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E-5075-1

SPATIAL EVOLUTION OF NONLINEAR ACOUSTIC MODE INSTABILITIES
ON HYPERSONIC BOUNDARY LAYERS*
M.E. Goldstein
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
and
D.W. Wundrow**
State University of New York at Buffalo
Buffalo, New York 14222
ABSTRACT
We consider the effects of strong critical layer nonlinearity on the

spatial evolution of an initially linear "acoustic mode" instability wave on a
hypersonic flat plate boundary Tayer. Our analysis shows that nonlinearity,
which 1s initially confined to a thin critical layer, first becomes important
when the amplitude of the pressure fluctuations become 0(1/M% 1n M2), where
M is the free stream Mach number. The flow outside the critical layer is
still determined by Tinear dynamics and therefore takes the form of a linear
tnstability wave - but with its amplitude completely determined by the flow
within the critical layer. The latter flow is determined by a coupled set of
nonlinear equations, which we had to solve numerically.

1. INTRODUCTION

Laminar boundary Tayer instabilities are predominantly inviscid at

suffictently high Mach numbers (Mack, 1984, 1987) with the so-called vorticity

modes exhibiting the most rapid growth at very large Mach numbers. The

*Work partially funded by NASA Grant NGT-50085, Space Act Agreement
C99066G, and NASA Contract NAS3-25266.

**Presently employed by Sverdrup Technology, Inc., NASA Lewis Research
Center Group, Cleveland, Ohio 44135.



so-called acoustic modes exhibit the most rapid growth at more moderate Mach
numbers - with the two-dimensional disturbances growing more rapidly than the
corresponding oblique waves.

Mack (1984, 1987) computed the relevant numerical solutions to Rayleigh's
equation and Cowley and Hall (1988) worked out the corresponding asymptotic
solution for the hypersonic limit where the free stream Mach number M » =,
Their results, as well as those of Mack (1984, 1987), suggest that, while the
instability wave number becomes small, the instability wave growth rate becomes
even smaller as M » o which means that there is a well-defined critical layer
at every unstable frequency in this Timit. Nonlinear effects will then balance
the resulting singularity at sufficiently large Reynolds numbers and the
present work is concerned with extending the Cowley-Hall (1988) analysis into
this nonlinear regime.

Boundary-layer-transition experiments often involve spatially growing
instability waves generated by relatively two-dimensional, single-frequency
excitation devices such as vibrating ribbons or acoustic speakers. As the
Instability wave propagates downstream, its amplitude continues to increase
until nonlinear effects come into play - provided, of course, that the initial
amplitude is sufficiently large and/or the mean flow divergence is sufficiently
small (i.e., the Reynolds number is sufficiently large).

Our previous remarks suggest that the nonlinearity first comes into play
locally, 1.e., within a critical layer. The solution to the resulting
nonlinear critical layer problem reduces to the linear small growth rate
hypersonic instability wave solution far upstream, and is therefore the natural
downstream continuation of this upstream linear solution. The flow outside the
critical layer continues to be linear but the corresponding instability wave

amplitude 1s completely determined by the nonlinear dynamics with the critical



layer. These considerations fix the relative scaling between instability wave
amplitude and Mach number and thereby show that the nonlinearity first becomes
important when the pressure fluctuation amplitude becomes OC1/M% 1n M) in the
main boundary layer.

The critical layer nonlinearity is strong in the sense that it enters
through a coefficient in the Towest order equation (as in the Goldstein,
Durbin, and Leib, 1987 incompressible boundary lTayer analysis) rather than
through an inhomogeneous higher order term (as in the Goldstein and Leib, 1989
compressible shear layer analysis). However, it differs from the former
analysis (but is similar to the latter) in that coupled vorticity and energy
equations have to be solved simultaneously. This has been done numerically.

While nonlinear effects always decrease the instability wave growth in
the Goldstein et al. (1987) analysis, compressibility effects produce a
dramatic increase in growth in the present analysis - leading to a possible
singularity at a finite downstream position (as found by Goldstein and Leib
(1989)). Finally it is worth noting that there is an unusual nonlinear
modulation of the basic critical layer streamline pattern which does not
usually occur in nonlinear critical layer analyses.

