
N90-14807
ADVANCED SOFTWARE DEVELOPMENT WORKSTATION PROJEC'I;*

Daniel Lee

Inference Corp.

The Advanced Software Development Workstation Project, funded by Johnson Space Center, is

investigating knowledge-based techniques for software reuse in NASA software development

projects. Two prototypes have been demonstrated and a third is now in development. The
approach is to build a foundation that provides passive reuse support, add a layer that uses

domain-independent programming knowledge, add a layer that supports the acquisition of

domain-specific programming knowledge to provide active support, and enhance maintainabil-

ity and modifiability through an object-oriented approach. The development of new application

software would use specification-by-reformulation, based on a cognitive theory of retrieval

from very-long-term memory in humans, and using an Ada code library and an object base.

Current tasks include enhancements to the knowledge representation of Ada packages and

abstract data types, extensions to support Ada package instantiation knowledge acquisition,

integration with Ada compilers and relational databases, enhancements to the graphical user
interface, and demonstration of the system with a NASA contractor-developed trajectory

simulation package. Future work will focus on investigating issues involving sc.'de-up and

integration.

* b-hnded under NASA Contract NAS-9-17766.

159

https://ntrs.nasa.gov/search.jsp?R=19900005491 2020-03-19T23:36:52+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42825247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Software Reuse Process
(from [Prieto-Diaz and Freeman 87])

begin

retrieve matching components

if identical match

then use matching component

else

end

from catalog

begin

select best matching component

modify matching component

end

ASDW Technical Approach

• Build a foundation that provides passive reuse support (catalog
retrieval and parts composition).

• Add a layer that uses domain-independent programming knowledge
to provide interactive support (syntactic constraint checking and
code generation).

• Add a layer that supports the acquisition of domain-specific
programming knowledge to provide active support (semantic
constraint checking).

• Enhance maintainability and modifiability through an object-oriented
approach.

160



J

Application Development Using the ASDW

Specification-by-reformulation

• A generic user interface architecture for task support.

• Based on a cognitive theory of retrieval from very-long-term

memory in humans.

• A specification-by-reformulation environment consists of:

o A specification language.

o A mechanism for providing feedback to the user about the

current specification.

o A mechanism for performing actions on specifications.

• Using specification-by-reformulation for software parts

composition:

o Domain object descriptions and library package specifications

form an application-specific specification language.

o Constraint propagation provides feedback.

o Specialization and generalization of specifications and code

generation are actions.

161



The Specification-by-reformulation Process

Specifications

ASDW Project: Work in Progress

• Current tasks:

o Enhancements to the knowledge representation of Ada
packages and abstract data types.

o Extensions to support Ada package instantiation knowledge

acquisition.

o Integration with Ada compilers and relational databases.

o Enhancements to the graphical user interface,

o Demonstration of the system with a NASA contractor software

library (trajectory simulation package).

• Third prototype demonstration: 2/89.

162



ASDW Project: Future Work

• Goal: Investigate issues involving scale-up and integration.

• Tasks:

1. Develop and integrate associative retrieval algorithms for use
with large software libraries.

2. Develop and integrate conceptual clustering algorithms for
automatic taxonomy generation.

3. Integrate prototype with NASA software development
environment.

4. Conduct prototype evaluation in conjunction with an ongoing
NASA contractor Ada development project.

• Fourth prototype demonstration: 10/89.

163




