) is the correction component based on the present time

sample. A derivation of Equation (A.52) is given as a

geometric formulation in the next section.

Geometric Formulation

The first term on the right-hand side of Equation (A.52)

can be expressed as

Px-lY> = Ix><x-lx->-l<x-ly-> (A. 53)

Using previously defined relationships, the vector ly> in

Equation (A.51) has been replaced by the vector ly-> to form

Equation (A.53). The inner products in Equation (A.53)

represent the coefficient defined at time T-I. This

relationship can be seen in Figure A-I where _ is Px-lY>.

As stated previously the second term on the right-hand

side of Equation (A.52) is a correction factor. Referring to

Figure A-l, the term Plx_lY> is the vector h where

P±x-lY> : [Y> - Px-ly> (A. 54)

The coordinate projector PT allows for the extraction of the

most recent component. Therefore, Plx_lY> is projected onto

PT to form [ in Figure A-I. Finally, the result can be

projected onto Ix> to form PxPTPlx_lY>. This correction

factor d can now be added to _ to form PxlY>.
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At this point a more rigorous proof that Equation (A.52)

is equal to Equation (A.50) is given. Taking the first term

on the right-hand side of Equation (A.50)

Ix><xlx>-l<xiy> = ix><xlx>-l[<x_Ix><x, lx>-l]<x_Jy>

= Ix><xJx>-l[<xlx>-<XnJX>]

<x_Ix>-l<x_ly>

= Ix><x_Ix_>-l<x_ly> - Ix><xlx>-i

<XnlX><X_IX_>'l<x_ly>

= Px-ly> - PxPTPx-lY> (A. 55)

and adding the second term of Equation (A.50) to (A.55) gives

PxlY> = Px-lY> - PxPTPx-lY> + PxPTIY>

= Px-iY> + PxPTP±x-HY> (A. 56)

From Equation (A.56), the projection orthogonal to Pxly>

can be written as

plxly> = plx_ly> PxPTPIx_Iy> (A. 57)

The inner product of ly> with Equation (A.57) will lead to

the desired form needed for the reflection coefficient and

error covariance time-updates. Therefore, taking the inner

product and replacing the time indexes results in

<ylPJ-xiY>T = <ylPJ-xlY>T_l + <ylPlxln>T<nllmix_ iy> T

(A.58)

This can be proven by writing Equation (A.57) as
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PlxiY> = Plx_ly> PTPlx_ly> + PTP_x_ly> - pxPTP-[x_iy>

(A. 59)

and using the definition of the orthogonal projection to

yield

PlxlY> = PJ-TPIx - IY> + PlxPTP_ x- IY> (A. 60)

The result of the inner product lY> and Equation (A.60) can

be written as

<ylPlxiY> = <yl PITP_x-iY> + <Y]PIxPTPIx-lY> (A.61)

The first term on the right hand side of Equation (A.61) is

the inner product of the error in projecting ly-> onto Ix.>

which is illustrated in Figure A-I. Given this projection,

the time-update for the inner product can be written as

<yIPlxlY>T = <yIplxlY>T_l + <ylPlxln>T<niP±x. ly> T

(A.62)

Angle Between Two Subspaces

The concept of an angle between two subspaces will be

developed in this section in order to expand on the time-

update of the inner product in Equation (A.58). Referring to

Figure A-I let the angle between ix_> and ix> be denoted by

8. The geometric relation can be expressed as

cos28 = 1 <XnlXn>/<xlx> = <x_Jx_>/<xlx> (A.63)

or
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sin28 = <xnlx=>/<xlx> (A.64)

An alternative form of sin28 can be written in terms of

projections defined in the previous section where

sin2@ = <nl*Pxln> (A.65)

Considering an n-dimensional complex space, Xl, n, Equation

(A.64) can be written as

sin2@l, n = <nlXl,n><Xl,nlXl,n>-l<Xl,nln>

= <nl*Pl,nln>

or Equation (A.63) as

(A.66)

cos2@l,n = <nl*Pll,nln> (A.67)

An order-update for cos2@l,n, T can be found using Equation

(A.37) where

cos2@l,n+l,T = cos2@l,n,T - r* -rn,n,T-i R T-Irn,T-I

(A. 68)

Another update that will be needed in developing an algorithm

to determine the filter coefficients is

cos2@0,n,T = cos2@0,n_l,T - r*n,TR'rn,Trn,T (A.69)

where it should be noted that cos28 l,n,T = c°s280,n-l,T-l"

Also, for notational purposes in later sections let Yn,T =

c°s2@0, n- I, T-

Having defined cos2@, it is possible to show the

relationship between the orthogonal and oblique projections
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on Ix>. Multiplying Equation (A.57) by PT and using Equation

