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ABSTRACT

A new scheme to integrate a system of stiff differential equations for
both the elasto-plastic-creep and the unified viscoplastic theories is
presented. The method has high stability, allows large time increments, and
is implicit and iterative. It is suitable for use with continuum damage
theories. The scheme was incorporated into MARC, a commercial finite element
code through a usér subroutine called HYPELA. Results from numerical problems
under complex loading histories are presented for both small and large scale
analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to

a self-adaptive forward Euler method are made.

NOMENCLATURE

[(B] strain-displacement transformation matrix
(C] stress-strain material property matrix

E Young's modulus

eij deviatoric strain tensor

e?j deviatoric plastic strain tensor

e¢ effective creep strain

eP effective plastic strain



K drag stress

K] global stiffness matrix

AR fnetastic strain increment

{AR}1 vector of unbalanced force at ith iteration
S apparent area

Sij deviatoric stress tensor

Sn net area

{AU}1 vector of increments in nodal point displacements at ith iteration
v volume

% vector of stress

&1j Kronecker delta

e4 total strain tensor

E?j creep strain tensor

c?j - elastic strain tensor

eﬁj plastic strain tensor

{Aci} inelastic strain incremental vector

v Poisson's ratio

o von Mises effective stress
Gij Cauchy stress tensor

% net stress

o instantaneous yield stress
¥ damage parameter

Qij back stress tensor
Superscripts:

T transpose

t time



° initial value
. rate

INTRODUCTION

The increasing demand for integrity and reliability in metallic structural
components that have been subjected to a complex cyclic thermomechanical
environment has stimulated the improvement of inelastic analysis methodology.
The aerospace industry very much needs durable and efficient combustor and
turbine structural components in the modern éas turbine engine. Creep and
fatigue cracking and creep buckling distortion of combustor liners caused by
high temperatures and impact and erosion damage decrease turbine durability;
this has led to the development of a phenomenological theory of unified
constitutive equations that describe time and temperature dependence in the
plastic regime, in contrast to the time-independence of classical plasticity.
In the past the inelastic strain comprised a time-independent (plasticity) and
a time-dependent (creep) term; these terms were calculated by using classical
plasticity and creep theories, respectively. However the physical interaction
between creep and plasticity was observed through several deformation
phenomena, that is, cyclic hardening or softening, creep recovery, and rate
sensitivity. The unified constitutive theory is considered to be superior in
predicting and governing the physical process, as compared to the classical
plasticity-creep theory.

Although neither theory has been widely applied in structural analysis of
samples under complex loading histories, the unified constitutive theory has
been especially neglected. This is due mainly to difficulties associated with
the system of very stiff differential equations in certain regimes. This
mathematical stiffness requires use of a very small time step in order to

integrate the constitutve models without Toss of stability. As a result,



computation time becomes enormous, and under complex loading, solving the
problems often becomes impossible.

The importance of an efficient alogirthm to integrate the inelastic
constitutive models is obvious. An explicit algorithm, such as a forward
Euler in conjunction with a self—adaptivg scheme, has been widely used largely
because it is simple and the computation is inexpensive. However, this
algorithm is a subincremental type, which is noniterative in nature. In this
case, convergence of the solutions depends significantly on the judgment of
engineers, who tend to be conservative. An implicit alogorithm, which is an
iterative type, is more stable amd accurate but prohibitively expensive. In
recent years, several approaches have been developed to make the algorithm
less dependent on the analysts. Banthia and Mukherjee (1982), with their
one-step Euler integration scheme with a variable time step, improved the
scheme by imposing a better time-step control. This approach takes advantage
of the fact that the equations appear to be stiffer for large strain rates.
They chose a time step that gives more accurate results, but it is slightly
less efficient than their previous algorithm. Miller and Tanaka (1988)
developed a noniterative, self-correcting solution (NONSS). Their method is
similar to the Newmark B-method in that a parameter that determines whether
the method is explicit or implicit is introduced. This method reduces to the
forward Euler method when B > 0. Implicit quantities are removed in the
NONSS method by Taylor expansions of state variables. The NONSS method is
unconditionally stable of B > 1/2, but it requires setting up a Jacobian
matrix and solving a set of linear equations at each time step. Accuracy is
maintained through self-adaptive time control and by correcting errors at the
current step. Since this method has been used in one-element applications

only, its applicability to finite element analysis remains to be seen.



Despite these efforts, a generally applicable method that is implicit,
iterative, stable, and inexpensive as well as convenient for implementation
into finite element codes has not yet been developed. The objective of this
report is to demonstrate such a method. The proposed method is based on
transforming the differential equations of constitutive models to an integrated
form as proposed by Walker (1976, 1980). These integrated equations are then
approximated by uniformly valid asymptotic expansions (UVAE). A concise
mathematical derivation is presented for both the classical theory of
plasticity and creep and the unified viscoplastic theory. The advantage of
this method in continuum damage mechanics is presented as well. Implementation
into the commercial MARC finite element code is demonstrated. Results of
numerical examples for small- and large-scale problems at high temperatures are
then presented. Comparisons to the self-adaptive forward Euler (SAFE) scheme
are made as well, to show the accuracy and efficiency of the proposed

integration scheme.

DIFFERENTIAL FORMS OF ELASTO-PLASTIC-CREEP AND UNIFIED VISCOPLASTIC
CONSTITUTIVE EQUATIONS

A fundamental observation when comparing elastic and inelastic analysis
is that for elastic solutions the total stress can be determined from the total
strain alone, whereas in an fnelastic respoﬁse calculation the total stress
beyond the yield point depends on both the stress and strain histories.
Typical inelastic phenomena are plasticity, creep, and viscoplasticity, and a
very large number of material models have been developed in order to
characterize such material response. In this section the basic forms of

differential equations for both the classical theory of plasticity and creep



and the unified viscoplastic theory are presented. A brief review of the well-
known, self-adaptive forward Euler (SAFE) integration algorithm is included in
the last part of this section.
Classical Theory of Creep and Plasticity

The simplest and most widely used material model by far employs the
classical plasticity theory to characterize short-term deformation and the
classical creep theory to characterize long-term deformation. The differential
equations are formulated explicitly and independently. For small displacement
and small strain formulation, the total strain rate Eij is decomposed into
elastic, plastic, and creep strain rates,

[ ] - oe op oc
eij = eij + eij + eij (1

where Eij = component of total strain rate tensor, é?j = component of elastic
strain rate tensor, E?j = component of plastic strain rate tensor,

E?j = component of creep strain rate tensor. The constitutive law for an

fsotropic material with temperature-dependent moduli (Fung, 1965; Malvern,

1969) is

[ ) _ ) _ .p _ .C
%3 = Cijrs(ers €rs 8rs) 2)

where
Cigrs = M 845 S5 + W8, 835 * 8y 5jr> (3
A= Ev/(1 + V(T - 2v); w=E/201 + v); E = Young's modulus; v = Poisson's

ratio; and Sij = Kronecker delta.

The plastic strain rate is calculated by using the classical theory of
time-independent plasticity (Meldelson, 1968; Fung, 1965; Malvern, 1969). The

von Mises yield function for nonisothermal, isotropic haradening can be written

as
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where o 1s the instantaneous yield stress and Sij is the deviatoric stress
tensor defined as Sij = %y~ <Gij°kk/3)‘ The plastic strain rate is defined
as

p
sij = TS1j (5

where ¥ 1is a positive scalar variable defined as

_p -p
3 (ae . de ’)
¥ =5 |s=— o0 +3=—6 (6)
2
cy aoy y a9
eP is effective plastic strain,
1/2
—p=§pp>
e <3 eijeij N

e?j is deviatoric plastic strain, and 6 1is the temperature. With the yield
stress defined as a function of the effective plastic strain eP and
temperature ©, Eq. (6) can be used directly to evaluate ¥ (Snyder, Bathe,
1981).

The creep strain rate 1s determined by using a modified equation-of-state
approach. This approach includes strain hardening for variable locading and the
Oak Ridge National Laboratory's auxiliary hardening rules of cyclic behavior

(Pugh et al., 1972). The final result is written as

oC
where T is a scalar variable,
c
I = 38 (9
20

o s von Mises effective stress,



eC is the effective creep strain rate,

. m (m -1)
8¢ - A (3 (b2 an

0
T is the effective time, which can be determined iteratively, and Ag, my,
and mp are given constants. Equation (11) is derived from the uniaxial
creep law, which has been generalized to multiaxial conditions by utilizing

the effective stress and effective creep strain. Other creep laws could be

employed in a similar manner.

The final inelastic strain rate can be written as
\

*f

op oC
81j = e1j + eij

or F (12)

o
eij = (¥ + T)S1j J

Unified Viscoplastic Theory
The new theories to characterize material behavior at high temperatures

are known as unified theories, in the sense that plastic and creep strains are
considered as arising from the same physical mechanism. One or more state
variables are introduced in the constitutive equations. Again a small
displacement and small strain formulation is used, with the total strain rate
Eij decomposed into elastic E?j and inelastic Elj parts,

¢ =E?j+é§j (ad

The relation between the elastic strain rate and the stress rate 513 is given

Hooke's law (see Egs. (2) and (3)).

The general form of the unified viscoplastic constitutive equations can be

written as,



o Alfn<sij - 3 Qij) (10)

£y = B
[ ) .1 [
Oy = Agdiy - Gy, (15)
K = AR - J(K } K0> (16)

where Qij and K are the new state variables. The Qij is defined as the

back (equilibrium) stress tensor, and K 1is the drag stress. The R and B

are written as

NI
L] o]
R = (5 eijeij) an

5 - |3 (Sij - 3 Qij)(sij - 5 Qij>

The f" s a function of B/K to the power n, where A], AZ’ and n are

]]/2 (18)

material parameters, A3 is the strain hardening function, and é and 3 are
recovery functions.

Equation (14) is the flow law defining inelastic strain rate as a function
of applied stress, state variables, and temperature; this function was selected
to represent creep curves. As a result, three extensively used functions in
creep theories namely power, exponential, and hyperbolic sine functions, are
adopted in the unified viscoplastic theories. Of these, the power function has
been broadly used because of its numerical simplicity.

Equations (15) and (16) are known as evolutionaly equations and are
generally written in the context of a hardening and recovery form. The strain
hardening function varies according to the value of the inelastic strain rate.

The recovery function can be divided into dynamic and static recovery

components.



In this report, the specific constitutive equations proposed by Walker
(1976, 1980, 1981), Krieng-Swearengen-Rohde (1978), and Miller (1976) were used
to test the new integration scheme; their equations are given in detail in
Appendixes A, B, and C, respectively.

Self-Adaptive Forward Euler Integration Algorithm

Since the constitutive equations presented in the previous sections
represent a system of first-order nonlinear differential equations, they can

be written in a compact form, with the assumption that the stress and strain

field are known at a given time t, as
¥ = fly,p a9

where y represents the vectors of stress (Eq. (2)), inelastic strain
(Eq. (12) or (14)), back stress (Eq. (15)), drag stress (Eq. (16)); and f(y,tD
is an abbreviation for the nonlinear functions on the right side of these
constitutive equations. These differential equations are, in general, highly
nonlinear and have stiff regimes, particularly in the viscoplastic theory.
Consequently, a very small time step is often required in order to use standard
numerical integration techniques to solve these equatjons without loss of
stability. 7

Various numerical integration methods have been proposed for solving
siffness problems. Most of them are, however, intended for fields other than
structural mechanics. For example, Gear (1971) developed a program for
handling a general class of stiffness. Although Gear's methods have been
successfully appilied to uniaxial one-element analysis (Miller, 1975), his
package is not suitable for a large-scale finite element analysis because of
its extensive computer time and storage requirement.

