
N90-14791
KNOWLEDGE-BASED REUSABLE SOFTWARE SYNTHESIS SYSTEM

Cammie Donaldson

Software Productivity Solutions, Inc.

The Eli system, a knowledge-based reusable software synthesis system, is being developed for

NASA Langley under a Phase II SBIR contract. Named after Eli Whitney, the inventor of
interchangeable parts, Eli assists engineers of large-scale software systems in reusing com-

ponents while they are composing their software specifications or designs. Eli will identify

reuse potential, search for components, select component variants, and synthesize components

into the developer's specifications. The Eli project began as a Phase I SBIR to define a reus-

able software synthesis methodology that integrates reusability into the top-down development

process and to develop an approach for an expert system to promote and accomplish reuse.

The objectives of the Eli Phase II work are to integrate advanced technologies to automate the

development of reusable components and the use of reusable components within the context of
large system developments, to integrate with user development methodologies without

significant changes in method or leaming of special languages, and to make reuse the easiest

operation to perform. Eli will try to address a number of reuse problems including developing

software with reusable components, managing reusable components, identifying reusable com-

ponents, and transitioning reuse technology. Eli is both a library facility for classifying, stor-

ing, and retrieving reusable components and a design environment that emphasizes, encourages,
and supports reuse. Eli is being developed incrementally and will be released in a series of

builds with progressively more functionality. A related issue, not being addressed by the Eli

project, is how to implement reuse within an organization.

PRECEDING PAGE BLANK NOT FILMED 17

https://ntrs.nasa.gov/search.jsp?R=19900005475 2020-03-19T23:37:39+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42825263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Outline of Presentation

• Eli Project Background

• Problems that Eli Will Solve

• Overview of Eli Build Plan

• Some Eli Operational Issues

Eli Project Background

Phase I completed in Fall 1987, objectives were to:

- Define reusable software synthesis methodology that
integrates reusability into the top-down development
process

- Investigate formal languages for specifying reusable
component interfaces, operations and requirements

- Investigate knowledge and database representations
for organizing and storing both components and
knowledge of the application domain and development
process

- Develop approach for expert system to promote and
accomplish reuse

18



Eli Project Background (Conc)

Phase II started in July 1988; objectives are to:

- Integrate advanced technologies to automate the development
of reusable components and the use of reusable components
within the context of large system developments

- Integrate with user development methodologies without
significant changes in method or learning of special languages

- Make reuse the easiest operation to perform

19



Problems That Eli Will Solve

What Reuse Problems Must Eli Address?

• Developing software with reusable components

• Managing reusable components

• Identifying reusable components

• Transitioning reuse technology

What is Eli?

• Library facilities for classifying, storing and
retrieving reusable components

• Design environment that emphasizes, encourages
and supports reuse

20



User Roles

• Eli will support the following user roles:

- Classifier

- Searcher

- Promoter

- System Administrator

Key Qualities of Eli

• Adaptability

° Performance

° Ease of Use

° ° Make reuse the easiest operation to perform ° °

21



How Will Eli Solve Reuse Problems?

Identifying Reusable Components

• Flexible component classification facilities

• Flexible browsing and querying facilities

Managing Reusable Components

• Efficient storage and retrieval of large component inventories

• Open architecture to support integration with user environment

• Facilities for tracking and promoting reuse activities

22



Developing Software With Reusable Components

• Direct support for Ada components, including adaptation
and integration

• Support for object-oriented design and programming

• Integration of design surface with library facilities

Transitioning Reuse Technology

• Support for defining new types of components, new component
characteristics and new component relationships

• Loose and tight integration capabilities to transition existing
tools and information

23



Overview of Eli Build Plan
Build Plan

Build I Build 1.5 Build 2 Build 3

-- Prototypeof queryand
browsing functions

Basic reuse library
system

Prototype of advanced
classification andquery
strategies

Prototype of basic
adaptation function for
Ada components and
integration with Ada
compiler

Complete reuse library
system integrated with
Ada compiler and
providing basic support
for Ada Component
Adaptation

Prototype of advanced
adaptation mechanisms
and integration of
browse/query functions
with design surface

Product

Basic design and
programming environment
integratedwith reuse
library browsing and
querying functions, full
support for Ada
component adaptation
and integration with
compiler