(A.67), the relationship is found to be

PTPJ-xIY> = PTPJ-x- ]y> PTPxPTP±x- ix>

= [PT-PTPx] PTPlx - lY>

= PTP±xPTPIx- By>

= PTP±x - ly>cos28 (A.70)

Exact Time-Update Formula

Using Equations (A.58) and (A.70), the time update of

product using the orthogonal projection, P±l,n,T,the inner

can now be written as

_<ui*Pll,n,TlV>T z <ul*Pll,n,TlV>T

<ui*Pll,n,T-llV>T-I

= <uI*Pll,n,Tln>T

<nl*Pll,n,Tlv>sec281,n,T

where iu>, Iv> E H T.

(A.71)

Time-Updates

Using Equation (A.71), the time-update

reflection coefficients can be written as

for the

kn+l, T = kn+l,T_ 1 + <xiPll,n,TJn>T

<nIPll,n,Tiz-n-lx>Tsec2@l,n, T

= kn+l,T_ 1 + e*n,Trn,T_isec281,n,T (A.72)

The conjugate placed on the forward error in Equation (A.72)

is due to the complex inner product defined in Equation
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(A.19). This point is made due to the difference seen when

comparing Equation (A.72) to that in Lee [22]. The

covariance terms for the backward and forward errors can also

be updated to form

Ren,T = Ren T-I + e*• , n,Ten,TSeC281,n,T (A.73)

and

Rrn T = Rrn,T-i + r*, n,Trn,TSeC280,n-l,T (A.74)

Sliding Exponential Windows

A window to reduce the effect of past data samples can

be incorporated into the algorithm through the definition of

the complex inner product. Referring to the complex inner

product defined in Equation (A.19), a new inner product can

be now be defined as

T

<xly>T = 7. x*t_T-ty t
t=0

0<aSl (A.75)

This definition of the complex inner product can be used to

transform the time-update of the reflection coefficient in

Equation (A.72) to

= (Xkn+l,T_ 1 + e*n,Trn,T.isec2@l,n,T (A.76)kn+l,T

The normalizations in the next section will eliminate the

window _ from every order of the lattice structure except the

zeroth.
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The Complex Unnormalized Recursive Least

Squares Lattice Estimation Alqorithm

Table A-I contains the necessary equations and

initializations needed to implement the complex unnormalized

recursive least squares lattice estimation algorithm. For

notational purposes in Table A-I, let Yn,T = c°s200,n-l,T

The resulting lattice structure is given in Figure A-2.

_ormalized Ladder Recursions

In this section, a normalization of the recursive least

squares lattice algorithm will be used to reduce the number

of equations needed in for the time and order updates in

Table A-I. The normalizations in this section will lead to a

form of the algorithm which consists of a time-update for the

reflection coefficient and an order-update for the backward

and forward prediction errors.

Variance Normalization

In this section, the forward and backward prediction

errors and the reflection coefficients will be normalized by

the square root of their respective covariances. The

normalized prediction errors are defined as

tVn>T m Jen>T<enJen>T-I/2

J_n>T - Irn>T<rnlrn>T-I/2

(A.77)

(A.78)

The reflection coefficient is normalized in a similar manner

and takes the form



104

TABLE A- I

Complex Least Squares Adaptive Lattice Algorithm

Input parameters:

N = maximum order of lattice

YT = data sample at time T

= exponential weighting factor

Do for T = 0 to Tma x

e0,T = r0,T = XT

Re0,T = Rr0,T = (xRe0,T-I + YTY T

Y0,T = 1

Do for n = 0 to {min(N,T)-l}

kn+l, T : 0tkn+l,T_ 1 + e*n,Trn,T-i/Yn,T-I

* -r nYn+l,T =Yn,T - r n,T R ,Trn,T

krn+l, T = kn+l,TR'rn,T_ 1

en+l, T = en, T - k*rn+l,Trn,T_l

Ren+l, T = Ren,T krn+l,Tk*n+l,T

ken+l, T = R-en,Tkn+l,T

rn+l, T = rn,T. 1 ken+l,Ten,T

- k*Rrn+l, T = Rrn,T_l n+l,Tken+l,T

Note: Division by zero where y = ¥, R r, R e , set i/y = 0.

Initialize the variables k, r, R e , R r, and y to zero.
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YT

e0 T

r0,T rl,T rN-I,T rN,T

Figure A-2. Least squares adaptive lattice prediction
error filter.
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Fn+l, T m <Xnlz-l_n>T

= <enlen>T'I/2kn+l,T<z-lrniz-lrn>T -I/2 (A.79)

Having defined the normalizations in Equation (A.77), (A.78),

and (A.79), a normalization of the order-updates for the

backward and forward prediction errors can now be developed.

