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Abstract

In the work presented here, we measured the performance of the components of the key

iterative kernel of a preconditioned Krylov space iterative linear system solver. In some sense,

these numbers can be regarded as best case timings for these kernels. We timed sweeps over

meshes, sparse triangular solves, and inner products on a large three dimensional model

problem over a cube shaped domain discretized with a seven point template.

The performance of the CM-2 is highly dependent on the use of very specialized programs.

These programs mapped a regular problem domain onto the processor topology in a careful

manner and used the optimized local NEWS communications network. We also document

rather dramatic deterioration in performance when these ideal conditions no longer apply.

A synthetic workload generator was developed to produce and solve a parameterized family

of increasingly irregular problems.

*This work was supported by the U.S. Office of Naval Research under Crant N00014-86-K-0310 through Yale, by

DARPA contract DAA-1101-88-C-0409 through Scientific Computing Associates, and by NASA contract NAS1-

18605 while authors Berryman, Salts and Mirchandaney were in residence at ICASE, NASA Langley Research
Center



1 Overview

In the work described in this paper, we have carefully examined a set of model problems to

demonstrate the range of performance that one can anticipate from the CM-2. We first present

results that arose from experiments in which we gave the machine and its software every con-

ceivable advantage. We used PARIS, the CM-2 assembly language, to program a computational

kernel as it might appear in the iterative portion of a Krylov space iterative linear equation

solver preconditioned with an incompletely factored matrix [4], [2], [5], [6]. This kernel was

coded with the assumption that the linear system being solve arose from a partial differential

equation discretized with a uniform template on a three dimensional mesh. We did not address

the issues that arise in considering the tradeoffs between computational rates and rates of con-

vergence that go into deciding what kind of preconditioning to use in a massively parallel Krylov

space solver. Attempts to address this issue have been made by [1] and [3].

The performance of the CM-2 was highly dependent on the use of very specialized programs.

These programs mapped a regular problem domain onto the processor topology in a careful

manner and used the optimized local NEWS communications network. Efficient methods for

solving partial differential equations frequently make use of non-uniform grids designed to put

the most computational effort where the problem is hardest. An effect of this approach is

that the algebraic linear (and non-linear) systems that must eventually be solved are sparse

and quite irregular in structure. Careful mapping of workIoad can be extremely important in

obtaining adequate performance from many multiprocessor architectures; mapping is typically

straightforward in regular problems with a known structure and is much more complicated for

problems with unknown or irregular structures.

In thi_ paper, we document rather dramatic deterioration in performance when ideal con-

ditions no longer apply. A synthetic workload generator was developed to produce and solve a

parameterized family of increasingly irregular problems. These problems involved sweeps over

meshes. The irregularities were obtained by altering square meshes having nearest neighbor

links by replacing varying fractions of these local links with dependencies involving mesh points

that were more remote. We also explored the performance implications of using the high level

language *lisp to implement a mesh sweep in a way that does not rely on a detailed a-priori

knowledge of a problems communication characteristics.

In Section 2, we present best case timings for the matrix vector multiplies, sparse triangular

solves, inner products and SAXPYs that constitute the iterative portion of Krylov based pro-

grams. In Section 3, we present data which indicates that performance of the CM-2 for regular

problems is an extremely sensitive function of 1) problem regularity, 2) problem mapping and

3) a priori knowledge of dependency patterns.

2 Performance on a Regular Three Dimensional Mesh

In this section we describe the results of experiments that give a best case estimate of the

rate with which tile CM-2 can carry out tile procedures that make up the iterative portions of

Krylov space linear equation solvers. We first present timings from consecutive sweeps over a
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Table I:Three Dimensional Embedding : Mesh Sweeps, Inner Products,SAXPYs :4K proces-

sors

Grid

Size

edge
16

32

64

128

Mesh Sweep

MFlops

23.5

46.1

64.2

N.A.

SAXPY

MFlops

131.0

226.0

233.9

235.0

Inner Product

MFlops

14.6

81.3

185.8

220.9

threedimensionalmesh along with timingsforthe correspondinginnerproducts and SAXPYs.

The performance measurements we presenthere characterizethe performance thatwould arise

from the iterativeportionsoflinearsolversemploying many simple preconditioners.We then

presenttiming resultsfrom a program that performs a sequence of linkedmatrix mesh sweeps

and triangularsolves.We argue thatthe mesh sweeps and triangularsolvetimingsobtainedfrom

thisbenchmark are a fairmeasure ofthe timingsthatwould be observed from theseprocedures

were they integratedintoan iterativeloopoftheappropriatelypreconditionedKrylov solver.As

partofthistestloop,we alsomeasured the time requiredtoperform innerproducts ina manner

thatconformed with data structuresand the mapping used forthe othertwo procedures.

