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GROUP-KINETIC THEORY AND MODELING OF TURBULENCE

C. M. TCHEN

i. Research objectives and method of treatment

A group-kinetic method is developed for analysing eddy transport

properties and relaxation to equilibrium. The purpose is to derive

the spectral structure of turbulence in incompressible and compres-

sible media. Of particular interest are: direct and inverse

cascade, boundary layer turbulence, Rossby wave turbulence, two-

phase turbulence; compressible turbulence, and soliton turbulence.

Soliton turbulence can be found in large-scale turbulence, tur-

bulence connected with surface gravity waves and nonlinear propaga-

tion of acoustical and optical waves.

Since the group-kinetic method is basic to our statistical

theory of turbulence, two new Technical Reports are enclosed here:

Group-kinetic method of turbulence

Group-kinetic theory of Rossby wave turbulence.

w
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2. Group-kinetic theory of turbulence

The most appealing method in the last three decades for treating

turbulence statistically has been the "renormalization perturbation

expansion" and the "kinetic method of turbulence". The foz-mer has

enabled Kraichnan (1959, 1977) to develop his DIA method and its

generalization. A systematic method of developing the expansion in

a general form was given by Martin, Siggia and Rose (1972). By the

difficulty of convergent summation and by the indefinite complings
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among modes without explicit representation of physical processes,

the perturbation method has not succeeded in analytically deriving

the eddy coefficients (eddy viscosity and eddy amplification) that

can discriminate between the direct and inverse cascades. These

difficulties become more evident when turbulence is characterized

by more than one parameter such as shear turbulence, convective tur-

bulence and Rossby wave turbulence.

In fact, the molecular viscosity as a transport property is

known to be of kinetic origin such that it has to be calculated

from the Boltzmann equation (Chapman and Cowling, 1970). If by

analogy, the eddy viscosity has to be derived from the "collision

operator", the kinetic equation of turbulence has first to be for-

mulated. Any attempt that leads to many-point distributions

(Bogoliubov, 1962; Struminskii, 1985) has not shown progress.

uw
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The determination of the spectral solution of the Navier-Stokes

equation by an analytic statistical method is important not only

for reproducing the Kolmogoroff spectrum and evaluating the Kol-

mogoroff constant, but also for understanding the explicit tran-

sport processes and transport coefficients. This examination will

help in assessing the applicability of the statistical method to

other problems of turbulence.

m

w

For the description of the microdynamic state Df turbulence, we

let the pressure fluctuations govern the elementary interaction be-

tween fluid elements, by writing the Navier-Stokes equation in the

form

CBt E, V-u--o (2.1)
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The kinetic equivalent is called the naster equation

(_t + [)f(t,x,v) = o. (2.2)

A

by f(t,x,v) = 6[_v-uCt,x) ] . Here u is fluid velocity,
A

E = -!VP_ is the gradient of pressure p per unit mass-density p,
p-

and _ is molecular viscosity.

the phase-space t,x,v

[ = v-v-vva+_._, _ _ _/_v .

tion is denoted by ( ) = ( ) + [_),

ensemble average (-) _ < > and

operator A and _ can be used.

The velocity distribution is f in

• The differential operator is

An instantaneously fluctuating func-

and can be decomposed into an

%

a fluctuation (). The scaling

I

u

u
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We develop a group-kinetic method that incorporates the tran-

sport processes of spectral evolution, eddy viscosity and relaxa-

tion as macrogroup, microgroup and subgroup into the multi-scale

distribution functions f0 f, f,, _ f(2)+ f(3)+... . The scaling

operators A°, A', A" can be used. The subgroup distribution f"

forms a cluster of many high-order distributions. By random encoun-

ter, these distributions are homogenized, lose their identity in

v-dependence and their role of memory-transmission. This random

behavior leads to a closure of the hierarchy.

w

m

By a macrogroup dynamics, the transport equation for f' is in-

tegrated to form the "eddy collision" so as to derive the kinetic

equation for the evolution of the macro-distribution f0 in the form

m

(Bt ÷ A°L)f° = - L°_ ÷ _'D''_(f°(t-T))

The "collision operator"

(2.3)

C'{) - _ "D'-_){) (2.4)
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depends on the "diffusion operator" D' due to E'-fluctuations.

By taking the moment, the kinetic equation is transformed into a

"renormalized Navier-Stokes equation"

(a t +u'V - V2)u ° = E° +jo (2.5)

i.e. in a form identical to the original Navier-Stokes equation aug-

mented by the "eddy damping"

J0u = [ dv_ v.C'{f°Ct-T)} . (2.6)
"4

The eddy

and the

operator.

damping represents the coupling between the macrogroup f0

microgroup fluctuations that organize the collision

At the same time the equation of spectral evolution is

obtained as

½ at < u °2 > = _ T O
• ., U

This equation involves the transfer function

T0=_<u 0 . j0 > =
U U

K'(Vu°) 2 direct cascade

-X'< u °2 > " inverse cascade (2.8)

: ==

Ilil

r

that governs the cascade transfer by direct and inverse cascades

across the spectrum. By a microgroup dynamics, the eddy viscosity

K' and the coefficient of eddy amplification _' are determined from

the collision operator of the kinetic equation. The change of

signs indicates the change of eddy damping into eddy amplification

so that - K'{ J may be interpreted as an operator due to "negative

w
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viscosity".

' toThe approach of the transport properties K and 1 '

equilibrium is regulated by a relaxation process as described by

the path perturbation £"(T9 in a time interval T along the trajec-
m.

tory that is perturbed by turbulence. The path perturbation enters

into the orbit function < exp ik"'£"(T) > and is related to the

II

path diffusivity K£ .

In order to replace the customary mixing-length hypothesis

needed in modelings of turbulence (Monin and Obukhov, 1953; Mellor

and Yamada, 1974, 1982) , we formulate a subdynamics of relaxation.

It consists of a Fokker-Planck equation of path transition and a

Langevin equation of turbulence. The former determines the orbit

K I'
function in terms of the path diffusivity [. The latter derives

11

the relationship between the path diffusivity KL and the field dif-

fusivity D". Since K' has been previously derived from the

D'-dependent collision operator C' in the microgroup dynamics, we

I! !

obtain a system of integral equations for _ and K . Their solu-

tions determine the eddy viscosity K' that approaches equilibrium

W!

by relaxation from K_.
3.

The eddy viscosity is derived as

K' : cK R°½ k -2

with R ° = <(?u°)2>, CK=(2/9)½ Pt = 0.471, for Pt = 0.545

(2.9)

The spectral functions of energy, temperature variance, and pres-

sure variance are found as follows:

F(k) = AE 2/3 k -sIs, FO(k ] = B5 0 E
-sis k-S/S, F [k'J = C_ a £_Is k-71a (2.10)

P



m

The rate of dissipationswith A = 1.650, B = 0.899 and C = 0.907.

are £ and £9"

It is to be noted that a singlet distribution f0 that is

governed by the kinetic equation of turbulence with the diffusivity-

dependent collision operator, suffices for the determination of the

spectrum by our group-kinetic kinetic method, while a system of two

kinetic equations for the one-point distribution F,(t,x,v_ and two-

point distribution F)2(t 1,x 2'v 1;t 2'x 2,V2) is necessary by the

Bogoliubov method.

L

w

l

The detailed description of the group-kinetic theory

sented in Technical Report @i.

is pre-

By the group-kinetic method, the Navier-Stokes equation is trans-

formed into an equation with "eddy damping" or "eddy am-

plification". Such an equation is called the renormalized Navier-

Stokes equation. Since the eddy coefficients are derived

analytically, the renormalized equation forms a logical basis for

the modeling of turbulence. Such a modeling is superior to the

customary modeling by the artificial damping with the differential

?n of n-th order or by an empirical second-order closure.

It is to be remarked that the determination of the transfer func-

tion from the collision operator in the group-kinetic theory in-

volves the quadruple correlation < E'(t_E'(t-_) > < f°(t_f°(t-_> in the

form of a product of two binary correlations, and not in the form

of the quadruple correlation < _(t_ _[t-_°(t)_(t-_)> that can only

be factorized by the hypothesis of quasi-normality in the perturba-

tion expansion theory.

6
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The group-kinetic decomposition into transport processes

the property of "nearest-neighbor group-interaction".

property leads to many simplifications in the development of

theory.

yields

This

the

3. Group-kinetic theory of Rossby wave turbulence

To include the Coriolis force in the Navier-Stokes equation

E + E as consisting of a pressure field(2.1), we write -E = P C ^ ^
I

Ep = - -p ? p and a Coriolis force .EC = Uc u_x_z =_Ec + E8 , that

= u_0 uxz and ES= B x z u x z . The Coriolisis the sum of E c _ _

parameter u¢= _0 + _ x2 has a uniform rotation _0 and a dif-

ferential rotation _.

The curl differentiation _ = ? x u of the Navier-Stokes equa-

tion yields the well-known vorticity equation for a drift wave

_' _)_" "_ (3.l)(_t + u • V -vV = - Bu 2

in two dimensions x = {xl, x2_}.
.,,.,

By dimensional arguments based upon the parameter 8, the energy

spectrum

F22(kJ % B 2 k-S

from _ -fluctuations in the drift-range has been proposed by

(19vs).

(3.2)

Rhines

In the inertial-range that is not controlled by

reduced to the form,

(B t + u" V -_V 2) _'= 0

B, Eq. (2.1) is

(3.3)

7



that identically governs quasi-geostrophic turbulence. Quasi-

geostrophic turbulence has been treated by Kraichnan (1967), Her-

ring (1980), and Tchen (1982, 1983), finding the spectrum

n

m

w

r

u

F(k) = C £: [,2/3 k-3 (3.4)

It has been tacitly assumed that the uniform rotation _0 plays

the role of a circular translation and will not influence the eddy

transport, so that Rossby wave turbulence without drift becomes

reduced to the quasi-geostrophic turbulence. However, evidence in-

dicates that u 0 controls the eddy transport coefficients. Hence

the loss of u 0 -dependence in the vorticity equation (3.1) is a weak-

ness of the current vortex dynamics because the Navier-Stokes equa-

tion has been prematurely differentiated.