In the context of finite element analysis of rate-related problems, a

number of numerical methods have been recommended. Numerical comparisons were

10



extensively performed by Chang (1985) and Lindholm et al. (1985a, 1985b). The
SAFE method has been found to be computationally efficient, especially when
connected with the subincremental approach (Cassenti, 1983a, 1983b). The most
significant advantage of this approach is that the numerical instability
incurred in using an explicit method has been diminished in such a way that no
reduction in gobal step size is necessary. The local step size is adjusted on
the basis of a comparison between an estimated error and prescribed error
bounds. This scheme is used for comparison purposes in the section Numerical
Examples and Comparisons. The details of the scheme follow.

For the solution of Eg. (19), the initial values y(t = 0) = Ya have to
be prescribed. The numerical solution is performed in discrete time steps
At, starting from a known solution at time t. This time step at 1is the
current finite element global Toad increment and is divided into NSPLIT equal
subincrements. The integration of the system in Eq. (19) is then performed by

using forward differences with a smaller step size as

At
Vet = e+ (FEpLTD)TCO 20

The above equation is repeated NSPLIT times and the solution of y at time
t + At is obtained. There are three possible ways to determine NSPLIT,
depending on the magnitude of the change in a strain measure for every
subincrement. The change in the strain measure is defined as

172

3 AJ
ERROR = AR + L——22>— Q1)

"

where
12
2 i j
AR =,<§ el 4 Aeij> (22)
3

81y = 3 85,4 85, (23)

11



If the value of ERROR is between the specified tolerances, usually 1x10-%4 and
1x10-9 (defined as ERROR! in the section on numerical examples), then there is
no change in NSPLIT for the next subincrement. However if ERROR is less than
the upper bound tolerance, NSPLIT is reduced by half. When ERROR is greater
than the lower bound tolerance, NSPLIT is doubled and the current subincrement
step is repeated. If NSPLIT exceeds the maximum number specified, the
conventional explicit forward Euler scheme is exploited with a fixed number of
subincrements throughout. This scheme, often called "successive substitution”
requires that a very small time step be enforced in stiff regions to avoid
numerical instability. Note that this is not an iterative scheme.
INTEGRAL FORMS OF ELASTO-PLASTIC-CREEP AND UNIFIED VISCOPLASTIC CONSTITUTIVE
EQUATIONS

The fundamental concept in deriving a uniformly valid asymptotic
integration scheme is to convert the constitutive differential equations
presented in the preceding section into integral form. In this section the
procedure for transforming a differential form into an integral form is
presented for elasto-plastic-creep and unified viscoplastic theories.
Elasto-Plastic-Creep Constitutive Integrated Equations

The inelastic strain rate tensor is written in the form of the deviatoric

strain rate tensor éij as

é;j = éij - (;%i) (24)
where
§, ¢
8y = Sy - (—l%—ﬁﬁ) (25)
From Eq. (12), define
12



L iy, (26)

then

( )s,J 27)

Substitution of Eq. (27) into Eq. (17) yields

R - ( )(2 313313) Qﬁ)

or (28)
. R
Q= 3
Equating Eqs. (24) and (27) yields
Zpe1j - Sij = Qsij (29)
Rearrange the above equation to give a form of a first-order differential
equation
S1j + QSij = Zpe1j (30
Integrating Eq. (30) for Sij at time t yields
t t 8 de,
S,5() = S, 5(@expl-0)] + [ expl- | de|2p —il de (31)
ij ] £=0 =t at 13
Since at t =0, S J(O) = 0; and e1j = &4y - iJ kk/3 then Eq. (31) becomes
the final integral form of Eq. (27)
t

de; - e
a8 = (3 § W8y o) + J exp{-[Q(t) - o<s>1}(2p -1 -y, a;k)dg

£=0

where

13



t

Q(t) = f 3u R 4 (33)
£=0 @ 9§
and
t 1/2
) ae: Be:
RCE) = ¢ —551 —551 dE (34)
£=0

Equation (32) represents the integral form of the differential equation
defined by Eg. (12), and it has a new scalar parameter Q.
Unified Viscoplastic Constitutive Integrated Equations

Each state variable in the differential form of viscoplastic relations
presented in the section Unified Viscoplastic Theory is converted into the
integral form by u§1ng a procedure similar to that for elasto-plastic creep.
Miller's model with three state variables demonstrates these transformations.

Inelastic strain. - The inelastic strain rate tensor is

" 2
E}j -3 BG'{sinh(é)alz] <Sfj '23 Qii) (35)

where

]]/2 (36)

2 (3 3
- 56 Si3 - Qij)(Z Si3 - 913)
B 1is a material constant, and ©' 1{s defined in Appendix C. Equation (35)

can be rewritten as

oL 2
€4y = 2n <S1j -3 Qij) (N

where

n
o . 3/2
%; . 32? [sinh(%) ] (38)

The second invariant of the inelastic strain rate tensor is written as

14

iy



. s i 1/2
R = (3 eijeij) (39
Substitution of Eq. (37) into Eq. (39) gives

(40)

e

[}
wlr— .
=

~N

From Eq. (40) the relation Z = 3uR/L may be substituted into the denominator

of Eq. (38) to give

- L e

2u R

. [Sinh(?)3/2}”

N {r—e
= |

from which the relation

e
!}

3/21"
BG'[Siﬂh(%) ] (41)

is obtained.
Notice that Eq. (41) can be extracted directly from the right side of

Eq. (35). Rearranging Eq. (41) gives

. 17 2/3
n
SRR CON (a2
which, when substituted into Eq. (38), yields
g 3pF.§
L = 573 (43)

K[sinh_](§§T>]/n}

Equating Eq. (37) with Eq. (24) forms

M L ] L 2
2uéyy - Syy = L<s1j - 3 Qij) (44)

Let

15



Yij = Si3 - % By
or > (45)
By = Siy - 5%y
Then Eg. (44) becomes
_;'ij+|:y1j=2péij—%§.)ij (46)

Equation (46) is in the form of a first-order differential equation and can be

integrated as

t t
ge. . 2 3Q,
= aLlx) ij ]
yij(t) = yij(O)exp[-L(t)] + J exp{- J [ 3t ]dr (Zp 3 " 3ot )d&
£=0

47

where yj3j(0) is the initial value. If S;5(0) = 0 and Q53(0) = 0, then
yij(O) = 0. By substituting Eq. (45) and the properties of deviatoric stress

and strain into Egq. (47), it can be written as

t

2 2
Gij(t) = 3 Qij(t) + (X +3 p)&ijskk(t) + j exp{-[L(t) - L(E)]}
£=0

de de 2 30
i] _ 2p Kk ii
X (2p £ 3 81j 3% 3 3t d& (48>

where

L(t) = 573 dE (49)
- 3R
K sinh'] 1

16
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Back stress. - The back stress in differential form is

) 1/721)"
sinh A]<§ QijQij) %,

G QijQij>]/2

. of l

(50)

where

' = exp(- 8%) for T > 0.6 Tm

and
;f . 0.6 T
I m
0' = exp(- 6T%LFT [Qn(——T———) + 1} for T < 0.6 Tm

The symbols n, H], A], B, Q*, and k are material constants independent of
temperature; T is the temperature in Kelvin, and Tm is the melting

temperature of the material. HWe can rewrite Eq. (50) into a first-order

differential equation as

L J ® .1
Qij + GQij = H]eij (51)
where
1721 |
2
. sinh[A](j Qijﬂij) J
G = H]BG' 773 - (52)
(5 25%5)
3 1573
Equation (51) can be integrated to give
t i
de.
Q.. (t) = Hoexp(~[G(t) - G(£)1} —il dg (53)
ij 1 at
£=0

where Q1j<t) =0at t =20, and

17



nt r

) 1/2‘\f'
s1nn[A](§ Q1jgij) }l

S| d (54)
(% Qijgij)

\J £=O - j

G(t) = H,Bo'

Drag stress. - The final state variable of Miller's theory is the drag

stress and is defined in differential form as

ey s Gagny) - 2] - e ()]

where H C

2 and A

2 , are material constants and independent of temperature.

Again Eq. (55) can be rearranged into the first-order differential equation as

172 A

L] [ ) ®* 2 2 3

K + J(K . KO) - HZR[CZ . (5 Q1j91j> N K J (56)
where

"

. [sinh(AzK )]

J = H,C,B8' (57)
> <K - Ko)

Integrating Eq. (56) under the initial condition K(t)

= KO at t = 0 gives

t
172 A
2 2 .3 3R
K(t) = Ky + j Hz[c2 . <§ Q1joij) N K Jexp[—J(t) - JE)1 55 6 (58)
£=0

where

t T

[sinh(AZK )]
It = H,C,B0" - (59)
(K - Ko)
£=0

A UNIFORMLY VALID ASYMPTOTIC EXPANSION INTEGRATION ALGORITHM

With the integrated form of each state variable presented in the previous

section, the asymptotic expansion can now be used to represent each integral

18
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of both the elastic-plastic creep and the unified viscoplastic theories. The
final forms appear in recursive relations and need to be solved by a Newton-
Raphson iterative technique.

Elastic-Plastic-Creep Uniformly Valid Asymptotic Expansion

Equation (32) written at time t + At can be shown as

2
o 5(t + 8L = (x . p)&ijekk(t + 80+ Tyt + 8D (60)

where

t+At

de, de -
exp{-[Q(t + At) - Q(E)]}(Zp 1 %“—sij a‘gk)dg (61)

Iij(t + At) = J 3E

Because of incremental formulation in nonlinear analysis, Eq. (61) can be

£=0

separated into two parts as

Iij(t + At) = I%j(t) + I%j(At) (62)
where
t
I%j(t) = J exp{-[Q(t + At) - Q&) 1}expl[Q(t)Iexpl-Q(t)]
£=0
de de
il 2m Kk
X (Zp 3E 3 sij 3E dg (63)
and

t+at

de. de
i et =J exp{-[Q(t + AE) - Q(E)]}(Zp 13 %“—s . —agﬁ)dg (64)

The unity expression [eo(t)e'o(t)] fs introduced into Eq. (63) to give

E=t

t

I%j(t) = exp{-[Q(t + At) - Q(t) 1} J exp{-[Q(t) - Q(&)1}
£=0

de de
il 2u kk
x (Zp 3t 3 81j 3E dE {65)

19



From Eqs. (60) and (61), the right side of Eq. (65) can be identified as

I..(t); th
ij t us N
I} (0 = exp(-aQ)1; (0
or ? (66)

2
RO exp(—AQ)[oij(t) - (x . 4 p)Sijekk(t)] /
where

AQ = Q(t + At) - Q) = 6(t + At)at (67)
The only integral in Eq. (62) is now I%j(At). According to Eq. (A6) in
Appendix A (Walker, 1987), this integral can be represented by a uniformly
valid asymptotic form. 1If only the first term of Eq. (A6) is used, the

approximated recursive relation of Eq. (64) is

‘ 2 1 - exp(-aQ)
it = <2p deyy - 5 u 8y, Aekk>[ X ] (68)
whaere
Asij = eij(t + ALY - eij(t)
and
AQ = Q(t + Ab)At
ST | T S Y ¥ (69)
ot + At)

The asymptotic recursive form of Eq. (60) becomes

2 2
oyt + A = (x . 4 p)&ijskk(t ¢ A + exp(—AQ)[oij(t) - (x . p)&ijekk(t)]

+ (2“ Beyy - S 843 Aekk)[] : QZS(_AQl} (7o)

20



Unified Viscoplastic Uniformly Valid Asymptotic Expansion

A procedure similar to that for the elasto-plastic-creep model is used to
obtain the final UVAE recursive forms of viscoplastic model for all three state
variables, namely, Cauchy stress, back stress, and drag stress.