The software provided with the CM-2 makes use of the concept of virtual processors; one

can program the CM-2 so that it appears that there are a larger number of processors than

actually exist. The CM-2 software assigns blocks of virtual processors to each real processor.

This assignment of multiple virtual processors to each real processor tends to amortize the

overhead of transmitting each instruction to the physical processors. In most of the problems we

investigate in this paper, increasing the ratio of virtual to real processors also reduces overheads
due to communication.

2.1 Mesh Sweeps

One can use a very large number of virtual processors in implementing a sweep over a mesh. We

examined the performance of a very specialized PARIS program (PARIS is the CM-2 assembly

language) which was written for a three dimensional problem on a cube with a seven point

operator. The program hence consisted of a sequence of sweeps over a three dimensional mesh

with the mesh embedded into a cube of virtual processors with one mesh point assigned to a

virtual processor. The cube of virtual processors used by the program had an edge size equal to

a power of two. Subject to this constraint, the largest mesh we could embed was one with an

edge size of 64. Each iteration of the 1000 carried out took an average of 49 milliseconds. This

corresponds to a speed of 64.2 MFlops on the 4K processors. The results obtained from thnings

for meshes of varying sizes on 4K processors are depicted in Table 1.

In Table 1 we also depict measurements obtained from SAXPYs and inner products over

three dimensional domains. All of these results were obtained by timing 100000 consecutive

iterations. Because SAXPYs do not require communication, we expect to obtain extremely high

performance. For SAXPYs carried out over a cube of virtual processors with edge size 128, we



do 100 times

Mx = y

Solve Lz = y

z = inner-product(y.y)

end do

Figure 1: Sweeps over a Mesh

obtained a speed on 4K processors of 235.0 MFlops. The efficiency with which SAXPYs are

performed decreases when one uses fewer virtual processors(VP's). The VP ratio specifies the

ratio of the total number of virtual processors to the number of physical processors. A cube with

edge size 16 has a VP ratio = 1 on a 4K machine. From Table 1 we see that the speed of this

computation decreases to 131.0 MFlops, note that this reduction in speed must be unrelated to

communication overhead. In Table 1, we also present timings for inner products carried out

over a cube of virtual processors with varying edge size. Because the inner products contain a

global reduction, we expect to see poorer performance for this operation at relatively low VP

ratios. The cost of a global reduction does not increase with problem size, we can thus explain

the similarity in the computational rates for the SAXPY and inner product for the highest VP
ratios.

2.2 Performance from Iterative Loops with Triangular Solves

We next present timing results from a program that performs a sequence of linked matrix mesh

sweeps and triangular solves. This set of computations comprises the kernel of several sparse

matrix solvers. Let M represent a matrix obtained from the uniform discretization of a cube

with a seven point template and let L represent a lower triangular matrix with the same sparsity

structure as M. We carried out the test calculation depicted in Figure 1.

This program carried out the matrix vector multiply Mx = y by sweeping over a three di-

mensional mesh. We embedded the three dimensional mesh into a two dimensional gray coded

processor lattice. The sparse lower triangular system of equations Lz = y was then solved by

sweeping over another three dimensional mesh, embedded in a conforming fashion into the same

two dimensional processor lattice. The sweep used to solve the sparse triangular system was

carried out in a manne r th_trespected the dependencies of the problem. As part of the test

loop, we also measured the time required to perform inner products in a manner that conformed

with data structures and the mapping used for the other two procedures.

We now describe in more detail how the triangular solve was carried out. In a cube with n

points along any edge. i,j,k from 0 to n-- 1 are used to define tile position of a point in the cube

where i,3, k represent the cartesian coordinates of a point in the 3-1) mesh. We can parallelizc

this three di,nensio,ud triangular solve by conc,,rrently s-lvi,g, for each consecutive v, the plane

of points satisfying the condition i t- j -I k = v for 1 < v < 3n-- 2. Each processor in the lattice



Table 2: Matrix Vector Multi'

Grid

Edge
Size

16

32

48

)ly, Trianl_ular
Inner

Product

MFlops
5.5

23.4

58.2

104.9

188.9

Solve, Inner Product: Optimized: 4K processors
Mesh

Sweeps

MFlops

1.7

6.9

16.9

27.1

52.6

Triangular
Solve

MFlops

0.5

1.8

3.9

7.0

13.1

contained, for a given i and j, variables corresponding to values of k between 1 and n.