It is true that the large-scale structure is drifted by the dif-

ferential rotation 8 as indicated by Eq. (3.1), but for the main-

tenance of the large-scale structure, the small-scale transients

must organize a w0-dependent eddy amplification in order to perform

the inverse cascade. Without this transfer, the drift cannot find

the necessary balance to produce the spectrum (3.2). On the other

hand, the transients can organize an eddy damping by the

w0-dependent eddy viscosity to perform the direct cascade in the

inertial range. Finally the change of the direct

inverse cascade defines a transition range

distribution. The three spectral ranges

range and transition-range) cannot be

traditional vorticity equation (3.1). Thus a

is necessary.

cascade into the

in the spectral

(drift-range, inertia-

formulated from the

new vortex dynamics

L

w



By the group-kinetic

ticity equation

method, we derive the renormalized vor-

(_t _ _u°".V-W2"C ')_° = . _ u02_ j0

It has all the terms of the traditional

augmented with the eddy damping

(3.5a)

vorticity equation (3. i) ,

j_0 = Vxj0.u ' j0u = I dv vC'{f°(t-_)}_ (3.5b)

w

m

Upon multiplying Eq. (3.5a) by t° and averaging, we find the equa-

tion of evolution for the enstrophy

] to2 h,c o
2" Bt < > = Tr, (3.6)

to be governed by the drift function

: Kd (3.7a)

and the transfer function

T o = IK'<(Vz; °)2 >

[ ' Qo2-_ < >

direct cascade

inverse cascade (3.7b)

The eddy coefficients are found as

m

K I 3 --)" t I!

_.¢X)

: T% F(k")

' 3 -1 R' R' I, " k''2>' = 4" _o ' --2 dk F(k")

2 _Oo-1 i k ' ')
P_

= dk F22 (kKd o

9

(3.8)

m

T

w
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and are proport_ onal to _o -1 The eddy viscosity

K' % _0 -I <u'2> has been suggested by Blackadar (1962) empirical-

ly.

The energy spectra and the eddy coefficients are found:

(i)

8 B2 k_SF=2(l_) = _-

' -I _2 k -=

(ii) inertial-range

(3.9a)

(3.9b)

F(k) = C8/3) ½ (_ o C&)½ k-3

K' [3/2) ½ )½ k -2
= (c;/_ °

(iii) transition-ranqe

(3.10a)

(3. lOb)

FCk) = 2(w 0 E_182)k -* (3.11)

Here £E is the rate of enstrophy dissipation.

By comparing (3.10a) with (3.4), it is seen that the inertial-

ranges of Rossby wave turbulence and quasi-geostrophic turbulence

share the same -3 power law but differ in intensities by the ratio

Cw_Ic_)_I_ > I (3.12)

in strong rotation.

The detailed theory is presented in Technical Report #2.

i0
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4. Renormalized vortex dynamics

By taking the curl differentiation of the Navier-Stokes equation

we obtain the following equations for the evolution of the vor-

ticity _ = Vxu :

(i) Vorticity equation for Rossby wave turbulence in three

dimensions

L

u

w

m

l

L_

I

These

(1985).

A "A s% A A _ A

(_)t÷ "?-vV2)C = (_"?) u-Bu2z÷cooV3u, ?'u --O.
(4.1)

(ii) Vorticity equation for quasi-geostrophic turbulence in

three dimensions

(Bt * u.V-v? 2) = (C.V)u , V-u = 0 (4.2)

equations have been considered by Lundgren (1982) and Saffman

In two dimensions, Eq. (4.1) and (4.2) are reduced to:

(iii)

(iv)

Rossby wave turbulence

+ u-V - vV 2) = - (3u2 , V'u = 0 (4.3)

_uasi-qeostrophic turbulence

(_t + u.?-v? _) = 0 • (4.4)

Equations (4.3) and (4.4) are the traditional equations for Rossby

wave turbulence and quasi-geostrophic turbulence. The losses of

pressure-gradient ! V P and uniform rotation _0 have been seen as
p .

expedient simplifications for analysis and numerical computations.

II
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The advantage is however illusory. The losses of e0 and of ?u as

entailed from ?p have prevented the formulation of the eddy coef-

ficients that depend on those parameters.

A

With regard to (4.4), the omission of Vp changes the numerical

coefficient but not the power law k -3. But the loss of the eddy

coefficients that depend on ? u misses the analysis of
m

baroclinicity.

In order to avoid these difficulties, we develop a renormalized

vortex dynamics and exploit further the group-kinetic method. This

program will be investigated in future research.

5. Surface boundary layer

m

By the group-kinetic method, we have derived the spectral struc-

ture in an atmospheric surface layer. In the stable layer, the

spectrum takes the form k "s/3, k -I, gap, k "3, due to isotropic tur-

bulence, shear turbulence, stable convection, and Coriolis

rotation, respectively. In the unstable layer the spectrum takes

the form_ 5/3, k-: and k -3 due to isotropic turbulence, shear tur-

bulence and Coriolis rotation. The gap disappears in unstable con-

vection. These results are verified by experiments The

detailed theory is presented in Paper @3.

12



6. Two-phase turbulence

A

Consider a particulate phase of number-density N velocity u 2,
A

pressure P2 suspended in a fluid phase of velocity u_ pressure Pl

and constant density O. The two phases are coupled by the constant

friction y. The governing equations are:

m

A

I_ (_)t l l _ l 2- )
(6.1)

v. u = o (6.2)

m

m

w

T

i

w

m {;)t _ u2"V + V =-X - u l)S 2 2 2

(6.3)

_t N_v'(_u2) = 0 . (6.4)

For P2 a constitutive equation is added.

The two species are denoted by ( )a with a = I, 2 for fluid phase

and particulate phase, respectively. An instantaneously fluc-

tuating function is denoted by (^) = (-)+ (_)and can be decomposed

into an ensemble average (-) E < > and a fluctuation [%).

^

The variable number density N does not enter in the momentum

equation for the particulate phase, but does enter in the momentum

equation (6.1) for the fluid phase. This equation resembles the

one that governs convective turbulence, where the Boussinesq approx-

imation is acceptable if the phase-coupling can be compared with

the convection. With this approximation the number density in the

left side can be assumed to be a constant No, simplifying the

system of equations (6.1) - (6.4) into

13
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^ ^ (_ ^Nol _t " +?Pa] = 7 - u,)'- EO( + uz T) u I .

r,

V" u, =0

A

ms(Bt + u-V)_ v_2 2- )2 2_ = - V(u uI

A

V" u2 : 0

<< :C_ - _)If VP 2 2 '

reduced to

the system of equations (6.1) - (6.4)

(6.5)

(6.6)

(6.?)

(6.8)

is

--=

V.u, : o (6.Io)

n

A

ms() t ÷ u" V)u = - %'(u2- u,) (6.11)

A

_t "_+ v(_ u2) = o (6.12)

for dilute suspension, called "dusty gas" by Saffman (1962).

The treatment of two-phase turbulence from the system of equa-

tions (6.5) - (6.8) has been our first attempt. The spectral re-

sults are:

w

l

14



a. In the inertia-range

F (k) = A c 2/, k-S/3
8 a a

with Ca = 9a <(v_ )2 > + s <VbZ >, _ = n0Y/p ,
. a a l

the other species.

(6.13)

s2 = %'/ms' where ( )b is

b. In the drag-range

F,(k) = B i u 2 k-l F (k) = B u2 k -_
2"* 2 ,2 (6.14)

u = (¢a/_a) ½ . The numerical coefficients A , B arewith
,a a a

evaluated. The detailed description is presented in Tech. Rep. _7.

The treatment of the dusty gas model (6.9) - (6.12), as well as

the compressible model (6.1) - (6.4) will be done in future re-

search.

7. Soliton turbulence

==

F_

The soliton turbulence is governed by the Schr_dinger equation

(i _t n " 2- _ =

Here _ is the envelope of field fluctuations, such that the density

is N % A I 12 X is the driving force, _ and _ are constants, and
_ ' _ n n

A = ] - A iS a fluctuating operator and gives the deviation from the

average A_ < >. This equation applies to nonlinear problems in hy-

drodynamics (gravity waves and surface waves, shallow water waves)

optics (nonlinear propagation, self-focusing, saturation of scintil-

lation) and biological systems. Thus E depends on the nonlinear

15
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problem considered. The transformation of the hydrodynamic equa-

tions by taking the envelope of the wave packets is made (Tchen,

1986a). We derive the spectral structure F_% k-* and FN% k-s for

density fluctuations, and

FE,_ k -z , FE* k -3

for field fluctuations. The results agree with plasma experiments

(Truc, 1984). The detailed description is presented in

papers @8, @9.

8. Compressible turbulence

The following models may be used

microdynamic state of turbulence.

for the description of the

i
(i) The Navier-Stokes equations are

m

w

w

atPui * ?jPujui = pi ' with ---V (8.1a)

_A

atP + V.pu = o (8.1b)

The equation of momentum _ay be written as

(at +u.V)u--
P

A constitutive relation p = pRT for ideal gas or (p/pG) =(p/; o)Y

adiabatic gas can be used. Here p, u, E, R, y are pressure,

sity, velocity, pressure gradient, gas constant and

(8.2)

for

den-

ratio of

specific heats, respectively.

(ii) The equations of sound propagation in turbulence are

w

16
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[_ * u.V)_ = E
t .... p

(_t 2- v_._2 v) = r

(8.3a)

(8.3b)

with a source r - V V: _ .

with variable speed c = [dp/dp) _

The equation of propagation (8.3b)

is obtained by a cross differen-

tiation of (8.1a) and (8.1b) with respect to xj and t.