The overall plan of the paper is as follows. The problem is formulated
in section 2, where we show how the nonlinear flow gradually evolves from the
strictly linear hypersonic solution. The flow outside the critical layer is a
Tinear inviscid perturbation about a hypersonic (i.e., M >> 1) boundary layer
flow, and is found by extending the asymptotic analysis of Cowley and Hall
(1988) into the nonlinear regime. This flow has a double layer structure and
the solution for the main boundary layer region is worked out in section 3.
The critical Tayer is contained in the outer region and in section 4 we obtain

the outer region solution that applies outside the critical Tayer. This is



then used to formulate the relevant critical layer problem in section 5. The
resulting critical layer vorticity and energy equations are different from the
usual nonlinear nonequilibrium transport equations but can be transformed into
the Tatter by a suitable change of independent variables. The numerical
solution of these coupled equations is described in section 6. Finally,
numerical results are discussed in section 7.
2. FORMULATION

The free stream flow parameters are used as reference quantities and are
generally denoted by the subscript . The reference length, say A 1s taken
to be some suitable boundary layer thickness (e.g., momentum thickness). Then

the steady flow is characterized by the Mach number

M S Us/Co (2.1
and Reynolds number
Re = UnA/ Ve, . (2.2
where
Co = (YRTL1/2 (2.3)

Is the speed of sound in the free stream, v 1is the kinematic viscosity, y is
the isentropic exponent of the gas, and R is the gas constant.

We suppose that the flow is two dimensional and that Re is large enough
that the unsteady motion is essentially inviscid and unaffected by mean
boundary layer growth over the region in which nonlinear interaction takes
place. We can then suppose that the mean pressure is constant and that the
mean flow velocity U(y) depends only on the transverse coordinate y to the
required order of approximation. We assume that the wall is insulated and,
for simplicity, restrict our attention to an ideal gas which satisfies
Southerland's viscosity law and has Prandtl number unity. In this case the

Tocal mean density R and mean temperature T will be related by



RT = 1, (2.4)
and the mean velocity and temperature will be given by
U=nh'(m (2.5

and

T=1+ Y51 wa - uh, (2.6)

respectively, where n 1is the Dorodnitsy-Howarth variable (Stewartson, 1964)

defined by

2.7

n

| &
0

the prime denotes differentiation with respect to n, and h is the Blasius

function, i.e., it satisfies

hh'' + 2h''" = 0. (2.8)
It follows that (Schlichting, 1960, pp. 117 and 118)

~2 —n /2
Us=1--2 ¢gn /4[1 - &+ o5 4)] e (2.9)
n

nZn-B, (2.10)
B=1.73, and b = 0.462.
As indicated in section 1, we suppose that the unsteady motion starts as
a linear inviscid instability wave (which is governed by Rayleigh's equation)
in the upstream region where x - -o». We also suppose that the linear mode is

of the acoustic type (Mack, 1984, 1987) and that

1
— <« 1. (2.11)
M2

i

g



The relevant asymptotic solution to Rayleigh's equation was worked out to
lowest approximation by Cowley and Hall (1988). They show that the scaled
complex wave number o« 1is 0(o), that the phase speed ¢ behaves like

C=1-o0C~1 as o~ 0, (2.12)
where ¢ = 0(1), and that the flow develops a double (actually triple if the
free stream is included) layered structure, with a relatively thin outer
region, where

n ¥ = (25 - 7) 2.13)

is order unity provided the constant § satisfies

& ... (2.14)

Cowley and Hall (1989) extended their analysis to higher order in o to show

that the instability wave growth rate (or imaginary part of the complex wave

number) is small relative to ﬁea. or more precisely that
03 |
Ima = o E|. (2.15)

The Tinear instability wave will then have a distinct critical layer,

which, in view of (2.9), (2.12), and (2.13), must 1ie in the outer region where

Y = 0(1), and
2

ol L ¢ . 1429 -3y _ [ebY
U=l - obY{] - (1 “ e g Y) + 005 )} , (zs ) v e

We expect the analysis to become nonlinear in this layer because the flow
is assumed to be inviscid and the Tinear instability wave amplitude increases
in the downstream direction. The motion is predominantly linear outside the

critical layer and we expect the solution there to expand like

U= U + euy + ezuz . 2.17)