For Cauchy stress, the relationship is

2
opyt + 80 = § 0;5Ct + at) (x . 2 p)S]J £y (t + AD)
2 2
+ exp(- AQ)[ 10 - § 95 - (x . & p)&ijekk(t)]
2 ] - exp( -AQ)
+ <2p Aeij -3 M 81j Aekk AQ]j>[ ] (70
where
Aeij = eij(t + At) - eij(t)
80,5 = 9 5Ct + 4D - 2 5(D)
and
AQ = Q(t + At)At = 3E?§t++A€§) at e (72)

s ) |

For back stress, the relationship is
1 - exp(-4G)

i
2 4(t + AD) = exp(-A0IR (1) + H) Aeij[ i ] (73)
where
Ae1 = 51 (t + At) - 51‘(t)
13 7 i ij
i Si'(t + Ab)
eij(t + At) = eij(t + A - 7
and
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) e n
sinh A][j Q) 4(t + 4Dt + At)] J At

AG = H.BO' (74)
! ) 172
[3 Qg (t + DAt s At)]
Finally for drag stress, the relationship is
) 172
K(t + 8t = Ky + [K(t) } Ko]exp(—AJ) R [5 0y 4Ct + ADR (¢ + At)]
e K3ct) AR[‘ - exp“AJ)] (75)
A N
where
.
Al = —ABt (4. c.Be' sinh[A K3<t>]> (76)
2C2 2
[K(t) , KO] J

AR = R(t + at)at

Newson-Raphson Iteration

Unlike the forward Euler integration scheme, Egs. (70>, (71), (73), and
(75) are recursive in nature. Each unknown state variable at time t + At
involves a single parameter (i.e., 4Q, 4G, or 4J) which, in turn, requires a
knowledge of the parameter's unknown state variable. These equations are the
recursive or implicit equations. Therefore a technique such as the Newton-
Raphson iteration is required. However this Newton-Raphson implicit iterative
scheme is different from the implicit integration scheme of differential
equations (Chang, 1985) in that its Jacobian matrix is much smaller. For the
elasto-plastic-creep theory, instead of iterating over six components of Cauchy
stress, Eq. (70) iterates over one parameter, AQ. In the case of unified
viscoplastic theory, the size of the Jacobian matrix is reduced from 13 x 13
(six components of Cauchy stress, six of back stress, and one of drag stress)

to 3 x 3 (AQ, AG, and AJ); this is the tremendous advantage of transforming
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differential equations to UVAE equations. Since the Jacobian matrix of the
elasto-plastic-creep model is a subset of that of the viscoplastic model, the
lTatter will be used to demonstrate the Newton-Raphson technique.

The governing iterative equations are obtained from Egs. (72), (74), and

(76) for each state variable and written in the function forms as

) JuR(E + AE) at B A
F,¢8Q, 4G, a1 = &Q - ST AD 573

)

123"
. 2
f,(8Q, 4G, 81) = 4G - H,B8 (sinh{§1[3 Q5(t + A0 5 (t + At>] A} )

J 777
3 At
> 173
[3 Q)4 + 800 (¢ + At)]
At 3 n
(80, 4G, A1) = ) - —AL [ c.Be' {sinh[A.K3(t)
3 265 2
[K(t) ; KO] )

The iteration starts with judiciously chosen initial guesses for AQ, AG, and
AJ. The intent is to find the solution of the equations
fm(AQ, AG, A)) =0

or (78)

fm<AUj> -0
where m=1,2,3 and AUj is a vector of AQ, AG, and AJ. Equation (78)
represents a system of nonlinear equations. The most frequently used iteration
scheme for the solution of these equations is some form of a Newton-Raphson
iteration (Stricklin et al., 1973; Oden, 1972; Bergan et al., 1978). By using
a Taylor series expansion and retainning only the first-order term, the

iterative form of Eq. (78) is written as
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j-1 m i-1
rolany) = T(003) + (5 Auj) CIRETORE a9
au!
]
let
i -1
U'saU - Uy (80)
and
of i1
Tm
(a AU.) = (Mmj) (81)
h| t-1
U,

i-1
The matrix (Mmj) is called a Jacobian matrix with a maximum size of 3 x 3.

Thus Eq. (79) can be written as

(Mmj>1—}U1 - -fm<Au;") (82)

Since Eq. (79) represents a Taylor series approximation, the incremental

correction U1 is used to obtain the next approximation
i i-1 i
AU, = AU, U (83
j j + 83
The relations in Eqs. (81) and (82) constitute the Newton-Raphson solution of

Eq. (78). The iteration is continued until appropriate convergence criteria,

discussed in the section Finite Element Formulation and Overall Scheme, are

satisfied.

i-1
The Jacobian matrix (Mmj> can be evaluated by finite difference

perturbation techniques and placed in the following form
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[fm(Ao + dQ, 4G, AJ) - f_(AQ, AG, AJ)] b
M1 = dQ
[fm(AQ, 8G + dG, AD) - f_(AQ, 4G, AJ)]
M, = - ? (84)
[f (AQ, AG, AJ + dJ) - f_(AQ, AG, AJ)]
M - LM m Sl
m3 dJ j
where
m=1,2,3 ]
dQ = (0.01)AQ, L
{ (85)
4G = (0.01)AG, |
dJ = (0.01)AJ. J

COUPLED CONTINUUM DAMAGE AND VISCOPLASTIC FORMULATION

The nucleation of microcavities, and their growth and coalescence into
macroscopic cracks, is generally the cause of material deterioration (material
damage) such as decrease of strength, rigidity, toughness, stability, and
residual life. Since the pionee: works of Kachanov (1958) and Rabotnov (1969),
a new concept has been developed to investigate the growth of microcavities and
the mechanical behavior of damaged materials. This concept, called "continuum
damage mechanics,”" represents the effects of distributed cavities in terms of
certain mechanical variables. Since its notion hypothesizes that the effects
of microcavities can be described by appropriate damage variables, such
variables can be represented according to the same notion as that of stress,
strain, or temperature field (Murakami, 1983). Therefore they are the same as
the internal state variables in thermodynamical theories of constitutive
equations.

In this section we introduce a damage variable as an internal state

variable and couple it with the constitutive and evolution equations of
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Walker's viscoplastic theory. Our aim is to demonstrate the potential
advantage of the proposed integration scheme when investigating continuum
damage models. Walker's damage model, which was selected for this exercise,
is first presented in differential form and then in uniformly valid asymptotic
form. Note that a damaged state is not considered in the elastic constitutive
equations.

The concept of a damage variable was first proposed by Kachanov (1974)
when he developed a mathematical model for evaluating creep rupture times.
Cavity growth that results in a reduction of the net area is assumed to be the
principal mechanism of material damage. The damage state may be represented
by an internal state variable ¢ such that ¢ =1 and ¢ = O specify the
undamaged initial state and the final rupture state, respectively. By taking
the maximum effective stress o as the principal factor governing the

progression of the damage, Kachanov formulated the evolution equation of the

damage variable ¢ as follows:

. _.r
- -A<9> (86)
v "
where A and r are material constants. Though Kachanov did not discuss the

physical meaning of y, it may be interpreted as the ratio between the net

area S, of a given section to that of the corresponding apparent area S

S
y = §ﬂ (87)

The stress, which is magnified by the net area reduction, is called net stress

and is defined

o, = (88)

-E-IQ

As in the classical theories of creep, Eq. (88) can be generalized to

multiaxial stress states. Assuming isotropy of material and of material
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damage, we, for demonstration purpose, introduce ¢ to Walker's viscoplastic

model and derive the following equations:

2 172"
g [5G sy - 13)(2 - %) (3 513 - %49)
|

j = 172
) § 5G 33 - Qij)(% Siy - Qij)]
(89)
%y = <”1 + nZ)E:j - <Qij - éij - “1°;j)
(m=1)/2
X [n3 + Ny exp<-n5R>]§ + ns(% QijQij> (30>
. (&)r (86)
o= -A "
where
5 = (% 51j51j>]/2 (10)

ny, np, n3, ng, ng, ng, m, A, and r are material constants.
The UVAE form of Eqs. (89) and (90) is obtained in a fashion similar to
that already described. However, the damage parameter is derived by directly

integrating Eq. (86). The final form is as follows:

2 ,
(t+ 8 = £0,,(t+ 8D + (x . p>513 e (t + b

O'ij
+ expl- AQ)[ NOE % 2, (0 - (x . % p)&ijckk(t)]
2 2 1 - exp(—AQ)]
where
1-C1/n)
3uRCE + AD)
e Y (92)
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_ 2 il - exp(—AG)]
0,4t + &1 = exp(—AG)[Qij(t) - Qij] ‘0, Aeij[ 1 (93)
. 2 (m-1)/2
AG = {n3R(t . AD) 4+ n6[3 Q1 (t + ADO (t + At)] }At (94)
K(t + ab) = K, (95)
or 1/Cr+1)
w(t + Ob) = [1 S A+ DG« At)o] (96)

As mentioned earlier, the differential form of the unified viscoplastic
formulation results in a mathematically stiff system of differential equations.
When damage is incorporated, unstable behavior from the numerical integration
tends to occur whether or not the explicit forward difference or the implicit
backward difference method is used. This unstable phenomenon in the
differential equations arises from the fact that the right side of Eq. (89)
becomes very large and sensitive to the time-step increment as the damage
parameter approaches zero. For the integral form of this damage model, the
factor y appears on the right side of Eg. (92), and this equation is the
intermediate term of Eq. (91) for the stress. MWhen approaches zero, AQ of
£q. (92) becomes large, and when 4Q fis substituted into Eq. (91), the stress
decreases. There is no sign of numerical difficulty. Therefore, an unstable
phenomenon should not be encountered if the proposed integration scheme is used
to integrate the continuum damage model.

Both differential and UVAE forms of this coupled continuum damage and
viscoplastic model have been incorporated into a MARC finite element program.
The results are presented in the section Numerical Examples and Comparisons.
FINITE ELEMENT FORMULATION AND OVERALL SCHEME

In the analysis of time-dependent constitutive relations, the formulation
currently used is that for small strain theory; that is, material nonlinearity,

only, is taken into consideration. In nonlinear finite element analysis, it is
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most effective to use an incremental formulation of the equation of motion.

The global incremental governing equtions are given as

[k1{au}' = {aR}' (97
where {aU}! 1s the vector of increments in nodal point displacements, {aR}}
is the vector of unbalanced force at iteration i, and [K] is the global

stiffness matrix and is defined as

K] = f (817CCIIBIdv (98)
Vv

where [B] is a strain-displacement transformalion, and [C] is a stress-strain
material property matrix.

There are two well-known methods to represent the inelastic strain of
constitutive relations governing each element at the local level and to
assemble this information into the global Tevel of Eq. (97). The first
approach, the tangent stiffness method, combines elastic and inelastic strain
characteristics at each increment directly into a tangent modulus [C], which
is then supplied to the global equations and assembled into the global
stiffness matrix [K]. This approach is commonly employed with rate-independent
constitutive equations (i.e., plasticity). The second approach is called the
initial strain method wherein the tangent modulus [C] is evaluated from the
elastic material moduli only. The inelastic strain is carried to the global
equations in the form of strain increments {Aei}. These strain increments are

then assembled into a pseudo-load vector {AR*} which is added to the right side

of Eq. (97) and defined as

(AR*} = j [817CCI{ae }dv (99)
\

This approach has been widely used with creep and unified viscoplastic

constitutive equations and is employed throughout this work in the proposed
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integration scheme presented in the previous sections. A flow chart describing
the nonlinear finite element analysis with a global incremental iteration
procedure is presented in Fig. 1

At the local level the overall scheme with a ﬁé@tom-Raphson iteration is
summarized in Fig. 2. The basic concept behind this scheme is using the UVAE
equations of viscoplastic models, derived previously while ensuring that by
taking only the first term of the expansion, the accuracy is obtained via
Newton-Raphson iteration. Details are as follows:

(1) With the initial strain method, an inelastic strain increment is
assumed at the start of iteration to be a deviatoric strain increment taken
from the previous time step. However, for subsequent global iteration the
deviatoric strain increment that is calculated from previous global iteration
is used.