(iii) For an adiabatic gas with

P =

and by introducing the speed of sound

: (y /_1

and an auxiliary function

2 ^
W =-- c

We transform Eqs.

symmetric equations

(8.1a) and (8.1b) into the following system of

A

[_t _ u .V)u : _']2 W" VK (8.4a)

A

('St * u • V)W = _-..../.12_ V -u (8 .4b)

This system resembles the Riemann equations for rarefaction

waves. Note that

w

4 X-I

gives the potential of the driving force

17
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w

= =

M

E = - V¢
.P -P

(s.6)

(iv) For interstellar gas, the hydrodynamic equations are

A_ A_ A A

_tPui + Vjpuju i = Ei

A AA

_to + V • Pu = 0

The driving force

E=E ÷E
- -P -g

(8.7a)

(8.7b)

(S.S)

consists of a pressure gradient

L=

m

w

=

= =
w

^ I ^
E = - - ?p
-P p-

and a gravitational force

E = -?¢
.g ,. g

where the potential ¢
g

satisfies the Poisson equation

(8.9a)

(8.9b)

For the problems

kinetic method is best suitable.

sionality by

(8.9c)

of compressible turbulence above, the group-

By raising to higher dimen-

A

f[t,x,v_ = p 6 [v-u(t,x) 3 , (a.xo)

Eqs. (8.1a) and (8.1b) is transformed into the master equation

(_t + v'_ +{_- _) f[t,x,v) = 0

18
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It is not difficult to show by moments [ d_. f = p , f d_. v f = _ u
J )

that the master equation can reproduce the Navier-Stokes

equations. An instantaneously fluctuating function as denoted by

{ ) = [ ) + [ ) can be decomposed into an ensemble average ( ) _ < >

and a fluctuation (%). It is interesting to see that turbulence,

whether incompressible or compressible, is represented by the same

master equation for the description of the microdynamic state of

turbulence.

We have investigated the Navier-Stokes equations (8.1a) and

(8.1b) for compressible turbulence by the group-kinetic method.

The following spectral intensities are derived:

< u,2> % k-2, < E,2 > _ k-_ , < _,2 > % k-_ . (s.12)

mm_

The details of derivation are given in Technical Report #13.

9. Conclusions

mm

W

W

Past analytic efforts in the literature have not succeeded in

deriving explicit expressions of cascades (direct and inverse

cascades) and of eddy coefficients (eddy viscosity, eddy coef-

ficient of amplification, and eddy diffusivity of drift), that con-

trol the spectral evolution of turbulence. Since the spectral

evolution, the transport coefficients and the relaxation for the

approach of the eddy coefficients to equilibrium are the three tran-

sport processes of turbulence, we represent them by a macro-kinetic

group, a micro-kinetic group and a subgroup, respectively.

w

By group-kinetic considerations, we formulate a kinetic

19
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of turbulence, and derive the eddy coefficients analytically. The

approach to equilibrium is analysed by a subdynamics that consists

of a Fokker Plank equation of path perturbations and a system of

Langevin equations of turbulence. We

Navier-Stokes equations" and the

equations". They contain explicit

analytically derived eddy coefficients.

derive the "renormalized

"renormalized vorticity

cascades through the

By the group-kinetic method we have investigated some aspects of

Navier-Stokes turbulence with the Kolmogoroff spectrum, Rossby wave

turbulence, boundary layer turbulence, two-phase turbulence,

soliton turbulence, and compressible turbulence. Other aspects

will be investigated in future research.
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GROUP-KINETIC THEORY OF ROSSBY WAVE TURBULENCE

By C. M. TCHEN

Department of Mechanical Engineering, City College of New York

New York, NY 10031
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The Rossby wave turbulence is formed by large-scale two-dimensional

vortices in the atmosphere or ocean on a rotating planet. It has

long been thought that the standard vortex model

- is the basic governing equation. Here u is

fluid velocity, _ = Vxu is vorticity, _ is molecular viscosity, and

is differential_ rotation. The present wo_ demon&strates that8

this model would fail in analysing the spec_//al composition of the

Rossby wave turbulence, because it had canceled the uniform rota-

tion _0 upon which the eddy transport coefficients must depend. A

renormalized vortex dynamics is developed by the use of the group-

kinetic method. It describes the evolution of the large-scale Vor-

tices under drift and, in addition, their _0-dependent interactions

with small-scale transients. The velocity distribution is decom-

posed into three

(evolution, eddy

kinetic equation

are calculated from the "collision operator".

mines the relaxation to equilibrium, and

Planck equation of transition and a

equations. The closure ks found by

hypothesis of quasi-normality.

groups representing three transport processes

transport coefficients and relaxation). The

of turbulence is derived. The eddy coefficients

A subdynamics deter-

consists of a Fokker-

system of two Langevin

memory-loss and not by the

= =

W
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The spectral structure is divided into an inertial-range by

direct cascade, a transition-range from direct cascade to inverse

cascade, and a drift-range by inverse cascade, in the order of

decreasing wavenumbers. The corresponding spectral laws are found

to be: F(k) = AI(_ ° £_)_k "3 F(k) = A2(_ ° £_/S2)k "I F22(k ) = A 82k "s• P •

=

The numerical

A 3 = 8/3.

coefficients are evaluated: Al = (8/5)½, A2 = 2 and

I. Introduction

w

i

m

w

m

w

The Rossby wave turbulence is described by the Navier-Stokes

equation of motion with a Coriolis force that has a uniform rota-

tion _ and a drift from the differential rotation 8. The works on
0

large-scale turbulence are well documented (Charney, 1971; Baer

1972; Salmon, Holloway and Hendershott, 1976; Salmon, 1978; Lam-

bert, 1981) and have shown a spectrum k-I in the inertial-range. The

change to the spectrum k-5 in the drift range was predicted by

Rhines (1975). Observations have shown a spectrum k-* in the tran-

sition range• It will be desirable to distinguish between the

Rossby wave turbulence and the two-dimensional geostrophic tur-

bulence in their inertial-ranges where the same power law -3 is

shared.

For the description of the Rossby waves that are large-scale

planetary vortices in the rotating atmosphere and ocean, a vortex

dynamic is required. The curl differentiation of the Navier-Stokes

equation

wine

= o
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mmm

^(_t, u.v _v_,2 = ,

with

(l.l)

E = E + E , Ep = ---? , = u_xz =E +. .p .c p .... c (l.2a)

A

Ec = _o Gx_,.._ _:_= _x_Z,×G, =c.-_Oo+_x,, _: (o,o,_), (1.2b)

yields the vortex model

(_t* _'v-_v2)_" -S u, (1.3)

for the evolution of the vorticity _ = V xu in two dimensions with

a drift by 8. The fluid velocity satisfies the condition of incom-
A

pressibility V-u = 0. Here _ is molecular viscosity, p is pressure,

has a uniform rotation w0p is density. The Coriolis parameter _c

and a differential rotation 8. A fluctuating function, as denoted

by (^) = (-) + (%) is the superposition of the ensemble average

_< > and the fluctuation (%).

w

mwmm

i

In the inertial-range

is negligible, so that Eq.

of the Rossby wave turbulence, the drift

(1.3) is reduced to the homogeneous form

(_t + u.-V-uV2_ = 0 (1.4)

that is identical to

geostrophic turbulence.

the equation for two-dimensional quasi-

This simplification has appealed to theore-

tical studies and observational interpretations, but is deceptive,

especially since w0 should control the eddy coefficients and

governs the spectral structure of the Rossby wave turbulence.

We believe that a proper vortex dynamics should describe the

evolution of the large-scale structure by the curl differentiation

3

w
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of the renormalized Navier-Stokes equation that includes the in-

teraction with the small-scale transients for organizing the

_0-dependent eddy damping. In this respect, recall that a

_0-dependent eddy viscosity has been suggested by Blackadar (1962)

empirically.

A

the "renormalization perturbation expansion". It

Kraichnan (1959, 1977) to develop his DIA

generalizations. A systematic method of developing

particularly appealing method for treating turbulence has been

has enabled

method and

the expansion

was given in a general form by Martin, Siggia and Rose (1972) and

by Dubois and Espedal (1978). Without a convergent summation, the

method of perturbation expansion cannot easily derive the eddy coef-

ficients which may be of kinetic origin. The couplings among modes

in expansion are too complicate and cannot clearly describe the

physical processes they represent. For this reason, we develop a

group-kinetic method for Rossby wave turbulence, not from the

vortex model (1.3) but from a "master equation". The master equa-

tion is based upon the Navier-Stokes equation and describes the

microdynamic state of turbulence. It is only after having deter-

mined the w0-dependent eddy transport coefficients and derived the

"renormalized Navier-Stokes equation", 5.e. a Navler-Stokes equa-

tion with "augmented damping", that we pass to the "renormalized

vorticity equation". Our vortex dynamics will have the same form

as Eq. (1.3) but is augmented with an "eddy damping" that depends

on w ° and is analysed from the "eddy collision" of the kinetic equa-

tion of turbulence.

By group-kinetic scaling, the three transport processes of spec-
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w

w

t2;

;

_

L_

tral evolution, eddy viscosity and relaxation are represented by

three groups of distributions (Section 2). In the macrogroup

dynamics, we transform the Navier-Stokes equation into a master

equation and derive the kinetic equation of turbulence (Section

3). The "diffusion operator" with orbit functions enters into the

"collision operator" (Section 4). The kinetic equation is reverted

to the renormalized Navier-Stokes equation by moment, and subse-

quently to the renormalized vorticity equation by curl diffcren-

tiation. The evolution of enstrophy and the governing transport

functions are found (Section 5).

In particular we are interested in a microgroup dynamics _ ,at

derives the eddy transport coefficients from the collision oper _or

(Section 6).

subdynamics of relaxation is developed in Section 6 for _he

consists o a

system of uw0

determines the

A

approach of the eddy viscosity to equilibrium, and

Fokker-Planck equation of path transition and a

Langevin equations of turbulence. The subdynamics

orbit functions and the path diffusivity. Finally, the transport

coefficients (eddy viscosity, coefficient of amplification, and

drift diffusivity) for the direct cascade, the inverse cascade, and

the drift are investigated in Section 7. The spectral structure is

found in Section 8. A summary with discussions is presented in Sec-

tion 9.

OPJGINAL PA3E ]S

OE. POOE QUALITY
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2. Group-kinetic method

w

Being a nonhomogeneous partial differential equation, the Navier-

Stokes equation is not convenient for the formulation of a theory

of transport in the gradient form or in the form of an eddy damping

(or amplification). We raise its dimensionality and transform it

into a homogeneous equation

v

u

m

Z_

w

^ ^ (2.1)
[_t + L) f-- 0,

called the "master equation"

by writing _(t,x,v)-- 6Iv- u(t,x)].. . Here [=v-V-¢V2+[._, 8t=8/_t, __=_/_"_

Since v is an independent variable the master equation has lesser

nonlinearity. It is not difficult to verify by taking the moments

that the master equation reproduces the Navier-Stokes equation and

the equation of continuity.