A useful relationship involving the order-update of the

forward prediction error covariance in Equation (A.41) will

be needed to express the order-update in terms of the

normalized variables defined in Equations (A.77), (A.78), and

(A.79) . Multiplying both sides of Equation (A.41) by

<enlen> T yields

<en+llen+l>T<enlen> T = <enlen>T<enlen> T -<enlz-lrn> T

<enlen>T<z-lrnlz-lrn>T -I

<z-lrnien>T (A.80)

or

<en+llen+l>T<enlen> T = <enlen>T<enlen>T[l

kn+l,T<z-lrnlz-lrn>T-i/2

<enlen>T-i/2k*n+l,T

<z-lrnlz-lrn>T-I/2]

<enlen>T-i/2

(A.81)

Using the normalization of the reflection coefficients in

Equation (A.79), Equation (A.81) can be written as

<en+llen+l>T<enlen> T = <enlen>T<enien> T

[I F*n+I,TFn+I,T] (A.82)

Dividing both sides of Equation (A.82) by <enlen>T<enlen> T
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and taking the square root yields

<en+1 Jen+l>Tl/2<en ien>T -I/2 = [i F*n+l, TFn+I, T] 1/2

(A.83)

Taking the order-update of the forward prediction error in

Equation (A.40) and dividing both sides by <en+llen+l>T I/2

yields

ien+l>T<en+llen+l> T-1/2 = <en+ llen+l>T-1/2<enlen>Tl/2

[ len>T<enlen>T- 1/2 _

Iz-lrn>T<z'Irnlz-lrn> T'I

k*n+l, T<enTen> T- 1/2]

(A.84)

Using the normalizations defined previously and Equation

(A.83), Equation (A.84) takes the form

IXn+l>T = [IXn>T Iz-l_n>TF*n+l,T ]

[i- F*n+I,TFn+I,T] -I/2 (A.85)

The same type of normalization applies to the order-update

for the backward error which can be written as

i_n+l>T = [iz-lnn>T IVn>TFn+l,T] [i- F*n+I,TFn+I,T] -1/2

(A.86)

Angle Normalization

The next normalization is defined as

iVn> T - IXn>TSeC@l,n, T (A.87)
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and

Iz-lqn>T - Iz-l_n>TSeC01,n,T (A.88)

This normalization defines the forward and backward

prediction errors in terms that are no longer observable, but

the definition of the reflection coefficients will remain

unchanged.

At this point, a useful relationship, needed in the

normalization of the time-update of the reflection

coefficients, will be developed. Applying the inner product

defined in Equation (A.75), the time-update for the forward

prediction error covariance in Equation (A.73) takes the form

G<enlen>T_ 1 = <enlen> T <en In>T<nl en>TSeC201, n, T

(A.89)

Factoring <enlen> T from the right hand side of Equation

(A.89) yields

_<enlen>T_ 1 = <enlen>T[l <enlen>T -I

<enln>T<nlen>TSeC2Ol,n,T] (A.90)

Dividing both sides of Equation (A.90) by <e nlen> T and

grouping terms gives

G<enlen>T_l<enlen>T "I = 1 <enlen>T'I/2e*n,TSeC01,n,T

<enlen>T-I/2en,TSeC01,n,T .

(A.91)
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Using the normalization defined in Equation (A.87), Equation

(A.91) takes the form

_<enlen> T-l<enlen>T -I = [i - V*n,TVn,T] (A.92)

Finally, dividing by _ and taking the square root of Equation

(A.92) yields

<enien>T_ll/2<enlen>T-i/2 = 5-1/211

Using the time-update

* 1/2
v n, TVn, T]

(A.93)

for the backward prediction error

covariance in Equation (A.74), a similar development yields

<z'irnlz-lrn>T_ll/2<z-lrnlz-lrn>T-i/2

= 5-1/211 <z-l_nln>T<nlz-l!In>T]I/2 (A.94)

Using the time-update for the reflection coefficient in

Equation (A.76) and the normalization in Equation (A.79), the

normalized time-update of the reflection coefficient can be

written as

Fn+l, T = <enlen>T-i/2<enlen>T_ll/2<enlen>T_l-I/2

akn+l,T_l<z_Irnlz-lrn>T_l -I/2

<z-lrnlz-lrn>T_ll/2<z-lrnlz-lrn>T-I/2 +

<enlen>T-I/2<enln>Tsecel,n,T

<z-lrnlz-lrn>T-I/2<nlz-lrn>TSeC@l,n,T (A.95)
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Equation (A.95) can now be written in terms of normalized

variables as

Fn+l, T = [I V*n,TVn, T]I/2Fn+I,T_ 1

[l-q n,T-IN n,T-l] I/2 + v n,TNn,T-I (A.96)

using Equations (A.77), (A.78), (A.79), (A.87), (A.93), and

(A. 94).