(2) The initial guesses for AQ, AG, and AJ, or so-called local iteration
vectors, are all assumed to be 0.1. These values are judiciously chosen on
the basis of experience. The values range between 0.1 and 3.0. For small and
nonsevere loading problems, a high number is recommended; whereas for severe
therma! and mechanical loading situations, a low number is more appropriate.
The state variables oy, Qyj, and K are then determined by using Eqs. (71),

(73), and (75). Whenever the local iteration vector is updated, these state

variables must be recalculated.

(3) To calculate the inelastic strain rate ﬁ,:fhe finite difference is

employed by equating é to AR/At, where At is the current time-step
-1/2
increment and AR s determined as [(2/3)Ae;j Aezj];: . For the first

iteration, Ae;. is set to Ae1j. In the subsequent iterations, Ae;j is set

J )
equal to Ae1j - (Asij/2p>.
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(4) Once the state variables are known (based on the initial guess of the
local iteration vector), the functions in Eq. (77) can be evaluated to
determine how good the guess is. These functions will be the right side vector
of Eq. (82). Obviously, if the guess is good, these functions will be small,
and the local iteration vector computed from Eq. (82) will also be small. This
is the sign of convergence.

(5) Next, the matrix <Mmj) is estimated from Eq. (84). The finite
difference perturbation technique is based on 1 percent of the values of AQ,
AG, and 4J. This proved to be a viable choice since no i11 conditioning of
of the matrix took place during iterations.

(6) The iteration vector can now be corrected with Eq. (82) by inverting
the matrix (Mmj>’ whose maximum size is only 3 x 3 as in Miller's model. For
elasto-plastic-creep model, the matrix (Mmj) reduces to a scalar. Inverting
these matrices costs nothing; this is a tremendous advantage when analyzing
large-scale problems. Once the iteration vector is corrected, the new values
of 4Q, AG, and AJ, as well as the state variables Ty Qij' K, ey and
e:j, are subsequently updated.

(7) One of the most important parts of this iterative scheme is the
convergence criteria. In order for the algorithm to be effective, realistic
criteria should be utilized for terminating the iteration process. At the end
of each iteration, the solution that has been obtained should be checked to
see whether it has converged within preset tolerances or whether the iteration
is diverging. If the convergence tolerances are too loose, inaccurate results
are obtained; if the tolerances are too tight, excessive computational effort
is wasted for needless accuracy. Three convergence criteria are incorporated

into the proposed integration scheme. First, the iteration vector convergence

criterion is defined as
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where ETOLB is a convergence tolerance set equal to 0.01. The term "Ugl)uz

< ETOLB

is the two-norm of iteration vector in the first iteration. The ”ng)nz

the two-norm of correction vector in the subsequent iterations. If the
criterion is satisfied, the solution is obtained. There is no need to check
other criteria. However, if it is not satisfied, two Cauchy stress convergence
criteria need to be satisfied for the solution to converge. The first Cauchy

stress convergence criterion is defined as

(k+1) _ (k) (k) (k 1)
2 %3 2

This is a criterion to prevent any unnecessary iterations. If it is satisfied,

the second Cauchy sress convergence criterion is checked; it is defined as

follows:

(k- 1)
ll |

where CTOL is set equal to 0.005. This 1s a fairly tight tolerance.

l (k> (k 1)”
2

< CTOL

The Cauchy stress was the only state variable selected for convergence
checks because Cauchy stress is the only state variable needed at the global
level. In contrast, the back and drag stresses have never been used at the
global Tevel.

NUMERICAL EXAMPLES AND COMPARISONS

To demonstrate the numerical behavior of the new integration scheme, it

was coded into subroutine HYPELA (see Appendix D), which is written in FORTRAN
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and is interfaced with the MARC finite element program. The integral form of
Walker's, Krieg, Swearengen, and Rohde's (KSR's) and Miller's constitutive
models, as presented herein were incorporated into one subroutine. The
subroutine is written in a very efficient and versatile way, as all three
models are included and tied to one integration scheme. A HYPELA subroutine
containing the differential form of Walker's model with a SAFE integration
scheme was taken from Cassenti (1983b) and used primarily for comparison with
the proposed UVAE integration scheme. Similar subroutines containing the
differential form of KSR's and Miller's models with a SAFE scheme were also
written and used in the same fashion; these are not provided in this report.
For Walker's damage model presented in the section Coupled Continuum Damage
and Viscoplastic Formulation, minor modifications that are needed can be made
with relative ease to subroutine HYPELA, for both differential and integral
forms. Hence, it is not reproduced in this work. All the analyses were
performed on the Cray-XMP super computer at NASA Lewis Research Center.
Comparions are based on the number of seconds of Central Processing Unit (CPU)
time used.
Hysteresis Loop for Hastelloy-x Under Thermomechanical Loading at 1600 °F

An axisymmetric finite element model was used to simulate one quarter of
a solid specimen made of Hastelloy-x metal, which is being used for jet engine
combustor liners. The material constants of Hastelloy-x at 1600 °F for
Walker's, KSR's, and Miller's models are given in Cassenti (1983a). The cyclic
response is governed by these parameters: strain rate e = 3.87><10'3 sec']
and strain limit of 0.006 in./in. One full cycle of load, consisting of three
loading portions, was imposed as follows: portion 1 - loading, O < e ¢ 0.006;
portion 2 - unloading, 0.006 > ¢ > -0.006; and portion 3 - loading,
-0.006 < ¢ < 0.006. For each model, three different total time steps, with
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equal step sizes, were specified (i.e., 20, 40, and 80 time steps). Our
purpose was to study the stability and accuracy of the algorithm as time-step
size was increased.

Figure 3 shows the hysteresis loop of Walker's model for 80 time steps.
Three different runs are plotted: SAFE integration with ERRORI = 0.00071;
SAFE integration with ERROR1 = 0.00001; and proposed UVAE integration with
ETOLB = 0.01 and CTOL = 0.005. The results are almost identical for all three
runs. For 40 and 20 time steps, similar results were obtained, as shown in
Figs. 4 and 5, respectively. However, comparison of CPU time (see Table ID
indicates that the proposed UVAE scheme is more efficient computationally as
the step size increases. Of course, greater accuracy is attained because of
the iterative nature of the scheme, as compared to the SAFE scheme which is a
noniterative type.

Figure 6 shows the results of the same three runs with KSR's model for
40 time steps. Results are again nearly identical. By comparing the CPU
times summarized in Table I, conclusions similar to those for Walker's model
can be drawn. For Miller's model, the amounts of CPU time are quite different.
Table I shows that the proposed UVAE scheme consumes 2.5 times more CPU time
than does the SAFE scheme with ERRORT = 0.0001 for the case of 80 time steps.
However, as the number of time steps decreases or the size of time steps
increases, the efficiency becomes comparable. Good accuracy is obtained for
both schemes as shown in Fig. 7. Because this model has a very stiff region,
the user has a tendency to be more conservative and specifies a tight tolerance
for the SAFE scheme with ERRORT = 0.00001; then CPU time is three to four times
higher than with ERRORT = 0.0001, as can be seen in Table I. The noniterative
nature of the scheme lures the user to be conservative; however, this does not

happen with the UVAE scheme since accuracy is always assured through iteration.
34
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Thermomechanical Fatigue Loops

Thermomechanical fatigue loops (TMF) are typical loading histories
experienced by Hastelloy-x material in jet engine combustor liners at elevated
temperatures. Under such conditions, both mechanical load (in the form of
imposed strain) and temperature are subjected to large changes as a function
of time. In order to predict the life of combustor liners realistically, the
analyst must have a precise knowledge of the stress-strain hysteresis behavior
at the critical fatigue locations corresponding to the aforementioned loadings.
The purpose of considering the TMF is twofold: the first is to demonstrate the
capability of the proposed UVAE scheme in handling nonisothermal loadings, and
the second is to assess the predictive capability of the Walker and KSR models,
based on the proposed scheme, as compared to the experimental data reported in
Cassenti (1983a, 1983b).

Considered herein is the case of an open nonsymmetrical TMF cycle as
shown in Fig. 8. The temperature varies sinusoidally from 950 to 1750 °F,
with a temperature hold at 1750 °F for 40 sec; the strain, which also varies
sinusoidally, holds -0.43 percent for the same period. The total number of
time steps used for all analyses was 56.

The results of using Walker's model for a SAFE scheme and using the UVAE
integration scheme are presented in Figs. 9 and 10 along with the experimental
results. Notice that the proposed scheme gives better results than the SAFE
scheme (especially during steady-state conditions) when both are compared to
the experimental results. The superiority of the proposed scheme's results
are even more obvious in the KSR model results shown in Figs. 11 and 12.
Comparisons of CPU time for both schemes and both models are shown in Table II.

The new scheme utilizes only 5 percent more CPU time for Walker's model, and
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25 percent more for KSR's model, than does the SAFE scheme. However the new
scheme's accuracy is undeniably better.

Annular Combustor Liner Test Rig

In this example, a large-scale analysis of a combustor liner was used to
demonstrate the effectiveness of the UVAE scheme. The combustor liner is a
cylindrical part of a gas turbine engine that was radiantly heated in the
structural component response rig in the test liners. A photograph of the
conventional test liner is shown in Fig. 13(a). The test liner, of sheet-
metal seam-welded louver construction, is a nickel-base superalloy material,
Hastelloy-x. The eight louvers are segments of an outer annulus of a
combustor liner. The test liner has an inside diameter of approximately
50.8 cm (20 in.). Circumferential arrays of cooling holes cool the louver
lips. Louvers 4 to 6 (see Fig. 13(b)) are the active test louvers, that is,
the location where the heat flux to the test liner is considered to be
relatively flat.

A typical engine's mission cycle (takeoff, cruise, landing, and taxi) of
3 to 4 hr was simulated in 2.2 min. This thermal cycle time is broken up into
four segments (see Fig. 14): a 6-sec ramp up from minimum to maximum power; a
1-min hold time at maximum power; a 6-sec ramp down from maximum to minimum
power; and a 1-min hold time at minimum power. Cyclic surface temperatures at
two potentially critical failure locations (the seam weld and the knuckle) on
the liner of louver 5 are plotted in Fig. 15. These data were used in the
heat transfer analysis, with MARC code, as boundary conditions (thermal loads).
Details of this analysis can be found in Thompson and Tong (1986) .