Ve ev, s e2v2 . (2.18)

0= Ttn) + ety + eztz A (2.19)

oY Ly ery + ezvz . (2.20)

where {u,v} are the velocity components in the x and y directions, & is
the temperature, p 1s the pressure, and ¢ 1is a characteristic amplitude of
the instability wave in the streamwise region where nonlinearity first becomes
important. It will be specified more precisely below. Then since
{uy,vy,11,p1} are determined by linear dynamics, it follows from Goldstein
(1984) that the expansion coefficients in (2.17) to (2.20) (which depend on x,

n, t, and o) are determined by

Lmy, = 0 (2.21)
_D_ of  3g 2U' 3g
Ly = 5% \ax * 8y> - T ax (2.22)
, or
g¥ up + %- vy = o 5;1 (2.23)
D U 3,
Dt (UZ + U]ﬂ’]) + i (V2 + V]ﬂ]) = -¢oT % " f (2.24)
Dv] awz
ot = -aT W (2.25)
D am,
ﬁ (VZ + V.l‘n’]) = -oT W— - g (2.26)
D D,
DET + TV = (v - DT 5 (2.27)

and a similar equation for =y, where the prime still denotes differentiation

with respect to n,

2 2
(9—— - oV TV) ¢ 200" =2 (2.28)



%EEgE*Ug_x’ (2.29
V= %g; , (2.30)
ng—;u$+%§u]v]+or]%§v], (2.31)

and
g;g;u]v] +—g§v%+m:]g—y1r]. (2.32)

It now follows from (2.12), (2.15), and the fact that « = 0(o) that the
solution to (2.21), (2.23), (2.25), and (2.27) that matches onto the upstream

Tinear solution must be of the form

5 t i )
u = o—/?e?](n,x])A (xpde'”, (2.33
v, = -a ﬁew](n.x])A*e‘X, (2.34)
t - % A’e@ﬁ*e”‘, (2.35)

e
" - Ren]A*eix, (2.36)

where we have put
3
o>x

X = 2, (2.37)
X - o&[x - - oE)t], (2.38)

A*(x1), alo), and c(o) are real quantities and, to the required level of

approximation, M7 satisfies Rayleigh's equation

g1, = o, (2.39)

where



(2
are the linear Rayleigh operators, the complex wave number and phase speed

and c, respectively, are given by

- 03 A‘i‘l
@ = oa + = =, (2
iA
2,4
cal-of - Z A (2
Sa jA

and the prime now denotes differentiation with respect to x7. MWe note in

passing that « has an expansion of the form
a = &] + c&z + 0 &3 ., (2

where each of the coefficients has its own series expansion* in &1, 1n &,

etc. (see (2.14)) and similarly for <c, i.e.,

- -(0) 1 (1)

a, = o + g + ... (2
- =(0) 1 =(1)
Ch = cn +5Cy ot . (2

I, must satisfy the boundary conditions

dH]
in - 0 at n=0, (2
and
Inm, -0 as n- o (2.

]

——’————-<na>2T[T-%<u-c>2] for n=1,2, ...

.40)

[+ 4

.41)

.42)

.43)

.44)

.45)

.46)

4a7)

and, in order to match with the linear solution far upstream, we must require

that

*It might be helpful to think of o and & as independent expansion
coefficients at this point.



KX
AT < ae ! as X < =, (2.48)

where « 1is the scaled growth rate of the upstream linear fnstability wave
and a 1is a complex constant. Finally, the remaining functions of n, i.e.,

¥y, &1, and ©7 can readily be found from (2.23), (2.25), and (2.27) once

I} is known.

In the following two sections we derive dispersion relations for the
instability wave amplitude outside the critical layer.
3. LINEAR SOLUTION IN MAIN BOUNDARY LAYER
First suppose that n = 0(1). It is easy to see from the Cowley-Hall

(1988) analysis that 1My should expand like
1 2
n]=5<PO+oP]+oP2+...), (3.1)
where each of the expansion coefficients in turn has the expansion

P = P(O) + P(])+ L P(Z) + . . . fOT' n = ]a 29 o " (3'2)

]
n n §'n g2 N
Substituting these into (2.39) and equating coefficients of Tike powers of
o and §, we find that

2,90, = 0, (3.3)