From the statistical viewpoint, the master equation describes

the microdynamical state of turbulence where the elementary interac-

tion among fluid elements is represented by _-fluctuations. A

kinetic theory can be developed, either by the reduction of the

N-point distributions into F,, F2, F 3 according to the method of

Bogol iubov (i 962 ), or by the decompositions

_=f0+f,, f, =f_÷f,, f,,=f[2)÷f(3)÷.., from the group-kinetic method (Tchen,

1978, 1984, 1986). The three groups f0 f', f" called macrogroup,

microgroup and subgroup represent the transport processes of spec-

tral evolution, eddy viscosity, and relaxation, respectively, with

| 11

durations of correlation _0 > T > • in the order of increasing ran-
C C C ,.

domness. The scaling operators A °, A' o A" can be used.

6
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We choose the group-kinetic method in view of its benefits over

Bogoliubov's method and the method of perturbation expansion. For

the derivation of spectrum, the singlet distribution f0 suffices in

our group method, while two distributions F,, F_ are needed in

the Bogoliubov method. The eddy viscosity being of kinetic origin

cannot be easily derived by a continuum theory. Although the

Fourier modes in groups interact indefinitely and may overlap in

wavenumbers, their statistical properties are well separated by the

transport processes they represent. Consequently, the groups in-

teract statistically as nearest-neiqhbours. Hence a quadruple cor-

relation takes the form of a product of two binary correlations as

< f°(t)f°(t-T) • < E'(t) E'(t-_)• (2.2)

and not in the form < _(t)_(t-_)_(t)_(t-_) • that requires the

hypothesis of normality for factorization, as was in perturbation

expansion theory. The subgroup f,, = f(z).f(_)..., forms a cluster of

many high-order distributions. By random encounters, they are

"homogenenized" and lose their identity in v-dependence. As a re-

sult, they can be simulated by an effective medium of friction coef-

ficient C"(k). Since it is by the v-dependence that the memory is

transmitted, the loss of v-dependence causes the loss of memory,

leading to irreversibility and closure, and providing a mechanism

of relaxation for the approach of the eddy viscosity to

equilibrium.

The correlation functions of macrogroup, microgroup and subgroup

have the limits (0 ,k ) , (k ,_) and (k" ,_) in integrations

Ikdk'0 "''' I_dk"" _kdk"'''',, ... . These limits may be regarded as the

statistical demarcations of the groups.

w

F_

w



3. Kinetic equations of turbulence

i

w

By the use of A° and A* we transform the master Eq. (2.1) into

the following transport equations

(at+A°[)f°.- L0{÷ C*{f°].

(at.All-C")fI = . L'f0 .

with cl{f°] -. A 0 Llf, (3.1)

(3.2)

The auxiliary operator

a medium that offers

(3.2) gives f: and a multiplication by L*

in the form

Cl(f 0} =_ A°Llf I = a.D | .a { f°(t-T) }

or

A: gives AI_ = fa . Note that f* evolves in

a friction C"f* • The integration of Eq.

yields the eddy collision

c'{f °] = - AOL'f ' = a-D'- a{ f°(t-x) }.

(3.3)

The

group-interaction.

(3.4)

approximation C: _C' is a consequence of the nearest-neighbour

The diffusion operator is

=:=
i

i

ft-* _

D'{}.j dT<E'(t) E'(t -_3 >{ }

and the collision operator is C'{ }-a-D'. a {} .

the kinetic equation of turbulence

(3.s)

Hence we derive

(at+A°[)f° = - L°_ + C'{f °} .

C3.6)



4. Orbit functions in strong rotation

The diffusion operator (3.5) is obtained by the time integration

of the Lagrangian correlation of field-fluctuations. In view of the

separation of transport processes, the diffusion operator is

adiabatic, __i.e- t_-. In strong rotation, __i-e- E _=Ec ° the Lagran-

gian correlation in the operator description

< EcCt)EcCt-_)_> = < Ct)A'uct,t-_)E'_Ct-_)__> ,

or, equivalently, in the orbital description

(4 .la)

f

m

q_

w

g

u

imm

< E'Cz)E'(z-z)>
_C .C = < E' E'c (4.1b)oct) [t-_,__(_-_)]>,

can be calculat4d from the evolution operator U(t,t-_) that is

governed by the equation

(_t.AZLl- C")U(t,t') = O0
'_ ,with U(t.t) = I, t t (4.2)

or from the perturbed trajectory

^

= X - m%'_ Z - £(_) (4.3)

with

We choose the orbital description.

i

By Fourier transformation, the Lagrangian correlations are

9
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u

< uO(t)fOCt__). > = Ida' _.< u°(k'). _ f°(-k',_ -v)> hcC_,k',v)h£CT,k').... _ (4.5a)

< E'(t)E'Ct-'r) > "
C ..c

cCk")E C-k")> hcC_,k ,_)h£C1,k") (4.5b)

E" k"'-E"C-k ''')>h C1,k"
< EcCt)EcCt-_ 3> dk'":(< cC_ )_c _ - '

the diffusivities are

.D'(t,x,v) = 1 c >h c ,k ,v)h£(x (4.6a)

D Ct,x) = dx dk tr_ < E" (k"')E"C-k"') > h£Cl,k" , (4 6b)

and the orbit functions are

(t,k",v) '= exp[-ir_k"" (v×_) J (4.7a)

h£CT,k") = [expC"Ck")_] < exp-ik"'£"(_)>,_--
h" ('_ " " ",k )=<exp-xk'£ (_)> (4.7b)
£

for streaming and relaxation.

path diffusivity

The path fluctuation [" organizes a

" _ < £"K£ ,= ½ lira tr (x)£"(_) >

The meandering caused by £0 and £* is the lowest-order perturbation

expansion in quasilinear theory and is negliglible in strong tur-

bulence.

m
lO

u



The Fourier decomposition is truncated in a region within which

the function is quasi-homogeneous, and the truncation factor is _ .

The limits of the volume integrations in (4.5a) - (4.5b) and in the

following are understood to extend from -= to + =.

o Renormalized equations, transport functions and eddy
coefficients

5.1. Renormalized equations

By taking the moment of the kinetic equation (3.6) we get the renor-

malized Navier-Stokes equation

C_t+u0.V__V2)u0 = Eo ÷ j0 (5.1)

with the "aug_ente_ damping" or "eddy dampings"

f
jo _ [ dv vC'{f°(t-_)) . (5.2)

U J _ -_

By a curl differentiation _°=VXu ° we transform Eq. (5.1)

renormalized vorticity equation in two dimensions

into the

F_

m

l

m

8t o 4 jo with J_ = VKJ °( ÷ .u°.v_-_v2)_° = _ _u2 _ ' _ u " (5.3)

The eddy

distribution

and _0u'x_.

which were missing

dampings represent the coupling between the macro-

f0 and the collision operator C' that depends on Vp'

Thus the pressure gradient and the uniform rotation

in the traditional vorticity model (1.3) are

recovered in the renormalized vorticity equation (5.3).

Upon multiplying Eq.

tion of evolution

(5.3) by _0 and averaging, we find the equa-

Ii

u



0

o¢,> _ _<(V¢')2>-T¢½_t < _o2 > = _ B < u2 ..-

for the enstrophy ½ <_°2>. The transport functions are:

function

0 r,0>W° = - 8 < u2

(5.4)

the drift

(5.5)

the transfer function

m

Tr,° = _ < To Jr.°>= _ < roy. xjO>u

and the dissipation function _ < (Vt°} 2 > .

5.2. Drift function

0 •

The flux -<u 2 r,°>I_ calculated by integrating

evolution of t° rewritten as

(5.6)

Eq. (5.3) for the

• = 0 (5.7)(_t* u° V-vV z-C')t ° -Su 2

with a friction constant C'(t,x) . An integration with respect to

time along the perturbed trajectory, a multiplication by u° and an

ensemble average yield the flux

- < u ° t°> = B K_ (5 8)2 *

transforming (5.5) into the drift function

W0 ,: /32 Kd0 . (5.9)

The drift diffusivity

H

12



° I_d_ <u° (t) °(t-_)>Kd = 2 u2

i® I ' °Ck')u°2C'k') > htC_'k')= dT dk X <u 2
0

is controlled by the orbit function

(5.10)

mmm

h£CT,k') = [exp C'(k')_ ] <exp-ik"t'C_)>..

for relaxation.

(5.11)

5.3. Transfer function

The transfer function (5.6) can be written in the form

f
0 =

c" ' '(k")E (- ") > h£C_,k )h£C_,k )dv v X< t c - .-

m

m

N

m

m

dT _I° (T ,k", k' ,v){ X <_°(t,k')f°(t,-k ',v)>) ,
(s.12)

by (5.2), (3.4), (4.6a) and by Fourier transformation. The memory

operator is

M0{} = _jhcC_,h",l)_jhcC_,k',v){}. (5.13)
p

In the differentiation _. _.
J ]

tegrations with respect to

following memory operators:

there are terms which cancel by in-

dvdk"dk' . The remaining terms give the

(i) for direct cascade

hi°{} = hc(T,k",v)_Zh (T,k',v){},with _2 h (T,k',v)=-m2k'2h (T,k'v)
(5.14a)



lim M°{) = - m2k '2 m = ¼_o .[.2
#

y=O
(5.14b)

m

w

by (4.7 a);

(ii) for inverse cascade

M°{} = [_2h (T,k",v)]h (T,k',v)

liraM°{] = m2k ''2 .

v=O

With the loss of memory by omitting the v-dependence, we tran-

form the memory operator into (5.14b) and (5.15b), and reduce the

transfer function (5.12) into

(5.15a)

(5.15b)

,.' <eck'> >
L k'u) - -

= - IdL' D'{ m2[-k'2]X<&°(k')_°(-k')>}
L k"2J -- -

w

0 with 0 __< IVy0 )2 >D'(m2} R& , R& _

_D,(m2k,,2} <_02> , with <&02> = Idk, X<_0(k')_0(_k')_- >

K'R_ , direct cascade

_ A'<_o2> • inverse cascade .

C5.16a)

(5.16b)

Here

= T dk" £'
trY< (k") £' (-k") > h£CT,k")•.. C C (5.17a)

m

14
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%' = K'{k ''2} = " k''2 tr,3(<EcCk )Ec(-k")> dT Cx)h£C_,k")

are called path diffusivity, eddy viscosity, and coefficient of

plification, respectively.