The output of the heat transfer analysis was used as input to the
structural analysis program. A three-dimensional solid finite element model

of louver 5, consisting of 546 elements and 1274 nodes, is shown in Fig. 16.
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Appropriate boundary conditions are assumed. MWalker's model was used to
perform the analysis for both the SAFE and the UVAE integration schemes.
Because of the large amount of CPU time consumed, the results of only 10 time
steps are presented. In Figgfmifrand féiﬁggop stress and strain at the seam
weld and at the knuckle, respectively, are plotted. The results are in good
agreement. Discrepancies are within 3 percent at the knuckle and 10 percent
at the seam weld. However, a question arises about whether the SAFE scheme is
accurate for a large-scale analysis with complex loading histories, since it
is a subincremental noniterative approach. The error that occurs in each time
step of a large-scale analysis may be sizable and cumulative. Because of the
iterative approach of the proposed UVAE scheme, error is not accumulated.
Comparison of CPU times shows that the UVAE scheme (271 sec) has an 8-percent
advantage over the SAFE scheme (292 sec) when only 10 time-step increments are
used.
Continuum Damage Behavior During Creep Rupture Test

In the section Coupled Continuum Damage and Viscoplastic Formulation, a
damage model was incorporated into Walker's viscoplastic model in both
differential and integral forms. The damage parameter  was introduced. To
test these models numerically, subroutine HYPELA was slightly modified. The
finite element model is the same as for the Hastelloy-x hysteresis loop. It
is first loaded to stress, which saturates at a value of 7500 psi throughout
the analysis. The values of A and r were chosen as 6.20819891x10-26 and
5.4, respectively, to provide verification of the numerical scheme. The damage
¥ was initially set equal to 1 and diminished toward zero, as shown

parameter

in Fig. 19. No numerical difficulty was encountered. However, for the SAFE

scheme, a breakdown occurred at ¢y = O.Sé,reven though a very small time step

was specified. At creep rupture the strain was 0.0058, and the rupture time
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was 3300 sec (see Fig. 20). This example demonstrated that the proposed UVAE
integration scheme possesses a tremendous advantage in the analysis of

continuum damage mechanics.

SUMMARY OF RESULTS

A new uniformly valid asymptotic implicit integration algorithm for
elasto-plastic-creep and unified viscoplastic theories, including continuum
damage, is proposed and demonstrated through a user subroutine of the MARC
commercial finite element code. Based on the results obtained, the following
characteristics of the proposed algorithm can be stated:

1. The algorithm is iterative without a high computational cost.

2. The algorithm is stable for large time increments.

3. The results obtained are less user-dependent.

4. The algorithm is simple, easy to implement, and well suited for finite

element applications.

5. Under complex loading histories, including multiaxial behaviors, the

algorithm is accurate and efficient.

6. The algorithm was shown to possess a tremendous advantage in continuum

damage mechanics.

7. The algorithm is suitable for large scale multiaxial problems.
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APPENDIX A
WALKER'S THEORY

(1) Differential Form

4 17"
1273 3 3
doL [5G s - 293 55 - 24y)] l (2 551 - 2iy)
iy K [ s 3 172
. y [5(5 S5 - Qij>(§ Sij - Qij)]
* 01 (=] . ;
%5 = il - (Qij - Qij)G + By
K = K] - K2 exp(—n7R>
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G =ngR+ “6(5 QijQij)
(2) Uniformly Valid Asymptotic Expansion Form
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J
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o]
and X\, u, Qij’ n, m n,, ng, Ng» Ny

depend on temperature.

K], and K
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APPENDIX B
KRIEG, SWEARENGEN, AND ROHDE'S (KSR) THEORY

(1) Differential Form

: 1/72\"
3G S - Qij)gg Siq- %)) L 35y - Qij)
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772
[5G )G )
! bt s - = -
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. 1 ) 172 ,
237 Meig - A%503 ququ> [eXp<A3 3 ququ> - ]] (82)
K = K, (B3)
(2) Uniformly Valid Asymptotic Expansion Form
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and X\, u, n, A], AZ’ A3, and KO are material constants which depend on

temperature.
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APPENDIX C
MILLER'S THEORY

(1) Differential Form

j JAK
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(2) Uniformly Valid Asymptotic Expansion Form
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R [cij(t) -§ 0w - (x . 4 p)&ijekk(t)]exp(—AQ)
2 2 1 - exp(-4Q)
+ (2 Beyy - F M 8y Beyy - 3 AQij)[ AQ ]
i 71 - exp(-AG)
Qy4(t + 8D = exp(-00)2; (1) + H) he 13[ xp ]

[1 - exp(—AJ)]

K(t + ab) = Ky + [K(t) N Ko]exp(—AJ) + HyC, R XD
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where

_ 3R at
n
o) ]
~n
e 2 1/2 At
AG = H,B8'\sinh|A,(Z Q..Q.. (C10)
1 T\3 "ij"i] ) 9 1/2
: (3 Qijﬂij)
A 1/2
] 2 3 2
Ad = Ho 2 k3 - (2 a..0..
[K(t + At - KO] [ 2 A (3 R ‘3> }

3 n
x OR + HyC,B0 [s1nh<A2K )] At 1)

and Tm, n, HZ’ A], A2, B, C2, Q*, and k are material constants which are
independent of temperature. The material constants X, u, H], KO’ and o'

depend on temperature; T 1is the temperature in Kelvin.
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APPENDIX D
SUBROUTINE HYPELA

SUBRCUTINE HYPELA(D,G,E,DE,S,TEMP,DTEMP,NGENS,N,NN,KC,MAT,NDI,
INSHEAR)

A NEW VALID ASYMTOTIC INTEGRATION SCHEME FOR 3 VISCOPLASTIC MODELS
MOD = 1, WALKER’S MODEL
MOD = 2, KSR’S MODEL
MOD = 3, MILLER'S MODEL

cesvererwcss THIS SCHEME IS WRITTEN BY " A. CHULYA Msdktssressssactnrsx
ALL RIGHTS RESERVED

oo aaoaaaaan

DIMENSION D (NGENS,NGENS),G(NGENS) ,E (NGENS) ,DE (NGENS) ,S (NGENS)
DIMENSION TEMP(1),DTEMP (1)
DIMENSION SIGB(6),0MEGB(8),CB(6),SIGE(6),0MEGE(6),CE (6)
DIMENSION DC(6),DET(6),0MEGI (6)
DIMENSION DSIGIN(6),DS(6),AB(6)
DIMENSION F(2,3),BUP(3),DCTEMP (6),TISIG(6) ,FM(3,4)
COMMON/AKEV /KEVIN
COMMON/FAR /DUM, INC
COMMON,/CDC/DUMMY (18) ,NCYCLE
Crosnre
SINV(A,B,C,D,E,F)=(A«A+B«B+CxC+2. « (DD+ExE+F«F))+2./3.

C
C USERS SELECT THE VISCOPLASTIC MODEL
oD = 1
C
IF(MOD.LE.3) GO TO 9
WRITE (6,4711)
4711 FORMAT(’ MODEL SELECTED IS INVALID - SOLUTION STOP ')
STOP
Ce+s+«DETERMINE IF PLANE STRESS,PLANE STRAIN,AXISYMMETRIC,OR 3-D
Ceexr+«KELTYP=1 FOR PLANE STRAIN AND AXISYMMETRIC PROBLEMS
Cexs«+KELTYP=2 FOR PLANE STRESS PROBLEM
CrressKELTYP=3 FOR 3-D PROBLEM
9 IF(NDI.EQ.3.AND.NSHEAR.EQ.1) KELTYP=1
IF(NDI.EQ.2.AND.NSHEAR.EQ.1) KELTYP=2
IF (NDI.EQ.3.AND.NSHEAR .EQ.3) KELTYP=3
CeesseSET UP CONSTANTS
MAXTT=25
NELPR=1
IPR=1
NPRIN=1
SFTEMP-936 .2
¢... .SET UP TOLERANCE
ETOLB - 0.01
CTOL = 0.005
C'vvee«PUT STRESSES AT BECINNING OF MARC INCREMENT INTO SIGB ARRAYT ACCORD
C»rs-«T0 ELEMENT TYPE
G0 T0(801,802,803) ,KELTYP
801 CONTINUE
SIGB(1)=S(1)
SIGB(2)=S(2)
SIGB(3)=S(3)
SIGB(4)=S(4)
SIGB(5)=0.
SIGB(6)=0.
¢0 TO 900
802 CONTINUE
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803

804
900

SIGB(1)=8(1)
SIGB(2)=S(2)
SIGB(3)=0.
SIGB(4)=S(3)
SIGB(5)=0.
SIGB(6)=0.
GO TO 900

D0 804 J=1,6
SIGB(J)=S(J)
CONTINUE
CONTINUE

C+++++INITIALTIZE STATE VARTABLES ON FIRST ENTRY TO SUBROUTINE. ON SECOND

C

2
3

AND SUBSEQUENT ENTRIES SKIP INITIALIZATION.
KEVIN=INC+NCYCLE

IF(KEVIN.NE.0) GO TO 3

TEMP (1) = SFTEMP

DO 2 J=2,15

TEMP (J) =0.

CONTINUE

CONTINUE

C+++SET STARTING VALUES OF STATE VARTABLES DURING PRESENT MARC INCREMENT

61

62

63

64
71

DEG=TEMP (1)

TB=TEMP (2)

RB=TEMP (3)

IF(MOD.EQ.3) AKB=TEMP(16)

DO 104 KA=1,6

J = KA+3

OMEGB (KA) =TEMP (J)

CB(KA)=TEMP (J+6)

CONTINUE

SET TEMPERATURE AND TIME SUBINCREMENTS
DDEG=DTEMP (1)

DT=DTEMP (2)

PUT SUBINCREMENTS OF TOTAL STRAIN INTO ARRAY DET ACCORDING
TO ELEMENT TYPE

G0 Ta (61,62,63) ,KELTYP

CONTINUE
DET(1) = DE(1)
DET(2) = DE(2)
DET(3) = DE(3)
DET(4) = 0.5+DE(4)
DET(5) = O.

DET(6) = 0.

co To 71

DET(1) = DE(1)
DET(2) = DE(2)
DET(3) = -DET(1)-DET(2)
DET(4) = 0.5+DE(3)
DET(5) = O.

DET(6) = O.

G0 T0 71

CONTINUE

DO 64 J=1,6

FAC=1 .

IF (J.GT.3)FAC=0.5
DET(J) = FAC+DE(J)
CONTINUE

CONTINUE

Cex+++«SET INITIAL GUESS FOR EQUILIBRIUM STRESS AT END
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Ca++++0F SUBINCREMENT EQUAL TO EQUILIBRIUM STRESS AT
Cr++++BEGINNING OF MARC INCREMENT