Ladder Recursions

At this point, a second normalization of the order-

updates for the forward and backward prediction errors is

possible. This normalization is based on the terms defined

in Equations (A.87) and (A.88) . Equation (A.85) , the

normalized order-update for the forward prediction, can be

normalized in the manner given in Equation (A.87). Equation

(A.66) can be written as

IXn+l>TSeC@l,n+l,T/sec@l,n+l,T = sec@l,n,T/sec@l,n,T

[IXn>T Iz-l_n>T

F*n+I,T] [I

Fn+I,T] -I/2

F n+l,T

(A.97)

Using the normalizations in Equations (A.87) and (A.88) ,

Equation (A.97) takes the form

_ 9¢

IVn+l>TSeC@l,n,T/sec01,n+l, T = [Ivn> T Iz inn>TF n+l,T]

[l-F*n+l, TFn+I, T] -I/2

(A.98)
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In order to complete the normalization, a relationship

between sec01,n,T/sec01,n+l,T and the normalized variables

must be developed. Writing the order-update for cos201,n,T

in Equation (A.68) as

cos201,n+l,T/COS201,n, T = [i - r* n,T-I cos 101,n,T

R- rn, T_ irn,T _ICOS-101,n, T]

(A.99)

will lead to the desired relationship.

relationship

The trigonometric

sec201,n,T = i/cos201,n,T (A.100)

is stated here as a reminder. Using the relationship stated

in Equation (A.100) and the normalizations given in Equations

(A.77), (A.78), and (A.87), Equation (A.99) takes the form

sec201,n,T/sec201,n+l, T = [I - _*n,T-Inn,T-l] (A.101)

Using the relationship given in Equation (A.101), the

normalized order-update of the forward prediction error in

Equation (A.98) can be written as

n+I,TFn+I,T] -1/2[Vn,T " F n+l,Tnn,T-l]

(A.102)

Vn+l, T = [I

[i n*n,T-inn,T-l] -I/2

while looking only at the Tth component. A similar

development leads to the normalized order-update of the

backward prediction error which can be written as
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nn+l,T = [I - F* n+l,TFn+l, T] -1/2 [nn,T- 1 Fn+l, TVn,T]

[i - v* -i/2n,TVn, T] (A. 103)

The Complex Normalized Recursive Least

Squares Lattice Estimation Alqorithm

The order-updates for the backward and forward

prediction error covariances and for the trigonometric

relationship cos20 have been embedded in the normalizations

defined in this section. A reduction in the number of

equations, from six to three, required in the lattice

recursions has been achieved. Table A-II gives the complex

square root normalized recursive least squares lattice

estimation including the necessary initializations, and

Figure A-3 gives the resulting lattice structure.

Complex Prediction Error Filter Coefficients

Introduction

An algorithm for determining the coefficients of the

prediction error filter is given by Honig [18] as a lattice

structure implementation for the real data case. The complex

form of this algorithm is presented in this section to

support the complex square root normalized recursive least

square lattice estimation algorithm. A transfer function

relationship will be defined for the forward and backward

prediction errors which can then be implemented as a lattice

structure. The coefficients of the filter can then be

obtained from the transfer function.
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TABLE A-II

Complex Square Root Normalized Recursive Least
Squares Lattice Estimation Algorithm

Initialize:

R_1 = o o is a small positive value

for T = 0,Tma x

RT = aRT-I + Y TYT

V0,T = q0,T = YT(RT) -1/2

for n = 0 to [min[T,N] -i]

Fn+l, T = [i V*n,TVn,T]l/2 Fn+I,T.I

[i -q* *n,T-Inn,T-l]I/2 + v n,Tqn,T-I

Vn+l, T = [I F* - F*n+l, TFn+I, T] -1/2 [Vn, T n+l, Tqn, T- I]

[I n*n,T- lqn,T- I] -1/2

qn+l,T = [i F*n+I,TFn+I,T] -1/2 [qn,T-i Fn+l,TVn,T ]

[I v* -1/2n, TVn, T]

Note: Division by zero where y = i/x : x = 0 should result in

y = 0. Initialize the variables F, v, and _ to zero.
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VN,T

V0,T VI,T .... v N- I,T__

Fc qC
I,T 0,T-I FN'T qN'T" 1

YTRTI/2 - FI, _ '-FN,

-

F c v c C,T VN, T

q0,T r]l,T qN-I,T I]N, T

c -I/2
x = [l-x'x]