2
0,0 _, - _ - 2, [Ty =1 2 2]
2770 - o A5 :a](y-U(I—U){[Z a-uh - w-nis,

260" P
11 - L - - Y 9P
.l - 5 () - §0 -U)]cx]} R & R

and

2
(0),(1) (-
Q] P, =Q, TPy (3.5)

where

10



) A
QZ = er - 1(1 A_f ’ (3.6)
Q2r q are real,
_ [ ] ] 2 e 9P
G (y- DA+ Wa =L 1+ + u]p? . (3.7)
2 O g a-wto
and we have put
2d 1 d
O ——5
L dn (y - 1p2 dn
2fy - 1 2. Ty - 1 2 2
- 1(1—5——)<1 - )[1—5—— a-uvh-w-n ]. (3.8)

Equation (3.3) was solved numerically by Cowley and Hall (1988). They point
out that

~2
.D _-n°/2 . ®
P0 ;3 e as n , (3.9

where D 1is an, as yet, undetermined constant. Equations (3.4) and (3.5) can

now be solved by variation of parameters to obtain

e 2 M n

P. =P 1-U Q. (mdn dn, (3.10-a)
1= Po Py 1

J JO

i 2 M “
p¢1_ p (1—1—9) Q,¢n)dn dn. (3.10-b)
2 0 P 2

J 0 Jo

It follows that

2 ® 2 >
(0) _ b () L b” e _
P] D JO Q] dn; P2 . IO QZ dn, as n . (3.11-a,»

11



4. LINEAR SOLUTION IN THE EDGE LAYER
Cowley and Hall (1988) point out that the expansion (3.1) breaks down at
large disturbances from the wall and then proceed to construct a new "outer"
solution for the region where ¥ = 0(1) (see (2.13)). The expansion in this

region must be of the form

2
[*AY: o B
m =1+ (96 + 5, +. .., 4.1)
where again each expansion coefficient has its own series expansion

~ ~(-1) 5(0) 1 x(D)
Pn = SPn + Pn * 3 Pn £ ... (4.2)

in terms of &', 1n 6, etc. Substituting this, together with the new variable

(2.13), into (2.39) and equating coefficients of (o/8), we find upon

integration that

o

252 N L
§°’ . ”50’(931— - 2c,b¥ + cf n Y) . E%O). (4.3)

-2

t :
TCO I bl - () 1A 0|/ T
p = |— TC + Z(C + )B (C] InY bY)

2 3 2 a 1Af 1
Y
a7 N _2 2
+ (b (bY - 28 )In ¥ d¥ + L 102 F - [1 -y - ]
C
" Yo
(b7 - c])z . .1 .
X | S—— [¢' + InjbY - ¢ I]dY + E,, (4.4)
v 1 2

where we note that the lowest order solution (i.e., 5]) is given in Cowley and
Hall (1988), B,, E,, E,, and ¢ are constants of integration (the latter of
which can be different depending on whether ViO), and

12



TCE]*’(Y'”E]

is the mean temperature at the critical level where

bY = c].

(4.5)

(4.6)

This solution does not satisfy appropriate free stream boundary conditions and

it is necessary to introduce another outer expansion for the region where the

variable

~

n = on

is order one. The solution in this region is

-a Vl—oE% ;

H]=(1+o§])e + ..

to the required order of accuracy and matching with (4.1) shows that

and

. 1-'
=0 - [-2 _2 211 - 2 (-y 1 af
S a‘éc g Jlo MIC‘I]} s (cz " & iA*).

Finally, matching (3.1) and (4.1) and using (3.9) and (3.11) shows that

ba,

D = —5
_7
<

1 = Ei Jw Q, dn
ay Jo P

ﬂﬂ¢+ = 0,

and

13
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(4.10)

(4.11)

(4.12)

(4.13)



~2- -2 2 - AT S 2 S - .
a]c][l -c](Y-”]ﬂnW +2A* = 7 foqdﬂ (4.14)

Substituting (2.13), (2.34), (2.36), (2.41), (2.42), (4.3), and (4.4) into

(2.25) and equating coefficients of like powers of o, we find

- b RS
¢]= ( ) (s)c]( - ‘A+)+... . (4.15)

a1Cy

Substituting this together with (2.33) and the previous equations into (2.23)

and using (2.9)