C
D0 2000 J=1,6
OMEGE(J) = OMEGB(J)
2000 CONTINUE

c
Cusx++ASSUME INITIAL GUESS FOR INELASTIC STRAIN IN FIRST ITERATION

Ces+++BQUAL TO DEVIATORIC STRAIN INCREMENT
C
DVOL=DET (1) +DET (2) +DET(3)
D0 72 J=1,6
ALPHA = 1.
IF (J.CT.3) ALPHA=O.
DC(J) = DET(J) - ALPHA«DVOL/3.
72 CONTINUE

c
Cx+xs+COMPUTE INELASTIC STRAINS AT END NF FIRST SUBINCREMENT
c
D0 7125 J=1,6
CE(J) = CB(J)+DC(J)
7125 CONTINUE
c
C..... START INTEGRATION
CusssxCOMPUTE TEMPERATURE DEPENDENT MATERTAL CONSTANTS
DEGM = DEC + 0.5+DDEG
G0 TO (41,42,43), MOD
41 CALL CONST1(DECMEE,ANU,AKO,ANIN,AM,AN1,AN2, AN3, AN4,
1 ANS,ANB,AN7 , OMEGZ , AN, ALAM , AMU, C1,€2,C3,C4,C5)
Cusss+SET INITIAL VALUES OF EQUILIBRIUM STRESS
DENOM=SINV (CE(1) ,CE(2) ,CE(3),CE(4),CE(5),CE(8))
DENOM=DENOM+1.E-30
AB(1)=-OMEGZ+2. ~OMEGZ+ (CE(1) »CE(1) +CE(4) «CE{4) « CE(6) -CE(6"
1+1.E-30) /DENOM
AB (2)—~ONEGZ+2. +OMEGZ+ (CE (4) +CE (4) +CE(2) +CE(2) +CE(5) «CE(5)
1+1.E-30) /DENOM
AB(3) = OMEGZ+ 2. +OMEGZ+ (CE(8) +CE(6) +CE(5) «CE (5) +CE(3) «CE(3) -
11.E-30) /DENON
AB(4) =2 «OMECZ+ (CE (1) +CE (4) +CE(2) «CE(4) +CE(5) +CE(6) +1.E-30)/
1DENOM
AB(5)=2. «OMEGZ+ (CE (4) +CE(6) +CE(2) »CE(5) +CE(3) +CE(5) +1.B-30)/
1DENOM
AB(6)=2. »OMEGT« (CE (1) +CE(6) +CE (4) +CE(5) +CE(3) +CE(6) +1.E-30)/
1DENOM
ABSUM=AB (1) +AB(2) +AB(3)
DO 7134 J=1,6
ALPHA=1.
IF (J.GT.3)ALPHA=O.
OMEGT (J) =AB(J) - ALPHA «ABSUM/3.
7134 CONTINUE
¢0 TO 69
42 CALL CONST2(DEGM,EE,ANU,AKO,ANIN,A1,A2,A3, A4,
1 A5, AN,ALAM,AMU,C1,C2,03,C4,C5)
CecersSET INITIAL VALUES OF EQUILIBRIUM STRESS
D0 7135 J=1,6
OMEGI (J) =O.
7135 CONTINUE
G0 TO 69
43 CALL CONST3(DECM,EE,ANU,AKO,AN,A1,A2,H1,H2,22,BP,
1 ALAM,AMU,C1,C2,C3,C4,6C5)
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e

v e

e

435

444
541

542

D0 7138 J=1,6
OMEGI (J)=0.
CONTINUE

IF (KEVIN.EQ.0) AKB=AKO
.COMPUTE INITIAL DR AND SAVE IN DRG

DR = SINV(DC(1),DC(2),DC(3),DC(4),DC(5),DC(6))
DR = SQRT(DR)

IF(DR.LE.1.E-10) DR=1.E-10
NIT = 0

thn

.ASSUME INITTIAL GUESSES

Dg = 0.1
DG = 0.1
IF (MOD.EQ.3) DJ = 0.1

.START ITERATION LOOP

CONTINUE
NIT = NIT+1

.CALCULATE THE BACK STRESS

IF(MOD.EQ.1) DCON = AN2

IF(MOD.EQ.2) DCON = Al

IF(MOD.EQ.3) DCON = H1

CALL OMEGAR (DG,DCON, OMEGI , OMECB, OMEGE, DC)

.CALCULATE THE DRAG STRESS
CALL KAPPAR(DJ,H2,Z2,AKO,AKB, AKE, DR, MOD)

.CALCULATE STRESS

CALL SIGMAR(DQ,KELTYP,DET,AMU,ALAM,DC, OMEGB, OMEGE,

1 SIGB,SIGE,DVOL)

STNORN=SQRT (SIGE (1) »*2+SIGE (2) «x2+SIGE(3) x+2+SIGE (4) ++2
1 +SIGE(5) **2+SIGE(6) *2)

DO 435 K=1,6

ALPHA = 1.

IF(K.GT.3) ALPHA=O.

DCTEMP (K) = DC(K)

DC(K) = (ALPHA*ALAM=+DVOL+2 . »AMU=DET (K) -SIGE (K) +SIGB(K) )/
&(2.+AMU)

CONTINUE

DRTEMP = DR

.COMPUTE DELTA R FOR NIT >= 2

IF (NIT.EQ. 1) GO TO 444
CALL DELR (NIT, DVOL , ALAM, ANU, DET, SIGB, SIGE,
OMECE, AKE, AN, DT, DR)
nnor = DR/DT
GO TO (541,542,543), MOD
CALL EVALF1(RDOT,3,AN,AM,AN3,AN6,AMU,DT,F, OMEGE,
1 AKE, AKO, D, DG)
GO TO 544
CALL EVALF2(RDOT,3,AN,A2,A3,AMU,DT,F, OMEGE,
1 AKE, AKO, DQ, DG)
GO TO 544

47



543 CALL EVALF3(RDOT,4,AN,BP,H1,H2,A1,A2,22,ANU,DT,FM, OMEGE,
1 AKE, AKO,DQ, DG, DJ)
544 IF(NIT.EQ.1) GO TO 405

C
C..... CONVERGENCE CHECK
TF (BNORM. LE . (ETOLB+DNORM)) GO TO 909

c
SUM1=0.0
DO 2002 I=1,6
SUM1=SUM1+ (SIGE (I)-T1STG(I))++2
2002 CONTINUE
SUM1=SQRT (SUM1)
IF(NIT.LE.2) GO TO 404
C
IF (SUM1.GT.SUM2) GO TO 404
IF (SUM2.GT.CTOL+T2NORM) GO TO 404
c
C..... UPDATE INELASTIC STRAIN C AT T+DT
C

909 DO 911 I=1,6
CE(I) = CB(I) + DC(I)
911 CONTINUE ,

C..... COMPUTE INELASTIC STRESS INCREMENT ACCORDING TO ELEMENT TYPE

G0 TO (809,810,809) ,KELTYP
809 DO 812 J=1,6
DSTGIN (J)=-2. «AMU«DC (J)
812 CONTINUE
GO TO 902
810 DO 813 J=1,6
ALPHA = 1.
IF(J.CT.3) ALPHA=O.
DSIGIN(J)=ALPHA+2. +AMU+ALAM+DC (3) / (ALAM+2 . *AMU) -2 . « AMU*DC (J)
813 CONTINUE
902 CONTINUE
GO TO 420

404 TF(NIT.GE.MAXIT) GO TO 1991

405 DO 2001 I=1,6
T1SIG(I) = SIGE(I)
2001 CONTINUE
T2NORM = TINORM
TINORM = STNORM
SUM2 = SUM1

K =2
IF(MOD.EQ.3) K = 3
DO 399 J=1,K
GO TO (421,422,423),J

421 TEMPD = .01+DQ
IF (ABS (TEMPD) . LE. 1.E-8) TEMPD
DQ1 = DQ + TEMPD
DGl = DG
IF (MOD.EQ.3) DJ1
G0 TO 430

422 TEMPD = .01xDG
IF (ABS (TEMPD) .LE.1.E-8) TEMPD
DQ1 = DQ .

1t

1.E-4

DJ

1.E-4
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DG1 = DG + TEMPD
GO TO 430

423 TEMPD = .01+DJ
IF (ABS (TEMPD) .LE.1.E-8) TEMPD = 1.E-4
DG1 = DG
DJ1 = DJ + TEMPD

C..... CALCULATE THE BACK STRESS
IF(MOD.EQ.1) DCON = AN2
IF (MOD.EQ.2) DCON = Al
IF (MOD.EQ.3) DCON = H1

430 CALL OMEGAR(DG1,DCON,OMEGI, OMEGB,OMEGE, DCTEMP)

C..... CALCULATE THE DRAG STRESS
IF(MOD.EQ.3) CALL KAPPAR(DJ1,H2,Z2,AKO,AKB,AKE,DRTEMP,M0OD)

C..... CALCULATE STRESS
CALL SIGMAR(DQ1,KELTYP,DET,ANU,ALAM, DCTEMP, OMEGB, OMECGE,
1 SIGB,SIGE,DVOL)

..... COMPUTE DELTA R FOR NIT=2 AND 3

IF (NIT.EQ. 1) GO TO 560
CALL DELR(NIT,DVOL,ALAM, 6 AMU,DET,SIGB,SIGE,
1 OMEGE, AKE, AN, DT, DR1)

..... COMPUTE RATE OF R

RDOT = DR1/DT
GO TO 561
560 RDOT = DRTEMP/DT
561 GO TO (571,572,573), MOD
571 CALL EVALF1(RDOT,J,AN,AM,AN3,AN6,ANU,DT,F, OMEGE,
1 AKE, AKO,DQ1,DG1)
G0 TO 574
572 CALL EVALF2(RDOT,J,AN,A2,A3,AMU,DT,F,OMEGE,
1 AKE, AKO,DQ1,DG1)
G0 TO 574
573 CALL EVALF3(RDOT,J,AN,BP,H1,H2,A1,A2,%2,AMU,DT,FM, OMEGE,
1 AKE, AKO,DQ1,DG1,DJ1)

574 IF(MOD.EQ.3) GO TO 580

F(1,]) = (F(1,J)-F(1,3))/TEMPD
F(2,J) = (F(2,7)-F(2,3))/TEMPD
G0 TO 399
580 FM(1,J) = (FM(1,J)-FM(1,4))/TEMPD
FN(2,J) = (FM(2,J)-Fu(2,4))/TEMPD
Fu(3,J) = (FM(3,J)-Fl(3,4))/TEMPD
399 CONTINUE

IF(MOD.LE.2) CALL INVER2(F,BUP)
IF(MOD.EQ.3) CALL INVER3(FM,BUP)

BNORM=SQRT (BUP (1) +BUP (1) +BUP (2) «BUP (2) +BUP (3) +BUP (3))
IF(NIT.NE.1) GO TO 469

DNORM=BNORM

IF (MOD . LE. 2) ZNORM
IF (MOD.EQ.3) ZNORM
1 SQRT (FM(1,4) +FM(1,4) +FM(2,4) «FN(2,4) +FM(3,4) «FM(3,4))

SQRT (F(1,3)+F(1,3)+F(2,3)+F(2,3))
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C..... UPDATE DQ, DG & DJ

469 DQ = D§ + BUP(1)
DG = DG + BUP(2)
IF(MOD.EQ.3) DJ = DJ + BUP(3)
C
GO TO 73
Cx»+++«END OF ITERATION LOOP
Ca##x+PUT ELASTICITY MATRIX IN D AND INELASTIC STRESS INCREMENT IN G
420 GO TO(814,815,818) ,KELTYP
814 CONTINUE
DO 817 J=1,4
DO 817 K=1,4
D(J,K)=0.
817 CONTINUE
DO 818 J=1,3
DO 818 K=1,3
ALPHA=0.
IF(J.EQ.K) ALPHA=1.
D(J,K)=C5+ALPHA+C3
818 CONTINUE
D(4,4)=C4
G0 TO 903
815 CONTINUE
D(1,1)=C2
D(1,2)=C1
D(2,1)=C1
D(1,3)=0.
D(3,1)=0.
D(2,2)=C2
D(2,3)=0.
D(3,2)=0.
D(3,3)=C4
GO TO 9803
816 CONTINUE
D0 819 J=1,6
DO 819 K=1,6
D(J,K)=0.
819 CONTINUE
DO 820 J=1,3
D0 820 K=1,3
ALPHA=0.
IF(J.EQ.K) ALPHA=1.
D(J,K)=C5+ALPHA+C3
820 CONTINUE
D(4,4)=C4
D(5,5)=C4
D(8,6)=C4
903 CONTINUE
D0 821 J=1,NGENS
G(J)=DSIGIN(J)
821 CONTINUE
C+++++«COMPUTE STRESS AT END OF MARC INCREMENT
DO 822 J=1,NGENS
SUM=0.
D0 823 K=1,NGENS
SUN=SUM+D (J,K) «DE (K)
823 CONTINUE
DS (J)=SUM+G (J)
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822

Crrux

850

923

20
750

753

23

39

29
30
31
12

1991
1992

303

CONTINUE
«PUT STATE VARIABLE INCREMENTS IN TEMP ARRAY FOR NEXT MARC INCREMEN
DTEMP (3)=DR

IF(MOD.LE.2) GO TO 850

DTEMP (16) =AKE-AKB

IF (KEVIN.EQ.0) TEMP (16)=AKO

D0 923 KA=1,86

J=KA+3

DTEMP (J) =0MEGE (KA) - TEMP (J)

