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Preface

This report documents the "Workshop on Moon in Transition:

Apollo 14, KREEP, and Evolved Lunar Rocks," held at the Lunar

and Planctary Institute on November 14-16, 1988. This workshop

was one of a series of meetings organized by the Lunar and Plane-

tary Sample Team (LAPST) to spur progress on various specialized

topics of lunar and planetary science. The samples from Apollo I4,

i.e., the Fra Mauro highlands, are entirely unlike those acquired

from any other lunar site. Evolved rock types such as KREEP, alkali

anorthosite, and granite are relatively abundant, and alkali-poor or

ferroan anorthosite (widely suspected to be the most common type

of pristine rock in the crust as a whole) is nearly absent. A subordi-

nate but still abundant rock type at the site is mare basalt, the sam-

ples of which also exhibit many distinctive traits. Efforts to unravel

the history of the region have been complicated by the thoroughly

brecciated nature of the rock samples, but recent years have seen

much work aimed at isolating individual clasts within the breccias.

Mare glasses from regolith samples are also targets of considerable

ongoing research. The purpose of this workshop was to utilize the

latest constraints for a new evaluation of the history of the Fra

Mauro highlands, a new evaluation of the nature and history of

KREEP, granite, and other evolved lunar rock types, and ultimately

a fresh evaluation of the transition of the Moon from its early

anorthosite-forming (magma ocean?) period to its later stages of

KREEPy, granitic, and mare magmatism.

The Organizing Committee appointed by LAPST consisted of G.

Jeffrey Taylor, University of New Mexico, and Paul H. Warren,

University of California, Los Angeles, chairmen; B. Ray Hawke,

University of Hawaii; Graham Ryder, Lunar and Planetary Institute;

Paul Spudis, U.S. Geological Survey, Flagstaff; and Lawrence A.

Taylor, University of Tennessee. Logistics and administrative sup-

port were provided by the Projects Office of the Lunar and Plane-

tary Institute--we are deeply grateful to Pam Jones, LeBecca

Turner, and their coworkers for their usual diligent and efficient

organizational work.

G. Jeffrey Taylor and Paul H. Warren
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Program

Monday Morning, November 14, 1988

8:00 a.m. Registration

9:00 a.m. Introduction to Workshop: G J. Taylor and P. ft. Warren

Topic 1 - REGIONAL GEOLOGY AND THE ROLE OF IMPACTS

Chairman: P. Spudis Summarizer: B. R. Hawke

Geological and Bombardment History of the Apollo 14 Region

B. R. Hawke

Telescopic Measurements of SiO2 Abundances of Suspected Lunar Silicic Regions: Red Spots Are Not Granite

P. Lucey and F;. R. Hawke

Elemental Abundances Around Apollo 14 and Other Selected Lunar Regions from the Apollo Gamma-Ray

Spectrometer Experiment

R. Reedy

Where is the KREEP?

P. E. Clark

The Absence of a Heavy Early Lunar Bombardment, the Presence of a 3.85 Ga Cataclysm, and the Geological Content of

Apollo 14 Rock Samples

G. Ryder

Monday Afternoon, November 14, 1988

Topic 2 - BRECCIATED NATURE OF THE APOLLO 14 SUITE

Chairman: W. C. Phinney Summarizer: O. B. James

Brecciatcd Nature of the Apolh, 14 Suite

t). Sff;ffler

4°At - _'_Ar Ages of Apollo 14 Rocks

F. J. Suldermann, E. Heusser, and E. K. Jessberger

Fra Mauro Formation, Apollo 14: I. Composition and Frequency Distribution of Igneous and hnpact Metamorphic Rocks

S. Lingner, K. Bob< H. Palme, B. Speuel, D. Su';ffler, and H Wa'nke

Fra Mauro Formation, Apollo 14: Ill. Calculated Composition of the Primordial Lunar Crust in the Imbrium Region

S. LiTwwr, B. Speuel, and D. Stg;ffler

Fra Mauro Formation, Apollo 14: IV, Synopsis and Synthesis of Consortium Studies

D. St(;ffler, K. Bob< E. K. Jessberger, S. I.ingner, H. Palme, B. Speuel, F. Su_dermann, and H. Wiinke

Topic 3 - WHAT IS KREEP?

Chairman: G. J. Taylor Summarizer: P. H. Warren

KREEP: Major-Element Diversity, Trace-Element Uniformily (Almost)

P. ft. Wanen

High[,,' Ew_lved Liquids from the Fractionation of Mare and Nonmare Basalts

P. C. Hess

PRECEDING PAGE BLANK NOT FILMED P,Nit. _ r _'_' _' __U_L' _
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The Splitting of KREEP into Identifiable Components: The "K-Frac" and "REEP-FRAC" Hypothesis

C. R Neal and L. A Tailor

Silicate Liquid Immiscibility and Crystal Fractionation in a Highly Evolved KREEPy Magma

R. W. Morris, G. J. Taft.r, and H E Newsom

Lunar Crustal Strength _,nd the Large Basin-KREEP Connection

H. H. Schmitt

Tuesday Morning, November 15, 1988

Topic 4 - APOLLO 14 PLUTONIC ROCKS

Chairman: O. B. James Summarizer: M. M. Lindstrom

Highland Crust at the Ap,,lt. 14 Site: A Review

J. W. Shen,ais

Lunar Granite Petrogenesis and the Process of Silicate Liquid Immiscibility: The Barium Problem

C R Neal and L A. Tayt.r

Compositional Survey of 2-4 mm _,il Particles from 14161 and Implications Regarding KREEP and Igneous Components in

Apollo 14 Regolith Breccias

B. L JoUiff, R. L Koro_ev, an_t L A. Haskin

Pink Spinel Troctolites in Alu_lh_ 14 Breccias

D. T. G,llms and A M Reid

Tuesday Afternoon, November 15, 1988

Topic 5 - APOLLO 14 MARE BASALTS

Chairman: J. W. Delano Summarizer: T. Dickinson

Alx_llo 14 Basalt Petrogenesis: Generation from an Olivine-Opx Dominated Mantle, Followed by Crustal Assimilation and

Fractional Crystallizaticm

C. R NeaI a_t L. A Taylor

Understanding Lunar Mantle Metasomatism: The Terrestrial Mantle Analogy

W. 1. Ridley, J. E, Niels.n, and H. G. Wilshire

Apollo 14 Pristine Mare Glasses

J. W. Delano, S. S. Hughes, an_! R, A. _hmi_t

An Ion Microprobe Study -f Trace Elements in Ap_lh_ 14 "Volcanic" Glass Beads and Comparisons to Mare Basalts

C. K. Shearer, J. J. Papike, S. B, Simon, N. Simizu, H. Yurim.t., and S Sueno

Wednesday Morning, November 16, 1988

Topic 6 - ISOTOPIC CONSTRAINTS ON EARLY LUNAR DIFFERENTIATION

Chairman: L. E. Nyquist Summarizer: J. Dasch

Isotopic Constraints on the Petrogenesis of Apollo 14 Igneous Rocks

C,-_ Shih and I.. E. Nyquisr

Zircon-Containing Rock Fragments Within Ap._llo 14 Breccia Indicate .%rial Magmatism from 4350 t,, 4000
Million Years

C. Meyer, I. S, Williams, vnd W. (7ornps.m
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Topic 7 - RELATION OF EVOLVED LITHOLOGIES TO THE MAGMA OCEAN

OR OTHER EARLY LUNAR DIFFERENTIATION EVENTS

Chairman: P. H. Warren Summarizer: J. H. Jones

Till"Pem_gencsis _,f Ew_lved Pristine Rocks

J. bmghi

Discussion

12:00 Noon ADJOURN WORKSHOP





Summary of Technical Sessions

This summary of presentations and discussion is based

on notes taken by the respective summarizers during the

workshop. These narratives are not intended to approx-

imate a transcril_t of everything said at tile workshop, but

rather to sketch briefly the concepts that were discussed,

giving some indication of where significant gaps remain

in our collective perception, and noting where revisions

of interpretation were suggested. In most cases we have

identified those participants who asked questions or made

comments, but this has not always been possible. We

apologize to anyone who might be misidentified, misquoted,

or misinterpreted.

TOPIC 1 :

REGIONAL GEOLOGY AND THE ROLE

OF IMPACTS

Summarized by B. Ray Hawke

Five papers were presented in this session, which dealt

with geologic and remote-sensing studies of the Fra Mauro

region. These talks provoked lively discussions that were

channeled into fimr areas by the session chairman (P.

Spudis). The first of these was the question of what pre-
Imbrian events contributed to the regional geology of the

Apollo 14 site.
In his keynote talk on the geologic and bombardment

history of the Apollo 14 region, B. Hawke attempted to

answer this question. He divided pre-lmbrian (Phase 1) time
into three subdivisions (Phase IA, 1B, and IC) on the

basis of the inferred relative ages of the various Phase 1

impact structures. The earliest events occurred during Phase

IA. The first impact event to have influenced the Apollo

14 region may have been the Procellarum (or Gargantuan)
basin. Several workers (Cadogan, Whitaker, and Wilhelms)

have proposed the existence of this huge basin to explain
the lunar nearside-farside asymmetry, the localization of

KREEP in the Oceanus Procellarum-Mare Imbrium region,

and several proposed ring segments. During the discussion,
D. St6ffler spoke in favor of the existence of Procellarum

basin. In response, Spudis briefly summarized the evidence

for and against Procellarum. He concluded that the bulk
of the evidence cast doubt on the reality of the proposed

"Procellarum basin." Spt,dis believes that Imbrium is a six-

ring basin and that many of the features attributed to
Procellarum were actually formed by Imbrium. Most

workshop attendees apparently agreed with Spt, dis; no one

else presented arguments in favor of Procellarum basin.

Still, the reality of Procellarum must be considered an

unresolved question. The existence of this very large basin

has important implications not only for the Apollo 14 site

but also for the structure of the nearside crust and the

impact cratering process. Additional experimental,

theoretical, and observational studies of both terrestrial

and lunar impact strt,ctures will be necessary to resolve

this problem.
Hawke noted that in addition to Procellarum, three other

very old basins are near enough to have affected the Apollo

14 region. These are (1)lnsularum basin, (2)Flamsteed-
Billy basin, and (3)Nubrium basin. In addition, a large

number of pre-hnbrian impact craters have been identified

in the Fra Mauro region by B. R. Hawke and J. Head.

Many of these Phase I craters are superposed on preexisting

impact structures and therefore must have ejected deposits
related to the older structures. Several of these craters

could have contributed impact melt to the site. The

workshop attendees seemed to be in agreement that the

material delivered to the Apollo 14 site was involved in

several previous impact events.
Other discussion questions asked by Spudis were: What

is the geologic setting of KREEP in the Apollo 14 region?

Is the Apollo 14 KREEP volcanic and, if so, when and

where was it erupted? If KREEP was excavated by impact,

which impact or impacts and when? These questions were

addressed by two contributed papers that utilized the Apollo

orbital geochemistry data sets. P. Clark presented a summary

of the results of a number of ongoing analyses of the available

hmar orbital geochemical data. These studies are being

conducted at the global, regional, and local scales. On the

basis of these studies, Clark concluded that while KREEP

volcanism appears to have occurred principally in the
lmbrium area, smaller-scale outbreaks of such early

volcanism possibly occurred in other areas of the nearside
and farside as well.

R. Reedy also presented a very interesting paper that

reviewed the Apollo orbital geochemical experiments and

discussed some of the results from Apollo Gamma-Ray

Spectrometer (AGRS) mainly for regions around Apollo

14. In response to a question, Reedy pointed out that the
uncertainities for the elemental abundanaces determined

by the AGRS data are typically _20% (higher for the lowest

concentrations), but that this range of uncertainties is quite

adequate for most lunar investigations. The results of the

AGRS show that the regions of high radioactivity around

Fra Mauro are fairly limited in extent, with the highest

radioactivities being near and somewhat east (the Lalande-

Davy region) of Fra Mauro. Reedy pointed out that further

east, highland-like material dominates, although some

radioactive material is mixed into the western parts of the

central highlands. To the west, mare basalts with relatively

high titanium dominate in Oceanus Procellarum, with

PRECEDING PAGE BLANK NOT FILMED __ti't_ti'_t_;_at£l 13t.ARll
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typical lunar highland material present west of Oceanus

Procellarum. In summary, Reedy noted that the "standard

interpretation" of the orbital results is that the highly
radioactive material (most likely KREEP) is somehow related

to the formation of Imbrium basin (and possibly other basins

near Imbrium now covered by Oceanus Procellarum) and

that later emplacement of mare basalts left large amours

of KREEP present only on higher lunar features not flooded

by mare basalts, such as Fra Mauro, Aristarchus, and
Archimedes.

Reedy was questioned about the origin of the geochemical

anomaly associated with Van de Graaff crater. He noted
that the elemental concentrations in the Van de Graaff

region are similar to those in a mixture of mare basalts

and typical farside highlands material. Hawke pointed out

that the preliminary results of Th deconvolution studies

of the Van de Graaff region indicated that there was a

direct correlation between the high Th values and the mare
material in the floor of Van de Graaff.

During the discussion, three hypotheses were advanced
to account for the existence of KREEP-rich material in

the Apollo 14 region: (I) KREEP basalts were emplaced

as surface flows in the Apollo 14 region, were extensively

reworked by pre-lmbrium impacts, and were incorporated

in the Fra Mauro formation by Imbrium secondary cratering

events in the vicinity of the site. (2) KREEP was erupted

in the Imbrium target site and was reworked by pre-hnbrian

craters. Later, it was excavated and transported to t l_e

Apollo 14 site as lmbrium primary ejecta. (3) KREEP was

excavated from some deep layer beneath the Imbrit, m target

site and was transported to the site as primary ejecta,

In his review paper, Hawke used the orbital geochemistry

data to argue for a local volcanic origin for Apollo 14 KREEP

basalts. He noted that there were major changes in chemical

composition occurring between the highland region just

east of Ptolemaeus and the Bonpland-Parry area just south

of the Apollo 14 site. In particular, there is a dramatic
rise in the net radioactivity values due to increases in the

concentrations of K, U, and Th and the changes appear

to be most pronounced around the topographic inflection
that forms the east rim of Ptolemaeus: The correlation

of the change in geochemistry and KREEP abundance with

the decline in elevation at the western edge of the central

highlands (about 4.4 km from the area east of Ptolemaeus

to Mare Nubium) suggests that KREEP emplacement was

controlled by a process sensitive to topographic variations.

The deposition of the Imbrium ejecta blanket would have

been subject to only minor topographic influences whereas

the distribution of lunar volcanic deposits has been strongly

influenced by preexisting topography. The Fra Mauro region

is a topographic low, at least in part due to the large pre.

Imbrian craters and basins, and such low regions would

have provided ideal sites for the early accumulation of

KREEP basalt. _arly (>4.0 b.y.) mare volcanism may have

occurred in the low region west of the central highlands.
The occurrences of spectrally distinct premare ("red

spots") materials of possible volcanic origin in southeastern

Procellarum, Mare Cognitum, and northern Nubium have

often been cited as evidence for pre-hnbrian w_lcanism

in the Apollo 14 region. These "red spots" have been
identified elsewhere on the west side of the Moon and

some workers have suggested that they are composed of

KREEP or more evolved lunar rocks (QMD, granites,

rhyolites, etc.). P. Lucey and B. R. Hawke presented the
preliminary results of an effort to determine whether lunar

"red spots" are indeed composed of SlOe-rich rocks.
Thermal emission spectra (7-11 #m) were obtained for a

variety of "red spots" as well as standard lunar terrain.

The preliminary results appear to rule out a granitic

composition; however, additional work is necessary.

The most controversial and perhaps the most important

questions raised during this session concerned the nature
of the Fra Mauro Formation. Is the Fra Mauro Formation

composed exclusively of primary ejecta from the Imbrium
basin or does it consist c,f a mixture of local material and

primary basin ejecta? The workhop attendees generally

agreed that the Apollo 14 mission had indeed sampled the
Fra Mauro Formation. The discussion indicated that most

participants thought that the Fra Mauro is a mixture.

However, there was no agreement concerning the

pro_x_rtions of local material and lmbrium primary electa.

Opinions varied widely on this issue. In response to direct

question, G. Ryder indicated that he thought that there

was "zero" Imbrium primary ejecta at the site. When F.

H6rz asked Ryder what he meant by "zero" percent Imbrium

ejecta, M. Cintala interjected that Ryder meant % little."

Ryder appeared to agree with Cintala's comment. Other

attendees (e.g., Hawke, H6rz, Lucey) expressed the view
that while the Fra Mauro Formation at the site was

overwhelmingly dominated by local material, _15-20%

Imbrium primary ejecta was probably present. Spudis
appeared to speak for several lunar scientists at the

workshop (as well as a few who were absent) wl{en he

pointed out that recent studies of clustered impactors by

P. Schultz and D. Gault indicated that much larger amounts

(_45-55%) of lmbrium primary material might be present

at the site. Finally, a few attendees expressed the view

popular during and immediately after the mission, that the

Fra Mattro Formation was composed exclusively of hnbrit, m

primary ejecta.
During his review talk, Hawke presented the history of

this important controversy. Premission studies indicated

that the Fra Mauro Formation was a portion of the lmbrium

ejecta blanket and was composed of material derived from

the Imbrium target site. The results of preliminary sample

studies were thought to be consistent with a primary ejecta

=
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origin and the range of thermal effects in the samples was

altributcd to ',mtonletam_rphism in a "hot," thick ejecta

deposit. However, some workers disagreed with this

interpretation. While they considered the Fra Mauro
Formation to be composed of Imbrium primary ejecta, they

indicated that the deposit was emplaced in a "cold" mode
and that the thermal effects were caused by pre-Imbrian

impacts in the Imbrium target site.

In later years, V. Oberbeck and coworkers pointed out

the importance of secondary cratering in the formation

of impact crater and basin deposits. Their results
demonstrated that the impact of ballistically transported

primary ejecta excavates considerable volumes of underlying

local material and incorporates this material into an ejecta

deposit. The resulting mixture of primary ejecta and local

material moves radially away from the parent crater or

basin as a surface flow or debris surge. Detailed mapping

of the Fra Mauro region by Hawke and Head revealed

the presence of a large number of secondary crater chains
and clusters that are radial and subradial to the lmbrium

basin. Secondary crater chains in this region attributed to

the impact of Imbrium ejecta range from about 0.5 to 12
km in width and are commonly tens of kilometers in length.

Mixing calculations indicated that at the radial range from

Imbrium typical of the Apollo 14 region, over 70% of the

deposit that resulted from the impact of Imbrian secondary-

forming projectiles was composed of locally-derived
material.

In recent years, the local-mixing (secondary-impact)

hypothesis has been under increasing criticism. Schultz and
coworkers have presented experimental evidence that

clustered impacts significantly affect crater morphology and
reduce cratering efficiency. These workers have suggested

that the continuous ejecta facies of large lunar impact

structures could contain a much larger percentage of

primary material. D. Wilhelms, who was unfortunately
unable to attend the workshop, has also raised objections

to the local-mixing hypothesis. He maintains that the

topography of the landing-site regions is dominated by ridges

formed by the flow of a thick deposit that has obscured

the secondary craters and that this flow originated either
at the basin rim or at secondary-impact sites much closer

to the basin than its present resting place. Wilhelms has

pointed out that the local-mixing equations developed by
Oberbeck and coworkers are model-dependent and he

questioned many of the imput parameters. In addition,

Wilhelms has presented evidence for the presence of

abundant melt in basin-ejecta deposits. He noted that if

lmbrium impact melt was a major component of the Fra

Mauro Formation at the Apollo 14 site, this melt could

have been responsible for the thermal effects in many of

the Apollo 14 samples as well as the 3.82-3.84-b.y. age

cluster in the returned samples.

The discussion of the nature of the Fra Mauro Formation

and the h_cal-mixing Iwpothesis was quite lively..'%veral

attendees presented evidence from a variety of sources in

support of the local-mixing model. P. Warren presented

sample geochemical data that indicated that major
differences in trace element abundances exist between east-

side and west-side highland samples. He suggested that

basin-forming impacts were not very effective at

transporting large amounts of primary ejecta far across the
lunar surface. In support, Ryder pointed out that the Apollo

15 highlands samples are very different from those returned

from the Apollo 14 site. Many sample workers apparently
feel that this difference is a clear indication that the Apollo

14 samples are dominated by local material. In response,

Spudis pointed out that these lithologic and geochemical
differences could be due to compositional variations in the

Imbrium target site. Spudis also discussed the results of

the clustered impact experiments conducted by Schultz and
Gault and concluded that the amount of Imbrium primary

ejecta at the site was probably greater than that suggested

by the advocates of the local-mixing hypothesis. H6rz

countered that the lmbrium secondary craters were not

necessarily formed by clustered impacts. In support, he cited

the results of his studies of the Reis impact structure. Large

megablocks were ejected from the Reis crater and detailed

investigations of the Reis continuous ejecta deposit by H6rz

and coworkers conclusively demonstrated the importance

of local mixing in producing this unit. In response, Spudis
noted that some workers do not consider the Reis to be

a typical impact structure.
Hawke pointed out that the reality of local mixing was

demonstrated by studies of regolith material collected from

the ejecta of the Central Crater Cluster, a group of Tycho
secondaries, at the Apollo 17 site. Even less Tycho primary
material was found in the Central Crater Ch,ster ejecta

than was predicted by the local-mixing hypothesis.

However, Cintala noted that while local mixing was

apparently quite efficient at the Apollo 17 site, the Apollo
14 site was much closer to the parent impact structure

and a direct comparison may not be valid.

During the course of the discussion of the nature of
the Fra Mauro Formation, it was mentioned that there

was abundant evidence that the Apollo 14 multibreccias

evolved in a near-surface environment. Hence, regardless

of whether the Apollo 14 samples are Imbrium ejecta or

local material, the volcanic origin for KREEP basalt was

supported.
It was clear that the nature of the Fra Mauro Formation

at the Apollo 14 site was a very significant unresolved

problem. It may not be quickly or easily solved. Additional
studies of the efficiency of local mixing in the distal deposits

of large impact structures are needed. Remote-sensing
studies of lunar crater and basin deposits may provide some
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answers. Field investigations of terrestrial impact structures

would be useful as wvuld additional experimental cratering

studies. The results of hmar sample studies have provided

important evidence on this issue in recent years and

continued investigations of tile Apollo t4 breccias and melt

rocks will be critical to the final solution of the problem.

In the final paper of the session, Ryder pre_nted what

he termed a radical interpretation of the early bombardment

history of the Moon. Based on lunar sample data as well

as the "new" paradigm for the origin of the Moon (major

impac{ m{o the Earth that produced an orbiting disk), Ryder

argued that there was no heavy bombardment of the Moon

after about 4.4 b.y.; accretion was rapid but did not linger,

and then that much endogenot,s activity occurred with
little external disturbance. He concluded that there was

a late (_3.85-b.y.) cataclysmic bombardment of the Moon

that had major implications for both exogenous and

endogenous processes. Ryder argued that all of the 3.85-

b.y. sample ages cannot be ascribed to the Imbrium impact

and that the rate of material addition around 3.85 b.y.

demonstrated the reality of a late cataclysm that produced

almost all of the presently observable landforms in the lunar

highlands. This interpretation contrasts sharply with the

canonical view of a continuing heavy bombardment with

no late cataclysm. Ryder pointed out that his interpretation

was consistent with (1) the abserrce of impact melts older

than 3.9 b.y., (2) the existence of mare basa!ts more than

4.2 b.y. old, (3) the lateral and vertical heterogeneity of

the hmar highlands crust on local and regional scales, and

(4) the properties of meteorites of lunar origin. According

to Ryder, the Apollo 14 breccias and impact melts were

produced during impact events that occurred during the

late cataclysm.