- 2
a i al S
‘I’]=+2(bY+...)+g——_T*~ %1(.1__(:)_] bLZ,:]nY
T ac]) (c] - bY) 1 1
=2 21/ .= 5=
—[]-C](y—l)](cb +ln|bY-c]|)] . (4.16)

And finally, proceeding similarly with (2.35) and (2.27), we obtain
&.](y -
= - ————— bY + .
1 == \2
TaC])

5. NONLINEAR EDGE LAYER TERMS

(4.17)

@
I

The Towest approximation (in terms of o) of the 0(e2) terms in the
expansions (2.17) to (2.20) has to be determined before the solution within
the critical layer can be found. However, it is only necessary to consider
the edge Tayer solution for this purpose. It follows from (2.33) to (2.36)
that this solution must be of the form

(0) (2) 2iX
AT S Qen2 e (5.1

14



vy 4 vy = -2&[¢§°) . /2ei¢§2)e2‘xJ, (5.2)

and

§ {.(0) (2) 2iX
Uy + Uy, = o_[‘l’z + /29?2 e J (5.3)

where the, as yet, unknown coefficients are functions of n, xy, and o.

Substituting (5.1) into (2.22) and using (2.31), (2.28) to (2.36), and (2.40),

we find
(2) ] . 2 d G
£.n = - —4Q2%aTF + (U - ) =— [———————J . (5.4
272 g dn W - C)Z
where
F=—1°‘(§—)2[2\I’2———] & @D + Zon,|af2 (5.5)
=7 \o U T R LR A S ok A -
and
2 ©, di
=18 [,2 ofd 2 9 %t
G = 7 02 (Za ¢]T] = §T dn ¢] to7 an )A . (5.6)

Substituting (2.6), (2.13), (2.16), (2.40) to (2.43), and (4.1), (4.3), and

(4.15) to (4.17) into this result we find that

- (5.7)
2 d¥ 1°
to Towest approximation in o when ¥ = 0(1). It follows that
_ diy? (E] - b7 )aT? L -
¥ - [1+ 0z, - bY)] as ¥ - b (5.8)
v -3 1 b
dy cC]TC

15



It therefore follows from (2.13), (2.16), (2.26), (5.2), and (5.6) that

+2 c

2 5§ _A S _—
DI el LG R A (5.9)

g 4T cla
¢l
and similarly from (2.24), (5.3), and (5.5) that
2 s g - &

5 -5 [J] . O(bY . c]>] as vl (5.10)

where J] Ts an 0(1) constant.
6. THE CRITICAL LAYER
Equation (4.16) shows that the edge layer solution becomes singular in the
critical layer where VY = b/E]. The governing equations therefore have to be
rescaled to obtain a bounded result in this region. The thickness of the
linear small-growth-rate critical layer is of the order of that growth rate

divided by the mean velocity gradient times the real part of the wave number,

i.e.,

3
o
(8) [}
0l otde) =0 2

It therefore follows from (2.10) and (2.13) that the appropriate transverse

c )
- [~ 116
Y = (Y -5 o (6.1)

Equations (2.16) to (2.20), (2.33) to (2.36), (4.1), (4.15), (4.16), (5.1)

coordinate in this region is

to (5.3), and (5.8) to (5.10) suggest that the flow in this region should

expand like

16



c 2 oC t iX
. ooty [T, es Reale .
u=1 ol(b + ) B - % bY - (é& ) t g T a: + eu1
c 11
8352 -
r Uy v , (6.2)
o]
s by 5T§ oo X 832 21X
V=8 o2 _Clat L L 2t IX 8TeT 1 poat2, 21X
= 27 ¢ -2 & 3
] 14 o ecalyl,.
+ eV] ¥ ... , (6.3)
g v, &8 -
6 = TC *3 (y - 1bY + 02 1t y (6.4)_
and
Y a1 e RenTe® Lo (6.5)

where the passive terms involving 1n(o/8) have been incorporated into G],

etc., and
v(ﬁ—)z. (6.6)