DTEMP (J+6)=CE (KA) -TEMP (J+6)

CONTINUE

IF(IPR.EQ.0) GO TO 12

IF (NELPR.NE.N) GO TO 12

IF (NN.NE.NPRIN) GO TO 12

IF (NCYCLE.EQ.0) NWALK=0

NWALK = NWALK + 1

N§ = NWALK-2+NCYCLE

NQQ=NCYCLE-1

WRITE(6,20) INC

FORMAT (’ INCREMENT’,I5)

WRITE(6,750) NIT

FORMAT (’ ITERATIONS’,I5)

WRITE(6,753) N,NN

FORMAT (' ELEMENT’,I5,’' INTEGRATION POINT’,IS)
IF (NQ.EQ.0) WRITE(6,23) NQQ

IF(NQ.GT.0) WRITE(6,39) NCYCLE

FORMAT (55H VALUES OF PARAMETERS DURING SOLUTION OF RECYCLE NUMBER,
1I5)

FORMAT (55 VALUES OF PARAMETERS DURING ASSEMBLY OF RECYCLE NUMBER,
11I5)

WRITE(6,29)

FORMAT(18H STRAIN INCREMENTS)

WRITE(6,30) (DE(J),J=1,NGENS)

FORMAT (1P6E15.6)

WRITE (6, 31)

FORMAT (18H STRESS INCREMENTS)

WRITE(6,30) (DS(J),J=1,NGENS)

RETURN

WRITE(6,1992)

FORMAT(’ NO. OF NEWTON ITERATION EXCEEDED LIMIT’,/,
& > SOLUTION STOP’)

STOP

END

SUBROUTINE OMEGAR (DG,H1,0MEGI, OMEGB,OMEGE,DC)

.CALCULATE THE BACK STRESS AT T+DT
DIMENSION OMEGB(8),0MEGE(8),DC(6) ,0MECI (6)

Q1 = EXP(-DG)
IF (ABS(DG).LE. 1.E-10) DG=1.E-10

IF (ABS(DG).LE.1.E-4) Q2=H1x(1.-.5+DG+DG+DC/6.-DCs+3/12.)
IF (ABS(DG).GT.1.E-4) Q2 = H1+(1.-Q1)/DG

DO 303 J=1,6
OMECE(J) = OMEGI (J)+Q1+ (OMEGB(J)-OMEGI (J))+Q2+DC(J)
CONTINUE

RETURN

END

SUBROUTINE KAPPAR(DJ,H2,22,AKO,AKB, AKE, DR, NOD)

5]



C..... CALCULATE THE DRAG STRESS AT T+DT

IF(MOD.EQ.3) GO TO 10
AKE = AKO
RETURN
10 Q1 = EXP(-DJ)
IF (ABS(DJ).LE.1.E-10) DJ=1.E-10
IF (ABS(DJ).LE.1.E-4) Q2=H2+22s(1-.5+DJ+DJ«DJ/6.-DJ++3/12.)
IF (ABS(DJ).CT.1.E-4) Q2 = H2+22s(1.-Q1)/DJ

AKE = AKO+(AKB-AKO)=*Q1+Q2+DR

RETURN

END

SUBROUTINE SIGMAR(DQ,KELTYP,DET,AMU,ALAM,DC, OMEGB, OMEGE,
1 SIGB,SIGE,DVOL)

C..... CALCULATE STRESS AT T+DT
DIMENSION DET(6),DC(6),0MEGB(6),0MEGE (68) ,SIGB(6),SIGE(6)

PRESB = (SIGB(1)+SIGB(2)+SIGB(3))/3.

Q3 = EXP(-DQ)

IF(ABS(DQ) .LE.1.E-3) Q4 = 1.-.5+«DQ+DQ+DQ/6.-DQ+%3/12.

IF (ABS(DQ) .GT.1.E-3) Q4 = (1.-Q3)/DQ

IF (KELTYP.EQ.2) DET(3)=(2.+AMU«DC(3)-ALAM» (DET(1)+DET(2))})/
1 (ALAM+2., *AMU)

DVOL = DET(1) + DET(2) + DET(3)

PRESE = PRESB + (ALAM+2.+AMU/3.)+DVOL

D0 702 J=1,6

ALPHA = 1.

IF(J.CT.3) ALPHA=0.

DOM = OMEGE(J) - OMEGB(J)

SIGE(J) = 2.+OMEGE(J)/3.+ALPHA+PRESE +Q3+(SIGB(J)-
+2. +OMECB(J) /3. -ALPHA+PRESB) + Q4+ (2. s ANU+DET (J) -
«ALPHA+2 . +AMU«DVOL/3. -2. «DOM/3.)

702 CONTINUE

RETURN

END

SUBROUTINE DELR(NIT,DVOL,ALAM,AMU, DET,SIGB, SIGE,

1 OMEGE, AKE, AN, DT, DR)

C..... COMPUTE DR FOR NIT »>= 2

DIMENSION DC(8),DET(8),SIGB(8),SIGE(6) ,0MEGE(6) ,WORK (6)
Cx#»»x+xSECOND INVARIANT FUNCTION
SINV(A,B,C,D,E,F)=(A%xA+B+B+C+C+2. 5 (D+D+E«E+F»F))x2./3.
C+*++x+HYPERBOLIC FUNCTION
4
D0 200 J=1,8
ALPHA = 1.0
IF(J.GT.3) ALPHA = O.
DC(J) = (ALPHA«ALAM*DVOL+2.«AMU«DET(J)-SIGE(J)+SIGB(J))/
« (2. «AMU)
200 CONTINUE
c
DR
DR

SINV(DC(1),DC(2),DC(3),DC(4),DC(5),DC(6))
SQRT(DR)
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IF(DR.LE.1.E-10) DR=1.E-10
RETURN

END

SUBROUTINE INVER2(F,BUP)

..... THIS SUBROUTINE SOLVES TWO SIMULTANEOUS EQUATIONS
DIMENSION F(2,3),FIN(2,2),BUP(3)

FIN(1,1) = F(2,2)
FIN(1,2) = -F(1,2)
FIN(2,1) = -F(2,1)
FIN(2,2) = F(1,1)

..... COMPUTE THE DETERMINANT OF F
FDET = F(1,1)+F(2,2)-F(1,2)+F(2,1)

D0 100 I=1,2

BUP(I) = (-FIN(I,1)+F(1,3)-FIN(I,2)*F(2,3))/FDET
100 CONTINUE

BUP(3) = 0.0

RETURN

END

SUBROUTINE INVER3(F,BUP)
..... THIS SUBROUTINE SOLVES THREE SIMULTANEOUS EQUATIONS
DIMENSION F(3,4),FIN(3,3),BUP(3)

FIN(1,1) = F(2,2)+F(3,3) - F(2,3)+F(3,2)
FIN(1,2) = -(F(2,1)F(3,3) - F(2,3)+F(3,1))
FIN(1,3) = F(2,1)+F(3,2) - F(2,2)F(3,1)
FIN(2,1) = - (F(1,2)+F(3,3) - F(1,3)+F(3,2))
FIN(2.2) = F(1.1)+«F(3.3) - F(1.3)sF(3.1)
FIN(2.3) = -(F(1,1)+F(3.2) - F(1,2)+F(3.1))
FIN(3,1) = F(1,2)+F(2,3) - F(1,3)+F(2,2)
FIN(3.2) = -(F(1.1)+F(2,3) - F(1,3)+F(2,1))
FIN(3.3) = F(1.1)+F(2.2) - F(1,2)+F(2,1)

..... COMPUTE THE DETERMINANT OF F
FDET = F(1,1)+FIN(1,1)+F(1,2)+FIN(1,2)+F(1,3)+FIN(1,3)

D0 100 I=1,3
BUP(I) = (-FIN(1,I)+F(1,4)-FIN(2,T)«F(2,4)-FIN(3,1)+F(3,4))
3 JFDET
100 CONTINUE

RETURN

END

SUBROUTINE EVALF1(RDOT,K,AN,AM,AN3,AN8,AMU,DT,F,OMEGE,
1 AKE, AKO, D@, DG)

..... EVALUATE F1, F2 FOR WALKER’S MODEL

DIMENSION F(2,3),0MEGE (6)
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Ce++++SECOND INVARTANT FUNCTION
SINV(A,B,C,D,E,F)=(A+A+B«B+C+C+2. + (D+D+E+E+F+F))+2./3.
POW = 1.-1./AN
F(1,K) = DQ-(3.+AMU+DT/AKE) +RDOT++POW
ART=SINV (OMEGE (1) , OMEGE (2) , OMEGE (3) , OMEGE (4) , OMEGE (5) , OMEGE (8) )
IF(ART.LE.1.E-10) ART=1.E-10
POW = 0.5« (AM-1.)
F(2,K) = DG- (AN3+RDOT+AN6*ART+«POW) +DT

RETURN
END

c
SUBROUTINE EVALF2(RDOT,K,AN,A2,A3,AMU,DT,F, OMEGE,
1 AKE, AKO,DQ, DG)

c

C..... EVALUATE F1, F2 FOR KSR'S MODEL

C

DIMENSION F(2,3),0MEGE(8)
Cx++xxSECOND INVARIANT FUNCTION
SINV(A,B,C,D,E,F)=(A+A+BxB+C+C+2. « (D+D+E+E+FsF))+2./3.
POW = 1.-1./AN
F(1,K) = DQ-(3.+AMU+DT/AKE) «RDOT+«POW
ART=SINV (OMEGE (1) ,OMEGE (2) ,OMEGE (3) , OMEGE (4) , OMEGE (5) , OMEGE (6) )
IF(ART.LE.1.E-10) ART=1.E-10
gl = EXP(A3+ART)-1.
F(2,K) = DG-A2+SQRT (ART)«Q1+DT

RETURN
END
¢
SUBROUTINE EVALF3(RDOT,K,AN,BP,H1,H2,A1,A2,Z2,ANU,DT,F, OMEGE,
1 AKE, AKO,DQ, DG, DJ)
C
C.....EVALUATE F1, F2 & F3 FOR MILLER’S MODEL
C

DIMENSION F(3,4),0MEGE(6)
Cx++*+SECOND INVARIANT FUNCTION
SINV(A,B,C,D,E,F)=(A+A+BsB+C«C+2. » (D«D+E«E+F+F))*2./3.
Cx++»+«HYPERBOLIC SINE FUNCTION
SH(X) = 0.5«(EXP(X)-1./EXP (X))
Cx«+++HYPERBOLIC INVERSE SINE FUNCTION
SHIV(Y) = ALOG(Y+SQRT(Y+Y+1))
C
POW = 1./AN
TEMP = (RDOT/BP) ««POW
F(1,K) = DQ-3.+AMU«DT/AKE+RDOT/SHIV(TEMP) «+0.68667

ART=SINV(0MEGE(1),OHEGE(Z),OMEGE(S),DMEGE(4),OHEGE(S),OMEGE(S))
ART = SQRT(ART)

AART = ART=+Al

IF(ART.LE.1.E-10) ART=1.E-10

IF (AART.LE.1.E-5) DGNEW=H1+BP+AART*«AN/ART«DT

IF (AART.GT.1.E-5) DGNEW=R1+BP+ (SH(AART) ) *+«AN/ART«DT

F(2,K) = DG-DGNEW

T1 = H2+A2/A1+AKE+*3

T2 = H2+ART

TP = A2+AKE=*+3

T3 = H2+Z2«BP+ (SH(TP)) »+AN

ADIF = AKE-AKO

IF (ABS(ADIF).LE.1.E-6) GO TO 140
DJINEW=( (T1-T2) «RDOT+T3) +DT/ADIF

[ I}
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aaaada

GO TO 150
140 DJNE¥ = 0.
150 F(3,K) = DJ-DINEW
RETURN
END

SUBROUTINE CONST! (DEG,EE,ANU,AKO,ANIN, AM,AN1,AN2, AN3, AN4,
1 AN5,ANS,AN7,OMEGZ, AN, ALAM, AMU, C1,C2,C3,C4, C5)