Figure A-3. Complex square root normalized least squares

adaptive lattice prediction error filter.
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Transfer Functions

The nth order forward prediction error, at time T, can

be written as

en, T = XT +an, l,TXT-I + --- + an,n,TXT-n (A.104)

Taking the Z-transform of this forward prediction error and

dividing through by x(z), the transfer function can be

defined as

An,T(Z) m 1 + an, l,T z-I + ... + an,n,Tz-n

An,T(Z) can be written in vector form as

An,T(Z) = 1 + A'n,Tz-l_z n

where

An, T = [ an, l,T ... an,n,T ]'

and

Zn= [ 1 z -I z -n+l] '

(A. I05)

(A. I06)

Similarly, the nth order backward prediction error, at time

T, can be written as

rn, T = XT_ n + bn,0,TX T + ... + bn,n-l,TXT_n+ 1

where the transfer function for this filter is

Bn,T(Z) = z-n + bn,0, T + ... + bn,n_l,Tz-n+l

The vector form of Bn,T(Z) can be written as

(A. I07)

(A. i08)
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Bn,T(Z) = z-n + B'n,T_Zn (A.109)

where

Bn, T = [ bn,0,T ... bn,n-l, T ]'

A version of the backward prediction error based on

estimating XT_n using the coefficients obtained at time T-I

will be needed in the order updates of the transfer functions

and can be written as

rn,TIT_ 1 = XT_ n + bn,0,T_IX T

+ ... + bn,n-l,T_iXT_n_ 1

and the associated transfer function as

(A.II0)

Bn,T_l(Z) = [z-n + B'n,T_I_ n]

where

(A. Iii)

Bn,T_ 1 = [ bn,0,T-I ... bn,n-l,T- 1 ]'

An order update for the forward and backward prediction

errors is given in Equations (A.40) and (A.44), respectively.

The transfer functions for the forward error order update,

en+l, T, and the backward error order update, rn+l,T, can be

written as

An+l,T(Z) = An,T(Z) z-iBn,T_l (z)R-r _n,T-I n+l,T

(A.II2)

and
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Bn+l,T(Z ) = z-iBn,T_l(Z) - An,T(Z)R-en,Tkn+l, T (A.II3)

respectively.

In order to implement the transfer functions in terms of

a lattice structure, a relationship between Bn,T(Z) and

Bn,T.l(Z) needs to be developed. The time-update formula

given in Equation (A.57) can be used to form the time-update

P±0,n-I,T = P-10,n-I,T - P0,n-I,TPTP-±0,n-I,T (A.II4)

where P-±0,n-l,T is the orthogonal oblique projection

operator. Using Equation (A.70), Equation (A.II4) can be

written as

PI0,n-I,T = P-10 n-iT,

P0 n-1 TPTPI0 n-1 Tsec280 n-l,T
, g , , ¢

(A.II5)

The backward prediction error at time T, rn+l, T, can be

obtained by pre and post multiplying Equation (A. II5) by T<N I

and iz-nx>T , respectively, to form

T<_IP±0,n.l,Tlz-nx> T : T<_iP±0,n-l,T-liz-nx>T

T<_IP0,n_I,TPTPI0,n-I, T Jz-nx>T

sec2@0,n_l,T (A.II6)

From Equation (A.30), the term on the left hand side of the

equals sign in Equation (A.II6) is the backward prediction

error at time T. The first term on the left hand side of the

equals sign represents the estimate of the backward

prediction error at time T using the coefficients defined at
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time T-I. The second term on the right side of Equation

(A.116) is not so apparent. The second term can be written

as

T<Tr IP0,n-I,TPTPI0,n-I,T Iz-nx>Tsec2@0,n-l,T

= T<IrlP0,n-l,T 7r>T<I_I*TPI0,n-I,TI z-nx>T

sec2@0, n- I, T. (A. 117 )

From Equation (A.30), Equation (A.II7) can be written as

T<TrlP0,n-I,TPTP±0,n-I,T Iz-nx>Tsec2@0,n-l,T

= T<_IP0 n-i T _>Trn Tsec2@0 n-l,T (A 118)
l t f t ° •

The projection of i_>T on to the subspace X0,n-I,T in

Equation (A.II8) can be written as

T<_ P0,n-l,Tl7r>T : T<Tr I IX0,n-I>T<X0,n-I X0,n-I>T -I

<X0, n- ii T* I_>T (A. 119)

Using the least squares estimate defined in Equation (A.II),

Equation (A.II9) can be written as

T <_ P0,n-I,T _>T = T<_I iX0,n-I>TCn,T (A. 120)

where

Cn, T = [Cn,0, T ... Cn,n-l,T ]'