(5.17b)

(5.17c)

am-

w

mmw

m

The results (3.4), (5.2) and (5.16a) indicate an equivalence

C'(t,x,v) = C'(t--_,x) = K'V 2 (5.18a)

between the integral operator C'(t,x,x') { } and the differential

operator C'[t= _,x) , provided the eddy viscosity is computed from

the eddy collision of the kinetic equation. In an analogous way, we

have

= =

|4 C"(x) = K"V 2 and C"(k) ---k2K '' . (5.18b)

r
W

6. Subdynamics of relaxation

W

The principal aim of the subdynamics is to determine the path

II

diffusivity K_ and the orbit function h£(T,k") to find a relaxa-
*A

tion for the eddy coefficients to approach equilibrium. To this

end, we consider the Fokker-Planck equation of transition and a

system of two Langevin equations of turbulence.

15



6.1. Fokker-Planck equation of path transition

The probability for the path to be in the interval £ and _+d£ in a

time interval T is p(t,x;t-_, x-£)d£0 or p[_,£)d£ by abbreviation.

The probability density PC_,£J satisfies the condition of nor-

malization and is governed by the Fokker-Planck equation (Tchen,

1944).

a-? , = K£ 8£ 2 P[T'£)_ " (6.11

I!

The path diffusivity K£ as defined by (4.8) is adiabatic, i.e.

dependent of T and £. The Fourier form is

in-

w

_r_

_ =

W

L ±

k"2K''p[r,k')_-[p(T,k"3= - £

The solution

(6.2)

!

- exp (-k'u K_'x)p[_0k")=(2_)d

in d = 2 dimensions determines the orbit function

h"CT,k") _ < exp-ik"-£CT ) > ,= Id£ e-ik"'.£p(_,£) ,= C2_)dpc_,k '')

,= (2r)dpc_,k ''1_ = expC-k"2Ki'_)

(6.3)

(6.4)

6.2. [angevin equations of turbulenc_

I!

The orbit function h£(T,k") depends on the path diffusivity K£ and

governs the relaxation for the approach of the _0-dependent eddy

viscosity to equilibrium. Note that 8 governs the drift in the

macrogroup transport (5.9) and does not enter into the subdynamics.

We consider a system of two Langevin equations

-L:

16
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=

w

I!

auG . ,,

" Yc Gdt
du"

I| Eli

_+yG u ,,(:It - cG

The first Langevin equation has a random

correlation

(6.5a)

(6.5b)

noise G" with an auto-

tr < G"t0)G"{_) > = _'IO"6(T) (6.6)

that depends on the field diffusivity D". It determines the fric-
I!

tion constant YG for the second Langevin equation to analyse E£

I!

and calculate h£. In the second Langevin equation, the field is

I1 11

EcG = _o uG X _ , (6.7)

by (l.2b). The system is immersed in a quasi-geostrophic tur-

bulence, labeled by the suffix ( )G as the background medium with a

spectrum and an intensity of the form

w

i

F(k) IG = cG c¢2/)k'S
/,k-z (6 8)and < UG2 > = CG Or.2 .

Here ¢ = v<(V&)2>

constant.

is the rate of dissipation and CG is a numerical

= =

u

w

-!

w 17

: c

m



6.3. Determination of the friction constant YG from the first Lanqevin

equation

Upon multiplying the first Langevin equation (6.5a)

11

the path length £G and averaging, we have
11 2

1 d2 £,,2 f d_G I 1, '1
--2--dr2 <'G > - _ * YG <.uG'£G_ > = 0

or

throughout by

11

- < UG2 > + 2 YG K£G = 0 ,

and obtain the relationship between the

the friction constant YG in the form

path

11

diffusivity K£G and

i

11

KE; " ½ yG "I < UG2 >

- ½ CG c_ 2/3 yG-*k -2
(6.9)

. 7

W
by (6.8). We have written

2 _"2

½ d <£G > /dr2 is negligible

bulence.

11 II

i_'£G- tT<u G l G > .

in statistically

The term

steady tur-

On the other hand, we calculate

law

w

W

W

K12_3 = dZ d tr _( < UG(k )UG(-k > (t

,,rod

_' Iq I_ II II _ kll_ / I1

= Jdk tr X < UG(k )UG(- ] > !odT exp(-k 1'2 K£G_)

I It I1 II I! I1_ 11 - _

by (4.8) and (4.7b). The integral equation gives the solution

18
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_-E2_dkk '" s:Ck") ]

'=C½CGcG2/a)% k-2 ,

by (6.8).

By a comparison between (6.9) and (6.10b)

is determined as

7 G = (_ CG ¢G2/_.) _ .

(6.10b)

the friction constant

(6.11)

• '" and D"
6.4 Determination of the relationship between K£ __ from the

second Langevin equation

w

m

= =

r=

u

w
w

From the second Langevin equation (6.5b), we

ship

derive the relation-

It _" . DI I
K£ YG _

q!

between the path diffusivity K[ and the field diffusivity

. __ . .

. f:_"__,,,Io(_.,__,;,-,
by (6.4). The detail of calculations has been omitted.

trum Fc(k)l G has been introduced such that

I [°• tr _ < EcGCk )EcG(-k ) > = G "

(6.12)

(6.13)

The spec-

= =

The system of equations (6.12) and (6.13) are solved, determining

D"

G Jk c

19
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w

w

m_

m

wmJ

= =
w

" = Fc (k") 3 .

I = 2 pCk) I from (6.7)By writing FcCk) G _o G

(6.14) and find

D" _= yG 2 _0 k'2

(6.14b)

and (6.8), we calculate

It follows

(6.15a)

11K£ _=w o k -2 (6.15b)

11

h£ = exp(- _oT)' (6.16a)

dT h (T) = _0 ' h£(T) = 24 _0 ' (6.16b)

by (6.4).

7. Eddy coefficients

The eddy viscosity K' and the eddy coefficient _' from (5.17b)

and (5.17c), determine the transfer function in direct cascade

,0

(5.16a) and inverse cascade (5.16b), while the eddy diffusivity Kd

in (5.10) determines the drift function (5.9). These eddy coef-

ficients approach their equilibrium by relaxation through the orbit

functions h£(T,k") and h_(_,k") which differ by C"(k") = -k"2K '',

from (5.11) and (5.18b). However, an inspection of (5.17b) and

v!

(5.14b) reveals that K" is inversely proportional to w0 while K£ is

I!

proportional to _0 by (6.i5b), so that the contribution of C

becomes negligible, approximating

11

_ h£ _= h£ (7. i)

2O

" 1

w



w

7.1. Field diffusiv_ty

!

D (t,x) iS defined by (4.6).The field diffusivity

field intensity trX<Ec(k') ' ' 2 ' ' u' )>EcC-k )>=_0tr<u (k) C-k'

of (6.16b) we get

' I tr _<< Ck")u C-k")>{}D It,x){) = c_o dk" u' '
.qp _ _ m

w

By writing the

and by the use

w

W

W

W

_k dk"= w0 • FCk"){)

7.2. Eddy viscosity K

The eddy viscosity as defined by (5.17b)

with m 2 = C_, u 0 _2_2, by (5.14b), or

K' = Ch_0)2 D'{__}

(7.2)

is K' I D'Ct,x){m2],

= C_, _o3 dk FCk") d_ _ h£C_

3 -I di"
= y _0 _Ck")

k

(7.3)
J

by (7.2) and (6.1669.

7.3. Coefficient of amplification l'

The eddy coefficient

the integral operator

X' as defined by (5.17c) is calculated from

K'{ ). Thus we find

X' 3 -I | dk" k ''2
= _(D 0 Jk

rCk") = [_o" R (k), CV.4)

2]



' I_ dk" k"afrom (7.3), with the vorticity function R = 2 • F(k") .

H

W

F_

mmu

,0

7.4. Drift diffusivity Kcl

0 is defined by (5.10)The drift diffusivity Kd

culated in the same manner as for (7.3). We find

and can be cal-

Ik0 = 2 dk' Fa2Ck'),
Kd _0 -_ 0

where P22(k) is the spectrum

(7.5)

such that < 0 0 > = 2 dk' Faa(k .
UaUa 0

The expressions (7.3) - (7.5) show that the eddy coefficients

0 -I

_' and Kd are proportional to _0 "

!

K

8. Spectral structure of Rossby wave turbulence

We consider three ranges of Rossby wave turbulence: (i) inertial-

range by direct cascade, (ii) drift-range by inverse cascade• and

(iii) transition-range from direct cascade to inverse cascade in

the direction of decreasing k.

8.1. Inertial-rangeby direct cascade

In the inertial-range, the transfer occurs at the constant

enstrophy dissipation

' 0 =£_K R_

by (5.16a), where K' is given by (7.3) and

In terms of Ptkg, Eq. (8.1) is

r and is governed by

Ik k'o ,= dk' l, F(k')
Rr" o

rate of

(8.1)

w
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3-* _dk" I_ k' ') ._o FCk") dk' _ FCk _ ¢_ (8.2)

Upon dividing both members by any one of the integrals and differen-

tiating, we solve the integral equation and find the spectrum

l:[k) ,= (8/3) _ (wo c¢) _ k-' (8._)

and the intensity

< u_'2 > " C813)h C_o c¢)_ k-2- (8.4)

The eddy viscosity is

K' - C3/2)_ (c¢l_0)_ k-2 , (8.5)

by (7.3). The _spectrum (8.3) should not be confounded with the

spectrum of quasi-geostrophic turbulence (6.8) although the two

spectra share the same power law.

8.2. Drift-range

0

The large-scale structure formulates a drift W , while the small-

scale transients perform an inverse cascade to amplify the en-

Av .strophy at the rate The _aintenance of the large-scale struc-

ture is described by the balance between the drift and the cascade,

a phenomenon called

form is
0

dh "° dT_

_k d(-k)

"blocking". The balance in the differential

=0 .

(8.6)

Here d/dk and d/dC-k) are differentiations in the direction

creasing and decreasing k, respectively.

of in-

L_
E

i 23



We write the drift function

k , ,)W° 82.o 2 82 * (k
Kd = _o" 0 d_ F_2

0

by (5.9) with Kd given by (7.5), and the transfer function

T_° = _ _, <_02>= . _3_0"* R'(k') R°[k ') ,

by (5.16b) with A' given by (7.4). Here < _o2> . ,R o .