Needless to say, Rydcr's talk resulted in considerable

discussion among the attendees. StO;f'fler pointed out that

some workers have presented data indicating that there

are impact melts older than 3.9 b.y. Ryder responded that

in the few instances where an old age had been published

for impact melt rocks, shocked plagioclase grains were

present in the melts and probably affected the age

determinations. Spudis stated that it really did not make

any difference if there were a few melts okler than 3.9

b.y. Acc_)rding to the interpretation prcseutcd by Ryder,

a few precataclysm melts might bc expected. [l_';rz raised

the question of what percentage of the highland sample

collection was actually composed of impact melt. It was

pointed out during the _neral discussion that many of

the Apollo 14 impact melts and melt-rich breccias arc

KREEP rich. _me attendees were uncertain that an early

episode of KREEP volcanism in the Fra Mauro region was

consistent with the bombardment model proposed by Ryder.

The reality of the bombardment model proposed by Ryder

is an extremely important qt, estion. It is critical to the

proper understanding of hmar surfi, ce history and processes

and has important implications fl_r the cratering history

of other solar system objects. More work needs to be done

on the Apollo 14 melt samples to better establish the range

of compositions (from coarse fines and rocks), including

trace siderophilc elements, and to establish their ages. Could

these melts have all been generated by the Imbrium impact

event as suggested by Wilhelms? Do melts older than 3.9

b.y. exist at the site? Answers to these questions are urgently

needed.

The final major discussion question raised by Spudis was:

What post-lmbrium events have affected the geology of

the Apollo 14 site? Hawke noted that subsequent to the

formation of the tmbrium basin and the emplacement of

the Fra Mauro Formation, the surface deposits at the Apollo

14 site continued to undergo bombardment and additional

small primary and secondary craters were formed, although

the major preexisting topographic features were not

destroyed. A number of post-hnbrium craters m the
2

10-t0-kin-diameter range have been mapped at the

Apollo 14 landing site. Four of these craters were of

significance in producing the near-surface stratigraphy in

the Cone crater target area and they range from 230 to

_1000 m in diameter. Cone crater lies on a ridge crest

near the rims of the three largest craters. A total ejecta

contribution of _I 5 m could be expected from these craters

at the Cone crater target site. Even though Cone crater

is _65 m deep, laboratory impact experiments have

indicated that the Cone crater maximum excavation depth

was _32 m: Hence, it appears that the _15-m post-lmbrium

crater ejecta comprised almost 50% of the section excavated

by Cone crater. Based on the estimated depths of excavation

of these post-lmbrium craters, at least some pre-Fra Mauro

material could have been present in this 15-m-thick deposit.

In addition, this surface material had pr_bably been

subjected to considerable impact reworking prior to the

formation of Cone crater.

In another session, J. Delano presented a very interesting

talk concerning the pristine mare glasses observed to be

common in most Apollo 14 regolith breccias, t lawke noted

that major deposits of high-titanium pyroclastic debris have

been identified north of the Apollo 14 site. ,qptldis p,,mtcd

out that the eruption mechanisms proposed by l-lead and

L. Wilson could have transported material for hundreds

of kilometers across the lunar surface. Detailed spectral

reflectance studies of the Fra Mauro region, comparable

to t.hose conducted for the vicinity of Apolt_, 15, would

probably yield important information.
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TOPIC 2:

BRECCIATED NATURE OF THE

APOLLO 14 SUITE

Smnmarizctl by Odette James

All the material presented at this session represents the

work of the Cone crater consortium, a collaborative effort

involving D. Stbffler and his coworkers at the University
of M(inster, H. W/inke and his coworkers at the Max-

Planck-lnstitut f{ir Chemic at Mainz, and E. Jessberger and

his coworkers at the Max-Planck-lnstitut fCir Kernphysik

at Heidelberg. The Cone crater consortium has done an

admirable job in characterizing a very large suite of Apollo

14 samples and in interpreting the rest, Its of their work.

St(+ffler began the session with an invited talk

summarizing the petrology and chemistry of the Apollo

14 breccais (see review abstract by D. St6fller). In brief,

there are four types of breccias: (l) regolith breccias, rocks
that are consolidated soils and are derived from the

uppermost part of the landing site stratigraphy; (2) highly

feldspathic fragmental breccias ("white rocks");

(3) subophitic impact melt breccias, typified by 14310; and

(4) a gradational series of rocks ranging from fragmental

breccias to fragmental breccias containing large clasts of

melt rocks to homogeneous crystalline melt breccias (the

rocks uf this series are commonly termed "Fra Mauro"

breccias). StGffler interprets all but the regolith breccias

as derived from the Fra Mauro Formation, the impact

deposit that underlies the regolith at the site. This formation

is generallly considered to be a deposit of impact debris

emplaced by the Imbrium impact.
In the discussion fi>llowing St6ffler's talk, P. Spudis

commented that complex breccia-in-breccia textures, as

seen in some of the "Fra Mauro" breccias, can be produced

in single large impact events. He cat, tioned the audience
against interpreting such textures as evidence of a multiple

impact history. StC+ffler agreed. G. Ryder questioned

Sti+fller's interpretation that the 14310-type melt breccias

are front the Fra Mat, ro Formation. He pointed out that

these melt breccias appear to occur in the regolith only

away from Cone crater; this type of distribution would

suggest that these rocks are. not derived from the Fra Mauro
Formation but instead represent a later addition to the

site. StC;ffler responded that there is no suitable post-

Imbrium crater nearby that could be the source of such
melt rock.

Following St_'_fflcr's introductory talk, S. Lingner

presented petrographic and chemical data on numerous

samples of the various lithologies found at the site (see

abstract I by Lingner et al.). In brief, Lingner found that
the "white rocks" contain distinctive melt-breccia

lithologies not found in other breccias at the site. Clasts

of plutonic igneous rocks in all but the regolith breccias

are exclusively of Mg-st, ite and alkali-suite rocks; ferroan-
anorthosite suite clasts are absent. Granulitic breccias are

very rare at the Apollo 14 site, in contrast to most other

hmar landing sites.

I:t,llowing I.ingncr's talk, F. Stadcrmann presented the
40 ':_

results ut Ar- Ar age determin'ations (see abstract by

Stadermann et al. and abstract IV by St,_';ffler et al.). Ten

clasts from "white rock" 14063, most of which are impact

melt breccias, showed plateau ages of 3.86 Ga or greater;

one of the clasts showed a high-temperature plateau at

4.09 Ga as well as an intermediate-temperature plateau

at 3.87 Ga. The data suggest that these rocks experienced

a common heating event about 3.87 Ga ago or more

recently, but some of them retain an Ar memory of prior

events; the 4.09-Ga age is the oldest 4°Ar-39Ar age thus

far reported for an Apollo 14 rock. Nine fragments of impact
melt from "Fra Mauro" breccias and 14310-type impact

melt rocks showed consistently younger ages than clasts

from the "white rocks," from }.73 to 3.85 Ga; the youngest

ages have the largest uncertainties. Exposure-age data on
the 14063 clasts confirm that this breccia is Cone crater

ejecta; most of the other samples have older exposure ages.

In the discussion following Stadermann's talk, St(iffler

emphasized the usefulness of the data for determining the

times of formation of the various types of breccias found
at the site. As the "white rock" breccia was deposited as

a relatively cold aggregate of fragments and not subsequently

heated, the age of the youngest clast found in this rock,

about 3.85 Ga, should set an upper limit on the time of

formation of the aggregate. J. Delano suggested that the

laser technique of Ar release might be profitably applied
in 4°Ar-SgAr studies of such small clasts.

StOffler continued the consortium presentation with a

discussion of mixing calculations that were used to try to

determine the composition of the Apollo 14 crust in terms

of the proportions of pristine igneous rocks (see abstract

III by Lingner et al.). St,_iffler concluded that the source
crust for the "white rocks" was dominated by alkali

anorthosite and troctolite, whereas the source crust for

the "Fra Mauro" breccias was dominated by alkali

anorthosite, norite, and gabbronorite. In the discussion

fi+llowing St_'_ffler's talk, R. Korotev commented that the

mixing calculations had not used data for Eu; he suggested

that Eu be incorporated in the calculations because the

abundance of this element can distinguish different types
of anorthosite.

The final formal consortium talk was given by St_";Mer

and consisted of a synthesis of the results of the group

(see abstract IV by St(';ffler et al.). Some of the points St¢";ffler

emphasized were as follows. He accepts the interpretations

that ( 1) the Fra Mauro Formation is part of the continuous

ejecta blanket of the Imbrium basin and (2) the formation

at the Apollo 14 site contains a large proportion of local
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rocks, as secondary ejecta. The consortium data suggest

that the Fra Mauro Formation at the Apollo 14 site consists

of two lithological units: (1) a unit consisting of "white-

rock" feldspathic fragmental breccias such as 14063; and

(2) a diverse unit relatively rich in melt rocks (includes

"Fra Mauro" breccias and 14310-type impact-melt

breccias). St(Jffler suggested two possible interpretations of

the site geology: (1)the material underlying the regolith

is layered, with the "Fra Mauro" breccias and 14310-type

melt rocks coming from a relatively thin Fra Mauro

Formation directly underlying the regolith and the "white-

rock" breccias coming from a deeper, older formation; or

(2) the "white rocks" form large blocks of older breccia
included within the Fra Mauro deposit. Stiiffler favors the

latter interpretation.
St(iffler further pointed out that the two lithological

types show different ranges of 4°Ar-39Ar ages. The "white-

rock" breccias contain only clasts older than about 3.85

Ga, whereas fragments of melt rocks from "Fra Mauro"

breccias and 143t0-type melt rocks are all younger, ranging

from 3.73 to 3.85 Ga. St_;ffler proposed that the "white-

rock" breccias are blocks of pre-Imbrian (Nectarian?)
breccia included within the Fra Mauro formation; if these

breccias are truly Nectarian, the 3.85-Ga age of their clasts

is an upper limit to the age of the Nectaris basin-forming

impact. He further proposed that the 3.75-3.77-Ga

minimum age of the "Fra Mauro" melt breccias and 14310-

type melt rocks represents the age of the Imbrium basin-

forming event. In discussing the history of the hmar crust

in the Apollo 14 area, St(iffler ascribed an important role

to the proposed impact that formed the giant Procetlarum
basin. He favored the idea that this impact stripped off

the uppermost, ferroan-anorthosite part of the crust and

exposed deeper, more mafic, more KREEP-rich parts of
the crust.

During the discussion after St_'_ffler's presentation, P.
Warren commented that the AIx)llo 14 sample suite may

be more heterogeneous than generally thought. Some

unique rtmks found at the site are breccia 14315, which

is very aluminous and contains abundant particles similar
to chondrules, and breccia 14076, which is similar to a

typical Apollo 16 regolith breccia.
After St,3ffler's presentation, H. Wiinke gave a brief

informal presentation on the calculated trace-element

compositions of highlands magmas. His group has analyzed

nearly pure plagioctase separates from pristine highlands

igneous rocks and has calculated the compositions of liquids

in equilibrium with these plagioclases, using measured

partition coefficients. He finds a consistent progression of
the chondrite-normalized abundances of the elements Sr,

Eu, Na, Ba, and La for all the calculated liquids, with the

liquid in equilibrium with ferroan anorthosite 15415 being

the most primitive (all five elements about 10× chondritic)

and liquids in equilibrium with Apollo 14 samples being
the most evolved. The Cl-normalized concentrations in

the most evolved liquid range from 28 times chondritic
for Sr to I100× chondritic for La. The absolute

concentrations of Sr, Eu, Na, Ba, and La in a KREEP-

rich sample from breccia 14321, in which La is 360×

chondritic, fall well on the fractionation lines for these

elements. The observed progression suggests that all the

samples may be related to an evolving liquid or that liquids
from the onset of plagioclase crystallization to the very

last residual liquids furnish the widely distributed hmar

KREEP component. Following W'anke's presentation, P.

Hess commented that partition coefficients can be

temperature dependent and, because the calculations of

parent magma composition had assumed constant partition
coefficients, the calculated equilibrium liquid compositions

might not be realistic. W_anke agreed that there might be

uncertainties for Ba and La in the equilibrium liquid because

of possible temperature dependence of the partition
coefficients but stated that there should be little effect

on Na, Eu, and Sr.

Spirited discussion at the end of the session was devoted
to St(_ffler's proposed age of about 3.75 Ga for the Imbrium

basin impact. This age is 100 m.y. younger than currently

favored by most other workers. L. Nyquist commented that

assigning the youngest of the measured ages to lmbrium
left no dates for later craters, and he suggested that it

might make more sense to assign the peak in the age
frequency histogram, at about 3.87 Ga, to formation of

the imbrium basin. In response, St_3ffler reiterated that an

upper limit to the age of an ejecta unit is determined by

the age of the youngest rock in that unit, provided that

no significant resetting occurred after the unit formed.

Therefore, as the Fra Mauro Formation contains abundant

melt breccia having ages in the range 3.73-3.85 Ga, the

unit must have formed about 3.75 Ga ago or more recently.

H. Schmitt asked St(sffler how he explained the fact that

some mare-basalt samples, collected from mare surface not
far outside the edge of the lmbrium basin, have ages much

older than 3.75 Ga; one would have expected such basalts

to have been buried by a thick layer of Imbrium ejecta

if the Imbrium event postdated their extrusion. StSffler

responded that he felt the old basalts had indeed been

buried by lmbrium ejecta, the ejecta had been covered

by later basaltic flows, and rocks from the old flows had

been exhumed by local impacts. P. Spudis commented that

Apollo 15 KREEP basalt, which comes from the Apennine
Bench Formation, has an age of 3.85 Ga; as the Apennine

Bench Formation embays and fills in low spots in the basin,

it mttst be younger than the basin, so that the basin must
be 3.85 Ga old or older. St(;ffler disagreed with several

aspects of Spudis' interpretation. $t(qfler interprets the

Apennine Bench Formation as a huge megablock that
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predates rather than postdates the basin. He added that

Apollo 15 KREEP basalt has not been demonstrated to

represent the Apennine Bench Formation because the MgO
content of the formation, as measured from orbit, is not

the same as that of KREEP basalt. Spudis responded that

MgO contents are the same within error, and all other
elements are identical. B. R. Hawke added his voice to

Spudis' with an emphatic assertion that the surface

composition of the Apennine Bench Formation is the same

as that of Apollo 15 KREEP basalt. Spudis also objected

to St(;ffler's suggestion that formation of the proposed

Procellarum basin stripped off a preexisting ferroan-
anorthosite crust in the area. He pointed out that ferroan

anorthosite is present at the Apollo 15 site, which is even
closer to the center of the lmbrium basin than the Apollo

14 site. He suggested lateral heterogeneity of the crust would

be a better explanation for the absence of ferroan

anorthosite at the Apollo 14 site.

Although little time was spent during the session

outlining possible directions for future research, the
discussion revealed several areas where additional work is

highly desirable. Studying unique samples such as those

mentioned by P. Warren and determining their provenance

should add significantly to our knowledge of the geology
of the site. The most profitable line of research, however,

would be studies aimed at resolving the controversy

concerning the interpretation of the age data. Are the

measured ages that are younger than 3.85 Ga true ages?
The measured 4°Ar-39Ar ages younger than 3.8 Ga all have

relatively large uncertainties, suggesting they might be

affected by Ar loss, but there are also measured Rb-Sr ages

younger than 3.85 Ga. Which ages truly represent the ages
of material contained within the Fra Mauro Formation?

The ages younger than 3.85 Ga with small uncertainties
are mostly from t4310-type impact melt rocks, whose

presence in the Fra Mauro Formation is controversial. How

should the age data be interpreted in terms of dates of

major basin-forming impacts? To help answer these

questions, additional age data on samples from "Fra Mauro"
breccias would be very useful. There is no controversy

concerning geologic occurrence of these rocks, so their ages

would help define the dates of events that have affected
the Fra Mauro formation. Also, attempts to resolve the

geologic occurrence of the 14310-type melt rocks at the
site would aid interpretation of the age data.

TOHC 3:

WHAT IS KREEP?

Summarized by Paul Warren

P. Warren opened the session with a review on the

composition and origin of KREEP. Warren emphasized that

KREEP lithologies exhibit considerable diversity in their

overall enrichments in incompatible elements, although no

other common hmar rock type is nearly so incompatible-

element-enriched, and among KREEP rocks the incompati-

ble elements occur in remarkably uniform proportions to

one another. A typical pristine KREEPy rock is a basalt

with roughly equal proportions of low-Ca pyroxene and

plagioclase, but the class also includes a monzodiorite, and

arguably even one granite. KREEPy rocks are also diverse
=

texturally, ranging at least from glassy to subophitic. Warren

has compiled a database for bulk compositions of KREEPy

rocks in an effort to refine the average high-K KREEP

composition. The average composition is derived by plotting

data for each element vs. an average of data for a number

of archtypically-KREEPy elements (e.g., light REE, U, Th)

in the same sample, the average having been normalized

to a previous estimation of the average high-K KREEP

composition. For incompatible elements, plotting large

numbers of KREEPy samples on such a diagram generally

results in linear correlations, which Warren uses to refine

the average high-K KREEP composition and to search for

possible systematic diversity of incompatible element ratios

among KREEPy rocks. Concerning the origin of KREEP,
Warren drew attention to two salient features of its

composition: First, the diversity of incompatible element

concentrations is accompanied by remarkably little diversity

for the ratios among these elements, an observation that

suggests derivation of all KREEP by a process involving

dilution of a common parent (presumed to be the residual

liquid of the magma ocean, a.k.a. "unKREEP"), and not

as a series of localized partial melts. Second, despite

appearing extremely "evolved" in their concentrations of

incompatible elements, most pristine KREEP rocks have

remarkably moderately-high mg ratios, an observation that

suggests derivation by some form of mixing between Mg-

rich magmas and magma ocean residuum.

During discussion after Warren's talk, J. Taylor noted

that numerous mare basalts from Apollo 14, and at least

one from Apollo 15, have KREEP-Iike REE patterns,

consistent with Warren's point about the major-element

diversity of KREEP. C. Neal asked Warren for more specifics

regarding the major-element composition of urKREEP.

Warren suggested that urKREEP probably never had a

unique major-element composition, as the magma ocean

residuum was most likely subjected to mixing with uprising

Mg-rich magmas even as it collected between the bottom

of the crust and the top of the mantle. C. Meyer and

J. Papike asked why KREEP could not have formed by

a series of partial melting episodes, with no magma ocean.
Warren said that many separate partial melting episodes

would have engendered many distinct incompatible-

element-ratio patterns, and would not generally have

engendered high mg ratios.
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The next talk, by Paul Hess, was an invited review on

the phase equilibria involved in the production of highly

evolved lunar magmas. Hess employed the system

CaAl2Si2Os.Mg2SiO4-SiOe_CaSi03 as a basic reference, but
he also considered the effects of adding Fe, Na, K, Ti,

Zr, and P. He pointed out that enrichment in FeO relative

to MgO tends to displace the low-Ca pyroxene-silica

boundary away from SiOe, and thus tends to limit the degree

of Si enrichment in late-stage melts. However, enrichment

in K20 tends to have the opposite effect. Normative FeTiO3

probably plays a crucial role in the evolution of Si-rich

lunar melts. Crystallization of ilmenite tends to increase

the SiO 2 content of the residual melt. However, as long
as ilmenite does not crystallize, TiO2 acts like K20 to

diminish the SiO2 contents of the residual liquids. TiO2-

enriched lunar liquids undersaturated with respect to

ilmenite tend to undergo little SiO2 enrichment, but

eventually produce granites by silicate liqt, id immiscibility.

KREEP basalts, however, are relatively rich in SiO 2, MgO,

and K20, which should in principle make them more prone
to follow the Bowen trend, i.e., steady enrichment of SiO2

as crystallization proceeds. However, experiments with
KREEP basalts 14310, 15382, and 15386 tend to indicate

that even KREEP-basaltic magmas generally undergo only

mild SiO2 enrichment (accompanying much stronger FeO
enrichment) as they crystallize. Hence, production of hmar

granites from KREEPy initial magmas may also require liquid
immiscibility. Hess inferred that the residual melt of the

magma ocean was probably a ferrobasalt with low SiO2,

high TiO2, and low AI20_. This melt may have undergone

liquid immiscibility, but only on a relatively localized basis,

due to its still modest K20 content. In addition, the last

dregs of the magma ocean probably underwent phosphate

and possibly also zircon fractionation. Hess suggested that
this ferrobasaltic material was ultimately tapped to produce

KREEP basalts, although he also acknowledged that the

ferrobasaltic residuum may have been susceptible to

contamination by Mg-rich melts intruding from below.

During the ensuing discussion, Papike asked if ilmenite
fractionation might help to account for the high mg ratios

observed among KREEP basalts. Hess answered that

although ilmenite fractionation rends to stabilize mg during

late-stage crystallization, it could not be expected to

significantly reverse the mg diminution implied by the earlier
fractionation necessary to produce high incompatible

element contents. Warren noted that sample 120"_3,547,

which is a crystalline granite criss-crossed by veins ()f an

extremely FeO-rich glass, has been interpreted as an

example of mingling of both the SiOz-rich and the FeO-

rich products of liquid immiscibility (see also the abstract

by R. Morris). Several persons asked why ferrobasatt such
as Hess described seems relatively rare among lunar samples.

Hess reiterated that most of his talk addressed idealized,

closed-system petrogenesis, whereas complexities such as

magma mixing appear to have been common in the real
Moon.

The next speaker was Neal, who proposed a model for

the origin of KREEP involving its division into K-rich and

REE-rich fractions ("K-Frac" and "REEP-Frac," respec-

tively). Neal suggested that a subordinate l:x_rtion of the

magma ocean residual melt (urKREEP) underwent liquid
immiscibility, after which the viscous granitic (K-Frac) melts

remained nearly in place, but the low-viscosity FeO-rich

(REEP-Frac) melts percolated upward through the crust,

and locally metasomatized it. Besides metasomatic reactions

with the crust, the REEP-Frac is inferred to have undergone

further crystallization involving fayalite, which Neal

suggests would reduce the density of the residual melt,
thereby increasing its buoyancy relative to the overall crust.

Neal suggested that the REEP-Frac was crucial to the origin

of the widespread low-K Fra Mauro "basalt" materials, while
the K-Frac was a precursor to lunar granites and was

assimilated during the genesis of VHK basalts.

J. Shervais led off the discussion by asking Neal for more
details as to how the dense, FeO-rich REEP-Frac melts

could possibly rise instead of sinking. Neal reiterated that

he assumes that ongoing crystal fractionation lowered the

density of the REEP-Frac. T. Dickinson said she shared
Shervais' doubts. Warren commented that although REE

and K do not correlate well among Apollo 14 rocks, neither

do REE and P, yet Ba correlates strongly with REE. He

noted that H. Palme long ago interpreted the scatter in

the alkali/REE ratios as a product of alkali volatilization

(both K and P are volatile). G. Ryder questioned the wisdom

of assuming that lunar granites are compositionally identical

to their parent melts, when instead some crystal

accumulation might have been involved in their genesis.

Neal responded that the relatively small scales of the granitic

magma chambers would not be conducive to efficient

crystal/melt separation processes.
Morris gave the next talk, which was on petrographic

evidence for liquid immiscibility and crystal fractionation

among KREEPy magmas as recorded by three AV:)IIo-14
rocklets. These rocklets each consist of two lithologies:

(1) brown, FeO-rich glass and (2)shocked, granophyric

granite. The bulk-rock REE patterns of these rocklets are

roughly intermediate between average lunar granite and

a "superKREEP" pattern (the "superKREEP" composition

has REE at roughly twice their levels in the average high-

K KREEP cumposition commonly cited as "KREEP"; e.g.,

super KREEP has La _1280× chondritic). Morri_ et al.

interpret these rocklets as products of separation of
immiscible melts followed by remixing through impact-

remobilization. Crystal fractionation surely preceded the

liquid immiscibility, with phosphate (apatite?) and zircon

probably among the phases involved. Morris et al. also
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interpret the moderate FeO contents of the glasses (-25

wt.%) as evidence that some crystal fractionation occurred

after the immiscibility. The REE patterns can be modeled

satisfactorily by this model, but only if the parent melt

befi_re immiscibility is asst,med to have extraordinarly high,

superKREEP-like REE abundances. Morris suggested that
these processes may have occurred during the last stages

of magma ocean crystallization.