Equation (A.II8) can now be written as
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T<_ P0,n- I, TI _>Trn, Tsec2@0,n - I, T = T<_I IX0,n-I>TCn, T

rn, Tsec2@0, n- I,T

(A. 121)

Taking the z-transform of Equation (A.121) and dividing

through by x(z) yields

Cn,T(Z) = Cn, 0 + Cn, l z-I + ... + Cn,n_iz'n+l

= C' n, TZn_ 1 (A.122)

The z-transform of Equation (A.II6) divided by x(z) can now

be written as

Bn,T(Z) = Bn,T_l(Z)

where

Yn,T = cos280,n-l,T

Cn, T (z) rn, T/Yn, T (A. 123)

An order-update of Cn,T(Z) is needed to implement the

lattice structure. Using the concept of the decomposition of

subspaces defined in Equation (A.33), the projection operator

P0,n,T can be written as

P0,n,T = P0,n-l,T + Irn>T<rnlrn>T-l<rnlT * (A.124)

Pre and post multiplying Equation (A.124) by T<_ I and In>T,

respectively, yields

T<_IP0,n,TI_>T = T<_I P0,n-I,TI_>T +

T<_ I Irn>T<rnl rn>T- 1 <rnl T* I_>T (A. 125)

Using the transfer functions defined in Equations (A.108) and
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(A.122), the transfer function associated with Equation

(A.125) can be written as

Cn+l T(Z) = Cn,T(Z) + Bn,T(Z)R-rn,T r*, n,T (A.126)

Unnormalized Prediction Error

Filter Coefficients

The coefficients of the prediction error filter can be

obtained from the lattice implementation of the transfer

functions by associating terms in the transfer functions that

are multiplied by the same power of the variable z'P p =

0 .... ,n. Table A-III gives the algorithm for the lattice

implementation of the coefficients associated with the

prediction error filter, and Figure A-4 gives the associated

lattice structure.

Normalized Transfer Functions

A normalized lattice structure implementation of the

transfer functions which involves the normalized forward and

backward prediction errors and the normalized reflection

coefficient defined for normalized lattice structure given in

the previous section will be developed. The normalized

transfer functions will be defined as

An,T(Z) = An,T(Z) <en len>T -I/2

Bn,T(Z) = Bn,T(z)<rn Irn>T-I/2

Bn,T_l(Z) = Bn,T_l(z)<r n rn>T_l -I/2

(A. 127 )

(A. 128)

(A. 129)

and
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TABLE A-III

Algorithm for Determining the AR Model Coefficeints
Based on a Complex LS Adaptive Lattice Structure

For i = 0 ..... N do the following

bp,_l,T = 0 for p = 0,...,N-I

a0 0 T = b0 0 T = 1 for i = 0
! f t I

c0,0, T = 0 for i = 0

a0 i T = b0 i T = co i T = 0 for i > 0
t t t I t t

For p = 0 ..... N-I

bp, i,T_ 1 = bp,i, T + Cp, i,Trp,T/Yp,T

Cp+l,i,T = Cp,i,T + bp, i,TR'rp,Tr p,T

ap+l,i, T = ap,i, T - bp,i_l,T_iR-rp,T_ik*p+l, T

bp+l,i, T = bp,i_l,T_ 1 ap,i,TR-ep,Tkp+l,T
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Cn,T(Z ) = Cn,T(z)sec00,n_l,T (A.130)

Based on Equations (A.127) , (A.129) , (A.79) , and (A.82) ,

Equation (A.II2) can be normalized as

An+l,T(Z) = [An,T(Z) z-IBn,T-l(Z)F*n+l,T]

[l-F*n+l, TFn+I, T] -1/2 (A. 131)

A similar normalization holds for Equations (A.II3) and where

Bn+l,T(Z) = [z'IBn,T_l(Z) An,T(Z)Fn+I,T]

[l-F*n+l, TFn+I, T] -1/2 (A. 132)

Using the previously defined normalizations and Equation

(A.94) with the time index T replaced with T+I, Equation

(A.123) can be normalized as

Bn,T_l(Z) = [Bn,T(Z) + Cn,T(Z)nn, T]

[i- q'n, Tqn,T] -1/2. (A. 133)

The final normalization requires the relationship

sec2O0 n-i T/sec2O0 n,T [i *, , , = -q n, Tqn, T] (A. 134)

to form the normalized transfer function

Cn+l,T(Z) = [Cn,T(Z) + B n T(Z)q*, n,T]

[l-q n, T_n, T] -1/2 (A.135)