Then the critical layer solution will match with the "outer" edge layer

v

solution if we require that

7o~ D ppateiX 6.7
! T a,C -
c 11
au o
1. b RentelX (6.8)

as

and

17



V) - (¥ ' - Eﬁ(* - D -t X
85, = 1[G, D - T,¢-D)] = - 1 Re ot - soate
Y—ocn Cc]
+ higher harmonics. (6.9

The expansion coefficients G], V], %]. etc. are functions of X, Y, and

X only. They are determined by the inviscid vorticity, energy and continuity

equations, which can be written as

= w_ 5 82? - 02 - 02
Dw - P Op = 6vp O + & ex] Py - 8 oPx + 5 px] ' (6.10

and
Lgp-—1— Bo--lau - Y Vo - 93 u (6.11-a,b)
wP=G-neP-" X"TW T8 U ) -1i-a,

where we have put

S 2

= _ = 3 -Y3 o 3
DZalu-0) —-Vvsz=—4+—uz—, (6.12)

X oy & ¥

and
2 3 3 = 2
m=g-¥§g+%(-37+-g—vx) (6.13)
ay § ax 1

is the vorticity.

The crucial step in the analysis is to choose the relation between the
amplitude scale e and the wavelength scale o so that the nonlinear terms
produce a critical layer velocity jump of the same order as the velocity jump
due to linear effects, i.e., 0Ce). A little experimentation shows that
nonlinear effects will influence the 0(e) term in wu (both through the cross
stream derivative in D and the vorticity source term on the right side of

(6.10)) if we take

18



01|Q
N W

Then G] and E] will satisfy
— /48U 25 3t -
) (T] - ——‘f—) - -&[—_l + bly - 1)J ReiatelX
Yy TG 3y
and
@ (%1 + bly - 1)?) -0

where we have put

Fe oL p)e
C

] aly aX
1 —
- -}-— e (T— - Tc - ]__2 /QeA*e'X)mT . P
c 4 bT Lac, €0 ay

(6.14)

(6.15)

(6.16)

(6.17)

This can be greatly simplified and put into a more standard form by taking Xy

X, and

= ¥+ —L— ReatelX
bT a] 1

=<l
o
"t

as new independent variables, in which case @D becomes

— T « =
D gt iy & - (Rente) 2
1 ax aYo

It now follows from (3.5), (4.13), (4.14), and (6.9) that

a|
Q
=<I

19
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(6.19)

(6.20)



where we have put

l = __] ~ _ =3 ”
AR (2 g Io q dn). (6.21)

To put these results in a more universal form, we introduce the new

variables
hz 1 5 . =1 peate!X|, (6.22)
v - DT |91t Tac
c 171
T c, {au \o
gz .11, b ReatelX|, (6.23)
S A (T c )2
0 INc)
iX
TcAfe 0
Az S5, (6.24)
r
bY
Y = —1.—0, (6.25)
Xz X - X (6.26)
and
X = Ta]X] - XO' (6.27)

Then H and @ satisfy the homogeneous boundary conditions

H,Q -0 as Y - 2=, (6.28)

and (6.15), (6.16), (6.19), and (6.20) become

Da - (1 rar -g%)ﬁeme‘x. (6.29)
PH - -Reire' X, (6.30
and
Sl A b dA
-j j ge 1 X gy dx = 1 &, (6.31)
T o 0 dx

20



where we have put

;) 3_ A XY 8
g = 3—i- + Y ax - (RBIAG ) 3y (6.32)
and
r = (y - ])E] = TC - 1. (6.33)

It is easy to see from these equations that

iX
Ae
H - -Re——, (6.34)
Y - ik
and
iX
Q- - rRePe— (6.35)
- ik
when
A - <X as X~ —m, (6.36)
where
= -nr (6.37)

is the scaled (and normalized) linear growth rate. The solution to these
equations can therefore be made to satisfy the upstream matching condition

(2.48) if we choose the, as yet, unspecified real constants Xo and xg to be

X0 = -3arg a, (6.38)
and
2
1 r
XO_E In T'a-'l' (6.39

7. NUMERICAL COMPUTATIONS
The coupled nonlinear evolution equations (6.29) and (6.30) must be solved
numerically. It is easy to see from these equations and the upstream boundary
condition (6.36) that the solution A will remain real for all values of X.