For 4K processors Table 2 depicts the timings obtained for various size domains. The

timings are averages from 100 iterations. The timings obtained from the cube with edge sizes

128 and 64 were 188.9 and 104.9 MFlops respectively for the inner product, 52.6 and 27.1 MFlops

respectively for the sweep over the mesh and 13.1 and 7.0 MFlops respectively for the triangular
solve.

We were able to prevent data movement when we followed the mesh sweep by a sparse

triangular solve because of the way in which we assigned data to processors. This method

of data assignment did have the side effect of requiring us to perform the mesh sweep in n

consecutive phases. As one might expect, the use of this embedding does exact a performance

penalty when compared to the embedding discussed in Section 2.1. For example we attained a

computational speed of 64.2 MFlops for the problem with edge size 64 in Section 2.1, we attain

a computational speed of only 27.1 MFlops with the embedding discussed in this section. The

conforming inner product also had to be performed in n consecutive phases.

3 The Importance of Careful Embedding

3.1 Performance Degradation and Irregular Problems

The timings on the CM-2 described above depended heavily on utilizing very specialized pro-

grams. The experiments were designed to give the CM-2 virtually every conceivable advantage.

The simple, uniform and local nature of the communication in the kernel allowed us to use

the optimized NEWS network instead of the more costly general router. In this section of the

research note, we explore what can happen to performance when we try to solve problems with

non-uniform dependency patterns. We also present some performance measurements obtained

when we used the high level language *lisp to code a sweep over a uniform mesh.

We first modified the computational kernel described in section 2.2 so that communication

was carried out by data fetch procedure calls through the general router rather than through

the NEWS network. Even though the general router was invoked, the mapping of work to

processors was actually identical to that described in section 2.2. The timings we obtained with

data fetches carried out using the general router can be interpreted as best case estimates of

what one could expect from a CM-2 executor that did not have access to a-priori information



Table3: ThreeDimensionalMeshSweep and Solve : News Net v.s. General Router Fetch -

Varying Mesh Size: 4K processors
Edge Mesh Sweep
Size NEWS

Mflops

16 1.7

32 6.9

64 27.1

128 52.6

Mesh Sweep
Router

Mflops

0.2

0.9

3.6

5.5

Solve

NEWS

Mflops

0.5

1.8

7.0

13.1

Solve

Router

Mflops

0.!

0.3

1.1

1.8

Table 4: Performance with 64 by

Grid Type Mean
Size Grid

64 x 64

64 x 64

64 x 64

64 x 64

128 x 128

128 x 128

128 x 128

128 x 128

64 and 128 by 128 Random Mesh

(ms)
NEWS ....... 1.8

p = 0.0 12.7 0.45

p = 0.4 16.2 0.42

p = 0.8 17.4 0.45

NEWS 3.7

p = 0:0 33.5 0.77

p = 0.4 44.5 0.50

p = 0.8 47.9 0.57

Sqr Root

Sample Variance

(ms)

l_.ate

Mflops

18.2

2.6

2.0

1.9

35.0

3.9

2.9

2.7

on dependency patterns.

In Table 3 we give comparative computational rates of kernel timings averaged over 100

iterations in which we used either the NEWS network or the the general router. The ratios

between the NEWS network and router computational rates range from 6 to 10.

We used a synthetic workload to find out how much CM-2 performance would degrade when

the general router was forced to deal with a mesh sweep with irregular communication patterns.

A square mesh in which each point was linked to four nearest neighbors was incrementally

distorted. Random edges were introduced subject to the constraint that in the new mesh, each

point still required information from four other mesh points•

Our workload generator makes the following assumptions: (1) The problem domain consists

of a 2-dimensional mesh of points which are numbered using their natural ordering; (2) An edge

connects a point to its neighbor with a probability q < 1. Thus, a random connection is made

with probability p = 1 - q (note that when q = 1, the model will generate a regular mesh);

(3) We use the geometric density function to determine the distance (Manhattan metric) of an

edge not connected to its neighboring point. Since we can vary the required communication pat-

terns, these pseudo-random meshes help us evaluate the performance of the machine's network

characteristics in a parameterized manner.