(8.7)

(8.8)

Note

and

dl¢°/dk = 2 62 Wo'* F22(k)

3

dT°/d(-k) ,: _-w o
"* k_ F(k}[R'(k)-R°(k)]

(8.9a)

w

m

i

I

m

because

3 -, k2= _% F(k)R'(k) , (8.9b)

R°<< R' in the region of small k where the blocking occurs.

If we confine the transfer to the spectral component F22(k )

along which the drift operates, the spectral balance (8.6) takes

the form

, , 2 8 82 k. 2
R (k) =-<(Vju2)> =7

(8.1o)

after simplification by (8.9a) and (8.9b). The integral equation is

solved, giving the spectrum

w

ibm

8 82 k_S

and the intensity

,2 4 82 -_
<u 2 > = _ k

24

(8.11)

(8.12)

r_
w



The eddy coefficient is

_' -, 82 k-2=_
0

• (8.13)

by (7.4).

Formula (8.12) indicates that the drift turbulence is limited to a

length _ _ (<u '2 > /82)
2

8.3. Transition-range

L_
m

_q

W

w

A spectral gap lies between the inertial-range and the drift-

range. It describes the transition from the direct cascade at rate

£& to the-inverse cascade X,<_02>, and is governed by the balance

between the two cascades in the form

X'<&°2> = c& . (8.14)

This

having a transport property l' by (8.13).

<_02>_-5R0-[k_k'k:aF(k') , we solve Eq. (8.14) to obtain
10

equation governs the enstrophy transfer in a background medium

By writing

F(k) = 2(_ ° cE/B:) k'* .

By a comparison between the

critical wavenumber that separates

(8.15)

two spectra (8.11) and (8.15), the

the transition-range from the

drift-range is found to be

The

kc = (4/3)% 8[w0 c_)_% . (8.16)

critical wavenumber also determines the passage from isotropy

to anisotropy.

25



w

w

-m
b_

J

mmm

W

w

z_

9. Summary and discussions

The Navier-Stokes equation with the Coriolis force is trans-

formed into a master equation to describe the microdynamic state of

turbulence. The group-kinetic method describes the three groups of

transport processes (spectral evolution, eddy coefficients and

relaxation). In the macrogroup dynamics, we derive the kinetic equa-

tion of turbulence (3.6), the equations of evolution for the vor-

ticlty (5.3) and the enstrophy (5.4), and their governing transport

0 and drift h'° by (5.16) and (5.9). In thefunctions of transfer T_

microgroup dynamics, we derive the eddy coefficients consisting of

!

the eddy viscosity K for direct cascade, the eddy coefficient of

! ,0

amplification l _or inverse cascade, and the diffusivity Kd for

drift turbulence. These coefficients are calculated from the colli-

sion integral of the kinetic equation. The subdynamics treats the

mechanism of relaxation by which the eddy coefficients approach

their equilibrium. The closure of turbulence is obtained by the

loss of memory. The subdynamics consists of a Fokker-Planck equa-

tion (6.1) for path transition and a system of two Langevin equa-

tions of turbulence (6.5a) and (6.5b).

All the eddy coefficients K' _' 0• , and Kd are found in (7.3) -

(7.5) to be inversely proportional to rotation w °. The dependence

of K' on _0 "I has been suggested by Blackadar (1962) empirically.

The spectral structure of Rossby wave turbulence is investigated

for the inertial-range and the drift-range as characterized by a

direct cascade and an inverse cascade, respectively. The spectral

gap as formed by the transition between the two cascades is also

examined. The corresponding spectral laws k°3, k -5 and k-* are found

26



in (8.3), (8.11) and (8.15).

w

u

The spectrum k "3 in (8.3) and the spectrum k-_of geostrophic tur-

bulence (6.8) have separate parameters and should not be confoun-

ded. This difference cannot be revealed by a theory from the vortex

model (1.4).

It is to be remarked that by the cancellation of _0 and the sub-

sequent constraint to quasi-geostrophic turbulence in the

traditional vortex model (1.4), the small eddies cannot organize

the m°-dependent cascades to analytically treat the inertial-range

and the transition range. The drift function cannot find a cascade

for balance to derive the drift-range. This explains why no theore-

tical treatment has'succeeded fn attacking the Rossby wave tur-

bulence.
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GROUP-KINETIC METHOD OF TURBULENCE
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Department of Mechanical Engineering, City College
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The inhomogeneous Navier-Stokes equation is transformed into a

master equation in the phase space for the description of the

microdynamical state of turbulence. The elementary interaction

among the fluid elements is represented by the pressure-gradient.

For the three transport processes of spectral evolution, eddy

viscosity and relaxation, a macrogroup dynamics, a microgroup

dynamics and a subdy_amics are developed. The kinetic equation of

turbulence is derived. The eddy viscosity is calculated from the

"eddy collision". The simulation of the subcluster of many high-

order distributions by an effective fluid medium causes a loss of

memory. This mechanism of relaxation for the approach of eddy

viscosity to equilibrium solves the closure problem. The sub-

dynamics consists of a Fokker-Planck equation of path transition

and a Langevin equation of turbulence for the determination of the

orbit function and the path diffusivity. Although the Fourier modes

interact indefinitely, their statistical quantities interact by

nearest neighbour-groups. By this property the high-order correla-

tions enter in the form of a product of pair correlations without

invoking the hypothesis of normality or relying on perturbation ex-

pansion and subsequent summation.

The spectral results are found as follows: (i) In the inertial

range of the Navier-Stokes turbulence, the energy spectrum is



F(k)=l.650 e2/3k-S/3 , and the pressure variance spectrum is

S(k)=O.9OTp2e_/3k-7/s, where e is the energy dissipation rate, and p

is the fluid density. (ii) In the convective-inertial range of heat

diffusion, the temperature variance spectrum is Fo(k)=0.899cee-*/3k-5/3,

where e@is the rate of dissipation of temperature variance.

m

m

m

m

1. Introduction

The derivation of the energy spectrum has attracted the attention

of many authors. Kolmogoroff (1941) presented a dimensional ar-

gument, and Heisenberg (1948) proposed an energy transfer from the

large eddies that present a macro-gradient toward the small eddies

that organize an eddy viscosity. A particularly appealing method

has been the renormalization. The group-renormalization transforma-

tion has succeeded in finding a correction to the 5/3 spectrum from

intermittencies of turbulence but not in deriving the 5/3 spectrum

itself (Grossmann & Schnedler, 1977). This correction is neverthe-

less too small to be verified by direct measurements. The method of

renormalization perturbation expansion has enabled Kraichnan (1959,

1977) to develop his DIA method and generalizations. A systematic

method of developing the expansion was given in a general form by

Martin, Siggia _ Rose (1972), and by Dubois & Espedal (1978).

However, the following difficuties remain: The necessity of the

molecular viscosity and an artificial driving force as the basis of

perturbation expansion, the uncertainty of convergence, the

validity of the lowest-order expansion which amounts to a

quasilinear theory, and the hypothesis of normality for factorizing



L_

a quadruple correlation.

m

w

In order to alleviate these difficulties and clarifying the

physical roles played by the mathematical operators and functions

(e.g. evolution operator, collision operator, diffision operator

and orbit functions), we develop a kinetic method based upon the

transformation of the Navier-Stokes equation into the kinetic equa-

tion of turbulence. We calculate the eddy viscosity from the eddy

collision-integral, not by perturbation as was done in the Chapman-

Enskog method for the derivation of the molecular viscosity from

the Boltzmann equation (Chapman _ Cowling, 1939). With the know-

ledge of the eddy viscosity, we derive the spectral structure.

As the scope of research, we let the pressure-gradient define the

elementary interaction between fluid elements. The inhomogeneous

partial differential equation of Navier-Stokes is then transformed

into a homogeneous master equation in the phase space. The master

equation has lesser nonlinearity.

m

= =

N

The decomposition into a macro-distribution f0 a micro-

distribution f' and a sub-distribution f" represents the three tran-

sport processes of spectral evolution, eddy viscosity and relaxa-

tion (Section 2). This decomposition is superior to the reduction

of the N-body distribution function into singlet-,binary-, and

triplet-distribution functions in many-body statistical mechanics

(Bogoliubov, 1962), because the singlet-distribution f0 in the

group form suffices for describing the spectral function, and the

groups interact as nearest-neighbours statistically,

For analysing the three transport processes, we develop a macro-

3

m



u

!

group dynamics for f0 a microgroup dynamics for f and a sub-

dynamics of relaxation. The kinetic equation of turbulence for f0

is derived in Section 3, and the eddy viscosity is found in Section

4. The eddy viscosity approaches its equilibrium by relaxation for

which a subdynamics is developed and consists of a Fokker-Planck

equation of transition and a Langevin equation of turbulence. The

former equation governs the path fluctuations and determines the

orbit function, and the latter finds a path diffusivity (Section

5). In sum, the macrogroup dynamics determines the spectral evolu-

tion from the kinetic equation, the microgroup dynamics and the sub-

dynamics produce a system of integral equations for the eddy

viscosity and the , path diffusivity. The conversion of pressure

field fluctuations into velocity fluctuations is made in Section 6.

In Section 7, we derive the energy spectrum k-S/3, the temperature

variance spectrum k-s/3, and the pressure variance spectrum k-_/3 .

A summary and a discussion are presented in Section 8.

Wml

m

2. Group-kinetic method

Fluid turbulence is described by the Navier-Stokes equation

^ )u Bt ( i)(@ + u.V-vV 2 =t _. _ 2 = t 2.

^
for the fluid velocity u, in a driving field E_=-_. .

the pressure, p is the density, and 9 is the molecular

The incompressible fluid satisfied the equation of

Here P is

viscosity.

continuity

A

V.u=0 • An instantaneously fluctuating function is denoted by ( } .

For raising the dimensionality we introduce f(t,x,v) = 6[v-u(t,x)] and

transform the inhomogeneous Navier-Stokes equation into the

4



homogeneous master equation

m

t o.