The coefficients of the prediction error filter can be

obtained from the normalized lattice implementation of the

transfer functions in a similar manner as that used for the
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unnormalized case. Table A-IV gives the algorithm for

obtaining the filter coefficients from the normalized lattice

structure and Figure A-5 gives the associated lattice

structure.
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TABLE A-IV

Algorithm for Determining the AR Model Coefficients Based
on a Normalized Complex LS Adaptive Lattice Structure

RT = _RT-I + x TXT

For i = 0..... N do the following

bp,-I,T = 0 for p = 0..... N-I

a0,0, T = b0,0, T = RT'I/2 for i = 0

co 0 T = 0 for i = 0
f f

a0,i,T = b0,i,T = c0,i,T = 0 for i > 0

For p = 0 ..... N-I

bp,i,T_ 1 = [bp,i, T + Cp,i,Tqp, T]

[l-,*p,Tnp,T] -1/2

Cp+l,i,T = [Cp, i, T + bp,i,Tq*p,T] [l.N*p,Tqp,T]-1/2

ap+l,i,T = [ap, i,T - bp, i_ l, T_ IF*p+l, T]

[l-F*p+l, TFp+I, T] -1/2

bp+l,i, T = [bp, i_l,T_ 1 ap, i,TFp+l,T]

[l-F*p+l, TFp+I, T] -1/2

where

ap, i = ap,i/ap, 0
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structure for the complex square root normalized least

squares adaptive prediction error filter case.



Appendix B

NASA Model Parameters

SIMULATION PARAMETERS

A/C Distance to touchdown (kM)
Aircraft Velocity (kts)
Glideslope Angle (deg)
Roll Attitude (deg)
Pitch Attitude (deg)
Yaw Attitude (deg)
Az Integration Range/2 (deg)
Az Integration Increment (deg)
E1 Integration Range/2 (deg)
E1 Integration Increment (deg)
Rng Integration Increment (m)
Random Number Seed (0-I)

7.0
150.0

3.0
0.0
0.0
0.0
6.0
0.3
4.0
0.2

I00.0
0.224

MICROBURST& CLUTTER

Along Track Offset from TD (km)
Cross Track Offset from TD (km)
Rain Standard Deviation (m/s)
Clutter Standard Deviation (m/s)
Clutter Calc. Flag
Reflectivity Calc. Thres. (dBz)

Minimum Reflectivity (dBz)
Attenuation Code (0,I,2)

-2.0
0.0
1.0
0.5

(l=on, O=off)
I. 0 (wet)

-20.0 (dry)
200.0 (clutter)
-15.0

2.0

RADARPARAMETERS

Initial Radar Range (km)
Number of Range Cells
Antenna Az - if no scan (deg)
Azimuth Scan Range/2 (deg)
Azimuth Scan Increment (deg)
Antenna Elevation (deg)
Transmitted Power (watts)
Frequency (GHz)
Pulse Width (microsecs)
Pulse Interval (microsecs)
Receiver Noise Figure (dB)
Receiver Losses (dB)
Antenna Type (l=para., 2=flat)

1.0
40.0

0.0
0.0
3.0
1.0

2000.0
9.3
1.0

268.6
4.0
3.0
1.0



Appendix C

Fourier Spectral Estimates of a Dry
Microburst Plus Clutter
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Fourier Spectral Estimates of a Dry
Microburst Without Clutter



136

dB
-80 -

-100-

-120

-140

-160

Range Cell 1

-180

-30 -15 0 15 30

meterslsec

dB Range Cell 2 dB

-80] -80
-1001

I

Range Cell 3

-I00-

-120_ -120-

-140 -140-

"I ...."I
-180_ -180 , , • , .

-30 -15 0 15 30 -30 -15 0 15 30

meterslsec meters/sec

dB Range Cell 4 dB Range Cell 5
-80 -807

-100

-120

-140_ -140
-160 -160

-180 -180_

-30 -15 0 15 30

meterslsec

-30 - 15 0 15 30

meters/sec

dB Range Cell 6
-80

-I00-

-120-

-140--160-

-180 , • , • , •
-30 -15 0 15 30

meterslsec

dB Range Cell 7
-80

-I00

-120

-140

-160

-180

-30 -15 0 15 30

meters/sec

dB Range Cell 8 dB Range Cell 9
-80, -80

-1004 -I00-

-1204 -120-

-160 1 -160

-180 1 -180 . , • , • , •

-30 -15 0 15 30 -30 -15 0 15 30

meters/sec meters/sec



137

dB Range Cell I0
-80_

i

-1oo-

-120

-140

-160

-180

-30 -15 0 15

meterslsec

30

dB Range Cell II
-80 -

-I00 ]