In the discussion afterward, J. Longhi asked if the

compositions of the minerals found in the crystalline-

granitic portions of the rocklets appear consistent with

equilibrium with the brown glass as a melt. Morris said

he was not sure. Warren commented that the composition

of urKREEP was probably roughly 1.5-2× richer in REE

than the KREEP composition used as a reference by Morris

et al., making the usage of "superKREEP" in their model
completely justifiable. H. W/inke agreed, citing some new

analyses of Cone crater samples from his laboratory.

The final talk of the session was by H. Schmitt on the

role _)f gradual strengthening of the crust, as it cooled and

otherwise evolved after the primordial melted shell era,

in controlling the distribution of mass concentrations
associated with lunar basins. Schmitt noted that the older

multiring basins tend to be isostatically fully compensated,

whereas those younger than about 4.2 Ga are associated
with mascons and have retained sharply circular forms.

Schmitt suggested that this difference may be a consequence

of gradual crustal strengthening, caused largely by the

ew_lution of KREEP from a residual melt layer below the

crust, into mainly a network of interlocking solid dikes

within the crust. Schmitt suggested that the observed

distribution (largely associated with Imbrium basin ejecta)

and ages of KREEP are consistent with this model.
Discussion after this talk was brief. There seemed to

be a general consensus that Schmitt's hytx,thesis makes

good sense as an extrapolation from current models for

the origin and evolution of KREEP, albeit the more novel

aspects of the hypothesis will be difficult to test until we

obtain data from a future sophisiticated lunar orbiter
mission.

TOPIC 4:

APOLLO 14 PLUTONIC ROCKS

Summarized by Marilyn Lindstrom

j. Shervais opened the session with an invited talk on

highland crust at the Apollo 14 site. He described the unique
character of the Apollo 14 samples and combined them

with Apollo 12 highland rocks to describe a distinct Western

Highland Province. The rocks of the western province fall

into three major groups: magnesian suite, alkali suite, and

evolved lithologies. An unfortunate problem in deciphering

petrogenetic relationships among these samples is that no

large samples are found; they occur only as clasts in impact

and regolith breccias.

Using a diagram of Mg' in mafics vs. An in plagioclase,

the Mg-suite samples can be divided into a magnesian

troctolite association (dominated by troctolites with high

Mg' and An compositions, but including anorthosites and

dunites with similar mineral compositions) and a diverse

group of magnesian norites. Tha alkali suite is dominated

by anorthosites, but also includes norites and gabbronorites.

These have low Mg' and An mineral compositions and

an abundance of accessory minerals. Evolved lithologies are

mostly hmar granites.

The geochemistry of the Western Highland Province is

unusual. REE concentrations are significantly higher than

in other lunar suites and vary widely within both magnesian

and alkali suites (15-700× chondrites). These extreme

variations are largely due to modal variations in accessory

minerals, especially in whit/ockite, in these very small

samples. A plot of Sm vs. Eu clearly distinguishes the

Western Suite samples from other highland rocks. Ferroan

anorthosites and Eastern Mg-suite rocks vary widely in Sm

yet have fairly constant low Eu concentrations. Western

Mg-suite rocks overlap with their Eastern counterparts in

Sm but extend to higher concentrations and have distinctly

higher Eu concentrations. Alkali suite rocks show much
the same range in Sm as Western Mg-suite rocks, but have

distinctly higher Eu concentrations. These geochemical

distinctions are what led Warren to define the Western

Highland Province.

The petrogenesis of Apollo 14 plutonic rocks is

complicated and still unresolved. Because of the high REE
concentations and subchondritic Ti/Sm and Sc/Sm ratios

it is likely that KREEP was involved in their petrogenesis.

Shervais outlined several scenarios to explain the wide

variety of rock types: (1) Both magnesian and alkali suites

are derived from a single parent magma with variable degrees

of KREEP or urKREEP assimilation. (2) The magnesian and

alkali suites represent two parental magmas, each of which
has assimilated KREEPy material. (3)The two parental

magmas include the magnesian suite and KREEP that was

parental to the alkali suite. (4) Metasomatism of REE-rich
fluids and assimilation of ferroan anorthosites are

responsible for the compositional variation of Apollo 14

rocks. Shervais admitted that there are problems with
several of these hypotheses and that they serve only to

guide our thoughts. He proposed some areas for further

study that might clarify some problems: Detailed studies

on the origin of KREEP could clarify relationships to other

rocks. Age data need to be obtained for various Apollo

14 highland rocks in order to evaluate relationships and

possible links with ancient highland rocks.

The discussion that followed included the question of

whether the Mg-anorthosites and dunites might be
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unrepresentative samples of troctolites. This is a possibility,

but they could also represent different layers in the same

intrusion. Further discussion centered on the origin of

KREEP, with questions asked about just how much we

know about the range of variation in pristine KREEP, but

no answers or real plans of research were offered. D. St6ffler

added that his consortium had measured some ages for

Apollo 14 plutonic rocks. A Mg-anorthosite was dated at

3.8 b.y.

A. Reid then presented a talk on pink spinel troctolite

in Apollo 14 breccias. D. Collins and Reid have done an

extensive search of JSC library thin sections for pink

pleonaste spinels and found them to occur both as isolated

grains and as part of polymineralic c[asts containing

plagioclase and/or olivine. These clasts vary in texture from

cataclastic cumulates to breccias. Compositions of major

minerals show considerable variation of Mg' in olivine and

less variation of An in plagiodase. Compositions of spinels
generally exhibit continuous normal zoning from core to

rim, but sometimes show reaction coronas in contact with

matrix. Reid concluded that the spinels originated in several

spinel troctolite cumulates with various mineral compo-

sitions. Discussion suggested that cumulate fractionation

need not produce large changes in plagioclase composition

and that the spinels could be in a reaction relationship
in various intrusions.

A general discussion of Apollo 14 plutonic rocks followed.

The relationships of alkali anorthosites to other samples

was a major topic. The much broader alkali suite from

all sites was used to argue against a close relationship to

the Mg suite. However, regional diversity within the suite,

especially in Sm-Eu systematics, argues against a single alkali

suite. It was agreed that detailed studies of Sm and Eu

concentrations in plagioclases are required to solve the

problems. C. Meyer said that he had obtained a variety

of ages for Apollo 14 plutonic rocks ranging from 4.0-4.3
b.y. Further discussion centered on KREEP: whether

KREEP ages fit with plutonic rocks, the absence of pristine

KREEP at Apollo 14, and whether assimilation would be

bulk KREEP or selective partial melts. J. Papike raised the

issue of the validity of the magma ocean hypothesis, finding

it hard to fit the many separate magmas required into such
a model. The mcx.tel was defended by several people, but
the issue was Deft unresolved and the discussion continued

in later sessions.

B. Jottiff presented a talk on a compositional survey of

2-4 mm soil particles from 14161 and implications regarding

KREEP and igneous components in Apollo 14 regolith

breccias. In this survey of 28l particles they found that

most of them were impact melts and microbreceias _r

regolith breccias whose compositions closely resemble that

of the local soil. In general, incompatible element

correlations are very tight and REE patterns are KREEPy.

They found very few igneous rocks; these included ferroan

anorthosites, basahs, a granite, and a few troctolites and

norites. They also found two super-KREEPy melt rocks.

The impact melts seem to be the dominant soil component.

The meaning of differences between the soil particles and

Fra Mauro breccias was the topic of discussion.

C. Neal then gave a talk on lunar granite petrogenesis

and the process of silicate liquid immiscibility. The lack

of rock types intermediate between basalts, even KREEP

basalts, and granites led several workers to consider silicate

liquid immiscibility in the origin of granite. Late-stage silica-

rich glasses have been found in hmar sampfes and

experiments have been done to set constraints on the

process. Nea[ modeled silicate liquid immiscibility taking

place after 90-98% crystallization of a basic magma and
used experimental data to partition dements between basic

and acidic melts. Most elements show good agreement

between actual and theoretical partitioning, but Ba is
present in acidic melts rather than the basic melts as

experiments predicted. Nea] explained that Ba partitioning
depends on the alkali/Al ratio, which differed in hmar and

experimental conditions. In high K and Na melts Ba has

a strong affinity for sites associated with tetrahedral AI

and is needed for charge balance.

The discussion showed that, especially after P. Hess's

talk in an earlier session, silicate liquid immiscibility is

growing in acceptance, but considerable reluctance still

exists regarding using it to account for the origin of granite.

Partitioning of Eu, U, and Th were raised as potential

problems. Other problems concern the physical process.

Hess had convinced most of us that silicate liquid

immiscibility would take place very late in the crystallization

process. He added that the system would proceed through
the immiscibility gap back to fractional crystallization. The

reluctance to accept silicate liquid immiscibility stems

mostly from problems with separating such late-stage liquids

to concentrate them as granite and questions of what
happened to the complementary basic melt.

TOPIC 5:

APOLLO 14 MARE BASALTS

Summarized by Tammy Dickinson

In the Apollo 14 collection, mare basalts occur mainly

as clasts in breccias. The Apollo 14 mare basalt suite is

dominated by aluminous and very high potassmm (VHK)

basalts. Aluminous basalts contain 11-14 wt.% A120_, <0.3

wt,% KeO, and K/La ratio >100. VHK basalts contain >0.3

wt.% K20, K20/Na20 ratio >I, and K/La ratio >150.

C. Neal gave a keynote talk on Apollo 14 basalt

petrogenesis, focusing on generation from an olivine-_px
dominated mantle, followed by crustal assimilation and

fracthmal crystallization. Based on La-Hf systematics, Neal
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argued that the Apollo 14 aluminous mare basalt

compositi_ns define a continuum rather than distinct

groups. There was considerable debate about this point,

led by J. Sherwfis. There is still no consensus as to whether

the Apollo t4 aluminous basalts define distinct compo-

sitional groups or whether they represent a continuum of

compositions as suggested by Neal et al. (see paper in Proc.

Lunar Planet. Sci. Conf. 18th, pp. 139-153). Some of the

scatter in the data is probably due to sample heterogeneity

of small fragments of a single flow. However, the question

remains: Is sample heterogeneity the cause of smearing of

data between distinct groups or is there a continuum of

compositions? Whether the samples represent distinct

groups or a continuum may be irrelevant with respect to

their petrogenesis.

Neal has modeled the major, trace, and REE variations

in these aluminous basalts by the combined effects of

fractional crystallization of liquidus phases and assimilation
of KREEP. In the model "r," defined as mass assimi-

lated/mass crystallized, is estimated to be 0.22. The

assimilant composition used is that of KREEP basalt 15386.

The AFC model can produce the observed aluminous basalt

compositions by 5% to 70% fractional crystallization of

LREE-depleted parental magma and 1.1% to 15.4%
assimilation of KREEP.

Neal has modeled the petrogenesis of VHK basalts by

a similar AFC process, but in this case the parent magma

is an aluminous basalt and the assimilant is granite. Three

parental aluminous basalt magmas are required to generate

all the observed VHK compositions. The modeling suggests

that there is a KREEP component in the VHK compositions.
The "r" value used in this model is 0.5.

Shervais pointed out numerous problems with the AFC

model. Neal proposed a LREE-depleted parental magma

for his AFC process for the aluminous mare basalts. All

other models for mare basalt genesis require a LREE-

enriched, not a LREE-depleted, parental magma. The basalts

with the highest La content do not have the lowest MgO

as necessitated by fractional crystallization of mafic phases.
The AFC model for the formation of the VHK basalts

needs to be reevaluated with respect to the thermal

constraints for melting and assimilation of granite by a

basaltic magma (a "r" value of 0.5 is unreasonably high).

The AFC process is modeled as a bulk assimilation process,

which is probably not the case. I. Ridley noted that in

acid-base complexes on Earth magmas do not appear to

mix. Therefore, it may be difficult to produce the hybridized

magmas required by the AFC model. Also, the initial Sr
concentrations do not increase in the more evolved basalts

as required by AFC with KREEP assimilant.

Shervais believes that the three groups of aluminous mare
basalts with the lowest REE abundances are best modeled

by varying degrees of partial melting of a common source,

and the two REE-enriched groups t_yassimilation of KREEP.

Further work needs to be done on the petrogenesis of

Apollo 14 aluminous mare basalts. It would be enlightening

to attempt to integrate the basalt data with the glass head

studies when doing further modeling. Also, the AFC model

needs to be refined to include the available isotopic data

for these samples.

Ridley presented intriguing information on terrestrial

mantle metasomatism. Partial melts rise through fractures

in the lithosphere, with only some of the melts reaching
the surface. Those that do not reach the surface lose heat

and fractionate in the mantle. Volatiles may separate from

these melts and transport trace elements into other areas
of the mantle. Because the Moon underwent massive

differentiation, Ridley suggested that it might be inevitable

that the lunar mantle underwent metasomatic processes

similar to the terrestrial mantle. There is mounting evidence

that volatiles were present on the Moon. However, we
do not know which volatiles and in what concentrations.

It is possible that complexities in mare basalts may be
inherited from the mantle and may have nothing to do

with the lunar crust. Ridley suggested that on our next

trip to the Moon, we look for samples of the lunar mantle.

Without them, it may be impossible to understand mantle
metasomatism on the Moon.

The next presentation was by J. Delano on Apollo 14

pristine mare glasses. Six varieties of primary glasses occur
at the Apollo 14 site, ranging from low-Ti green glasses

to very high-Ti red/black glasses. Many Apollo 14 glasses

have high P, and P correlates with La abundance. These
glasses are enriched in LREE and depleted in Eu. The

red/black glasses show a wide range in alkali abundances,
with a covariance between Na and K and constant Ca/A1

ratios. This alkali enrichment causes virtually no change"

in the proportions of Ca, Mg, and Ti.

Many questions remain with regard to these glasses. What

was the eruptive mechanism? What was the importance
of volatiles and what volatiles were these? What is the

cause of the observed alkali enrichments?

The last talk of the session, given by C. K. Shearer,

was on an ion microprobe study of trace elements in Apollo

14 volcanic glass beads and comparison to mare basalts.
This is one of the first studies of trace element abundances

in glass beads, analyzed in situ in thin section. The emphasis

of this study was the Mg-rich end members of glass

compositions present at the Apollo 14 site. The Apollo

14 glasses show a wide range in major element composition,
but all have a KREEP component. Green B, Green A,

and VLT glasses are LREE-enriched, with Green A and

VLT compositions overlapping each other. Shearer has

evaluated the possibility of a genetic relationship among

the picritic glasses, between the picritic glasses and the
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Apollo 14 aluminous basalts, and between the picritic glasses

and other mare basalts. The black, orange, Green A, Green

B, and VLT glasses are not related by low-pressure fractional

crystallization, nor are they related to the mare basalts

at the Apollo 14 site. It was suggested that this may indicate

that the mantle at the Apollo 14 site is different from

other mare basalt source regions. The Apollo 14 source

may be intermediate between low- and high-Ti sources and

may have highly evolved material mixed in. Ridley noted

that in the Skaargard intrusion, contamination and

assimilation occur in feeder dikes, not in large magma

chambers. Fluids move through rather rapidly and scavenge

elements from depth, transporting them to the surface.
A similar process may have been in effect on the Moon.

More trace element data, including P, age dates, and

isotopic data, are needed for the range of Delano glasses
in order to further evaluate the relationship, if any, between

picritic glases and mare basalts.

Although we have answered many questions concerning

the Apollo t4 mare basalts, this session indicated that there

is still much work to be done. Isotopic data and data for

the glass beads all need to be incorporated into models

for the petrogenesis of Apollo 14 aluminous mare basalts.

TOPIC 6:

ISOTOPIC CONSTRAINTS ON

EARLY LUNAR DIFFERENTIATION

Summarized by E. Julius Dasch

An understanding of the unique and most significant

geologic aspects of the Apollo 14 Western Highlands site--
the wide variety and KREEPy character of its intrusive

and extrusive rocks and the oldest (pre-"terminal

cataclysm") ages of hmar volcanism--has been and will

continue to be elucidated by precise isotopic analyses of

carefully selected rocks, minerals, and glasses.

The recent discovery of Apollo 14 crystallization ages

near 4.3 Ga (reviewed herein by C. Shih and L. Nyquist)
conflicts with the widely held theory that lunar volcanism

did not commence until after major crustal formation and,

later, the impact "cataclysm," near 3.9 Go. Instead, periods

of lunar plutonism and volcanism apparently overlapped.

A careful time framework for this important transition

requires additional work, especially Rb/Sr and Sm/Nd

internal (mineral) isochrons for carefully selected plutonic

and volcanic rocks, and U/Pb ages for granitic zircons, The

added constraint provided by isotopic composition of Sr,

Nd, and Pb, at the time of rock formation, will aid the

further understanding of the earliest magmatic history of

the Moon. The question of a hmar magmasphere or magma

ocean and its characteristics may be addressed with a larger

data bank of age dates and initial isotopic compositions;

anaylses of Apollo 14 alkalic anorthosites and norites should

be included. (If a magma ocean did exist, its internal

homogeneity or inhomogeneity might be addressed through

the use of T. Barth's concept of residence times and mixing

rates for individual chemical species.)

Recent, detailed petrographic and chemical work on

numerous basaltic fragments separated from Apollo 14

breccias has shown that a surprisingly wide variety of basaltic

rocks are present at this site (olivine basalt, tridymite

ferrobasalt, etc.); a large number of the more numerous

aluminous basalts analyzed, however, appear to be closely

related petrogenetically, perhaps through partial melting

or fractional crystallization processes. There is disagreement

as to whether these chemically related basalts can be

subdivided into natural chemical groups (an opinion

discussed herein by J. Shervais) or if the,,' are part of a

chemical continuum (see discussion by C. Neal and L.

Taylor, this volume). Isotopic infl)rmation (internal ages

and initial isotope ratios) on this question, though sparse,
indicates that the chemically related ahuninous basalts

belong to at least three chemical groups, perhaps related

by olivine fractionation and KREEP assimilation (C. Shih

and L. Nyquist, this w_lume). The question needs to be

addressed further in that it bears directly on the

characteristics and peculiarities of earliest lunar volcanism.

The age of the oldest lunar crust and its relation to

a possible magma ocean have yet to be defined. Recent

and older analyses of hmar plutonic rocks, some from the

Apollo ] 4 cNlection, have not yet provided an unequivocal

answer to these questions. The oldest zircons from lunar

granites (C. Meyer eta]., this volume) and a precise Sm/Nd

internal isochron on a pristine Apollo 16 ferroan anorthosite

(see abstract by G. Lugmair in Lunar and Planetary Science

XVIII) yield ages near 4.4 Ga and suggest to some that

this is the time of the completion of crustal formation

from a magma ocean. Other dates on Mg-suite plutonic

rocks, several from the JSC laboratory, have yielded a range

of ages from 4.2-4.6 Ga. The existence of crustal rocks

with apparent ages of 4.4-4.6 Ga requires additional study.

Based on time-of-crystallization isotopic composition and
internal ages, Shih and Nyquist (this volume) suggest that

norites may be parental to the grouped Apollo 14 basalts.

Apollo 14 norites and anorthosites, including alkalic
anorthosites, shouldbe dated. These ages, and the chemical

information provided by the parent-daughter and daughter

isotopic compositions may provide important clues to

proposed events in earliest lunar history, including the

magma ocean and the giant impact theory of h, nar origin.

The initial isotopic composition of Pb from the oldest

lunar rocks is poorly known, owing to very low Pb

abundances and a probable complex thermal history for

these rocks, as discussed by W. Compston et al. (this

volume). A precise knowledge for Pb isotopic composition
also is needed for the most accurate UlPb ages of lunar
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zircons. The available ion microprobe data from the

Australian National University indicates that the highly

evolved zircon-bearing granites formed between 4.1-4.4 Ga

and originated from lunar source rocks that had very early

been depleted in Pb. The earliest evolution of hmar Pb,

as well as Sr and Nd, can be critical for a better

understanding of a possible magma ocean and the earliest

history of the Earth-Moon system. Available data for the

earliest terrestrial ew_lution of Pb suggests to some that

Earth underwent an "event" near 4.5 Ga, distinctly after

the accepted time of Earth accretion at 4.56 Ga. Is this

event the giant impact suggested for lunar origin? Can the

"event" be discerned in the compositional data for the

earliest h, nar rocks, and does the Moon have an accretion

date distinctly younger than 4.56 Ga? It is obvious that
further work is required to determine if these fundamental

questions can be isotopically constrained.

Several important lunar problems may be answerable

through the continued isotopic study of lunar glasses. The
first-order question of whether there was a lunar impact

"cataclysm" near 3.9 Ga (an opinion promoted herein by

G. Ryder) and, if such a "cataclysm" did occur, if it

happened in discernible time intervals (for example near

3.75, 3.9, and 4.1 Ga; see papers in this volume by F.

J. Stadermann et al. and D. St6ffler et al.), must be addressed

with a well-chosen set of additional age determinations on
lunar impact glasses, presumable by 4°Ar/39Ar analysis.

These glasses commonly are not chosen for analysis, owing

to their lack of "pristineness." The age(s) of the largest

impact basins, such as Imbrium (and the debated

Procellarum) ma't be better understood as a result of such

a survey.
Significant new information can be obtained from further

isotopic analyses of the pristine volcanoclastic glasses that

have been studied from the Apollo 14 and other lunar

collections (reviewed herein by J. De[ano et al). Delano

and coworkers have shown that these glasses are the least-

modified liquids from lunar source rocks and thus offer

the least-equivocal evidence for the composition of the

lunar mantle. Age data, perhaps by 4°Ar/39Ar laser analysis,

should be obtained for these important but small spherules.

Isotopic analysis for Sr and Nd on these spherules, difficult

at best, can be used with the cooling ages to determine

initial isotopic compositions for use in further constraining

the lunar mantle and subsequent volcanic processes.

Though not specifically related to the Apollo 14

materials, significant unresolved problems in the isotopic

analysis of lunar materials should continue to be addressed.
An accepted value for the precise decay constant of 87RB

has not yet emerged. Differences in the diffusional

characteristics of parent-daughter nuclides among the

several chronologic systems may result in different

formational "ages" for the same event. Reheating of

material, perhaps as a result of impacting (currently under

study at JSC) or burial, may reeqt, ilibrate phases differently

or to different degrees. Assimilation (or "contamination,"

depending on viewpoint) of pristine magma by meteoritic

debris, wallrock or crustal rocks, including KREEP and

granite, or metasomatized mantle rock (discussed herein

by I. Ridley et al.) can affect initial isotopic compositions

and, where equilibration after contamination was not

complete, alter the resulting age determinations.

Lively debate at the workshop insures that further

analysis of the unique Apollo 14 materials, perhaps the

least understood of the several Apollo collections, offers

significant opportunities for a better understanding of these

lunar and isotopic problems.

TOPIC 7:

RELATION OF EVOLVED LITHOLOGIES

TO THE MAGMA OCEAN

Summarized by John Jones

The only speaker in this session was J. Longhi. Longhi

gave the details of a model calculation that he had

performed in which he fractionated a liquid in equilibrium

with FAN-suite lithologies until the magma became very

KREEP-like. Longhi emphasized that the global uniformity

of the KREEP signature implied that the same amount

of crystallization had occurred everywhere. This is difficult

to achieve and implies in turn that some mechanism is

necessary to retard the crystallization of the last dregs of

the magma ocean, if such existed. Although not explicitly

mentioned, it is possible that volatile elements, which also

act as incompatibles, could become enriched enough to

substantially lower liquidus temperatures and help to slow

down crystallization. As an aside, Longhi used arguments

based on REE abundances in mare basalts to support the

idea of a magma ocean and concluded that the negative
Eu anomalies are indeed due to the removal of solid

plagioclase and not to an inherent capacity of olivine and

pyroxene to exclude Eu 2+, as argued by J. Papike. Finally,

Longhi used the fractionation trends of various mantle-

derived magmas to hypothesize that the earliest magmas

were hotter and assimilated more crustal plagioclase than

later, cooler magmas. In this scenario, the oldest magmas,

precursors of the Mg-suite, assimilated enough plagioclase

to produce troctolites, containing olivine and plagioclase;

the younger KREEP basalts show nearly simultaneous

crystallization of pyroxene and plagioclase after olivine; and

the youngest mare basalts crystallzie olivine and pyroxene

before plagioclase.