I ^The normalization is dv £ = i,

= v.V-gV2+ F. _ with 2--_/_v

the microdynamic state of

statistical treatment. We

(2.2)

and the differential operator is

The master equation describes

turbulence. A scaling is necessary for

decompose the instantaneously flu(-

tuating function f = f + _ into an ensemble average {-=<2> , and a

fluctuation _. We represent the three transport processes of spec-

tral evolution, eddy viscosity and relaxation by a macrogroup f0 a

microgroup f' = f*+ f" and a subgroup f,, = f(2)+ f(s)+..., respec-

tively. The operators A, A, A°, A', A" can be used. The groups

are in the order of decreasing coherence with durations of correla-

tion t>T ° >_' >_" .
C C C

l

Since the spectrum evolves in a medium of eddy viscosity, and

latter approaches its equilibrium

sport processes, together with the

them, interact by nearest-neighbours.

the

by relaxation, the three tran-

three groups that represent

This property in association

with separated coherence constitutes the "nearest neighbour group-

interaction". Consequently, a quadruple correlation appears in the

form of a product of two binary correlations as

=

m

< E*Ct)E*Ct-T}><f°(t}f°Ct-T)>= <E'Ct) E'(t-T)><f°(t)f°([t-T)> , (2.3)

and not in the form < ECt) E(t-T){(t)f(t-T) > that requires the

hypothesis of normality for factorization.

There is a certain analogy

f0 f'
distribution f into groups , ,

between the decomposition of the

f" and the reduction of the

5



many-point distribution Fz2...N into the singlet-distribution F z,

the pair- distribution F2 , and the triplet-distribution F 3

(Bogoliubov, 1962). Both the decomposition and the reduction repre-

sent the three transport processes of evolution, transport property

and relaxation that interact as nearest neighbours. However, a dif-

ference exists in the determination of the spectrum: a kinetic

equation for f0 suffices in the first case, and a system of two

kinetic equations for Fz and F2 is required in the second case.

m_

The instantaneously fluctuating groups

Fourier modes with overlapping wavenumbers,

groups are separated by adjacent

0_k'_k, k_k"_, k_k"'_ as demarcation.

can be transformed into

but the statistical

wavenumber limits

Thus

< E°EO> = Idk' .X<E°(k').. _ E°(-k')>_

i 11< E'E'> {} = dk ,)(<E'(k") E'(-k")>{}

<E"E">~_ {} = Idk'"_ l<E"(k'")E"(-k'")>{}_- _

It is understood that

dk ', dk", dk'" extend

macro-intensity and the

are dummy variables of integration. The Fourier decomposition

the volume integrals with respect to

from -_ to +_ and that k separates the

micro-intensity, while other wavenumbers

is

truncated with a truncation factor _ .

6
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3. Kinetic equation of turbulence

The master

equations

equation is scaled by A° and AI to give the transport

(_t+A°L)f° = - Lop +C*{f°}, C 1{f0}- AOLlfl

(_t+AIL) f* = - L°(_+f°) + C"{fl}, C"{fI}- - A*L"F".

(3.1)

(3.2)

w

mm_

The coefficients of "eddy collision" Cl(t,x,v){}, C"(t,x,v){} are

integral operators. By random encounters, the many distributions

in the cluster f,,=f(2)+ f(3)+.., become homogenized and lose their

individuality in v-dependence. As a result, the cluster can be

simulated by a frictional medium so that the coefficient of colli-

sion C"(t,x,v){} "-C"(t,x) ceases to be an integral operator.

By (2.3) we can write c*(t,x,v) " C'(t,x,v) and L*(f+f °) _ L'f °,

reducing (3.1) and (3.2) in the closed form:

w ^ fo Lo_+ { }, {fo} A°LC' fo C' - f'(_)t+A°L) = - = ' (3.3)

[Dt+A'_(t,x,v) - C"(t,x)]f' = -L'f ° (3.4)

The homogeneous equation

(_)t+A'L-C '')U(t,t') : 0, with

operator

U(t,t ) = i

U(t,t')governs the evolution

(3.5)

by means of which we in-

7



w

tegrate (3.6) to get

f' = - I_dT A'U(t,t-T) L'(t-T)f°(t-T)

and find the eddy collision

C'{f°(t-T)} = A°[_dz L'(t,t-T)A'U(t,t-T)L'(t-T)f°(t-_)

(3.6)

mmm

The diffusivity

_'D' ._{fo (t-_) } • (3.7)

i2=:+D = <E'(t) A'U(t,t-T)E'(t-T) >

is adiabatic by the large-time diffusion on account of

tion of groups E'

operator (3.7), Eq.

(3.8)

the separa-

and f0. By the knowledge of the collision

(3.3) is called the kinetic equation of tur-

bulence.

By

tion

taking the moment of (3.3) we obtain the Navier-Stokes equa-

_t +A°_a-V-vV 2( )u o . EO+ jo
- - (3.9)

mmm

with the added "eddy damping"

r

jo = idly Cl(t,X,V){f0(t_T)}

By multiphying by u ° and averaging, we find the equation

spectral evolution in quasi-homogeneous turbulence

(3.zo)

for the

=
w

I__2Dt< u°2 > = - x><(VJ u°)2> - TO
(3.11)



with the transfer function

f

T O = < u°-Jdvv > . (3.12)

4. Kinetic origin of the eddy viscosity

n z

4.1. Transformation of the evolution operator into orbit functions

At the instant of time t-T the Lagrangian field

A'U(t, t-T)E' (t-T)- A'E' [t-_,x(t-T) ] takes the position

x(t-_) = x - vT - £(T) along the perturbed trajectory that

passes through the phase point x, v at the time t . Here £(T) is

the path length t_aveled in the interval of time T. Thus the

Lagrangian correlations are

=fdk' _ < u°(k')f°(-k',v)> h. (T,k' v)h£(_,k')< u° (t)f° (t-T)>
. _ _ - . . v - ' - (4.1)

i V!
< E'(t)E'it-z)> = dk" X < E'(k")E'(-k")> hv(T,k ,v)hg(T,k")_ (4.2)

< E"(t)E"(t-x)> = Idk"'X < E"(k"')E'"(-k"')> h_[(q:,k"). (4.3)

= =

The field correlations can be integrated to form the adiabatic

fusivities:

dif-

f_ I dk" E' 'D'(t,x,v) = ] dT _(< (k") E (-k'b> "hv(T,k ,v) hg(x,k") (4.4)

z



" _ _d_" _ _ _:' (4.s)

The orbit functions are:

h (_,k' "
v .. ,v)_ = exp(-ik_ .v_T) (4.6)

h£(T,k")=[exp C"(k")_]<exp-ik"-£"(T)>, h_(_,k")=<exp-ik"'£"(z)> (4.7aib)

1
" k"2U2T2) (4.8)hm(T,k ) = <exp-ik"'(£°+£*)> = exp(-_- o

t!

Here hv governs the streaming, h£ and h£ govern the relaxation by

£" and h represent_s a meandering by £0 and £* with an effective

velocity u°. The meandering without relaxation appears in the lowest-

order perturbation expansion in quasilinear theory. The strong tur-

bulence is predominantly governed by streaming and relaxation.

4.2. Transfer function

By substituting (4.1) and (4.4) in (3.12),

function

we get the transfer

o f ffdk ET o - dv v i dk X< (k")E (-k")> h£('r,k")h£(T,k')

W

with the memory operator

(4.9)

II !

M°{ } = _.h (T,k ,v) _jhv(T,k ,v)
j v . . - - (4.1o1

I0



In differentiations _ _. we find terms that cancel upon integra-
3 3

tions with respect to dv dk" dk'. The remaining terms reduce the

memory operator to:

(i) transport in a macro-gradient

_ r

,k ,v) _2 hv (M°{} = hv(T " T,k',v){}, £im M°{} = - k'2T2
.... v=0

(ii) transport without gradient

(4.11)

M°{} = - _2h (T,k",v) hv(T,5'v){}, £im M°{} = k"2T2 • (4.12)
v -- - . v=0

Note that (4.11) and (4.12) govern the memory transmission by

v-dependence through hv . The loss of memory at the limit v=0 can-

cels the role of operator and reduces the transfer function into

h,d

W

T O =

K' R° for direct cascade (4.13a)

-l' < u°2 > for inverse cascade (4.13b)

by (4.11) and (4.12), respectively. In the direct cascade, energy

is transferred from the large eddies that present a macro-velocity

gradient Vju_ such that

R° -- <(?J u'_)2> = 2 I_ dk' k'2F(k')

towards the small eddies that organize an eddy viscosity

(4.14)

11

w



K' tr K' i E' ' ') T 2 ')= = dk'tr _<< (k') E (-k > h£(_,k • (4.15)

Here F(k) is the energy spectrum. In the inverse cascade, the

small eddies organize an eddy amplification at a rate

l' I dk" k"2tr _ < E'(k")E (-k") Io T2 "= ' _ > dT hi(T,k_ ) (4.16)

+

m

and feed energy into the large eddies.

" . = _ k' k"The approximation h£(T,k )h£(_,k') % h£(T,k") by << has been

made. The moment _ dv v f0 = u0 has been taken, and other details

of calculation have been omitted. In the following we confine our-

I

selves to the transport by K in a direct cascade only.

For the sake of abbreviation, we write

w
o d_ ._2 h£(T,k') = 2Y '-3

!

y'(k') = C '(k') + "{£(k') (4.17a,b)

J

_c
mmr

= =

ro Iv vv vv- 1

d_ h£(T,k ) = dT <exp-ik'"£"(T)> _£ ,J0 -- --
• (4.18a,b)

The subdynamics for the analytical derivation of (4.18b) is given

in Section 5.

The relaxation times y,-1 and y[-1 govern the approach to

equilibrium for the eddy viscosity

tomb
! ! I>K = 2< E E {y'-'} (4 19)

and the path diffusivity

ira@ 12

w



h

,, 1 d £" E"E">
K£- _- tim _- < £"(T) (T)> = < {y_-3},

R-

respectively.