Then since Q and H are periodic In X, we expand them in Fourier series
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1 inX
Q= 7 E Qne (7.
h=-=
1 inX
H= 3 23 Hne (7
h=—<1)
with Q_n = Q;, H_n = -H; (where the asterisk denotes the complex conjugate)
obtain
(§—+1nv)9 1a -—[Q srH -0 | - rH ]=15 (1 - MA (7
t2 n+1 n+l n-1 n-1 n,l ' )
i X
(— FA K F AT - - T8 A, 7.
where A satisfies (6.36),
g - o1t -
n oY - ik
(1 -r)§_ A
n,l
Q - ——, (7
n Y - ik

as X - -=, and

> dA
jhg J Q] dyY = a; (7

1

.2)

to

3)

4)

.9)

.6)

1)

We solved (7.3) to (7.7) numerically using a procedure similar to the one

used by Hanes (1985) and Gé1dste1n, Durbin, and Leib (1987). Rather than
mapping the infinite domain -= ¢ Y ¢« 1into a finite domain, they simply
solved the equations over a finite range, say -N <Y < N, and used the
asymptotic behavior of the solutions at Y = z=» to obtain an accurate
approximation to the cross stream integral ((7.7) in the present case).

By using (6.29) and (6.30) to generate asymptotic expans?ons it is easy
to show that |

HnoQn = OCY

0’0
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(1 -1 il - r) dA -3

Q, - A = + (Y ) (7.9

] Y T &

1, 1 A -3
H] -y A - Y2 i + Y ™ (7.10)

]
Qn’Hn = O(Y"*]) for n>?2 (7.11)
as Y ~ 2o,
It follows that (7.7) can be approximated by
[1 -2 - r)]g‘5 =4 fN Q, dy + O(N") (7.12)
N dx ~ N p &Y '

The numerical technique used to solve (7.3), (7.4), and (7.12) was similar
to that used by Goldstein and Hultgren (1988). Egquations (7.3) and (7.4) were
solved for 0 < n<n where n was chosen so that the maximum absolute
values of Hy and Qp remained below a certain present tolerance. The Y
derivatives in (7.3) and (7.4) were discretized using second order central
difference approximations and Simpson's one-third rule was used for the
integrals in (7.12). The calculation was started in the upstream linear region
where A, Q,, and H, are accurately approximated by (7.5) and (7.6) and
marched forward in x through a predictor corrector procedure. A third order
scheme was used for (7.12). The predictor step for (7.3) and (7.4) consisted
of an Adams-Moulton-Bashforth second order explicit approximation for the
nonlinear and inhomogeneous terms and the Crank-Nicholson (second order
implicit) approximation for the mean flow convection terms. The corrector step
was fully of the Crank-Nicholson type. The comb1nedlcorrector steps for

(7.3), (7.4), and (7.12) were then iterated until the solution at the next

streamwise station was obtained to within a preset tolerance.
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8. NUMERICAL RESULTS AND DISCUSSION

Goldstein, Durbin, and Leib (1987) considered the nonlinear evolution of a
two-dimensional instability wave in a weak adverse pressure gradient boundary
layer. Equation (6.29) reduces to their result in the T1imit where r - 0 and
equations (6.29) and (6.30) become decoupled. They found that nonlinear
effects always reduce the growth rate of the linear instability wave, driving
it toward an equilibrium state.

The scaled instability wave amplitude is plotted as a function of the
scaled and normalized streamwise coordinate x for various values of r in
figure 1. The corresponding instability wave growth rates, Ax/A, are shown in
figure 2. As in Goldstein et al. (1987) the growth rates initially follow the
Tinear growth until the amplitude becomes large enough for nonlinear effects
to come into play, but now the nonlinear effects can cause the growth rate to
become larger than the linear growth presumably because compressibility
effects, 1.e., the Bjerknes forces, act as a vorticity source within the
critical layer. Notice that the growth augmentation increases with
increasing r and only occurs when r exceeds a certain finite value, say
ro.

Figure 3 shows the rollup of the vorticity contours in the X-Y plane at
various (increasing) values of x. The rollup is not too different from that
found by Goldstein et al. with the principal difference being the formation of
an additional counter rotating vortex core. The results are replotted in
figure 4 versus the more physical coordinates X and -Yb/T for

r

c 171

M| —

I

Notice that they now look considerably different.
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