In detailing his models, Longhi described how, for most

of their fractionation sequence, magmas produce steep

trends on a Mg# vs. An diagram. This led into a natural

discussion of how alkali-suite lithologies were produced and
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whether high-level (?) assimilation of KREEP-rich lit hologies

by mantle-derived magmas could be the ultimate source
of the alkali-suite.
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WHERE IS THE KREEP? P.E. Clark Jet Propulsion Laboratory,

California Institute of Technology, Pasadena, CA 91109

Analyses of available lunar orbital geochemical data done

during the last decade have led to a greater understanding of
the distribution of KREEP on the lunar surface. The results

of some of these ongoing studies, done at global, regional,

and local scales, are summarized below. The most recent work

includes close examination of remote sensing data available

for landing sites, as described below.

Multi-dimensional supervised and unsupervised classification

techniques, including cluster analysis, were used to correlate

(1) (2) orbital XRF AI/Si and Mg/Si(3) and GRS Fe, Ti, and Th

(4)(5) concentration data. Regional scale units representing

major rock components which could be identified included four

basalt types (consisting of a KREEP unit primarily associated

with the Imbrium basin, and three basin age-correlated mare

basalt units) and five highland units dominated by ANT suite

material but obviously contaminated by varying amounts and/or

different types of basaltic materials including KREEP-rich

basalt.

Three highland regions have been studied in detail,

particularly in regard to geochemical heterogeneity resulting

from Fra Mauro or highland basalt distribution(3) (6) (7) . Data

from the Hadley Apennine region are consistent witht he

presence of a mixture of ANT suite and Fra Mauro basalt

components, dominated by KREEP basalt west of the Apennine

front(3) (8) . The composition of the Apennine Bench is within

the KREEP compositional field and appears to be the source for

KREEP here. A more noritic component, possibly low-K Fra

Mauro basalt, is concentrated along the northern Apennine

crest and backslope and in part of Palus Putredinis. The

region nestled between Crisium, Fecunditatis, and Smythii,

including the Balmer basin, has been studied in detail as

well(6) (8) (9) . Results of the studies have indicated the

presence of a basalt component, showing considerable variation

and associated with mare and plains deposits, in a region

otherwise dominated by ANT suite material. A basalt

intermediate in composition between mare basalt and KREEP

basalt, has been proposed as a probably component of the

Balmer plains region. In the region east of Smythii,

consisting of farside highlands, a few geochemical anomalies

indicating the presence of buried basalt have been found,

particularly in the vicinity of Pasteur(7) (9), in a region

also largely dominated by ANT suite maerial. In a few places,
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particularly south and west of Pasteur, mapped plains deposits

may have a KREEP basalt component.

In the most recent study, elemental concentrations from

landing site soil sample data and orbital data were compared.

Orbital XRF (AI and Mg) data were averaged within 1 degree by

1 degree bins representing the effective resolution of the

data(3) (i0) . Ih the case of GRS data, resolution was

effectively 300 km for the Fe and Ti data (4), and 60 km for

the Th(5) and K(II) data. Published averages of soil sample

data were made available by Basu(12). One interpretation of

the differences between remote and in situ data is that local

versus regional differences in typical rock components, in

some cases KREEP, are responsible for the differences in
elemental concentrations between the two datasets. The

differences will now be discussed assuming that is the case.

At the Apollo 12(Procellarum) landing site, lower Th and

slightly higher Fe co-n_entrations from the remote sensing data

indicate that the area around the landing sites has a smaller

basalt component that the landing site itself. However, at

the Apollo 14 (Fra Mauro) landing site, Th and K

concentrations acquired remotely are highler, and indicate a

greater KREEP component in the soil of eastern Procellarum

than at %he landing site. The KREEP component for the Apollo

15 (Hadley Apenning) landing site itself, from in situ data,

is seen to be smaller than for the region as a whole, as

evidenced by elevated Th and K, and decreased A1 and Mg from

remote experiments. The Apollo 17 (Taurus Littrow) site may

h_ve a Smaller basalt component, than the the _urrounding

_ar_a, which would include part of Serenitatis. Th, K, and Fe

concentrations acquired from the low resolution remote sensing

data are slightly elevated for Lunas 16 and 20 (Fecunditatis)

and Luna 24 (Crisium), possibly due to the presence of KREEPy

basalt in the Balmer basin.

On the basis of these studies, although KREEP volcanism

appears to have occurred principally ............ Imbrium area,

smaller-scale oubreaks of such early volcanism possibly
occurred in Other areas on the nearside and farside as well.

The-research described in this paper was partly carried out at

Jet Propulsion Laboratory, California Institute of Technology.
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PINK SPINEL TROCTOLITES IN APOLLO 14 BRECCIAS

D.T. Collins and A.M. Reid, L0nar and Planetary Institute/University of
Houston, Houston, Texas.

Apollo 14 soils and breccias contain distinctive pink-purple pleonaste
spinels as isolated grains and as a component of breccia clasts. Several studies
have been made of spinel compositions (e.g. 1-4) and some individual clasts
have been described. We searched the thin section collection in the Curatorial

Facility at JSC for Apollo 14 breccias with polymineralic clasts containing
pleonaste spinel. The collection allows a comprehensive reconnaissance of
the important breccia samples: however breccia sample 14063, known to

contain significant pleonaste spinel, is not well represented in the collection.

Spinel Compositions The pleonaste spinels are intermediate in composition

between spinel and hercynite with significant chromium (Cr203 2.0-10.5 wt.
pct.) and low titanium (TiO2 0-1.5 wt. pct.). Many grains exhibit continuous

zoning (primary zoning (3)) from magnesian cores to darker colored more
iron-rich rims. Continuous symmetrical zoning patterns are consistent with
crystal-liquid fractionation associated with primary growth. If this

interpretation is correct, the pleonaste spinels have retained their primary
compositions despite the complex evolution of the breccias. Superimposed on
the gradational zoning, in some grains, are very dark to opaque outer rims
where the spinel is much richer in Ti and Fe, approaching ulvospinel in
composition. These narrow rims (5-20 microns wide) are a product of reaction
with the matrix. The reaction has also produced, between the dark outer rim

and the matrix, narrow clear coronae of anorthitic plagioclase. Pleonaste
spinels in contact with other phases in polymineralic clasts show no evidence

of this reaction relationship which is present only where the pleonaste is in
_ont_ct with the matrix.
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Polvmineralic Clasts We have examined 15 polymineralic clasts which show

the assemblages spinel + plagioclase (5); spinel + olivine (3); and spinel +
plagioclase + olivine (7). Analyses of the major minerals yield a data set with
no significant differences between mineral compositions in bimineralic
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assemblages and those in three-phase assemblages. The clasts are small and
the data are consistent with comminution of an original three-phase spinel

troctolite assemblage

The spinel-bearing clasts show a range of textures reflecting in part various
deformational histories. Some clasts are themselves breccias: others appear to

retain a primary texture partly obscured by later events that have resulted in

cataclasis or partial recrystallisation. Within this range of textures the
pleonaste spinels appear to be the most resistant to deformation and to
recrystallisation, as evidenced by the persistence of symmetrical zoning
patterns. In one extreme case relict rounded spinel grains occur in a fine-
grained matrix that has, apart from the spinel, totally melted and quenched.
Where original textures are preserved the primary association appears to be of
spinel, plagioclase and olivine in a relatively fine-grained (few hundred
micron) equigranular assemblage with smooth curving grain boundaries and
with growth zoning in the spinel and some of the olivine.

Primary pleonastes show a wide range of Mg/Mg+Fe ratios: the new data
extend the range of primary spinels in polymineralic clasts to much higher
Mg/Mg+Fe values (Figure 1). The accompanying plagioclase is highly calcic
(with one exception) with a restricted compositional range: olivine, occurring

with pleonaste, exhibits a wide and sympathetic range of Mg/Mg+Fe ratios
(Figure 2). Figure 3 shows the variations in composition of olivine and
plagioclase that coexist with spinel. The consistent trends suggest that, if the
spinel compositions are primary as argued above, the compositions of the
coexisting phases have not substantially changed. The polymineralic clasts

represent a possibly cogenetic suite of spinel troctolites where crystal-liquid
fractionation has generated a wide range of Mg/Mg+Fe values with little

complementary change in the Ca/Ca+Na ratio of the feldspar. Comparison with
equivalent values for 'pristine' lunar highland samples (5), however, shows
that the pink spinel troctolites cut across the 'magnesian' and 'ferroan
anorthosite" trends (Figure 3) and therefore could be derived from mixtures of

more primitive components.
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Figure 2: Mg/Mg + Fe in coexisting pleonaste and olivine in breccia clasts
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i._ The rather sparse mineralogical and textural evidence suggests that

the pleonastes and related material derive from a suite of spinel troctolites that
are cumulates from a highly magnesian, aluminous melt. The grain size and

the zoning are more readily explained if these samples represent local
cumulates from relatively small magma pockets, rather than from some large

magma reservoir. The mineral data are consistent with crystal-liquid
fractionation but with relative buffering of the feldspar composition. The

presence of one clast with much more sodic plagioclase (Figure 3) raises the
intriquing but unproven speculation that there may be other troctolite series
e.g. more alkali-rich. In contrast, the data do not fit well with trends
established for 'pristine' lunar highland assemblages and we cannot rule out
the possibility that these are in part hybrid rocks.
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Figure 3: Mg/Mg + Fe in olivine versus An content of plagioclase for
pleonaste-bearing clasts.
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The initial Pb isotopic compositions of the oldest-known lunar rocks are still not well

defined, making it difficult to trace certain aspects of lunar geochemistry between 4.55 Ga and 4.4

Ga. The particular question is the Moon's earliest value for 238U/204pb ('IX'). At some point

during this time interval, the Moon as a whole or its antecedents lost Pb by volatilization and

mineral fractionation, thus acquiring a high Ix relative to the Earth (Silver, 1970; Tatsumoto, 1970).

In addition, Pb loss from the Moon was not uniform: the deep source rocks for mare basalts have

comparatively low It (-30) whereas some of the anorthositic remnants of the oldest lunar crust have

very high measured It, as can be expected for volatile Pb loss from an outer magma ocean.

Direct measurement of lunar initial Pb is especially difficult because of the very low Pb

contents of lunar highland rocks, and in addition, interpretation is complicated by their complex

thermal histories due to meteoritic bombardment. It is known that highly radiogenic Pb was present

in feldspars at ~3.9 Ga (Tera et al., 1974). Was it wholly metamorphic in origin due to isotopic

resetting during a 'terminal cataclysm', or was there radiogenic initial Pb at, say, 4.4 Ga generated

in still older high-ix rocks?

We applied the ion probe to this question primarily in the course of U-Pb age

determinations on lunar zircons. In principle, the precision for U-Pbages by ion probe for old

zircons can be as high as a few million years, but this cannot be realized without reliable knowledge

of the initial Pb isotopic composition. There were internal indications from our first lunar zircon

measurements of a high-It initial Pb at 4.35 Ga (Compston et al., 1984), but the particular zircons,

being rounded grains in breccia, were not relateable texturally to adjacent minerals that might have

enough initial Pb to measure. The later discovery of euhedral zircons that are evidently cogenetic

with Pb-bearing K-feldspars within thin-sections of lunar granophyres (Meyer et al., 1985) made

direct in situ Pb isotope measurements of feldspars by ion probe worthwhile.

Figure 1 shows our Pb isotope measurements for two comparatively young granite

clasts, from soil 12033 and breccia 14321, which crystallized at 3.90 + .01 and 3.96 + .02 Ga

respectively, according to the ages of cogenetic zircons. The ilmenite data, which are successive

scans during analysis of a single spot, merely illustrate the effect of surface-related Pb

contamination, together with our need for cleanable lunar thin-sections. No lunar initial Pb is

present in the ilmenite. Instead, there is terrestrial Pb contamination which is slowly removed as

the sputtered hole in the target deepens, and eventually only radiogenic Pb produced in situ from

the tiny U content of the ilmenite will remain. The K-feldspar analyses from 12033 show similar

but much smaller effects: those having the lowest 208pb/206pb (Fig. 1) are the least contaminated.
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K-feldspars from 14321 contain considerably more Pb than those from 12033 (Table 1) and give

no sign of contamination whatever. None of the feldspars contain detectable U, so that the

measured isotope ratios would not be changed significantly by in situ radiogenic Pb.

Table 1. Relative 206pb contents of lunar feldspars and other minerals

(units are observed counts per 10 seconds)

14303 12033 14321 15405

K-_ldspar 69 74 1450 Si, K-_ldspar 226
188 78 1650 _tergrowth 188
765 514 1175 165
924 590 176
954 23

22

Sulphide 303 Plagioclase 22
85 17

14

Isotopically, the K-feldspar Pb is characterised by high 207pb/206pb and low

204pb/206pb (Fig. 2), both of which require high-It source rocks prior to 3.9 Ga, and by a value

for 208pb/206pb that likewise demands a high-ix source when assigned the average lunar Th/U of

-3.8. For the 14321 clast, two-stage Pb isotope models are numerically possible only if the 1st

stage extends from Canyon Diablo Pb at 4.55 Ga (t 1) to 4.34 Ga (t 2) or later. A comparatively

low-it 1st stage is required, followed by It values exceeding 3200 for all 2nd stage models. If the

1st stage is prolonged further, IXfor both stages must be increased e.g. ift 2 is taken as 4.0 Ga, Itl

becomes 1269 and It2 7389. Similar modelling is possible for the 12033 clast, but t 2 in this case

cannot be older than 4.18 Ga. Extremely high values for ix are required for the 2nd stage: 5.5x104

and greater, a consequence of the extremely low 204pb/206pb measured for the 12033 K-feldspar.

Although there is no sign of technical fault in the 204pb measurement, the 207pb/206pb and

208pb/206pb ratios correlate both with each other and inversely with the count-rate (Table 1)

suggesting terrestrial or meteoritic contamination, which should have produced a much higher

204pb/206pb. It would be prudent therefore to discount the extreme value for the modelled It2 at

present.

Figure 3 shows the Pb isotope ratios for the two older granitic clasts from 14303 and

15405, both of which slightly exceed 4.3 Ga in age on the basis of their zircon ages. As before,

the data broadly indicate the presence of three Pb components: terrestrial or meteoritic common Pb

seen at very low concentration on the mineral surface, 4.3 Ga radiogenic Pb as concentrated in the

zircons, and a highly radiogenic Pb in the feldspar characterised by high 207pb/2°6pb and low

204pb/206pb. The K-feldspar from 14303 contains measureable U and the Pb has been corrected

for dilution by in situ radiogenic Pb by extrapolation to zero UO+/206pb +. This gives 1.54 for

207pb/206pb and 0.0043 for 204pb/206pb. However, there are no possible isotope evolution paths
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between this Pb composition at 4.30 Ga and Canyon Diablo Pb at 4.55 Ga: bigger values for

207pb/206pb at 4.3 Ga are required. If the feldspar is corrected for the assumed presence of

unsupported 4.3 Ga radiogenic Pb, two-stage evolution becomes possible after the corrected

207pb/206pb exceeds -1.62. For this and all higher values of corrected 207pb/206pb, the second

stage will have very high It. Despite its extremely low Pb content (Table 1), the plagioclase from

15405 records very low 204pb/206pb and high 207pb/206pb.

For the 4.3 Ga granites, although radiogenic initial Pb was very likely present in the

magma, it is necessary also to postulate that additional radiogenic Pb (chiefly 206pb) was added to

the feldspars during a later metamorphism. This need not represent isotope 'homogenisation' - the

zircons plainly have not equilibrated - but the loss of a small fraction of radiogenic Pb from zircon

or U-rich minerals, which is then absorbed by the K-feldspar, would be sufficient. Tera and others

(1974) explained similar 207pb/206pb values in many feldspar-rich fragments as due to internal

equilibration, during widespread lunar metamorphism at -3.8 Ga, between U-rich and Pb-rich

minerals that formed originally at 4.4 Ga. No radiogenic initial Pb at 4.4 Ga is required on this

model. Our finding here is that it is not necessary to use their model for the 3.9 Ga granites, and

that a much less drastic and a much younger metamorphism would suffice for the 4.3 Ga granites.

We favour the hypothesis of radiogenic initial Pb at 4.3 Ga, because such Pb is registered by the

internal systematics of 4.3 Ga zircons that appear to be totally preserved. The implication for lunar

history is that there was very early Pb loss from large volumes of the Moon, and later production of

lunar granite from this Pb-depleted material.
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APOLLO 14 PRISTINE MARE GLASSES. J.W. Delano*, S.S. Hughes +, and

R.A. Schmitt +, *Dept. of Geological Sciences, State University of New

York, Albany, NY 12222; +Depts. of Chemistry and Geology and the Radiation

Center, Corvallis, OR 97331.

Six chemical varieties of primary, mantle-derived magma in the form of

pristine (i.e. volcanic) mare glass are presently thought to occur at the

Apollo 14 landing site [i]. They range from low-Ti green glasses to

intermediate-Ti yellow glasses to high-Ti orange glasses to very high-Ti red/

black glasses (Table). In the same way that clasts of crystalline mare basalt

are common occurrences at this highlands site, so to are the pristine mare

glasses observed to be common in most Apollo 14 regolith breccias [2]. In

addition to their abundance, the compositional variety in this suite of

Apollo 14 pristine mare glasses is greater than that found at any other

Apollo or Luna site. Although the causes of this large mare component at the

Apollo 14 highlands site have not yet been determined, detailed spectral

reflectance studies of the Fra Mauro region, comparable to those already

conducted in the vicinity of Apollo 15 [3], would probably give important

information.

Due to crystal/liquid fractlonation during ascent and emplacement, most

crystalline mare basalts do not appear to be samples of primary magmas [e.g.

4]. Studies of Apollo 14 basalts have also shown that crustal assimilation

[5,6] can also significantly alter the composition of a mafic magma during

its rise from the mantle source-region. In contrast, the picritic magmas

represented by the pristine mare glasses seem generally to have escaped the

ravages of crystal/liquid fractionatlon and crustal assimilation by having

ascended rapidly from their source-regions. However, two of the six varieties

of Apollo 14 pristine glass (VLT and red/black) have chemical variations that

are suggestive of fractional assimilation. Most notably, the Apollo 14

red/black glasses display a large range of alkali abundances (wt.% K20 + wt.%

Na20) of 0.25 wt.% to 5.1 wt.%. This latter value is more than a factor of 2

greater than that observed even in the Apollo 14 VHK basalts [5,6]. Although

crustal assimilation is a tempting explanation for these data, there is an

important distinction to be made between these high-Ti glasses and the VHK

basalts. Whereas in the VHK basalts, Na and K are decoupled from one another

and are thereby consistent with experimental models of magma contamination

[7,8], the high-Ti glasses show an apparent covariance between Na and K.

Figure la shows that the 43 samples of Apollo 14 red/black glass define a

strong linear trend toward the alkali corner of the ternary diagram with

little-if-any change in the Ca/A1 ratio. Figure Ib demonstrates that this

alkali enrichment also causes essentially no change in the Ca/Mg/Ti ratio

among the 43 samples. At present, the cause of this feature is unknown but

under investigation.

Figure 2 shows an interesting relationship between FeO and Sc in the mare

basalts and pristine mare glasses. Laul and Schmitt [9] were the first to

note that a significant correlation existed among lunar samples between iron

and scandium. Since then, a lunar FeO/Sc ratio of 5400 has become entrenched

in the literature [I0]. This value seems applicable to (a) all analyzed

pristine glasses (regardless of titanium abundance) and (b) most low-Ti mare

basaits f_om Apollo 12, Apollo 15, and Luna 24. However, about an equal

number of mare magmas lie prominently off that ratio including: (a) Apollo 14

low-Ti groups 1-5 basalts [II]; (b) Apollo 17 VLT basalt [12]; (c) Apollo II
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high-Ti basalts [13]; (d) Apollo 17 high-Ti basalts; and (e) Apollo 12

feldspathic basalts. Contrary to an early view [14] that the high-Sc trend

was occupied exclusively by high-Ti basalts, it is now obvious from the

Apollo 14 data that the two trends in Figure 2 are essentially independent of

Ti since both contain a wide spectrum of basalt compositions. Since

experimental petrology suggests that olivine + low-Ca pyroxene were the sole

residual phases in most, if not all, of the source-regions for these magmas,

the bulk partition coefficients for Feo and Sc during partial melting are

likely to have been near unity. If so, then the diachotomy evident in Figure

2 was inherited from the mantle-source regions. Perhaps this can result

naturally from a scenario involving three ancient differentiated components

[15] of a primordial lunar magma ocean: (a) early olivine ± orthopyroxene

cumulates; (b) late-stage clinopyroxene + pigeonite + ilmenite + plagioclase

cumulates; and (c) late-stage intercumulus liquid. It is of additional

interest to note that a single landing site (e.g. Apollo 14; Apollo 17) can

possess a suite of mare rocks and glasses where both FeO/Sc reservoirs are

represented.
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Table. Six varieties of Apollo 14 pristine mare glass.

(Asterisk indicates INAA data. All other values by electron microprobe)

(weight %) GREEN A GREEN B VLT YELLOW ORANGE RED/BLACK

SiO

TiO 2

A1 8
Cr203

Fe_ 3

MnO

MgO

CaO

Na 0

K8
2

(ppm)

Ni

Sc

V

Co

La

Ce

Nd

Sm

Eu

Dy
Ho

Yb

LU

Hf

T(°C)

44.1 44.8 46.0

0.97 0.45 0.55

6.71 7.14 9.30

0.49 * 0.54 0.51 *

23.1 19.8 18.2

0.35 * 0.24 0.26 *

16.6 19.1 15.9

7.94 8.03 9.24

0.18 * 0.06 0.29 *

0.05 * 0.03 0.II *

40.8

4.58

6.16

0.41

24 7

0 30

14 8

7 74

0 42

0 I0

37.2 34.0

12.5 16.4

5.69 4.6

0.86 0.92

22.2 24.5

0.31 0.31

14.5 13.3

7.04 6.9

0.28 0.23

0.29 0.16

115

38± i*

210 ± 30 *

68±10"

7± I*

27 ± 15 *

49±.2*

08±.3"

68±.5*

15±.3"

22±.5*

06±.3*

185 125 82

36±1"

170 ± 8 *

58±2*

12±1"

31±5"

22±4*

7.0± .2*

0.48 ± .07 *

9±1"

2.0 ± .2 *

4.9 ± .3 *

0.7 _+ .2 *

8.0 _+ 1.2 *

30 < 22

Estimated liquidus temperatures (± 10°C) at zero-pressure

1405 1440 1375 1375 1355 1330
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GEOLOGIC AND BOMBARDMENT HISTORY OF THE APOLLO 14 REGION. B.

Ray Hawke, Planetary Geosciences Division, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HI
96822.