(4.20)

4.3 Eddy coefficient

Recall that upon simulating f" by an effective fluid medium, we

have reduced the collision integral C"(t,x,v){ } _ C"{t,x) into a col-

lision coefficient C "[t,x). If the same reduction is made for

C '(t,x,v) =_C'(t,x) , we reduce the eddy damping (3.10) into

j0 = C'(t,x) u°(t,x) and the transfer function (3.12) into

w

T O = - < u °" C'(t,x) u °> •

By comparing with (4.13a) we identify

(4.21)

w

--i

u

. J

m

C'(t,x) = K'V 2 (4.22)

and similarly

C"(t,x) = K"V 2, or C"(k) = -k2K '' (4.23)

Hence we find

' k'2 ' , ,y (k') = (K + K£) = (Pt + l)y£, (4.24)

from (4.17b), and transform (4.19) into

' --_ ' _-a} Pt K' 'K = 2(Pt+l) tr<E'E > {y , = /K£ (4.25a,b)

The path diffusivity governs the orbit functions in (4.17a) and

(4.18a), and controls the approach of the eddy viscosity (4.25a) to

13

w



L

equilibrium. By a subdynamics in Section 5, we shall

transport coefficient.

analyse this

L

w

W

5. Subdynamics of relaxation

The orbit function < exp -ik"- _"(T) > and the path diffusivity

11

K£ govern the relaxation. For their dete<rmination we develop a

subdynamics consisting of a Fokker-Planck equation of transition

and a Langevin equation of turbulence. These equations are in the

configuration space by definition of relaxation.

5.1. Fokker-Planck equation of transition

The probability that a path-length is made between _ and £ + dZ in

a time interval • along a trajectory that passes through the point

x at the time instant t is

p(t,x;t-T, x-£)d£ or briefly p(_,£)d£

in quasi-stationary

trograde transition

(Tchen, 1944)

processes.

is governed

The probability density of re-

by the Fokker-Planck equation

_--_-p(T,£)= K£ _g _g p(T,£)

and satisfies the condition of normalization

(5.1)

r

Id£ p(T,£) = 1 .

The streaming is absent in relaxation. The path diffusivity

defined by (4.20) is adiabatic, i.e. independent of T and £.

(5.2)

I!

K£ as

14



By Fourier decomposition, we transform Eq. (5.1) into

8-?p (_,k") = -k k : K£ p(_,k_ )
w

with the solution

(5.3)

W

W

w

p(T,k") = 1 expE-k" k": K_,"x] .

(2w) a - - _
(5.4)

The coefficient of integration

(5.2). Hence we obtain

T!

-ik "£f

< exp-ik "£ (_)> = e p(_,£)

is determined by the condition

vv "2,, -- " (5.5a,b)
= exp(-Y£ T), and Y£ k K£ •

The path diffusivity and the relaxation time as determined by

(5.5a,b) have been introduced in connection with (4.17) and (4.18).

5.2. Langevin equation of turbulence

The Langevin equation of turbulence

w

du"Ck")_. + " u"Ck") = E"(k") (5.6)

dt 7£ _ _ _ _

governs the relaxation in k"-space. It has a certain analogy with

the Langevin equation for Brownian motion.

By two successive integration we get

15
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m

u

t E.. odt exp[-y£(t ] .. (t")

I_ I _ v! 11 Iv
dt" dt ' ' E"

= ex-p[-y£(t -t ) ] (t")
Jt

vv- 1

Y£ I_ dt" E"(t")(1 - exp[-y_(t-t")])

An interchange of order of integrations has been made.

I!

culating K£ by definition (4.20), we find four double

one of which is

< Iz"z"l> = Y_ dt dr" ' ")
!

I: 'i t= 2Y_ -2 at dz < le"CO)e"(_)l>
0 _

rtd_Ct-z ) < IE"(O)E"Cz)l>= 2_-_ jo _ .

(5.7)

In cal-

integrals,

(s.8)

r_i

w

An interchange of order of integrations leads to

w

m

w

w

-- d <l £'' "-2 E"1 £im _ (t)£"(t)I> = Y£ dT<l (O)E"(T)I> (5.9)

or

by (4.20). Note that the remaining three double integrals decay

exponentially and do not contribute. Also note that (5.9) is

written in k"-space, by (5.6), i.e___2.

- =

< 12'(t) g"(t) I>: < £"(t,k") £"(t,-k")>, <IE"CO)E"(_:) I> =<E"Ct ,k")E"Ct-T,-k")>

16



It is to be remarked that a relationship analogous to (5.10) ex-

ists in Brownian motion and is called Einstein's formula of fluctua-

tion dissipation.

By substituting for D" from (4.5), we obtain

I! I!

K£ - tr K£ = tr <E"E">

a.

and confirm (4.20b).

(5.11)

w

i

1

A comparison

tion

between (5.11) and (4.25a) yields the quartic equa-

pt(Pt+l)3 = 2 •

The solution determines the turbulent Prandtl number Pt =0.545.

(5.12)

6. Eddy coefficients as functions of energy spectrum

i

w

=

L_

w

qw-

I

6.1. Equation of state of turbulence

By the condition of incompressibility V-_ = 0 the

equation yields the equation

Navier-Stokes

" " E"(k") : k" k''-2 r"V'E -- r , or i (k") (6.1)

- A I, _ %with r = ?V: u u • It applies to relaxation in equilibrium.

Upon neglecting the non-stationary effects by meanderning, we decom-

pose ?u(x) = Vu ° + Vu"(x) into a quasi-homogeneous background ? u ° and

a variable sub-gradient Fu"(x), and write

i

17
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vl 0 vl
r" = A"(Viu_+Viuj? CVjui+Vjui) . (6.2)

By selecting the subgroup, and assuming isotropy, we get

2 R0 ,,
<r"2> = [ R , with

and derive

112_ "

< E"2> = _- R°<u _',

by (6. i).

R ° = <(Vj o 2U i) >, R"= <(Vju_') 2> (6.3)

(6.4)

By writing

derive

6.2. Eddy coefficients
f

2
(6.4) in the operator form < E"E">{}= R 0 < u"

11

u >{}, we

L_

w K'; 2 R0 ,, ,, - "-a= _ tr<u u >(y£ }
w (6.5)

by (5.11), or

w

2 R 0 ,, ,){[Y[Ck,,) 3-2 }KiCk') = _ (k) K£(k

by K£ tr <u"u">{y£ } from definition (4.20).

The integral equation (6.6) can be

1

with respect to k, yielding

solved

11

K£(k) = (2/9) ½ R°½ k -2 .

(6.6)

by a differentiation

(6.7)

18



It follows

K' = c K R°½ k -2

from (4.25b) and (6.7). The numerical coefficient is

(6.8)

CK -- (2/9)½ Pt = 0.471,

by (S.12).

for P = 0.545, (6.9)
t

i

7. Spectral structure

w

h _
m

7.1. Energy spectrum

Formula (6.8) for the eddy viscosity K' helps to determine the

energy transfer across the spectrum. In the inertial-range, the

transfer at a constant rate of dissipation E is

K' R° =e, or (2/9)½Pt R°3/2k'2 = c, (7.1)

from (3.8) and (4.13a). The vorticity function R ° is defined by

(4.14). By isolating R ° and differentiating, we obtain the Kol-

mogoroff law

F{k) = A C2/3 k-S/3
(7.2)

2 -2/3

The numerical coefficient is evaluated to be A = _ cK

by (6.9).

= 1.650

7.2. Pressure fluctuations

The pressure fluctuation 0-*p(k} = -ik-2k. E(k) can be cal-

19



culated from (6.1), giving

X<]p"([k)]2> = p2 k-2_<<lE,,([k) i2>

= 2p2 R0([k) k-2 X<lu,,([k) j2>
9 '

by (6.4).

By introducing the spectrum SCk)

(7.3)

of pressure fluctuations such

I

i

[CO IT _ I_

that 2J dk" S([k )= Jdk
k

the spectral form

2 p2 Ro k-2 F([k)
S([k) = _

= C p 2 E"/3 k-7/3

with 1 A 2
C = _ = 0.907 .

_< IP"([k'')12 > we can write (7.3) in

The use of (7.2) has been made.

(7.4)

I

w

7.3. Thermal spectrum

The evolution of a passive scalar, e.g. the temperature fluctuation

, is governed by the homogeneous diffusion equation

(_t + _ _u• _v-Kv2)_'= 0 (7.5)

in isotropic turbulence. The heat

inertial range is described by

transfer in the convective-

r 0

K£ R 0 = e O or ([2/9)½ RO½ RoO = E;0 , (7.6)

20
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w

where ce is the dissipation rate by the molecular diffusivity K,

and R@0 E <(V@0_ >=2 [_dk' k '2 F(k') is the variance of the temperature

gradient.

By the same procedure as was used for deriving (7.2) from (7.1),

we obtain the solution of (7.6) as

F8(k) = B e o E -1/3k -s/3

The numerical coefficient is found to be B =

with the condition B = P A.
t

8. Summary and discussion

(7.7)

0.899 in consistency

w

-qq

By letting the pressure gradient represent the elementary interac-

tion among fluid elements and by raising the Navier-Stokes equation

to higher dimensionality, we obtain the master equation for the de-

scription of the microdynamical state of turbulence. Being a

homogeneous equation, the master equation is suitable for the ex-

plicit formulation of the eddy transport in the gradient form

(direct cascade) and in the form of an eddy damping (inverse

cascade). By the macrogroup dynamics and the microgroup dynamics,

the kinetic equation is derived, and the eddy viscosity is found to

depend on the orbit functions of streaming and relaxation, in the

roles of memory-transmisslon and memory-loss, respectively. The

loss of memory leads to closure and irreversibility.

The subdynamics consists of a Fokker-Planck equation of transi-

tion and a Langevin equation of turbulence, and governs the path

21
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perturbation along an accelerated trajectory and the path dif-

fusivity.

The eddy viscosity and

governed

mine the

variance

temperature variance
-,/_ k-S/3

spectrum _ Ck_ = 0.899 E0 £

the path diffusivity are found to be

by a system of integral equations. The solutions deter-

energy spectrum F(k_ = 1.650 £2/3 k-5/3 , the pressure

spectrum S(k)=0.907p2e _/3k-7/3 in the inertial range, and the

in the

convection-inertial range.

If the orbit function is degenerated into a non-adiabatic diffu-

sion as the lowest order perturbation expansion in the quasilinear

theory, a meandering at an effective velocity u is found. The
0

parameter _u 0 yields a spectrum F(k) _ (cu 0)½ k -3/2 reproducing the

result of DIA.

Since the groups represent the transport processes of spectral

evolution, eddy viscosity and relaxation, and are analysed by a

macrogroup dynamics, a microgroup dynamics and a subdynamics se-

parately, the high-order correlations appear in the form of group-

interactions <u'u' > <f0 f0> by our group-kinetic theory and not in

_ > would be by a per-the form of a quadruple correlation <uu as

turbation theory. The quadruple correlation requires the

hypothesis of normality for factorization and closure.
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