-120_

-140

-160

-180

-30 -15 0 15 30

meterslsec

dB Range Cell 12
-80

-I00

-120

-140

-160

-180

-30 -15 0 15 30

meters/sec

dB Range Cell 13
-80

-I00

-120

-140

-160

-180 ' I I I '

-30 -15 0 15 30

meterslsec

dB Range Cell 14
-80 ,

-1oo-I
1

-120-1
4

-140_

-'_°1' i" '" II
-180 I • , . , • , ' I

-30 -15 0 15 30

meterslsec

dB Range Cell 15
-80

-I00

-120

-140

-160

-180

-30 -15 0 15 30

meters/sec

dB Range Cell 16 dB Range Cell 17 dB Range Cell 18

-I00 -I00 -I00

-,_oL.,,,_.....,.....,.,-,_oI_,.,,,._...._,....j-,_o
-,_o_ -,_o1_ -,_o
-'_°1 "'"' r I -'_°1i'" _''"' I -'_o
-180_ -180_ -180

-30 -15 0 15 30 -30 -15 0 15 30 -30 -15 0 15 30

meters/sec meterslsec meters/sec



138

dB Range Cell 19 dB Range Cell 20 dB Range Cell 21

-801 -80_ -80-.-I00 -100-t -t00-

-1201 -120J -120-
-140- -14°t _,4o 
- -'6°1"-"" " -- "-I
-180"_ -180_ -180_

-30 -15 0 15 30 -30 -15 0 15 30 -30 -15 0 15 30

meters/sec meters/sec meters/sec

dB Range Cell 22 dB Range Cell 23 dB Range Cell 24
-80 -80 , -80

-I00

-120

-140

-160

-180

-30 -15 0 15 30

meters/sec

-1004

- 120 t_.,.L, I...,,,,k,.._lJ, IJ

-160-1 " 1 - ir

-1"80 1 • , • , • , •

-30 -15 0 IS 30

meters/sec

-I00-

-120-

-140-

-160-

-180

-30 -15 0 15 30

meters/sec

dB

-80

-100-

-120-

-140-

-160

-180

Range Cell 25

• I ' I ' I '

-30 -15 0 15 30

meterslsec

dB Range Cell 26
-80 ,

i

-I00_-12ot

-_40_ "_ll
- 160 1 " ,, "l

]
-180 I , i ' , • , •

-30 -15 0 15 30

meterslsec

dB Range Cell 27
-80

-I00-.

-120-

-140-

-160-

-180 • , , , , , •

-30 -15 0 15 30

meterslsec



139

dB Range Cell 28 dB Range Cell 29 dB Range Cell 30

'°I l-,oo _, I -,oo
_,_o_.j.u_J -,_o -,_oI

::_Ool'-'___-'ooT, '-i -'oo-,1-" '
-180 I , , , • , • I -180 , , , ,

-30 -15 0 15 30 -30 -15 0 15 30 -30 -15 0 15 30

meters/sec meters/sec meters/sec

dB Range Cell 31 dB Range Cell 32 dB Range Cell 33

-80 t I -80 , -80_-100 -100 -100-

-180 I ' , • , • , • I -180 -180"

-30 -15 0 15 30 -30 -15 0 15 30 -30 -15 0 15 30

meterslsec meterslsec meterslsec

dB Range Cell 34 dB Range Cell 35 dB Range Cell 36
-80 -80. -80_

-100 -100" -100"

-120 -120' -120"

-140 -140' _ -140-

-160 -160' _ -160"
-180 -180' -180-

-30 -15 0 15 30 -30 -15 0 15 30 -30 -15 0 15 30

meters /sec met ers /sec met ers / sec



140

dB Range Cell 37
-801

-100"

-120-

-140

-160

-180 • I ' I I

-30 -15 0 15 30

meters/sec

dB Range Cell 38

-80 1
-100

40

60

80
-30 -15 0 15 30

meters/sec

dB

-80

I00

120

140

160

180

-30 - 15 0 15 30

meters/sec

dB Range Cell 40
-80

-I00 1
120

-140_

160-J" ' "1' I I I"l
I

180 I • , • , . , •

-30 -15 0 15 30

meters/sec



Appendix E

Fourier Spectral Estimates of Clutter
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Appendix F

Magnitude Response of the lOth Order
FIR Filters
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Appendix G

Phase Response of the 10th Order
FIR Filters
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Appendix H

Filtered Spectrum Using the Appropriate
Model Based Filter Coefficients
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Filtered Spectrum Using the Filter
Coefficients for Range Cell 20
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Appendix J

Filtered Spectrum Using a Pulse
Canceller Filter
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