INTRODUCTION

A major objective of the Apollo 14 Mission was to sample material comprising the Fra Mauro Formation, a
distinctive ridged and furrowed unit surrounding the Imbrium basin.l,2 The Fra Mauro Formation has been

interpreted to be a portion of the ejecta blanket deposited during the impact formation of the lmbrium
basin.l,2,3,4,5,6 Major controversy has centered on questions concerning the mode of emplacement of the Fra
Mauro Formation, the provenance of materials with the unit, and the sources of the range of thermal effects
exhibited by the returned samples. Early studies interpreted the major characteristics of the geology and
petrology of the site in terms of the deposition of a blanket of Imbrium primary ejecta which largely originated from
the area of the Imbrium crater and which was emptaced in a mode in which thermal metamorphism played a
significant role.7,8,9 The range of thermal effects observed in the Apollo 14 sample collection was attributed to
autometamorphism in a hot, thick ejecta blanket. More recently, Hawke and Head2,10,11,12,13 presented the
results of a series of investigations cf the processes and events dominating the history of the Apollo 14 region. It
was concluded that the Fra Mauro Formation was formed by a process which included the erosion and excavation
of local pre-lmbrian material by filaments of Imbrium primary ejecta and the mixing of this Imbrium ejecta with local
crater deposits, to produce an ejecta blanket dominated by locally derived material. Similar conclusions were
reached by other workers, based on laboratory cralering experiments, photogeologic analysis, studies of
terrestrial craters, and lunar sample studies. 20,2t ,22,23,24,25,39,40 In recent years, this interpretation has been
challenged by Wilhelms and co-workers.5, 45

The history of the Apollo 14 region can be subdivided into three time intervals: Phase I (prior to the
formation of the Imbrium basin; pre-lmbrian time); Phase II (the very short period of time associated with the
formation of the Imbrium basin; earliest Imbrian time); and Phase III (the time period subsequent to basin formation
and ejecta deposition; post-lmbrium events; Imbrian, Eratosthenian, and Copernican time). The purpose of this
paper is to identify the events and processes associated with these three time periods and to assess their relative
importance in the Fra Mauro region in terms of the provenance and mode of emplacement of the Fra Mauro

Formation and the origin of the Apollo 14 samples.

REGIONAL GEOLOGIC SETTING

The Apollo 14 landing site is located on an elevated north-south trending expanse of highlands terrain
surrounded by regional topographic lows. The site is located approximately 1230 km south of the center of the
Imbrium basin, about 550 km south of the main basin ring (Montes Carpatus), and about 750 km south of the
estimated rim of the lmbrium transient crater cavity 2,10,14 The geology of the region has been mapped by
Eggleton3,15,16 Offieldl7, Wilhelms and McCauley18, and Hawke and Head.2,10 The local site geology has been
summarized by Swann _. 1,6,19 an"J Head and Hawke. 2 The Apollo 14 LM landed near the outer edge of the Fra
Mauro Formation. In this area, the formation grades southward from a ridged deposit to a complexly cratered
one.6,19 Ridges, the most characteristic feature of the formation, in the vicinity of the landing site are generally 1
to 4 km wide, a few to several tens of meters high, and five to ten times as long as they are wide. I9 These ridges
are slightly sinuous and roughly radial and subradial to the Imbrium basin. Locally, somewhat flatter areas,
typically measuring a few kilometers across, exhibit slightly lower albedos than those of the ridges.

The major geologic objectives of the mission were to describe, photograph, and sample the ejecta deposit of
Cone crater, a 370-m-diameter impact structure situated on one of the ridges of the Fra Mauro Formation. This
ridge is 50-100 m high. 63 Cone crater is 60-70 m deep and penetrates below the fine-grained lunar regolith into a
blocky substrate. 5 The regolith thickness at the landing site was estimated to vary from 5 to 12 m based on
observations of small craters in the area.5,16,17 The active-seismic data indicate a regolith thickness of 8.5
m64,65

IMPACT HISTORY OF THE FRA MAURO REGION

Phase I - This period of lunar history is defined as the time prior to the formation of the Imbrium basin and the
emplacement of the Fra Mauro Formation (i.e., pre-lmbrian time).2,4 The emplacement of the Fra Mauro Formation

considerably altered the underlying terrain by erosion and burial. However, detailed studies of the region have
provided considerable information or, the characteristics el the pre-lmbrian topography and geology.2,10,11

Phase I time can be divided ir.io three subdivisions (IA, IB, and IC) on the basis of the inferred relative ages

of the pre-lmbrian impact structures. The earliest events occurred during Phase tA. The first recognizable impact
event to have influenced the Apollo 14 region may have been the formation of Procellarum or Gargantuan basin.

Cadogan26 first proposed the existence of this basin, which he called Gargantuan, to explain the lunar
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nearside-farside asymmetry and the localization of KREEP-rich material in the Oceanus Procellarum-Mare Imbrium
region. He described Gargantuan as being centered at 23ON, 29ow and having a diameter of 2400 km, and
suggested an age of > 4.3 b.y. Whitaker27 and Wilhelms5 described a very large (diameter = 3200 km) multi-ringed
basin, which they called Procellarum, in the same region. If this basin exists, it would be the largest and probably
the oldest recognizable impact structure on the Moon. The Apollo 14 site lies well within the rim of this proposed
structure. An impact with sufficient energy to produce Procellarum basin must have had a profound effect on the
lunar lithosphere in terms of the amounts of material melted, brecciated, fractured, and excavated. However, it
should be noted that the existence of the basin has not been firmly established and it continues to be the source of

a major lunar controversy. Hawke and Head10 .presented arguments against the Gargantuan basin model
presented by Cadogan 26 and Schultz and Spudis 2_raised major objections to the proposed Procellarum basin.

In addition to Procellarum, three other very old basins are close enough to have affected the Fra Mauro
region during Phase IA time. These are (1) Insularum basin (South Imbrium basin10), (2) Flamsteed-Billy basin
(South Procellarum basin10), and (3) Nubium basin. The relative ages of the three impact structures are uncertain.
Wilshire and Jackson7 indicated that Insularum basin formed first, followed by Nubium, and finally by
Flamsteed-Billy. Alternatively, Wilhelms 5 suggested that Nubium basin formed after Flamsteed-Billy.

Insularum is possibly the largest and oldest of the three post-Procellarum, Phase IA basins and may have
played an important role in the early evolution of the Fra Mauro region.10,11 The basin is centered near Copericus

crater and its presence is inferred from a circular and concentric series of topographically high terra remnants
surrounding a regional low which has subsequently been flooded by mare basalt.2,10,29 Two partial rings have
been identified by Wilhelms and McCauley.18 The Apollo 14 site is located about 118 km south of the inner ring
which is ~600 km in diameter and the site is just north of the 940-km-diameter outer ring. The site occupies a
position with respect to Insularum that is roughly analogous to that of the Apollo 15 site with regard to Imbrium. 10
Ejecta thickness calculations30 indicate that Insularum basin may have contributed ~580m of material to the
Apollo 14 site. 10 Insularum ejecta at the Apollo 14 site was likely to have been emplaced as a unit consisting

primarily of weakly shocked crustal material derived from depths generally in excess of 10 km. However, a thin
layer of Insularum impact melt may have been emplaced on top of this weakly shocked material.

The Flamsteed-Billy basin !ies west of the Fra Mauro region in the southern part of Oceanus
Procellarum.5,18,31 There is less evidence for the existence of this structure than for lnsularum ol" Nubium.

McCauley31 noted that this vague, multi-ringed structure appeared to control the irregular shoreline of Oceanus
Procellarum and to explain the alternating structural highs and lows in the vicinity of the craters Hansteen and Billy.
The outermost recognizable ring _s almost 700 km in diameter as opposed to an inner ring diameter of
approximately 450 km. 10 If the inner ring represents the transient crater cavity, this basin could have contributed
~40 m of ejecta to the Apollo 14 site. Compared with Insularum ejecta, the material deposited by the
Flamsteed-Billy basin was derived from shallower depths within the crust, suffered more extensive shock damage,
and mixed more extensively with local material during deposition. 10

Nubium basin has traditionally been described as a single 750-km-diameter impact structure centered at
19os, 17ow. 18,32 However, studies by De Hon33, Hawke and Head10 and Hartmann and Wood34 indicated that
the Nubium basin is actually composed of a series of overlapping impact structures. Hartmann and Wood34
described a west Nubium basin defined by two rings that are 195 km and 425 km in diameter and centered at
23.5os; 22ow. De Hon33 suggested that a third basin, about 380 km in diameter, is centered at 14os; 12ow.

However, a series of large craters in the same general area better account for the observed topographic
relations.10,11 The east and west Nubium impact events could have delivered -70 and ~50 m of ejecta,
respectively, to the Apollo 14 site. 10

A number of very large craters have been mapped in the region surrounding the Apollo 14 landing
site.2,10,11,35 Superposition relationships show that these Phase IB craters formed after the basins of Phase IA

but before such relatively undergraded craters as Bonpland, Parry, and Fra Mauro. The area west of the landing
site contains at least five Phase IB impact structures which appear to have been important in the history of the Fra
Mauro region because of their size, proximity, and relative age.10 Of these, the 135 km "northwest" crater was
calculated to have delivered the greatest thickness of ejecta (~210 m) to the Apollo 14 site and is among the oldest
features which formed during Phase iB.lO, 35 The landing site is only about 25 km (0.37 R where R = crater radius)
from the rim crest of "northwest" crater and the bulk of ejecta should consist of relatively unshocked crustal
material excavated from depths not greater than 10-15 kin. It is likely that impact melt deposits, derived largely
from the upper portion of the "northwest" crater target site, were emplaced in the area of the landing site. Later
impacts on or near "northwest" crater could have excavated and ejected solidified melt rock to the Apollo 14 site.
For example, "big west" crater is superposed on "northwest" crater 35, and this later impact event contributed 80 m
of material to the Apollo 14 pre-lmbrian section.10 Detailed maps presented by Hawke and Head 10,11 showed that
many Phase I craters in the Fra Mauro region are superposed on pre-existing impact structures and therefore must
have ejected deposits related to the older structures: It is clear that much of the material delivered to the Apollo 14
site has probably been involved in one or more previous impact events.
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Phase IC is defined as the time after the formation of the large Phase IB craters but prior to the Imbrium

impact event. Most of the craters that formed during Phase IC time are realtively small and contributed only minor
amounts of ejecta, largely of near-surface origin, to the Apollo 14 area. While the larger, nearby Phase IC craters
such as "central" and "northwest A" did deliver significant thicknesses of ejecta (-60 m), it is clear that Phase IC
deposits are dominated by the contributions of Fra Mauro and "site" craters. Fra Mauro crater, about 95 km in
diameter, lies only 22 km south of the landing site and could have contributed 130 m of ejecta, the bulk of which
was probably subjected to only low shock pressures. However, some shock-melted material may have been

emplaced on top o! the weakly shocked bulk ejecta deposit. The Cone crater target site was near the inferred rim
crest of the 25 km site" crater.2,10 Calculations indicate that -150 m of material excavated from depths up to 2-3

km and deposited on the rim of "site" crater. The relative "youth" and proximity of "site" crater strongly suggest that
its deposits dominated the Apollo 14 site just prior to the Imbrium event.

Phase I! - Phase II history involves the formation of the Imbrium basin and the emplacement of the Fra
Mauro Formation. Pro-mission studies indicated the Fra Mauro Formation was a portion of the Imbrium ejecta

blanket and was composed of material derived from the Imbrium target site.e.g - 4,16,17 The results of early

sample studies were thought to be consistent with a primary ejecta origin and the range of thermal effects in the
samples was attributed to autometamorphism in an ejecta deposit emplaced in a "hot" mode.7,8, 9 However, some
workers disagreed with this interpretation.36, 37 While they considered the Fra Mauro formation to be composed of
Imbrium primary ejecta, they indicated that the deposit was emplaced in a "cold" mode and that the thermal effects
were caused by pre-lmbrian impact events in the Imbrium target area.

Later, Oberbeck and co-workers 20,21,22,23,24 pointed out the importance of secondary cratering in the

formation of impact crater and basin deposits. Their studies demonstrated that the impact of ballistically
transported primary ejecta excavates considerable volumes of underlying local material (secondary crater ejecta)
and incorporates this material into an ejecta deposit. The resulting mixture of primary ejecta and local material
moves radially away from the parent crater or basin as a surface flow or debris surge.

The Apollo 14 site lies at a range of about 1.5 crater radii from the approximate rim of the Imbrium transient

crater cavity (R = 485 km). 4, 30 At an analogous distance from the rim of the Orientale transient crater, Head and
Hawke 2 identified and mapped well-developed crater chains. At this range, pre-Orientale cratered topography is
more easily seen, but shows evidence of having been heavily cratered and eroded by secondary chains. The

deposits at the 1.5 crater radii are transitional in nature between the hummocky topography of the textured ejecta
unit, and the outer regions where underlying topography is more apparent. Examination of oblique Apollo and low
sun earth-based photography of the Fra Mauro region by Head and Hawke 2 revealed the presence of a large
number of secondary crater chains and clusters that are radial and subradial to the Imbrium basin. Some of these
Imbrium secondary craters had previously been mapped by Eggleton.16 Crater chains in this region attributed to
the impact of Imbrium ejecta range from about 1/2 to 12 km in width and range up to tens of kilometers in length.
The results of calculations presented by Morrison and Oberbeck 23 and Hawke and Head 38 indicate that at the

radial range from Imbrium typical of the Apollo 14 site area, over 70% of the deposit which resulted from the impact
of Imbrium secondary-forming projectiles was composed of locally-derived material. In the area of the landing site,
the Imbrium secondary craters are about 1-2 km in diameter, which would imply the presence of 15-20% Imbrium
primary ejecta.38 Head and Hawke2,10 concluded that the Phase I1 history of the Apollo 14 region involved the
impact of filaments of Imbrium primary ejecta, the excavation and mixing of large volumes of local Phase I crater
materials, and the incorporation of these two components into an ejecta deposit, the Fra Mauro Formation, which

was sampled by the Apollo 14 mission.
In recent years, the local-mixing (secondary-impact) hypothesis has been under increasing criticism by

several workers. Based on the results of clustered impact experiments. Schultz and co-workers 41,42,43,44 have

concluded that clustered impacts significantly affect crater morphology and reduce cratering efficiency. If the

ejecta curtain around large impacts is viewed as a thick wall of debris and clustered impactors are viewed as a unit
section of such a curtain, then the e_perimental results of Schultz and Gautt 41 indicate that the continuous ejecta

facies of large lunar impact structures could contain a much larger percentage of primary material.
In addition, Wilhelms and co-workers 5,45 have raised objections to the local-mixing hypothesis. They

maintain that the topography of the landing-site region is dominated by ridges formed by the flow of a thick deposit
that has obscured the secondary craters and that this flow originated either at the basin rim or at secondary-impact
sites much closer to the basin than its present resting place. They also pointed out that local-mixing equations

developed by Oberbeck and co-workers 23,24 are model-dependent and they questioned many of the input

parameters. Finally, they presented evidence for the presence of abundant melt in basin-ejecta deposits. If
lmbrium impact melt was a major component a component of the Fra mauro Formation at the Apollo 14 site, this melt
could have been responsible for the thermal effects in many of the Apollo 14 samples as well as the 3.82-3.84 b.y.

age cluster in the returned samples. 5,46,47
Other workers have presented evidence from a variety of sources which supports the local-mixing
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hypothesis. Detailed investigations of the continuous ejecta deposit of the Reis impact structure by Horz and
co-workers25,58,59,60, 61 conclusively demonstrated the importance of local mixing in producing this unit. The
result of sample geochemistry studies by Warren and Taylor48, 49 provided evidence that basin-forming impacts
were not very effective at transporting large amounts of primary ejecta far across the lunar surface. Numerous
sample workers have presented the results of geochemical and petrologic studies which indicate that multiple

impact events are required to explain the characteristics of many of the complex Fra Mauro multibreccias.e.g.
39,40,50,51,52,53,54,55 There appears to be little sample evidence for abundant Imbrium impact melt.56

The evidence for multiple impact strongly suggests evolution in the upper portion of the lunar crust. The
impact histories of the Apollo 14 samples are inconsistent with an origin as Imbrium ejecta excavated from some
deep crustal or subcrustal layer postulated to have been present beneath the Imbrium target site.12 Since the
Apollo 14 breccias and melt rocks appear to have evolved in the uppermost part of the crust, their compositions

require the near-surface portions of the target sites of the pre-lmbrian craters to have contained large amounts of
material of KREEP composition. The assembly diagrams and intrabreccia stratigraphies of such intensively
studied samples as 14321 and 14064 have suggested formation by impact into KREEP-rich terrain overlying
ANT-rich crustal material. 12,50,51,57 Hawke and Head 10,11,12 presented a wide variety of remote sensing and

photogeologic evidence for pre-lmbrian KREEP volcanism in the Fra Mauro region and proposed that the Apollo 14
samples represent the products of extensive impact reworking of these surface accumulations of KREEP basalt.

Currently, the local-mixing (secondary-impact) model for the Fra Mauro Formation at the Apollo 14 landing
site is widely accepted.5 However, i'. should be noted that this is still an open question. Reasonable alternatives
to the local-origin model have been proposed by Wilhelms and co-workers.5, 45 Additional sample, remote sensing,
and geologic studies will be required to resolve this critical issue. 69

The thickness of the Fra Mauro Formation at the landing site has also been the subject of controversy.
Early thickness estimates, based on regional photogeologic studies, were as high as 500 m. 62 The ridge east of
the landing site is 50 to 100 m high.6,63. Eggleton16 and Offieldl7 interpreted this ridge as one of a group that is
characteristic of the Fra Mauro Formation and estimated a Fra Mauro thickness of 100 to 200 m on the basis of

ridge relief. 5 The results of the Apollo 14 active-seismic experiment indicated the presence of a 19-to-76-m-thick
bedrock unit with a seismic velocity of 299 m/s beneath 8.5 meters of regolith.64, 65 Many lunar scientists have
interpreted this bedrock unit to represent the Fra Mauro Formation.5,64,65, 66 However, a few workers16,17

maintain that the material beneath this bedrock layer is also a part of the Fra Mauro Formation.
Phase III - Subsequent to the formation of the Imbrium basin and the emplacement of the Fra Mauro

Formation, the surface deposits at the Apollo 14 site continued to undergo bombardment and additional small
primary and secondary craters were formed, although the major pre-existing topographic features were not
destroyed. A number of post-lmbrium, Phase Ill craters in the 102-103-km diameter range have been mapped at
the Apollo 14 landing site.2,17 Although these Phase III craters did not drastically alter the radial ridge pattern,
they did locally modify the surface and often obscure the effects of Imbrium secondary chains and ridges. For
example, it has not previously been recognized that the valley in which the Apollo 14 LM landed is actually an
Imbrium secondary chain.

Four Phase Ill craters mapped by Offield 17 and Head and Hawke 2 were of significance in producing the
near-surface stratigraphy in the Cons; crater target area and range from 230 to 1000 m in diameter., Cone crater
lies on a ridge crest near the rims of the three largest craters. A total ejecta contribution of ~15 m could be
expected from these craters at the Cone crater target site.2 Very minor contributions from other small, local Phase
III craters and rays from distant craters would also be expected.

Schonfeld and Meyer67 suggested that the" layered stratigraphy" at the Cone crater targe site (inferred from
sample distribution relative to Cone crater7,67) was due to the deposits of Phase III craters. More recent work has
provided some support for this suggestion. Even though Cone crater is 60-70 m deep, laboratory impact
experiments conducted by Stoffler et al.68 indicated that the Cone crater maximum excavation depth was ~32m.

Hence, it appears that the ~15 m of Phase tll crater ejecta comprised almost 50% of the section excavated by
Cone crater. Based on the estimated depths of excavation of these Phase III craters2, at least some pre-lmbrian
(i.e., pre-Fra Mauro) material could have been present in this 15-m-thick deposit. In addition, this surface material

had probably been subjected to considerable impact reworking prior to the formation of Cone crater.
The ridge penetrated by Cone crater is the rim of the pre-lmbrian "site" crater. Since the thickness of the Fra

Mauro Formation appears to be extremely variable at the landing site5,64,65,66 and it might be expected to be
particularly thin in the vicinity of the topographic infliction associated with the "site" crater rim crest,it is possible,
though not likely5, that Cone penetrated the Fra Mauro Formation and excavated pre-Fra Mauro material.

CONCLUSIONS

(1) The Apollo 14 site is situated on an isolated uplands area and is surrounded by a number of major Phase I
impact structures that contributed ejecta to the landing site. Calculations indicate that a total ejecta
thickness of over 1700 m coul_ have accumulated in the area of the ridge on which Cone crater later formed.

41
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(2)

(3)

(4)

(5)

1.

2.

3.

4.

5.

6.

7,

8.

9.

The majority (53%) of the ejecta in the pre-lmbrian section at the Apollo 14 site just prior to the Imbrium
event was contributed by the numerous Phase IB and IC craters in the vicinity and not by the lunar basins.

If only the uppermost 1 km is considered, the deposits are > 90% local crater ejecta.

The landing site lies close enough to the rim crests of four of the Phase I craters to have received significant
amounts of impact melt generated by their formation. Much of the material deposited at the landing site had

probably been affected be one or more previous impact events.

The deposits of the Phase I cratering events were excavated by the impact of filaments of Imbrium primary
ejecta. This primary ejecta mixed with local, pre-lmbdan material to form the Fra Mauro Formation which was
excavated by Cone crater and sampled by the Apollo 14 astronauts.

The Phase II1 craters excavated and mixed the surface of the Fra Mauro Formation without radically

changing the characteristic surface topography or the major characteristics of the bulk of the samples.
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tiiGHLY EVOLVED LIQUIDS FRCbM TIIE FRACTIONATION OF MARE
AND NONMARE BASALTS. PC Hess, Department of Geological Sciences, Brown
University, Providence, RI 02912

Liquids of relatively low Mg values probably were present in the earliest period

of' lunar history. For example, mineral compositions of ferroan anorthosites indicate that

parerit'liquids had Mg values less than 0.4 (1), whereas the hypothesized KREEP residuum

of ttie "inagma ocean" must have had even lower Mg values. Unfortunately, the composi-

tion of residuum can only be guessed, since the KREEP component has probably interacted

with more primitive materials to give rise to KREEP basalts and some members of the Mg-

suite of plutonic rocks. The only samples of highly evolved magmas are the few samples of

lunar granite whose origin is also controversiai (2,3,4). The most important unknown is

the sequence of liqfiids that were produced by very ad_,anced stages of crystal fractionation

of not only the magma ocean but also of mare and nonmare magmas within high level

plutons of the lunar crust.

Low pressure fractional crystallization paths of mare and nonmare lunar basalts

are controlled by the crystallization of olivine, pyroxenes, calcic plagioclase and, for some

liquids, the iron oxide ilmenite. In contrast to terrestrial equivalents, the range of primitive

magma compositions is somewhat limited in the lunar case. Nevertheless, the liquid lines of

descent of lunar magmas, particularly those obtained after very advanced stages of crystal-

lization, are not fully understood since they are very sensitive to slight changes in the parent

liquid composition and the conditions of crystallization. The origin of multiple differentia-

lion paths for low alkali basaltic liquids is not unique to the moon but is a major poblen-t

that confronts terrestrial petrologists. Bowen (5) long ago proposed that fractionation of Fe,

Mg silicates and plagioclase produce liquids characterized by increases it', SiO2,Na20 and

KsO and decreases in MgO,FeO and CaO. The volcanic rock associations produced by this

type of fractionation include basalts, andesites, dacites and rhyolites - a series characterized

by a continuum of volcanic liquids from low to higl-t SiO2 (6,7). Soon after Bowen's ideas

were advanced, Fenner (8) found that the crystallization of Fe, Mg silicates and plagioclase

sometimes produced a trend of increasing FeO and relatively constant SiOz over a large

range of fracfionation. These paths may" suddenly produce rhyolites through the onset of

silicate liquid immiscibility (2,9,10,11). In other cases, there exist a continuum of slates

between the Bowen and Fenner trends. For example, the liquids produced by the crystal-

lization of mid-ocean basalts along the Galapagos rift initially follow the Fenner trend, but

the,_ switch to the 13owen trend after about 70% of crystallization (12). The question,

then. is to establish which liquid paths exist in the moon and to determine the major ele-

ment composition of the highly evolved Iiquids which may be a component of or the precur-

sors to KREEP basalts.