Table 4 depicts the performance of sweeps over domains on the CM-2 using different random

meshes generated on domains of size 64 by 64 and 128 by 128. We generated meshes for values



ofp of0.0,0.4and 0.8.For each valueofp we generated30 differentmeshes and obtainedCM-2

timingsforsweeps overeach mesh. In thistablewe presentthe averageCM-2 time foreach value

ofp forboth domain sizesexamined; we alsopresentthe squarerootofthe sample variance.We

seea performance degradationofapproximately 40 percentbetween the completelylocalmesh

generatedwhen p = 0.0 to the ratherirregularmesh generatedwhen p = 0.8.For purposes of

comparison,we alsoincludethe time requiredusingthe NEWS network to sweep overthe same

mesh as isgeneratedusing p = 0.0.This timing has alreadybeen presentedin Table 2,in a

slightlydifferentcontext.The threedimensionalmesh sweeps in that experiment were carried

out by sweeping over consecutivetwo dimensionalplanes;we can obtainthe desiredtiming by

dividingthe mesh sweep times depictedin the tableby the gridedge size.

For the 64 and 128 square mesh, when we use the router instead of the NEWS network for

the regular (p = 0.0) communication pattern, we pay performance penalties of factors of 7 and

9 respectively. As mentioned above, we see an additional 40 percent degradation as p increases
from 0.0 to 0.8.

3.2 Performance of a Naive Mapping using *lisp

We present some performance measurements obtained when we used the high level language *lisp

to code a sweep over a uniform mesh. One of our objectives was to evaluate the ability of the

CM-2 to handle even moderately general loops using the CM-2s high level language constructs.

The model problem we examine consists of sweeps over square domains of varying sizes with five

point templates. The optimized version is explicitly mapped onto the machine in a way that
allows us to utilize the CM-2's fast NEWS network for local communication. The other version

uses a general router designed to carry out arbitrary patterns of interprocessor communication.

The second version was much more naive. In this version each virtual processor was given

the row corresponding to its processor address.The second version corresponds to a naive place-

ment of the matrix, in which no advantage is taken of any geometry inherent in the problem.

The programs differed only in the communications calls made. The data structures used were
identical.

We see from Table 5 that without very careful mapping and preprocessing, loops that spec-

ify very regular computations using general data structures can cause catastrophic degradations

in performance. For the 256 by 256 problem on 4K processors the timings for the explicitly

mapped NEWS network code corresponded to a speed of 40.0 MFlops, the timings for the

router version of the code achieved a speed of 0.5 MFlops. To assure ourselves that the commu-

nications overhead was responsible for performance degradation, we performed experiments in

which all calls to communications routines were eliminated. From Table 5, we see that without

the communications calls, the timings for the two versions of the mesh sweep program were

comparable.
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Table 5: Mesh Sweep : *lisp: Explicitly mapped News Net v.s. General Router: 4K
Grid News News

Size Total Compute Only

(ms) (ms)
64 x 64 2.25 0.93

128 x 128 4.62 1.88

256 x256 13.11 5.46

General

Router

Total (ms)
45.56

189.44

1001.11

General

Router

Compute Only (ms)
0.99

1.89

5.51

4 Conclusion

_rocessors

In this paper we presented what we might regard as best case timings for the mesh sweeps, sparse

triangular solves, and inner products that constitute the iterative portion of certain Krylov space

linear solvers. We performed timings on a large three dimensional model problem over a cube

shaped domain discretized with a seven point template. As expected we obtained the highest

computational rates on SAXPYs and inner products; for a 128 cubed grid the rates were 235

and 221 Mflops respectively. A mesh sweep over a 64 cubed grid was carried out at a rate of 64

Mflops (for this benchmark, the 128 cubed grid did not fit into the available memory). Mapping

the mesh sweep in a way that conforms to the sparse triangular solve took a substantial toll on

performance; the sweep over the 64 cubed mesh was carried out at a rate of 27 Mflops. We were

able to solve a 128 cubed problem using this embedding; the rates for the mesh sweep and the

triangular solve were 53 and 13 Mflops respectively.

The performance degraded dramatically when the conforming three dimensional mesh sweep

and triangular solve were computed using the general router for communication. For instance,

the computational rate of sweeping over the 128 cubed mesh dropped from 53 Mflops to 6

Mflops and the rate of sweeping over a 16 cubed mesh dropped from 1.7 to 0.2 Mflops. We

used a synthetic workload to generate meshes with varying degrees of irregularity. As the

communication pattern in a mesh became less regular, the computational rate decreased. The

most dramatic performance degradation occurred when we compared *lisp mesh sweep codes

having optimized versus unoptimized mappings of mesh points to processors. The computational

rate of the optimized code on a 256 by 256 mesh sweep was 40.0 Mflops, the computational rate

of the unoptimized code was 0.5 Mflops.

The results of our benchmarks clearly demonstrate that the performance obtained on a CM-2

can be exquisitely sensitive to details of mapping and problem structure.
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