THIS SUBROUTINE IS CALLED BY HYPELA TO CALCULATE ALL OF THE
TENPERATURE DEPENDENT MATERIAL CONSTANTS FOR WALKER'S MODEL

DIMENSION TABT(6),EET(8),ANUT(6),AK1T(6) ,ANINT(6) ,ANT (6) , AN1T(6)
DIMENSION AN2T(6),AN3T(8),AN4T(8),ANST(6),ANST(6),AN7T(6)
DIMENSION OMEGZT(68)

DATA TABT/800.,1000.,1200.,1400.,1600.,1800./

DATA EET/26.E6,24.E6,24.E6,22.6E6,18.6E6,13.2E6/

DATA EET/26.E6,24.E6,23.4E6,21.8E6,19.6E6,16.8E6/

DATA EET/26.E6,24.E6,23.4E6,22.5E6,21.6E6,20.7E6/

DATA ANUT/0.322,0.328,0.334,0.339,0.345,0.351/

DATA AK1T/50931.,75631.,95631.,251886.,91505. ,50292./
DATA ANINT/.059,.059,.079,.244, .195, .223/

DATA ANT/1.158,1.158,1.158,1.158,1.158,1.158/

DATA AN1T/0.,0.,0.,0.,0.,0./

DATA AN2T/30.E7,6.0E7,1.5E7,2.E7,5.E6,1.E6/

DATA AN3T/8000.,1000.,781.2,1178.6,672.6,312.5/

DATA AN4T/0.,0.,0.,0.,0.,0./
DATA AN5T/0.,0.,0.,0.,0.,0./

DATA AN6T/O.,0.,0.,0.,8.977E-4,2.733E-3/
DATA AN7T/0.,0.,0.,0.,0.,0./

DATA OMEGZT/O.,0.,-2000.,-2000.,-1434.,-1200./
NTP=6

NTPM1=NTP-1

TDIF=TABT(2) -TABT (1)

L1=DEG

L2=TABT (1) -TDIF

L3=TDIF

IT=(L1-L2) /L3

IF(IT.LT.1)IT=1
IF(IT.GT.NTPM1)IT=NTPM1
FAC=(DEG-TABT (IT)) /TDIF

EE=(EET (IT+1)-EET(IT)) *FAC+EET (IT)
ANU= (ANUT (IT+1)-ANUT (IT) ) «+FAC+ANUT (IT)
AKO=(AK1T (IT+1)-AK1T(IT))+FAC+AKIT (IT)
ANIN=(ANINT (IT+1) -ANINT (IT)) «FAC+ANINT (IT)
AM= (AMT (IT+1)-AMT (IT) ) »FAC+ANT (IT)
AN1=(ANIT(IT+1)-ANIT(IT)) «FAC+AN1T (IT)
AN2=(AN2T (IT+1)-AN2T (IT) ) *FAC+AN2T(IT)
AN3=(AN3T (IT+1)-AN3T (IT)) «FAC+AN3T (IT)
AN4=(AN4T (IT+1)-AN4T(IT)) «FAC+AN4T (IT)
AN5=(AN5T (IT+1)~-ANST (IT)) «FAC+ANST(IT)
AN6=(AN6T (IT+1)-AN6T (IT)) +FAC+ANBT (IT)
AN7=(AN7T (IT+1)-AN7T (IT)) «FAC+AN7T (IT)
OMEGZ=(OMEGZT (IT+1) -OMEGZT (IT) ) »FAC+OMEGZT (IT)
AN=1./ANIN ,
ALAM=EE+ANU/((1.-2.+ANU) » (1. +ANU))
AMU=(1.-2.+ANU) *ALAM/ (2. *ANU)
C1=2.xAMU=ALAM/ (ALAM+2 . +AMU)

C2=4. «AMU* (ALAM+AMU) / (ALAM+2 . «AMU)
C3=2. «AMU
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C4=AMU
C5=ALAM
RETURN
END

SUBROUTINE CONST2(DEG,EE,ANU,AKO,ANIN,A1,A2,A3,A4,
1 A5,AN,ALAM,AMU,C1,C2,C3,C4,C5)

THIS SUBROUTINE IS CALLED BY HYPELA TO CALCULATE ALL OF THE
TEMPERATURE DEPENDENT MATERIAL CONSTANTS FOR KSR'S MODEL

DIMENSION TABT(6),EET(6),ANUT(6),AK1T(6),ANINT(6)
DIMENSION A1T(8),A2T(6),A3T(6),A4T(6),A5T(6)

DATA TABT/800.,1000.,1200.,1400.,1600.,1800./
DATA EET/26.E6,24.E6,24.E6,22.6E6,18.6E6,13.2E6/
DATA EET/26.E6,24.E6,23.4E6,21.8E6,19.6E68,16.8E68/
DATA EET/26.E6,24.E6,23.4E6,22.5E6,21.6E6,20.7E6/
DATA ANUT/O.322,0.328,0.334,0.339,0.345,0.351/
DATA AK1T/50931.,75631.,95631.,251886.,91505.,50292./
DATA ANINT/.059,.059,.079,.244,.195,.223/

DATA A1T/3.E8,6.E7,1.5E7,2.B7,5.E6,1.E6/

DATA A2T/.59,.00179,.86,1.54,14.96,243./

DATA A3T/1.E-12,1.B-12,1.E-12,1.E-12,1.E-12,1.E-12/
DATA A4T/O.,0.,0.,0.,0.,0./

DATA A5T/0.,0.,0.,0.,0.,0./

NTP=6

NTPM1=NTP-1

TDIF=TABT (2) -TABT (1)

L1=DEG

L2=TABT (1) -TDIF

L3=TDIF

IT=(L1-L2)/L3

IF(IT.LT.1)IT=1

IF (IT.GT.NTPM1) IT=NTPM1

FAC=(DEG-TABT (IT)) /TDIF

EE=(EET (IT+1)-EET (IT) ) +FAC+EET (IT)

ANU= (ANUT (IT+1) -ANUT(IT) ) sFAC+ANUT (IT)

AKO=(AK1T (IT+1)-AK1T (IT)) +FAC+AKIT(IT)
ANIN=(ANINT (IT+1) -ANINT (IT)) +FAC+ANINT (IT)
Al=(ALT(IT+1)-A1T (IT)) +FAC+A1T(IT)

A2=(A2T (IT+1) -A2T(IT) ) «FAC+A2T(IT)

A3=(A3T (IT+1)-A3T(IT)) «FAC+A3T(IT)

Ad=(A4T (IT+1) -A4T(IT) ) «FAC+A4T (IT)

A5=(AST (IT+1) -A5T(IT) ) +FAC+AST(IT)

AN=1. /ANIN

ALAM=EE+ANU/ ((1.-2.*ANU) * (1. +ANU))
AMU=(1.-2. «ANU) «ALAM/ (2. *ANU)

C1=2. +AMU+ALAM/ (ALAM+2 . «AMU)

02=4 . +AMUx (ALAM+AMU) / (ALAM+2 . +AMU)

C3=2.+AMU

C4=ANU

C5=ALAN

RETURN

END

SUBROUTINE CONST3(DEG,EE,ANU,AKO,AN,A1,A2,H1,H2,22,BP,
1 ALAM, AMU,C1,C2,C3,04,C5)

THIS SUBROUTINE IS CALLED BY HYPELA TO CALCULATE ALL OF THE
TEMPERATURE DEPENDENT MATERIAL CONSTANTS FOR MILLER’S MODEL
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DIMENSION TABT(6),EET(6),ANUT(6)

DATA TABT/800.,1000.,1200.,1400.,1600.,1800./
DATA EET/26.E6,24.E6,24.E6,22.6E6,18.6E6,13.2E6/
DATA ANUT/0.322,0.328,0.334,0.339,0.345,0.351/
NTP=6

NTPM1=NTP-1

TDIF=TABT (2)-TABT(1)

L1=DEG

L2=TABT (1) -TDIF

L3=TDIF

IT=(L1-L2)/L3

IF(IT.LT.1)IT=1

IF (IT.GT.NTPM1) IT=NTPM1
FAC=(DEG-TABT(IT)) /TDIF
EE=(EET(IT+1)—EET(IT))*FAC+EET(IT)
ANU=(ANUT(IT+1)—ANUT(IT))*FAC+ANUT(IT)
ALAM=EE*ANU/((1.—2.*ANU)*(1.+ANU))
AMU=(1.—2.*ANU)*ALAH/(2.*ANU)

C1=2. *AMU+ALAM/ (ALAN+2 . «AMU)

02=4 . + AMU+ (ALAN+AMU) / (ALAM+2 . xANU)

C3=2.+AMU

C4=

C5=ALAM
AKO=8000.
AN=1.598

B = 1.0293E14
H1 = 1.0E7

Al = 9.305E-4
H2 = 100.

72 = 50000.

A2 = 5.9425E-12
gS = 104600.

T™ = 1588.

TMP6 = 0.6«TM
TK = (DEG-32.)+5./9. + 273.

= -0S/(1.9859+TK)
F3 = -QS/(.6+1.9859+TN)
F2 = F3+ (ALOG(.6+TM/TK)+1.)
IF (TK.LT.TMP6) THP=EXP (F2)
IF (TK.GE.TMP6) THP=EXP(F1)
BP = B«THP
RETURN
END
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TABLE I. - COMPARISON OF CPU TIMES FOR WALKER'S,
KSR'S, AND MILLER'S MODELS
[Temperature = 1600 °F and strain rate = 3.87x10-3

sec-1.]
Number CPU time, sec
of time
steps SAFE scheme UVAE scheme
ERROR1 ERROR1 ETOLB = 1x10-2
1x10-4 | 1x10-3 CTOL = 5x10-3
Walker's model
80 7.9 28.5 7.4
40 5.8 t28 4
20 7.3 t14 2
KSR's model
80 6 17 7
40 4 16 4
20 3 t16 2.4
Miller's model
80 7 22 17
40 5 21 11
20 4 t23 4.5
TCohvergence is not satisfied. Fixed
subincrement is employed.
TABLE II. - COMPARISON OF CPU TIME FOR 56 TIME STEPS
Model CPU time, sec
SAFE scheme UVAE scheme
ERROR1 ERROR! ETOLB = 0.01
(0.0001) (0.00001) CTOL = 0.005
Walker's 3.9 13.53 4.12
KSR's 3.1 7.30 4.05
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LINEAR FINITE ELEMENT ANALYSIS. BASED ON INITIAL STRAIN METHOD.
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ASSUME INITIAL GUESS FOR INELASTIC STRAIN INCREMENT

EQUAL TO DEVIATORIC STRAIN INCREMENT
1
Aeii = Aeij
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Figure 2. - Flow chart of new uniformly valid asymptotic Integration
scheme at local level.
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FI6. 3 HYSTERESIS LOOP PREDICTIONS OF WALKER'S MODEL
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FIG. 5 HYSTERSIS LOOP PREDICTIONS OF WALKERS MODEL FOR

HASTELLOY-X: TEMPERATURE = 1600 OF; STRAIN RATE =
3.87x10"3/sec; AND NUMBER OF TIME STEPS = 20,
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FIG. 6 HYSTERESIS LOOP PREDICTIONS OF KSR MODEL FOR
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