[_.iquidus equilibria in the CaAl2Si2Os-Mg2SiO4-SiOs-CaSiOa provide the

framework to analyze the phase equilibria of lunar basalts. Consider the relatively CaSiO3-

poor cotectic liquids (Fig. 1) which produce first troctotites and /hen norites, as observed in

the Mg-plutonicsuite. The liquids become enriched inSiO2but depleledin MgO, CaOand

AI2Oo un(ii silica-saturation is obtained . Crystallization of silica, however, halts the in-

crea._e |n SiO2 content and liquids at the quartel:ary eulectic conlaining silica, anorthite,

didpside and low CaO-pyroxene have about 62.5% SiO2 (13).

Adding F%SiO, to the CaA12Si20_-MgeSiO4-SiO2 system has the effect of shift-

ing the low CaO-pyroxene-silica boundary curve away from SiO2 wilh decreasing Mg value

(t, 14,15). At Mg values { o. i6, the low CaO-pyroxene liquidus is eliminated and a silica,

==
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iron-rich olivine and anorthite euctectic between silica, iron rich olivine, and anorthite

(Fig. 2) is formed (l). The lowering of Mg values has the effect of expanding the silica

saturation field and of the limiting SiO2 content of residual liquids. For example, liquids

with Mg values of 0.4 and saturated with silica, pigeonite and calcic plagioclase have SiO2

contents of about 53%, whereas those with lower Mg values have still lower SiO2 contents

(1). Thus, the trend towards SiO2 enrichment obtained in the Fee-free system is largely

reversed as Mg values decrease in tile residual liquids; the Bowen trend established at high

Mg values is gradually replaced by the Fenner trend at lower Mg-values.

A more complete analysis must consider the role of normative albite, orthoclase

and particularly ilmenite in the advanced stages of crystallization. The low Na20-content of

lunar rocks allows us to largely ignore the role of normative albite (see, however, 1). The

K20 content, however, increases dramatically in residual liquids and has a more significant

role during the advanced stages of crystallization. Irvine (14) has shown that the saturation

surface for silica contracts with increases in normative Or, giving rise to liquids that are

more SiO2-rich than comparable K20-poor liquids. Increasing normative Or opposes the

effect that decreasing Mg values have on the SiO2 contents of silica saturated Iiquids. Thus,

lhe path towards SiO2 enriched liquids will depend sensitively on the initial Mg values and

K20 content of the primitive liquids.

The normative FeTiO3 contents has two important but opposing roles. Adding

Tie2 increases the activity of SiO2 and displaces the silica saturation surface to lower SiO2

contents (16, 17). ttowever, the cry_;tailization or ilmenite increases the SiO2 content,

moderates the decrease in Mg values and reduces the Tie2 content of residual liquids (18).

In KREEP basal]s, the crystallization of ihnenite, pyroxene and plagioclase may produce

SiO2-enriched liquids, which depending on the initial K20 content, may approach the com-

position of lunar granites. On the other hand, TiO2-enriched KREEP liquids undersaturated

with respect to ilmenite will not undergo SiO2 enrichment and will produce granites by sili-

cate liquid immiscibility (18).

Let's consider now the low pressure liquid lines of descent of mare basalt. Hi Ti

mare basalts are characterized by the early appearance of ihnenite (and ulvospinel) followed

by olivine, calcic clinopyroxene and plagioclase, the exact order beirtg controlled by the

composition of the basalt. The residual liquids are enriched in SiO2 (but onlyto about 50%

SiO2), KzO and P205 but depleted in "Fie2, MgO and to lessor degrees CaO (2, 9). After

about 80% crystallization, the liquids are similar to low Ti mare basalt, except for the low

AI2Oa and CaO and higher contents of incompatible elernents (e.g., K, P) (Table 1). In

contrast, the low Ti mare basalts have olivine as an early liquidus phase and ilmenite as a

near solidus phase (19). The residual liquids (*Fable 1)generallyare poorer in SiO2, A1203,

CaO and MgO, but enriched in Fee and incompatible elements (2, 19). The TiO2 content
first increases and then decreases after ilmenite joins olivine, CaO-clinopyroxene and

plagioclase (see also 10).

Residual liquids to both taigh and low Ti mare basalts are ferrobasalts which on

further cooling become unstable, producing lunar granites by silicate liquid immiscibility (2,

9). The low SiO2, low Mg values and very low alkali oxide contents of the mare basalts

explain why siliceous liquids were not obtained and silicate liquid immiscibility intervened at

low temperatures.
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KREEP h_.lts contain more SiOz, higher Mg values and several times the K20

content of normal mare basalt. These parameters create a condition more favorable for the

establishment of the Bowen trend. Experirnental results (Table 1) for KREEP basalt 15382,

however, yield liquids with higher FeO contents and with no SiOz enrichment (18). These

liquids become immiscible at 10350 C. A similar liquid line of descent terminated by the

onset of silicate liquid [mmiscibifity was established for KREEP basalt 14310 (18). Al-

though the iiquid path of these KREEP basalts characterize the Fenner trend, only small

changes in some of the compositional parameters are needed to cross over to a SiO2-enrich-

rfie'n{ fiend.

Similar experiments were performed on the 15386 KREEP basalt bulk composi-

tion at pressures from 1 bar to 5 kb (20). The bulk composition contains about 20% more

TiO2 than KI_EEP basalt 15382. This small difference is important because it induces il-

menite to crystallize at higher temperatures and higher Mg values. The liquids produced

follow the Fenner trend up to iimenite crystallization but then become SiO2 enriched at

lower temperatures. The liquids produced at about 1080 (Table 1) bear a remarkable

resemblance [o some quartz monzodiorite clasts in Apollo 15 and 17 breccias (4, 21). Note

{ha{ both the natural and experimental liquids have high PeO_ values since phosphate frac-

tidnation is not expected at these temperatures and compositions (see below _ Results paral-

lel to these were obtained for a LKFM composition that contained more lean twice the TiO2

content of KI_,EEP basalts at comparable stages of differentiation (22). However, the result-

ing SiO2-enriched liquids were considerably more iron-rich than those obtained from
KI_E]_][ _ basalts and do not match the QMD bulk compositions.

It should be emphasized that ilmenite crystallization by itself does not guarantee

that the residual liquids will fractionate to high SiO2 compositions. Clearly, both low and

high mare liquids become ilmenite saturated, as do the late stage liquids of 15382 and

_i43i0. Yet in all these cases, siliceous liquids are produced only after the onset of silicate

liquid _mmiscibility. Moreover, even the SiO2 enriched liquids as found in the 15386 ex-

periments may not progress continually towards granitic compositions. Experiments indicate

that the volume of the two liquid field is increased dramatically at pres_rres up to 5 kb (23).

Thus, a greater range of liquid lines of descent may be terminated by silicate liquid immis-

cibility at high pressures than at low pre._._ures. More experiments, however, are sorely

needed to test this hypothesis.

%Vhat, ttien, can be said of the nature of the residual liquids of a lunar wide

differentiation? Warren (24) estimates that the final residuum of the magma ocean should

be enriched in incompatible elements by a factor of about 200 - 300 over the bulk moon. If

this estimate i._ even nearly ce, trect, il is clear that Mg values of these liquids were extremely

low and that ilmenite ,saturation musl have occurred after about 90 - 95% crystallization. In

fact, Longhi (25, 26) finds that after about 97% fractional crystallization of various ex-

amples of possible whole moon compositions, the liquid remaining is a ferrobasalt with low

SiO2, high 'i'i(}2, iow A1202 contents and still very low K20 (Table 2). The fractionation

path of this iiqtlid would be sin-tilar to those obtained for mare basalls, except that the KzO
contents are below those of mare residual liquids at equivalent Mg values. This difference is

significant because silicate liquid immiscibilily would be delayed until K20 contenls were

doubicd or Iripled. Nevertheless, these results argue that the residuum to the magma ocean

was that of a ferrobasait composition which may have produced small volumes of immiscible
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granitic liquids. It is not likely, however, that the granite-porlion of the immiscible liquid

pair was a major factor in the creation of the KREEP component(s). (See below).

A ferrobasaltic residuum has certain features that make it an attractive candidate for the

pristine KREEP liquid. The TiO2 content would be determined by the ilmenite saturation
surface at 3-4 kilobars and 1000-1100 ° C. Such liquids would contain 2-3% TiO2 (18,20)

depending on the temperature and bulk composition. Such high TiO2 contents are in con-

cert with the relatively high TiO2 contents of KREEP basalts. The low Ti/Sm ratios of

KREEP-contaminated rocks are also consistent with the previous fractionation of ilmenite.

Ferrobasalts can dissolve n:ore than 4% P20_ for temperatures above 1000 ° C without having

whitlockite or apatitie on the liquidus (27, 28). This is consistent with the "unfractionated"

K/P lunar ratio of KREEP (29) and the characteristic KREEP REE pattern. Phosphate

fractionation would lower the KIP ratio and deplete the rniddle REE to create the typical

wing-shaped REE pattern of lunar granites (30, 31, 3). Similarly, zircon saturation in fer-

robasalts (32) would require Zr values far in excess of that observed in KREEP basalts.

In contrast, the concentrations of TiO2, P205 and ZrOz needed to saturate ilmenite,

phosphate and zircon respectively, decrease dramatically as the residual liquids increase

their SlOe contents (20, 27, 28, 29, 30, 31, 32). Granites, for example, need only about

1/5, 1/10 and 1/2 the contents of Ti, P and Zr respectively to cause saturation of the ap-

propriate phases at the same temperature. Even lower values would be realized on the moon

because granites would form at lower temperatures than the ferrobasalts.

Table 1

Compositions of residual liquids obtained by fractionation of mare
and nonmare basalts (2,18,20,22)
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SiOz
Ti02
A1203
FeO
MgO
CaO
Na2o
K20
Pz05
ToC
%LIQ
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Table 2

Composition of residual liquids of
whole moon compositions (25, 26)

GAIII GAll

Si02
TiO2

A1203
FeO

MgO
CaO

Na20
K20
ToC

%LIQ

42.4 43.3 43 44
0.4 8.8 0.9 8.7
8.3 9.3 17.8 8.4

11.2 27.2 14.8 24.3
32.3 0.4 11.4 0.3

5.0 9.9 11.6 13.6
0. I 0.8 0.22 0.2
0.01 0.27 0.02 0.3
1562 995 968
100 3 100 3

FIGURE 2

Mg.- 0.15

20/ --- -==-_,_-,p,,',p' '_,
/ ol ii -'_--

Ol Pl

Mg*- 0.40

Opx _L;..2 si) ,,¢. \
f ...... ":_7-"-Opy a2" ...... I i v '! \

/ o, ,,....>?_#
Ol PI

F I GURE 1

Si02

oxygen un//s

O<_Wo<di

/
/

Fo

low-Ca pyx

Py) _,

an

\
An



EVOLVED LIQUIDS

Hess, P. C.

51

References

1. Longhi, J and Pan V, (1987), A reconnaissance study of phase boundaries in low

alkali basaltic liquids. J Petrol, 29, 115-147.

2. IIess, PC, Rutherford, MJ, Guillemette, RN, Ryerson, FJ and Tuchfeld, tlA, (1975),

Residual products of fractional crystallization of lunar magmas: An experimental study.

Proc I.,unar Sci Conf, 6th, 895-909.

3. Rutherford, MJ, Hess, PC, Ryerson, FJ, Campbell, ItW and Dick, PA, (1976), The

chemistry, origin and petrogenteic implication of lunar granite and monzonite. Proc

Lunar Sci Conf, 7th, 1723-1740.

4. Ryder, G, (1976), Lunar sample 15405: remnant of a KREEP basalt-granite differ-

entiated pluton. Earth Planet Sci Lett, 29, 255-268.

5. Bowen, NL, (1928), The Evolution of Igneous Rocks, Princeton University Press,

Princeton, NJ.

6. Gill, JB, (1981), Orogenic Andesites and Plate Tectonics, Springer-Verlag, New

York.

7. Grove, TL and Baker, MB, (1984), Phase equilibrium controls on the tholeiitic ver-

sus calc-alkaline differentiation trends. J Geoph Res, 89, 3253-3274.

8. Fenner, CN, (1931), The residual liquids of crystallizing magmas, Min Mag, 22,

539-560.

9. Rutherford, MJ, Hess, PC and Daniel, GH, (1974), Experimental liquid line of de-

scent and liquid immiscibility for basalt 70017. Proc Lunar Sci Conf, 5th, 569-583.

10. Dixon, S and Rutherford, MJ, (1979), Plagiogranites as late stage immiscible liquids

in ophiolite and midocean ridge suites: An experimental study. Earth Planet Sci

I_,ett, 45, 45-60.

11. Philpotts, AR, (1982), Compositions of immiscible liquids in volcanic rocks.

Contrib Mineral Petrol, 80, 201-218.

12. Clague, DA, Frey, FA, Thompson, G and Rirldge, S, (1981), Minor and trace ele-

ment geochemistry of volcanic rocks dredged from the Galapagos spreading center:

role of crystal fractionation and mantle heterogeneity. J Geophy Res, 86, 9469-

9482.

13. Longhi, J (1987), Liquidus equilibria and solid solution in the system CaAI2Si2Oa-

Mg2SiO4-CaSiOa-SiO2 pressure. Am J Sci, 287, 265-331.

14. lrvine, TN (1976), Metastable liquid immiscibility and MgO-FeO-SiO2 fractionation

patterns in the system Mg2SiO4-Fe2SiO4-CaA12Si2OB-KAISi308-SiO2. Carnegie

Inst Yb, 75, 597-611.

15. I.ipin, BR (1978), The system Mg2.SiO4-Fe2SiO4-CaA12SiaO8-SiO2 and the origin

of the Fra Mauro basalts. Am Mineral, 63, 350-364.

16. Kushiro, 1 (1975), On the nature of silicate melt and its significance in magma

genesis: Regularities in the shift of liquidus boundaries involving olivine,

pyroxene, and silica minerals. Am J Sci, 275, 411-431.

17. Ryerson, FJ (1985), Oxide solution mechanisms in silicate melts: Systematic varia-

tions in the activity coefficient of SiO 2. Geoch Cosmo Acta, 49, 637-650.



52 EVOLVED LIQUIDS

Hess, P. C,

18. Hess, PC, Rutherford, MJ and Campbell, tlW (1978), llmenite crystallization in

nonmare basalt: Genesis of KREEPand high-Ti mare basalt. Proc Lunar Sci

Conf, 9th, 705-724.

19. Longhi, J (1987), On the connection between mare basalt and picritic glasses. J

Geophy Res, 92, B4, E349-E360.

20. Rutherford, MJ, Dixon, S and lless, PC (1980), llmenite saturation at high pressures

in Kreep basalts: Origin of KREEP and 11i Ti02 mare basalts. Lunar Planet Sci

XI, 966-967.

21. Taylor, GJ, Warner, RD, Keil, K, Ma, M-S and Schmilt, RA (1980), Silicate liquid

immiscibility, evolved lunar rocks and the formation of KREEP. Proc Conf

Lunar tlighlands Crust, 339-352, Pergarnon, NY.

22. Hess, PC, Rutherford, MJ and Campbell, I IW (1977), Origin and evolution of

LKFM basalt. Proc Lunar Sci Conf, 8th, 2357-2373.

23. Watson, EB and Naslund, tlR (1977), The effect of pressure on liquid immiscibility

in the system K20-FeO-A1203-SiO2-CO 2. Carnegie hast. Yb, 76, 410-414.

24. Warren, PH (1988), Origin of Pristine KREEP: Effects of mixing between UrKREEP

and the magmas parental to the Mg-rich cumulates. Proc !8th Lunar and

Planetary Sci Conf, 233-241.

25. Longhi, J= (1978), Pyroxene stability and the composition of the lunar magma ocean.

Proc Lunar Sci Conf, 9th, 285-306.

26. Longhi, J (1977), Magma oceanography 2: Chemical evolution and crustal forma-

tion. Proc Lunar Sci Conf, 8th, 601-621.

27. Waton, EB (t979), Apatite saturation in basic to intermediate magmas. Geophy Res

Lett, 6, 937.

28. Dickinson, JE and tless, PC (1982), Whitlockite saturation in lunar basalts. I.unar

Planet Sci, XIII, 172-173.

29. Newsom, HE and Drake, MJ (1983), Experimental investigation of the partitioning

of phosphorus between metal and silicate phases: hnplications for the Earth,

Moon and eucrite parent body. Geochim Cosmocbim Acta, 47, 93-!00.

30. Watson, E_ and: Green, TH (1981), Apatite/iiquid partition coefficients for the rare

earth elements and St. Earth Planet Sci I,ett, 56, 405-415

31. Dickinson, JFUand Hess, PC (1983), Role of whitlockite and apatite in lunar felsite.

Lunar Planet Sci. Lett, XIV, 158-159.

32. Dickinson, JE and Hess, PC (1982), Zircon saturation in lunar basalts and granites.

Earth Planet Sci Left, 57, 336-344.



53

COMPOSITIONAL SURVEY OF 2-4 mm PARTICLES FROM 14161 AND
IMPLICATIONS REGARDING KREEP AND IGNEOUS COMPONENTS IN APOLLO 14

SOIL.
B. L. Jolliff, R. L. Korotev, and L. A. Haskin, Dept. of Earth & Planetary Sciences

and the McDonnell Center for the Space Sciences, Washington University, St. Louis, MO,

63130

Introduction. We wish to determine from which igneous lithologies the Apollo 14 soils
derive, and what polymict and monomict materials are responsible for the compositional

trends among Apollo 14 soils and polymict breccias. Several igneous rock types have been
identified in the Apollo 14 samples, especially as clasts in breccias [e.g., 1-8]. We are

analyzing hundreds of 2-4 mm soil particles from 14161 to determine which rock types
found in the breccias are represented among the soil fragments, and in what proportions,

and to search for new rock types and compositions.
Experimental. We have developed an INAA procedure that enables us to analyze 100

or more individual soil fragments in a short time. Particles are radioassayed once for 1-2
hours. Three minutes after acquisition of data for a fragment, we obtain concentrations of

some 22 elements (Na, Ca, Sc, Cr, Fe, Co, Ni, Zr, Cs, Ba, La, Sm, Eu, Tb, Yb, Lu, Hf, Ta,
Au, Ir, Th, and U). Concentrations for these elements are compared by computer to those
in a catalog of compositions of Apollo 14 materials to identify the fragment as a highlands
monomict rock, a mare basalt, or a soil or regolith breccia. This quickly identifies
compositionally unusual particles for later, more extensive assay by our normal procedures.
We will section representative and unusual particles and analyze them petrographically and
with the electron microprobe.

Results. The most abundant particles, based mainly on binocular microscope

classification, are impact melt breccias. They consist of fine-grained crystalline or
recrystallized matrix and coarser mineral and lithic clasts. Regolith breccias and fragmental
microbreccias comprise most of the remainder of the particles, and there is a small group of

particles that appear to be igneous and monomict.
Compositional data for 281 particles are shown for two element pairs (FeO-CaO and

La-Na20 ) in Figure 1. Also shown are fields for approximately 300 previous analyses of
Apollo 14 samples, broadly categorized as highlands monomict rocks or clasts (HMCT); soils
and regolith breccias (SRBX); microbreccias, breccia matrix and melt rocks (BX); basalts
(BAS); and mafic-ultramafic glasses (GLS). We chose FeO to represent the proportions of
mafic minerals and mare basalt, CaO to indicate high proportions of plagioclase (since we do

not have data for AI), La to represent the incompatible trace elements and KREEPy
materials, and Na as representative of the trio Na, Eu, and Ba, which are to varying extents
feldspar-compatible. Compositions of most of the particles cluster in the soil and regolith
breccia area of the diagram, with a strong trend toward troctolites and anorthosites, a trend
toward norites, one toward olivine-rich lithologies, and weaker trends that do not clearly
lead toward other known rock types. Because the fragments are small, we might expect a

wider range of scatter in compositions than obtained from bulk samples of soils and regolith
breccias; this is what we observe. Also, if the igneous rock types found as clasts in Apollo
14 breccias have contributed volumetrically important proportions of the material that now

makes up the soils, we might expect to see examples of the rock types known from the
earlier analyses among the soil fragments. An important result evident from the FeO-CaO
plot is that the soil fragments do not cover the compositional range of known Apollo 14
rock types. Only three of the compositions are basaltic, only one is similar to alkali
anorthosite, and one, felsite (lunar granite). No fragments of dunite or pyroxenite have
been found. In contrast, three particles have the composition of ferroan anorthosite, which

is very rare among previously characterized Apollo 14 materials. The fragment with the
highest FeO concentration is a vesicular, basaltic glass with 33 /_g/g La and 0.55% Na20.
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Several particles that are compositionally similar to alkali gabbronorites [9] plot at relatively

high FeO and low CaO, and at high La and NazO. Compositions of 4-10 mm fragments
from soils 14160 and 14004 analyzed by Jerde et al. [10] fall well within the range for our

samples. McKay et al. [I 1] reported analyses for several 4-10 mm basaltic fragments high-
graded from soils 14150 and !4160; nonetheless, basaltic particles are rare among the soil

fragments, as also noted by previous workers [12,13,14,15].

From the La-Na20 plot, it is evident that our particles include a component rich in
incompatible trace elements not yet observed among Apollo 14 basalts and monomict clasts,
and richer in trace elements than Apollo 14 "common KREEP," Ill,16]. How are these
materials related to the phosphate-rich anorthositic fragments from breccias 14305 [17],

14313 [17,18], and 14321 Ill?
The overall REE pattern in the <l mm soil, 14163, is similar to that of the KREEP

composition as given by [19], but REE concentrations in the soil are lower by about one
third. Many particles, particularly the impact melt breccias, have the same REE pattern as
KREEP [19], but range in REE concentrations from about 0.4 times to 1.2 times those of
KREEP, and have lower Eu concentrations (-2-3 /_g/g). Several particles have REE
patterns parallel to the KREEP pattern, but REE concentrations up to about twice those of
KREEP, except for Eu. Potentially igneous, monomict fragments have REE concentrations
lower than average, and have much more variable REE patterns. The mean REE
concentrations of all the 2-4 mm particles are somewhat higher than those of 14163, but the
mean Eu concentration is about the same as that of 14163. This results from the high

proportion of KREEPy or ITE-rich impact melt breccia particles among the 2-4 mm
particles.

Particle compositions range well outside of the compositional fields of bulk Apollo 14
soils and regolith breccias. None of the particles has a composition that matches those of
Apollo 14 mare basalts 14053 and 14072 or of the several igneous lithologies observed as
clasts in breccias 14047, 14303, 14305, 14312, 14316, 14318 or 14321. Some soil fragments
produce compositional trends that extend toward the compositions of norites, troctolites, and
ferroan anorthosite. Do the absence from the 2-4 mm fragments of certain HMCT rock

types and the paucity of fragments with recognizable HMCT and mare basalt compositions
mean that the Apollo 14 soils derived from a different bedrock or portion of the lunar crust
than the cone crater breccia.s? Do REE concentrations higher than those in KREEP [19]

derive from, or represent, UR-KREEP? Does the range in REE concentrations among
samples with KREEPy relative REE abundances reflect dilution of a uniformly KREEPy
noritic precursor with material of low REE concentration, or is the KREEPy material a

low-proportion contaminant to mixtures of HMCT lithologies? We observe nearly constant
REE pattern slopes among all particle types. This implies a common geochemical
relationship among Apollo 14 materials, and provides a general constraint on the processes
of their formation.