Prototype of
knowledge-augmented,
user-transparent reuse
assistance

Product

Build 1.5

• This build will provide basic library capabilities:

- Creation and maintenance of libraries

- Creation and maintenance of classification schemes.for
library components

- Classification and storage of components

- Browsing of libraries to find/identify components

- Querying on libraries to find/identify components

- Extraction of classification schemes, components and
component information

- Integration of component classification, storage, query and
extraction functions through a program interface

24



Build 1.5/2

User

Application

Space

External Storage Facility

Components User
Tools Components

(classification, certification,

measurement tools)

(CM system, development

library, project database)

Open Architecture

1

Build 2

• This build will provide a complete, sophisticated library system:

- Import/export of libraries and classification schemes

- Enhanced manipulation of classification schemes and
component classifications

- Semi-automated derivation of Ads component characteristics

- Classification support for Classic-Ada components

- Clustering of components and support for "like this" querying

- Enhanced and additional forms of interactive browsing and
querying on component characteristics

- Storage, retrieval and modification of query sessions,
including batch submittal of queries and query sessions

25



Build 2 (Conc)

- Version control on libraries, classification schemes,
components and component information

- Access control to libraries, classification schemes,
components and component information

- Adaptation and integration of reusable Ada components
with user application

- Collection and reporting on library and classification
scheme usage, and component submittal and extraction

- Customization and tailoring capabilities

Build 3

This build will provide an object-oriented design surface with the
following capabilities:

- Integration with Eli library facilities for design-time reuse
assistance

- More automated derivation of component characteristics and
classification of components

- Ordered assessments of components identified as result of
queries

- Advanced support for Ada component adaptation and integration

26



Some Eli Operational Issues

User Roles

Classifier

System
Administrator

i '_'a_it_,_t,;., c_ '_'''" I Searcher

• Os

__ _ _ prR_Ste r

27



Eli "Black Box" View

User

User Development Environment

Eli

Host System Interface

Eli Interface Requirements

Interface Area Principal Eli Focus

• Host Operating System Transportability

• User's Development Environment

Framework

Interoperability

• User's Development Environment

Tools

Interoperability

• User's Development Environment

Policies, Procedures and Methods

Adaptability

28



Eli Host Operating System Interfaces

Approach: Establish localized internal interfaces and
utilize industry standards (e.g. Unix,
XWindows, TCP/IP, Postscript) for
transportability

• Device management

• Process Management

• File Management

• Communications

Eli Interfaces to User's Development
Environment Framework

Approach" Support many levels of interaction including
an open architecture - - procedural access to
internal Eli facilities, published information
schemas/structures, and an ASCII
import/export interchange mechanism.

• Eli invocation

• Import of environment roles, access rights,
procedures, etc.

• Configuration management of components

• Ada library manager

• Environment information management
facilities

• Invocation of other environment
tools/facilities

29



Eli Interfaces to User's Development
Environment Tools

Approach" Provide open architecture - - procedural access and ASCII
import/export facilities to allow users to exchange information
with other tools

• Ada compilation system

• Documentation tools

• Other CASE (i.e. design surface) tools

• Other reuse systems (e.g. libraries, domain analysis tools)

• Project management tools

Eli Interfaces to User's Development Environment
Policies, Procedures and Methods

Approach: Make Eli facilities adaptable to accommodate a wide
spectrum of usage

• User roles and access rights

• Usage scenarios/sequences/work flows

• Configuration management procedures

• Component certification procedures

• Custom component attributes/facets

• Custom classification schemes

• Site/library installations

3O



Eli Distribution Options

Non-distributed library model

Interaction of remote, separately
controlled libraries (e.g.,

interlibrary loan)

Master/branch library (e.g.,

bookmobile)

Partitioned library (e.g., library

system)

Classification

Update

(Library Control)

Component
Classification

& Storage

Local Local

Local Local

Local to master Local to master

library library

Library
Access

Localonly

Local plus protocol

or accessing remote
libraries

Accessible across
affiliated branches

Single point or Partitioned Accessible across
negotiated library sites

Cooperating, distributed libraries Distributed Distributed All libraries accessible

transparently from any site

Library Interaction Through Design Surface

ORIG!NAL PAGE IS

OF POOR QUALITY
31