By analyzing a large number of particles without any petrographic pre-selection, we
have obtained accurate proportions of compositionally different particle types in 14161. We
avoid the inevitable difficulty of making such determinations using only the binocular

microscope. Petrographic analysis of this set of particles, coupled with the compositional
data, will improve our understanding of what rock types are volumetrically significant in the

Apollo 14 regolith and precursor bedrock, and whether our present view of the contributions
of different rock types is biased by our observations on clasts in the limited number of large

samples.
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FRAMAURO FORMATION, APOLLO 14z I. COM_OSITIONAND FREQUENCY DISTRIBUTION OF IGNEOUS AND IMPACT

METAMORPHIC ROCKS. S. Lingner I, K.D. Bobs I , H. Palms 2, B. Spettel 2, D. St6ffler I and H. W_nke 2 , ! Institut

fur Planetologle, Universitmt MUnster, D-44 MUnster, Germany, and 2Max-Planck-lnstitut fur Chemic, D-65

Mainz, Germany.

Introduction. We report in a series of 4 related abstracts (1, 2, 3) on the work of the Cone crater

consortium which has been studying the lithologies of the Pra Hauro formation at the Apollo 14 site by

textural, mineralogical, chemical and age dating techniques, This report extends previously published data

(4, 5) and gives a more comprehensive view of the genesis of the Pra Mauro formation and the composition of

the pre-Imbrlan lunar crust in comparison with similar studies on the pre-Nectarlan cruet of the Descartes

region, Apollo 16 (6).

SamPle1 and methods of i_vestiRation. Three types of rocks, mainly from the vicinity of Cone crater, were

analyzed| (1) Lithlc and mineral cleats of fragmental breccias 14063, 14064, and 14082/83; (II) lithic

cleats of soils 14140, 14143, 14150, and 14160; and (III) large rock samples 14051, -068, -069, -070, -074,

-079, -179, -311, -431, and -434. Petrographic, chemical, and age data of the third group have been reported

previously (4, 5) together with petrographic and chemical data of 814 lithic clasts of 14063. Here we

present the petrographic classification of 1782 lithic clasts of the first and second group of rocks. Modal

compositions, microprobe, and multlelement data (INAA) have been obtained on a representative subset of

these lithic clasts and on mlneral claats of the clastic matrix of breccia 14063.

Classification of rocks and their modal composition. The analyzed lithic clasts have been classified

according to (7) and grouped into 11 classes which include various types of impact melt lithologies,

granulitic rocks and igneous rocks (Pig. I). Pig. I represents the totgl lithic clast population of the so-

called "white rocks" (14063, -64, -82, -83) from the rim of Cone crater. Modal compositions of individual

rock types are given in Pig. 2.

chemistry. The chemical composition of coexisting mafic minerals (olivine, pyroxene) and plagioclase

in igneous rock clasts of the fragmental brecclas (14063, -64, -82/83), of the melt breccia 14068 and of

coarse fines (14160,152) is presented in a m E (Mg0/MgO+PeO) versus An-content diagram in which well

established fields for the various types of anorthosites and/or rocks of the Mg-suite, taken from the

literature (9), are given for comparison (Pig. 3).

Bulk chemletry of rocks. The major element and trace element characteristics of our sample suite are

sulmarized in the MgO-A_03and Sm-PaO plots of Pigs. 4 and 5 which allow a comparison with corresponding

lithologias from the Apollo 16 landing site and the lunar meteorites. Typical representatives of the

"pristine" igneous rock suites are also shown in order to visualize the potential provenance of the analyzed

impact and thermally metamorphosed rock types. The rare earth element patterns of all analyzed Apollo 14

rocks (Pig. 6) are grouped into (a) the two major petrographic types of melt breccia lithologies

(feldspathlc and maflc) and (b) the two compositional ranges for the large, handspeclmen-sized impact melt

breecias and melt rocks and for the bulk composition of the polymic fragmental breccias (14063, -64, -82/83)

which are believed to be derived from _he Cone crater basement (4, 5).

and conclusion_. The major questions for which the data presented above should provide

answers, are the followings (I) What are the main rock types at the Apollo 14 landing site and what is their

relative abundance ? (2) Which chemical groups of rocks can be established among the three basic textural

classes of rocks: primary igneous rocks, and secondary impact melt lithologies and granulitic lithologies,

respectively ? What is their relative abundance ? (3) What are the differences and commonalities of the A-14

rocks to highland rocks from other sites with respect to composition, abundance, and geological setting ?

(4) What can he learned from the Apollo 14 samples regarding the structure, composition and stratigraphy of

the Fra Mauro formation and, more indirectly, of the primordial lunar crust in the Imbrlum region ?

This abstract attempts to give answers to the first three questions. The last, more difficult question,

is model-dependent, requires rock ages and other supporting data, and will be discussed, therefore, in the

companion abstracts (l, 2, 3).

We classify the analyzed 2719 rock samples (2496 lithic claste >0.1 mm of 14063, -64, -82/83| 123 large

rocks (8)| and I00 lithlc clasts of the coarse fines 14143.6) into the following main rock types on the basis

of texture and mineralogical compositionz crystalline impact melt breccias, devitrified impact "glasses",
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granulltic lithologies, andigneous rocks (Figs. i, 2). The impact melt breccias are subdivided into a mafic

and feldspathic group. Among the igneous rocks, anorthosites, norites, troctolites, basalts (which could be

clast-free impact melt rocks), and granophyric (granitic) rocks have been identified. The frequency

distribution of these rock types is distinctly different in the fragmental breccias from Cone crater (Pig, l)

and in the individual large rocks collected throughout the landing site. The latter are similar to the lithic

clasts of the soil: only 6Z _lutonic and 3Z volcanic rocks in the soil compared to 25X plutonic and 1.2 %

volcanic rocks in the Cone crater breccias (assuming that all "bssalts" are volcanic). Moreover, it is clear

from the mineral modes (Fig. 2) that impact melt litholo_ies of the large rock samples differ from their

counterparts in the clast population of the Cone crater fragmental breccias by occupying different

compositional fields. Fig. 2 indicates that the granulitic lithologies and the matrix of the Cone crater

breccias might be simply mixtures of primordial plutonic rocks (see below). A comparison with the situation

at Apollo 16 (North Ray crater and Cayley plains) shows that the Apollo 14 rock types are probably related to

the Apollo 16 samples from the Cayley formation (6) but differ distinctly from the Descartes material as

represented by North Ray breccia clasts.

The results of the chemical analyses of the Apollo 14 impact melt breccias (Figs. 4-6) lead to the

following conclusions confirming and modifying previous suggestions:

(a) There ere two major chemical groups among the Cons crater breccia clasts, a high Me, low K, medium-

high P ("mafic") and a low Me, medium-high K, medium-low P group ("feldspathic") which only pertly

overlap the composition of the lares rock samples which are lower in AI203 and exclusively rich in

incompatible elements.

(b) The bulk composition of the 14063, -64, -82183-breccie group of Cone crater is for the incompatible

elements within the range of the "mafic" melt breccias which represent 50X of the lithic clast

population in these breccias (Figs. 5, 6). A minor discrepancy appears to be compensated by the

feldspathic melt breccia clasts which are rich in incompatible elements.

The granulitic litholoKies at Apollo 14 are extremely rare (3.7%). One large rock granulite (14179) is

rather rich in incompatible elements (KREEP-typs (5)) whereas a second small lithic clast from Cone crater

breccia 14063 is KREEP-free. This is in contrast to Apollo 16 where KREEP-free granulites are by far

predominant and much more abundant ( 14Z).

Based on modal and chemical data the main characteristics of the _ litholo_ies are as follows

(Fig. l-3)s

(a) 16% anorthosites, 3.2% norites, 5.6% troctolites, and 1.2% basalts have been identified in a population

of 2476 lithic clasts of the 14063, -64, -82183 Cone crater fragmental breccias; the corresponding

figures for 1DO lithic clasts in the coarse fines of 14143,6 and 95 large rock samples (8) are: 2% and

OZ anorthosites, 3% and 0% norites + troctolites, and 12X and 16% basalts, respectively.

(b) All analyzed plutonic rocks belong to the M E- and alkali suites of the lunar highland rocks (Fig. 3);

ferroan anorthosites are obviously lacking.

(c) A comparison with Apollo 16 (6) reveals that plutonic rocks are more abundant (38% within the fragmental

breccias of North Ray crater end 28% among the large rock samples) and that the enorthosites are ferroan

and occupy nearly I00% of the plutonic suite in the Descartes area.

In summary, our previous findings (4, 5) are confirmed: The Fre Mauro formation consists at least of two

major megabreccia units which ere chemically and llthologically different. One unit is represented by the

large and small rocks in the regollth which is typified by high-K-KREEP lithologies and rare plutonic rocks.

The second unit is represented by the Cone crater fragmental breccias which contain distinct impact melt

lithologles not present in the first unit. The breccias are rich in plutonic lithologies and contain only

minor high-K-KREEP components. Plutonic rocks of both units belong to the Me- and alkali suites of the

igneous highland rocks.
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Fig. 1:

Fig. 2:

Number frequency (%) of lithic clast types in
14063 and 14082/83; 2476 clasts| ISG - £mpact

melt glass (devitrifled), ISBm and ISBf - mafic

and feldspathic impact melt breccias, PK and GR

- poikiloblastic and granoblastic (granulitic)

lithologias, AN - anorthosite, NO - Norite, T -

troctolite, B - basalt, G - "granite", And. -
others

Modal composition of Apollo 14 rocks; AAN,

SPAN, TAN, NOAN - alkali-, spinel-,

troctolitic, noritic anorthosites,

respectively; NO, GANO - norite, gabbronorite,
DU - dunite, B - basalt clasts in white rocks

Fig. 3: Composition of coexisting mafics and

plagioclase in "pristine" igneous rock
rocks,

clasts; diamonds - clinopyroxene dots -
squares - low--Ca pyroxene rocks,

B-olivine rocks, A " anorthosites,

basalts, black - own data, open symbols -
literature data

Fig. 4: MaD versus A1203 for Apollo 14 lithologies;
solid lines: fields for Apollo 14 melt

breccias; abbreviations see Figs. I-3,

HAB - high alumina basalt, MAN = Mg-

anorthoslte, FAN - Fe-anorthosite, ENT -

enstatite troctolite, AB - alumlnous basalt
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Introduction. The lunar highland lithologies contain a large fraction of "secondary" non-igneous rock types

which are derived from primary igneous rocks through multiple cycles of impact melting ("impact melt

lithologiee") or represent igneous rocks or breccias which were completely recrystalllzed by thermal

annealing ("granulitlc llthologles"). We have demonstrated for the Apollo 16 highland rocks that the primary

igneous rock components of the secondary rocks can be deduced by mixing calculations using as mixing

components primordial ("pristine") igneous rocks found at the same site (i). If the chemical composition of

the various types of secondary rocks and their frequency distribution is known, the composition of the

parental crustal section from which a particular highland formation is derived can be calculated in terms of

the proportions of primordial igneous rocks (I, 2). The procedures of mixing calculation are described in

(i).

Analytical data base and selection of _ and mixln X components. Three types of mixing calculations have

been performed, the first one on the basis of major elements only, the second one using major and minor

elements, and the third one using major and minor elements and somewhat different mixing components (Table

I). The following rock types considered as "mixtures" have been calculated (Table 2)z

(a) llthlc cleats of fragmental brecclas 14063 end 14083

(b) bulk fragmental breccia 14063

(o) large rock samples across the Apollo 14 landing site (melt llthologles and one granulite)

(d) various types of Apollo 14 regollth (14148, 14149, 14220, 14210, 14211)

The two sets of mixing components (given in Table I) contain mainly pristine igneous rocks from Apollo 14

except for ferroan anorthoslte and the meteoritic component. Other mixing components which have been used

but resulted in unacceptable "discrepancy factors" or "square sums of residuals" (see (i)) were discarded.

The chemical composition of some secondary rocks analyzed in this study (Table 2) is given in Table 3.

Results. Results of mixing calculations based on Sets i and 2 of Table i have been reported previously (2,

21) end will be used here only for comparison. The proportions of igneous rocks (mixing components) obtained

through the Set-3-calculatlon have been plotted in Figs. 1-5 for the various groups of lithologies explained

in Table 2. For the interpretation of the data presented in Figures I-5 it is important to emphasize that

the resulting igneous precursor rocks for the polymlct secondary rock types are model rocks whose abundances

depend on the choice of the whole set of model rocks used as mixing components. The main value of the

results is twofold| (a) They allow a comparison of different llthological groups of rocks at the Apollo 14

landing site on the basis of primary igneous rock components which might have been present in the parental

primordial crust unit of any llthologlcal group (their Ecological provenance has to he evaluated by other

means), and (b) they allow a recalculation of the igneous rock composition of any particular parental crust

unit when the frequency distribution of the different lithological groups of rocks for the geological

formation in question is taken into account.

We have argued previously (2, 21) that certain llthological groups at the Apollo 14 landing site can be

assigned to subunlts of the Fra Mauro formation which have a different geological provenance. One such unit

is represented by the lithic clast population of the Cons crater fragmental brecclas 14063, -64, -82/83

sampled from large boulders and described in this volume (22) end/or by the bulk composition if these

breccias (Figs. I-3). A second unit is represented by rock fragments sampled from the regolith - either

large rock samples or bulk soil samples (Figs. 4, 5). The two units differ in the composition and abundance

of impact melt and igneous rock components as shown in (22).

If we consider the llthologlcal subgroups of unit 1 (tentatively called Cone crater basement) the

following is obvious (PIES. I-2): (a) only the feldspathic melt brecclas contain e minor amount of ferroan

anorthoslte (FAN) and are intermediate in EREEP, (b) the mafic melt breccias are dominated by troctolite and

the third Ti-rich type of melt llthology (a subgroup of the maflc melt brecclas) is typically rich in

alumlnous basalt and KREEP. None of these melt llthologles contain magnesian anorthosite (MAN) in contrast

to the hulk of their parent breccia 14063 (Fig. 3). The crystalline melt hrecclas (Fig. 4) of the second

unit (tentatively called the Apollo 14 subregollth basement) are dominated by KREEP, contain all three types

of anorthosites, and are free of troctollte. The granullte from this unit is characterized by relatively

high contents of KREEP, FAN, MAN and dunlte and lacks alkali anorthoslte and norltlc-gabbrolc-troctolitic

llthologlss. The bulk regollth samples (Fig. 5) are remarkably similar to the average of the large rock

crystalline melt breccias (Fig. 4).

As demonstrated by (2 and 21), the two units of the Fra Mauro formation at Apollo 14 may be best

represented by igneous precursor rocks if the relative frequency of primary and secondary rock types (2) are
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combined with the results of mixing calculations made for the secondary rocks (21). This calculation was

based on the somewhat restricted data set I (Table I) without minor elements. The results from (21) are

compared with the present results in Table 4 where the Cone crater basement (unit I) is represented by the

bulk breccia 14063 and the subregolith basement (unit 2) by the average of the regolith.

It is quite obvious from Table 4 that the breccia unit representing a distinct formation exposed in the

Cone crater basement is typified by large amounts of "evolved" anorthosite and of troctolite and by the rare

abundance of noritic-gabbroic rocks. In contrast, the subregolith basement throughout the landing site,

probably the upper unit of the Fra Mauro formatlon, is dominated by noritic-gabbros rocks and lacks

troctolites. The genetic implications of these results for the origin and emplacement of the Pra Mauro

formation will he discussed in a companion abstract (23).

Table i: Sources for the chemical composition of mixing components and

sets of chemical elements used in the mixing calculations (see

also Figs. 4 and 5 of (22))

Set i Set 2 Set 3

Mixing components References Comp. Elem. Comp. Elem. Comp. Elem.

Ferroan anorthosite,l (I) A1 - A1 x A1

Alkali anorthosite, 3 (3) x Ca x Ca x Ca

Magnesian anorthosite, 2 (4) x _ x Mg x Mg
Troctolite, 4 (4) X x Fe X Fe

Enstatlt-Troctolite, 4 (5) x K x K x K

Dunite, 5 (4) x Na x Na x Na

Norite, 6 (3) x Ti x Ti x Ti

Gabbronorite, 7 (6) x Cr x Cr x Cr

Aluminous basalt, 8 (5) - Sc x 8c

"Granite", 9 (7) - Sm x Sm

KREEP, I0 (8) x x Yb x Yb

Meteoritic component, II (9) - x Ni

(Cl) Co

Number refer to Figs. i-5

Table 2: Sources for the chemical composition of secondary

Apollo 14 rocks impact melt and granulitic

llthologlee) used in the mixing calculation

Rock type Number Reference

Table 3: Chemical compsltion of Apollo 14

rocks analysed in this study

(see Table 2)

(a) Crystalline melt breccias, 14063,212 (7) 14063
Ti-rlch (clasts), average 14063,246 a b c

SiO2 47.17 51.21 46.09

(b) Crystalline melt breccias, 14063,217 (7) Ti02 2.13 0.66 0.86

feldspathic (clasts), 14063,221 A1203 17.25 22.00 19.09

average 14063,222 CaO 10.65 11.63 9.75

14063,223 _Hn_ 8.54 6.13 14.37
14063,230 0.15 0.82 0.09

14063,232 FeO 9.75 5.64 7.38

14083,2 (10), (11) Na20 1.07 0.94 0.79
K20 0.27 0.85 0.18

P205 0.80 0.42 0.27

(c) Crystalline melt breccias, 14063,215 (7) Cr203 O.19 O.10 0.39
mafic (clasts), average 14063,233 Sc 17.6 14.5 10.4

14063,244 Sm 16.1 22.9 15.2
Yb 12.0 18.7 12.1

Ni 454 180 469

(d) Bulk fragmental breccias, 14063,37 (I0), (II) Co 31.9 18.0 29.2

average 14063,48

(e) Crystalline melt lithologiee 14276 (I0), (12)

large rock samples, 14305 (13)

average 14310 (I0), (14)
14311 (15), (7)
14321 (16), (17), (18)

(f) Granulite 14179,6 (19)

(g) Regollth, general 14148 (20)

landing area 14149
14220

14210

14211.

14311

(7)(15)

47.24

1.81

18.05

10.16

9.59

0.14

11.13

0.85

0.81

0.76

0.15
18.8
24.4
17.1

250
31.9

a, b, c: averages of Table 2
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Figs. I - 5z Relaclve abundances of igneous model rocks (in 1) in various AI4

l£th01ogies obtained by mLxfng calculacf0na of sac 3 (Table I)
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Table 4: Model composition of the primordial igneous crust of the Imbrium

region based on mixing calculations _set _) ana on mlxlng
calculations and frequency statistics of rock types (set i_

(22); data of set 3 from Pigs. 3 and 5.

Apollo 14 subregolith Apollo 14 Cone crater
basement basement

Model component set i (X) set 3 (%) set 1 (X) set 3 (Z) set 3 (subregolith)

- data from Fig. 7

Anorthosite - 14.5 5

(ferroan; primitive)
Anorthosite 24 43.5 60 54 set 3 (Cone crater)

(magnesian + alkali-rich_ - data from Fig. 4

evolved)
Troctolite 0 0 30 38

Norite + Gabbronorite 75 42 3 0

Dunite I 0 7 3

REFERENCES: (I) StSffler D., Biechoff A., Borchardt R., Burghele A., Deutsch A., Jessberger E.K., Ostertag

R., Palms H., Spettel B., Reimold W.U., Wacker K., end W_nke H. (1985) Composition and evolution of the lunar

crust in the Descartes Highlands, Apollo 16. Proc. Lunar Planet. Sci. Conf. 15th, C449-C506. (2) St_ffler D.,

Lingner 8., Heusser K., Jessberger E.K., Palma H., Spettel B._ and W_nke H. (1986) Cone crater consortium,

Apollo 14: II. Precursor igneous rocks and ages of polymict breccias. Lunar Planet. Sci. XVII, 829-830. (3)

Warren P.H., Taylor G.J., Keil K., Kallamsyn G.W., Shirley D.N., and Wasson J.T. (1983) Seventh foray:

whitlockite-rich lithologies, a diopaide-bearing troctolite enorthosite, ferroan anorthosites, and KREEP.

Proc. Lunar Planet. Sci. Conf. 14th, BI51-BI64. (4) Lindstrom M.M., Knapp S.A., Shervais J.W., and Taylor

L.A. (1984) Magnesian anorthosites and associated troctolitee and dunite in Apollo 14 breccias. Proc. Lunar

Planet. Sci. Conf. 15th, C41-C49. (5) Shervais J.W., Taylor L.A., Laul, J.C., Shih C.-J., and Nyquist L.E.

(1985) Very high potassium (VHK) basalt: Complications in mare basalt petrogenesis. Proc. Lunar Planet. Sol.

Conf. 16th, D3-DIe. (6) Shervais J.W., Taylor L.A., and Laul J.C. (1983) Ancient crustal components in the

Fra Mauro breccias. Proc. Lunar Planet. Sci. Conf. 14th, BI77-BI92. (7) Warren P.H., Taylor G.J., Keil K.,

Kallemeyn G.W., Roaster P.S., and Wasson J.T. (1983) Sixth foray for Pristine nonmare rocks and an assessment

of the diversity of lunar anorthosites. Proc. Lunar Planet_ Sci. Conf. 13th, A615-A630. (8) Warren P.H. and

Wasson J.T. (1979) The compositional petrographic search for pristine nonmare rocks: Third foray. Proc. Lunar

Planet. Sci. Conf. 10th, 583-610. (9) Ryder G. (1979) The chemical components of highland hreccias. Proc.

Lunar Planet. Sci. Conf. lOth 561-582. (1O) Rose N.J., Cuttitta F., Annell C.S., Carton M.K., Christian R.P.,

Dwornik E.J., Greenland L.P., and Ligon D.T. (1972) Compositional data for twenty-one Fra Mauro lunar

materials. Proc. Lunar Scl. Conf. 3rd, 1215-1232. (Ii) Laul J.C., Wakita H., Showalter D.L., Boyton W.V., and

Schmitt R.A., (1972) Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16 samples.

Proc. Lunar Sci. 3rd., 1181-1200. (12) Hubbard N.J., Gast P.W., Rhodes J.M., Bansal B.M., Wiesman H., and

Church S.E. (1972) Nonmare haealts: Part II. Proc. Lunar Sci. Conf. 3rd, 1161-1180. (13) W_nke H., Wlotzka

F., Jagoutz E., Spettel B., Baddenhausen H., Balacescu A. (1972) On lunar metallic particles and their

contribution to the trace element content of Apollo 14 and 15 soils. Proc. Lunar Sci. Conf. 3rd, 1077-1084.

(14) Taylor S.R., Kaye M., Muir P., Nance W., Rudowski R., and Ware N. (1972) Composition of the lunar

uplands: Chemistry of Apollo 14 samples from Fra Mauro. Proc. Lunar Sci. Conf. 3rd, 1231-1250. (15) Scoot

J.H. (1972) Chemical analyses of lunar samples 14003, 14311, and 14321. Proc. Lunar Sci. Conf. 3rd., 1335-

1336. (16) 8trasheim A., Jackson P.P.S., Coetzel J.H.J., Strelow F.W.E., Wybenga F.T., Gricius A.J., Kokot

M.L., and Scott R.H. (1972) Analysis of lunar samples 14163, 14259, and 14321 with isotopic date for Lil Li.

Proc. Lunar Sci. Conf. 3rd_____.,1337-1342. (17) Lindstrom M.M., Duncan A.R., Fruchter J.S., McKay S.M., Stoeser

J.W., Goles G.G., and Lindstrom D.S. (1972) Compositional characteristics of some Apollo 14 clastic

materials. Proc. Lunar Sci. Conf. 3rd. 1201-1214. (18) Boyton W.V., Baedecker P.A., Chou C.-L., Robinson

K.L., and Wasson J.T. (1975) Mixing and transport of lunar surface materials: evidence obtained by the

determination of lithophile, siderophile, and volatile elements. Proc. Lunar Sci. Conf. 6th, 2241-2260. (19)

Warren P.H., Taylor G.J., Keil K., Marshall C., and Wasson J.T. (1981) Foraging westward for pristine nonmare

rocks: Complications for petrogenetic models. Proc. Lnnar Planet. Sci. Conf. 12th, 21-40. (20) Laul J.C.,

Papike J., and Simon S.B. (1982) The Apollo 14 regolith: Chemistry of cores 14210114211 and 14220 and soils

14141, 14148, and 14149. Proc. Lunar Planet Sci. Conf. 13th, A247-A259. (21) Bobe K.D., Lingner A., and

Steffler D. (1986) Cone crater consortium, Apollo 14: I. Identification and frequency distribution of rock

types in the crater basement. Lunar Planet. Sci. XVII, 58-59. (22) Lingner S., Bobs K.D., Steffler D., Palms

H., Spatial B., and W_nke H. (1988) Pra Mauro formation, Apollo 14: I. Composition and frequency distribution

of igneous and impact metamorphic rocks, this volume. (23) Steffler D., Bobs K.D., Jessberger E.K., Lingner

S., Palms H., Spettel B., Stadermann F., and W_nke H. (1988) Fra Mauro formation, Apollo 14: IV. Synopsis and

synthesis of consortium studies, this volume.



66

THE PETROGENESIS OF EVOLVED PRISTINE ROCKS; J. Longhi,
Lamont-Doherty Geological Observatory, Palisades, NY 10964

A clear understanding of the details of early lunar differentiation and crustal
formation remains elusive. At the time of the LPI workshop on pristine rocks (1) most of
the attention was focused the larger samples of the two major suites of pristine rocks,
ferroan anorthosite (FA), which seemed at the time to be a fairly homogeneous assembly,
and Mg-rich cumulates, which were subdivided into two groups (2): magnesian norites
(MN) and gabbro-norites (GN). The relationship of the relatively few samples of evolved
pristine rocks (EPR's), such as felsites and alkali-anorthosites, to the major groups of
pristine rocks was unclear, although the assemblages of accessory and trace phases
suggested that evolved litholigies had the closest relations to the magnesian norites (2)
and might be differentiates of the MN magmas. An alternative hypothesis is that some
EPR's might be the plutonic complements to KREEP basaltic magmatism (3). In the past
eight years numerous studies of clasts in breccias have produced a wealth of geochemical
and petrological information on EPR's with which to evaluate these hypotheses.

Much of the petrological data on EPR's has been tabulated by (4) and some of this
data is illustrated in the Mg vs An plot in Fig. 1. Numbers signify landing sites; capital
letters are abbreviated rock names (N = norite, A = anorthosite, I-G -- ilmenite gabbro,
G-N = gabbro norite, f = felsite, Gr --- granite); filled hexagons are Ap 16 alkali gabbro-
norites. Also shown in Fig. 1 are calculated paths of mineral compositions for low-
pressure fractional crystallization of three starting compositions: KREEP basalt 15386
(5), a Mg-Norite parent magma modified from (6), and a ferroan anorthosite parent
magma also modified from (6). The abbreviated mineral names mark the onset of
crystallization of the indicated phase (plag is always present). The first appearance of opx
or pi marks the disappearance of ol; pi marks the disappearance of opx, if present; and fa
marks the disappearance of pi. The slopes of the three calculated trends steepen from left
right as explained by (6).

The FAN curve passes through the field of ferroan anorthosite mineral
compositions (not shown) and mimics the reappearance of Fe-rich olivine (fa) noted by
(7). The FAN curve does not pass through the field of EPR mineral compositions -- a fact
that illustrates simply what is well known, viz., that EPR's have little in common with
ferroan anorthosites or their residual liquids. Regardless of whether ferroan anorthosites
formed atop a magma ocean or in serial intrusions, the rocks that crystallized from their
residual liquids (olivine-tridymite ferro-gabbros with An > .90) have not been described
among the returned samples. Remeiting of such ferroan compositions would not produce
suitable parent liquids for the EPR's either. The onset of ilmenite crystallization, which
in and of itself has no special significance, represents 93 mol% crystallization of the FAN
parent. If we allow that the FAN parent developed after 60% crystallization of a magma
ocean or other primitive magma source, then the ilm point represents 97%
crystallization of the original magma. Even such advanced crystallization is nowhere near
sufficient to produce KREEP-like enrichments of incompatible elements (8). By the time
that fractionation produces KREEP-like enrichments of incompatible elements the
residual magma is nearly devoid of MgO and has a temperature well below 1100°C. The
density of such hyper-ferroan liquids is above 3.0, so there is no reason to expect that
ur-KREEP would intrude upward in the crust. Previous thermal calculations (9) suggest
that even if this residual liquid were deeply buried, the enrichment in heat-producing
radiogenic elements would primarily prolong the cooling and crystallization process and
not lead to any significant remelting of the surroundings. Consequently, there seems little
reason to expect ur-KREEP/crust interactions; rather it seems more likely that ur-



EVOLVED PRISTINE ROCKS

Longhi, J.
07

KREEP would have remained molten in isolated pockets at the base of the crust for tens or
possibly hundreds of millions of years; some of it may even have been swept back down
into the underlying mantle. It has been recognized for some time (10) that most Mg-
norites have KREEP affinities (e.g., low Ti/Sm). The present calculations are consistent
with previous models that explained these affinities in terms of magma-mixing (11) or
assimilation (12) of KREEP into primitive highly magnesian liquids.

The MN composition was devised so that: a) its mineral trend would pass through
the compositions of the troctolite 76535 and norite 78235; b) ol would be replaced by
opx between the troctolite and norite points; and c) augite and ilmenite would crystallize
relatively late. It is not meant to be a unique estimate of the parent magma composition of
these rocks, but rather an example of a typical liquid composition. At first glance there is
little to distinguish the MN and 15386 trends other than the offset in An composition and
the absence of ol in the KREEP trend. However, differences in TiO2 concentration reflected

in the appearance of ilmenite at very different Mg values are probably real inasmuch as
most Mg-norites lack ilmenite (2) whereas KREEP basalts commonly have ilmenite
(13). If one accepts the premise of KREEP mixing/assimilation into magnesian liquids,
then the differences between the MN (lower Na and Ti) and 15386 (higher Na and Ti)
compositions are probably due to differences in the parental magma composition, which in
turn may be due to differences in degree of partial melting, differences in source
composition, or variable assimilation of anorthosite (14,15). Anorthosite assimilation
was originally invoked as means to allow highly magnesian, Iow-AI203 liquids to
crystallize early ol + plag and then opx + plag, however, it may play an important role in
determining alkali and Ti concentrations as well.

In order to compare the EPR mineral compositions with the calculated KREEP
basalt and MN mineral trends, it is necesary to make some assumptions about the meaning
about the origin of compositional variation within a given sample. Probably, a box pattern
develops during in situ crystallization when low Mg-An rims of accumulated crystals
grow from intercumulus liquid and do not equilibrate with the high Mg-An cores.
Generally, we associate large variations in mineral compositions with relatively rapid
cooling and little or no variation with slow cooling. Also, piagioclase is much slower to
homogenize than mafic minerals. By analogy with terrestrial intrusions, the box-like
patterns are probably indicative of the cooling rates of Skaergaard-sized intrusions
(16), whereas the linear (constant Mg) and point patterns are generally indicative of the
cooling regimes of Stiilwater-sized or larger bodies (17), although there are exceptions.
Thus we expect that compositions in the upper right hand corner of box patterns are close
to the compositions of primary crystals, whereas the rightmost end of linear patterns
represent primary plagioclase and a lower limit for Mg, and point patterns represent
lower limits for both Mg and An. However, even beyond uncertainties about the size of the
intrusions in which the EPR's crystallized, there is no way of knowing whether the most
refractory crystals formed in place or, particularly in the case of plagioclase, were
transported from another location. If there is differential transport of minerals, then
comparing a natural mineral trend with a calculated trend can be misleading. For
example, suspension of plagioclase coupled with fractionation of mafics will produce a
steeper trend on the Mg-An diagram than simple fractional crystallization. Among the
Ap14 norites and anorthosites there is only a minor change in the composition of the most
calcic plagioclase (.92-.90) despite a change in Mg from .73 to .50. The calculated MN
trend passes through this range of compositions with a similarly steep slope, thus
suggesting that simple cumulus processes may be sufficient to explain the observed
pattern for this suite.
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Another important feature of the mineral composition trends is the sequence of
cumulus phases. In the center of the array of EPR mineral compositions are Ap14 norites
and anorthosites, an Ap14 ilmenite-gabbro, and a cluster of Ap16 gabbro-norites. On the
basis of Mg-An relationships alone, these rocks represent at least three distinct magma
types, none of which lays along the MN line of descent. Relative to the MN composition, the
Ap14 N and A magmas probably had lower lower SiO2 relative to Mg (this would allow ol
to persist to lower Mg and delay the appearance of sil ); the Ap14 I-G magma had higher
TiO2 and CaO; and the Ap16 gabbro-norite magma had much lower SiO2 relative to Mg.

With the notable exception of K-feldspar, whose liquidus surface is now
incorporated into the quantitative model, a parent of 15386 seems readily capable of
fractionating so as to crystallize rocks like the Ap15 granites. However, the Ap12 and 17
felsites require a more sodic parent magma. By invoking the mixing/assimilation
hypothesis we can explain the difference between the 4.365 b.y. zircon age (18) and the
3.9 Rb-Sr mineral isochron age (19) of 15405 by interpreting the zircon as an
unassimilated relic of ur-KREEP (e.g., 15).

In summary, the EPR's appear to have crystallized from numerous Mg-rich parent
magmas separable in terms of major element compositions. Variable degrees of KREEP
contamination is probably responsible for differences in their incompatible element
abundances; whereas different degrees of partial melting and probably assimilation of
anorthosite are necessary to explain the differences in the major element compositions.
The only link between the EPR's and promordial differentiation appears to be that
anorthosite and ur-KREEP were produced during that epoch.
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Figure 1. Plot of atomic Mg/(Mg + Fe) _ in olivine or low Ca pyroxene versus Ca/(Ca
+ Na + K) [_ in plagioclase. Boxes, bar_ and filled hexagons are mineral compositions
in evolved pristine rocks after (4). Apollo 14 norites (4 Na-g): 14318c2; 14318cl;
14305, 396; 14361c; 14304g; 14303, 44; 14311c. Apollo 14 anorthosites (4Aa-c):
14066; 14321c; 14305c91; 14047c; 14305c2. Apollo 14 ilmenite-gabbro (41-Ga):
14311, 96. Apollo 14 gabbro-norite (4G-Na): 14313c. Apollo 12 anorthosite (2Aa):
12073. Apollo 12 felsite (2 Fa): 12033, 57. Apollo 15 granitic rocks (5 Gra-b):
15405, 12; 15405QMD. Apollo 17 ilmenite-gabbro (71-Ga): 72275. Apollo 17
felsites (TFa-b): 72215; 73215. Apollo 16 alkali-gabbro-norites (filled hexagons a-
f): 679"75, 131N; -86; -44Nm;-42N; -14; -I36N; -44Nf. Dotted box (2 Fa) is
plotted on the basis of-_ in augite. Dashed lines are calculated mineral compositions
produced during plagioclase-saturated fractional crystallization. Starting compositions
are KREEP basalt 15386 (S), Mg-norite parent (MN) after (6), and ferroan anorthosite
parent (FAN) after (6). Filled symbols and abbreviations mark the onset of
crystallization of various phases and the disappearance of others. For example, olivine
disappears at the first appearance of opx or pi, opx disappears at the first appearance of
pi, and pi disappears at the reappearance of olivine (fa). The calculated spinel is Cr-
rich.



Telescopic thermal infrared measurements of the mineralogy of suspected
lunar silicic regions: Red spots are not granite.

Paul G. Lucey and B. Ray Hawke

Planetary Geosciences Division, Hawaii Institute of Geophysics, University of Hawaii at Manoa.

Several units on the lunar surface distant from the landing sites have been proposed to be
composed of SiO2-rich rock types 1,2,3. These proposals have been chiefly based upon either
morphologic grounds or upon the presence of geochemical anomalies identified in the Apollo
gamma-ray data base. The first group consists of four features of possible volcanic origin in
the western portion of the nearside of the Moon. These were identified on the basis of their
relatively high albedo, morphological distinctiveness, and bright "red" appearance in
ultraviolet-visible color difference photographs 1,2,3,4. These are the Gruithuisen domes (_,

and 5), the Mairan T dome near the shores of northwestern Oceanus Procellarum, and Hansteen
_, also known as the Arrowhead, north of the Humorum basin. All four features exhibit

morphologic characteristics which suggest that they may have been constructed of lavas much
more viscous than the relatively inviscid mare basalt lava 3. The second group is composed of

the areas associated with the major thorium anomalies identified by the Apollo orbital
gamma-ray experiment. These include the Aristarchus region, likely Aristarchus crater
itself, and the rim of Archimedes crater S. These locations also exhibit compositional anomalies

identified on the basis of ultraviolet and near-infrared spectroscopy. These characteristics

have led some workers to suggest that these areas may be composed of either KREEP 1,2 or

possibly more evolved KREEP-related rock types such as the quartz monzodiorite clasts in
154055 .

If silica-rich evolved compositions do occur they will be characterized by the presence of high
SiC2 minerals such as quartz, and ternary and potassium feldspar 6,7,8,9. In order to test
whether the locations listed above are indeed composed of rocks containing these high silica
minerals, the remote sensing technique of thermal emission spectroscopy was employed to
search for the presence of such minerals at some of these locations. The measurement of
mineralogy with this technique depends upon the detection and characterization of the
wavelength of an emission feature known as the Christiansen peak which correlates with the
silicate structure of a measured mineral. Figure 1 shows the spectra obtained in the course of
this project all of which exhibit the Christiansen emission feature. Figure 2 is a plot of
Christiansen emission maximum versus SiC2 content for important rock forming minerals 10.
In addition to the plotted minerals, ternary feldspars are important minerals in some granites 8
and cristobalite may be expected in extrusive silicic lava. Ternary feldspars are not shown
because they have not been measured. However, the systematics of the feldspars which have
been measured suggest that the emission maximum is a rough function of An content and is less
sensitive to the Ab and Or contents. It seems likely that ternary feldspars will show emission
maxima intermediate between anorthite and the alkali feldspars. Cristobalite has been

measured and was found to exhibit a slightly shorter emission maximum than quartz in a data
set which agrees with that of Figure 2 in a relative, though not absolute sense 11 The

cristobalite point is not plotted due to the absolute calibration problems with the data set. As
illustrated in Figure 2, the high SiC2 minerals found in evolved silicic lunar rocks show
emission maxima at much shorter wavelengths than those of the much more common minerals
feldspar, pyroxene and olivine. Because the Christiansen emission peak of a rock (a mixture of
mineral components) is roughly a linear weighted average of the peak positions of the mineral
components, a rock containing significant amounts of the silicic minerals will exhibit a
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Christiansen emission feature at a much shorter wavelength than that of more typical lunar
basaltic material. A possible exception may be that of a soil composed of a mixture of high
silica and very olivine-rich material. Though the measurement has not been made, the
Christiansen maximum exhibited by such a mixture may be a double peak due to the wide
separation between the component peaks allowing ready distinction between basaltic material

and mechanical mixtures of high and low silica minerals. Thus thermal emission spectroscopy
is well suited to the task of detection of high-silica evolved lunar rocks.

Our observational strategy was to obtain spectra of as many proposed high-silica areas as
possible, and areas either known or assumed to be more typical of lunar basaltic material as
comparisons. The relative immaturity of the technique for lunar science applications suggests
naution in interpreting absolute mineralogies, however, we are confident that any detected
large differences in relative peak positions between typical and test areas would be significant
and interpretable.

On July 31 and August 1 of 1988 emission spectra of a variety of locations on the lunar surface
were obtained with the NASA Infrared Telescope Facility at Mauna Kea Observatory using a
circular variable filter (CVF) spectrophotometer employing a helium-cooled arsenic-doped Si
photoconductor detector. The spectra cover 7 to 11p.m at 1.25% spectral resolution (AZ/Z).
The aperture subtended 2 arcseconds which corresponds with a spot with a footprint of
approximately 4 by 8 kilometers (the asymmetry being due to foreshortening near the lunar
limb). The following locations were observed: Gruithuisen 7and 8, Hansteen _ (the
Arrowhead), Aristarchus central peak, the mountain Herodotus X on the Aristarchus Plateau,
the craters Mersenius and Hansteen near Humorum, and the mare fill within the crater Billy.
The latter three targets were selected as examples of typical lunar material likely completely
free of K-feldspar, ternary feldspar, quartz or cristobalite. Apollo landing sites could not be
observed due to technical constraints which have been subsequently removed for future
observations.

Figure 1 shows the spectra collected. Careful analysis of the position of the wavelength of the
emission maximum shows statistically valid variation among the various locations. In order to

define the error in measurement of wavelength the central peak of Aristarchus crater was
observed three times on the two nights and reduced using two standard stars. The position of
the wavelength maximum was determined by fitting the four maximum points with a parabola
and solving the first derivative of the parabola for the maximum. The one sigma variation in
determination of the wavelength of the Christiansen frequency maximum for the central peak of
Aristarchus is approximately 0.026p.m. This variation is taken to be the error in wavelength
determination. Analysis of the emission maxima of spectra of other locations shows that the
emission maxima exhibited by the various locations differ by somewhat more than the error
derived from the Aristarchus observations suggesting that real variation In mineralogy was
detected. Table 1 lists the emission maximum values and the difference between the emission

maximum wavelength of each location and that of the mare fill in Billy. The latter column is
shown because the absolute wavelength values derived seem systematically low relative to the
lunar samples and previous telescopic measurements 12,13 but differences within the data

reported here probably reflect the differences in mineralogy. The expected variation of
emission maximum in lunar soils is only somewhat greater than the error in emission
maximum described above so that the sampling and sensitivity of this data set is just barely

adequate to discern the degree of variation typical in lunar soils. However, these data are
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entirely adequate to detect larger relative shifts in emission maximum which would be expected
if significant amounts of silicic minerals were present in any of the areas measured.

Table 1 shows that, of all locations measured, the mare fill in Billy exhibits the longest
Christiansen wavelength and which suggests a lower abundance of plagioclase than the other
areas. This is expected of the only mare location measured. The highland craters Hansteen and
Mersenius show slightly shorter emission maxima than the mare fill in Billy. The Arrowhead
"red spot" has a still shorter maximum followed by the mountain Herodotus X on the
Aristarchus Plateau. Shortest emission maxima are exhibited by the Gruithuisen domes and the

Aristarchus central peak which show emission peaks differing from that of the Billy mare by
more than 2.3 times the estimated error in peak wavelength determination. It is interesting to
note that these candidate silicic areas do display the shortest Christiansen peak wavelengths of

any of the locations measured, though are not short enough to suggest significantly different
mineralogies.

The very minor differences in emission maxima between the high-silica candidates and typical
lunar locations indicate that none of the measured areas contain significant amounts of quartz,

K-feldspar or other silicic minerals. Hansteen _ (the Arrowhead) seems similar to other
highland areas nearby thus is composed of typical lunar material. The Gruithuisen domes and
the central peak of Aristarchus are also close Io typical in mineralogy but may contain slightly
more plagioclase than the highland craters and the Arrowhead. Therefore it is presently
concluded that the measured red spots and at least a portion of the area exhibiting a Th anomaly
at Aristarchus are not composed of high-silica evolved rock types.
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Figure 1. Thermal emission spectra of locations on the lunar surface.
The Spectra are relative to the star _ Andromeda and are multiplied by a
rabo of a 2700K blackbody over a 310K blackbody to approximate
emission, The Christiansen frequency emission peak is well developed.
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Billy interior mare 7.880 0

Hansteen crater 7.849 0.031

Mersenius crater 7.846 0.034

Hansteen = (Arrowhead) 7.842 0.038

Herodotus X 7.832 0.048

Gruithuisen 8 7.818 0.062

Gruithuisen y 7.817 0.063

Aristarchus central 7.816 0.064
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ZIRCON-CONTAINING ROCK FRAGMENTS WITHIN APOLLO 14 BRECCIA

INDICATE SERIAL MAGMAq_ISM FROM 4350 TO 4000 MILLION yEARS; C. Meyer , I. S.
Williams # and W. Compston #, SN2, Johnson Space Center, Houston, #Research School of

Earth Science, Australian National University, Canberra

On the average, there is about one zircon (> 30 microns) per thin section of Apollo 14
breccia. They range in size from 2 to over 500 microns. Figure 1 gives their range in U
content, Zr/Hf ratio and Y content. Lunar zircons with greater than about 300 ppm U are
isotropic (metamict), but most are brightly birefringent. Many are homogeneous, but a few
range widely in composition. It is difficult to discern the parental rock of the many zircons
that are found as individual fragments in the matrix of Apollo 14 breccia.

Only a few zircons have been located within pristine, plutonic rock clasts in thin sections
of Apollo 14 breccias. Figure 2 shows the plagioclase and pyroxene compositions of these
zircon-containing rock clasts. They range from Ca and Mg-rich gabbronorites to Na and Fe-
rich granophyres. Some attached pyroxenes are surprizingly Mg-rich (figure 3). Zircons
found in the gabbronorites are homogeneous, while those in the granophyric fragments are
chemically zoned.
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Figure 4 is a backscatter
electron image of a large
poikiolitic zircon in a small
plutonic rock fragment in thin
section 14066,47. The zircon is

birefringent and surrounds
homogeneous Mg-rich pyroxene.
A small noritic clast in 14305,103
also includes poikiolitic zircon.
A noritic clast in 14305,91
includes zircon, apatite and
whitlockite. The pyroxene in
this clast is surrounded by

plagioclase. These three elasts
are prime candidates of
urKREEP (8). 14306,60 is an
area of monomict breccia that
includes several zircons, exsolved

pyroxenes (figure 3) and one
pyroxene-plagioclase clast with

gabbroic texture. All the Figure 4
minerals in this area have similar

eompostions so that it appears to have once been a single rock. Thin section 14321,17
contains a small clast of polygonal plagioclase with mosaic texture including 20 small zircons
and trace pyroxene. This small clast would be termed a lunar anorthosite if it were larger

(2). However, the compositions of plagioclase and trace pyroxene indicate that it is related to
the gabbronorite population.

Metamict zircons with very high U content and low Zr/Hf ratios have been found in

coarse-grained granophyre 14321,1027 (3,7). The relatively young age of this granophyre (6)
is confirmed. On the other hand, the zircon in "granophyre" 14303,209 (7) is found to be very

old. 14303,209 contains exsolved pyroxene and partially melted plag-kspar-silica intergrowth
and has a KREEP-like REE pattern. 14082,49 is an intergrowth of plagioclase and silica with
three euhedral zircons. 14311,90 is a clast of unusual ilmenite "ore" with one large zircon

(800 microns). 14306,150 contains an annealed cataclastic clast of plagioclase surrounding one
large, Mg-rich olivine and several zircons (troctolite?).

We have used the ANU SHRIMP (I) to date zircons within these rock fragments (in situ)
as well as several of the individual zircons. The zircon-containing rock fragments from
Apollo 14 range in age from 4000 to over 4300 million years (figure 5). No zircons older than
4350 million years have been found so far. Apparently, it took about 200 million years (from
about 4550 to 4350 m.y.) for Zr to become concentrated enough in the early lunar magma
ocean to form zircon (4). From 4350 to about 4000 million years ago, there was a period of

serial magmatism that produced zircon-containing fragments of plutonic rock, probably as
parts of multiple, layered, igneous intrusions _ the lunar crust. The ages of zircon-
containing rock fragments in Apollo 14 breceias are distinctly younger than the supposed age
of urKREEP (5,8).

Min¢rBloRical Mode of Zircon-containin_ Aoollo 14 Rock Fragments
*gabbronorites plag. pyx. ilm. olv. k-spar silica zir. glass
14066,47 45 45 10
14305,103 49 49 2
14305,91 48 48 2 1
14306,60 48 48 tr. tr. 2 2
*anorthosite
14321,16(17) 98 1 1
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*granophyres plag. pyx. ilm. olv. k-spar
14082,49 55

14303,209(205) 25 25 2 18
14321,1027(1613) 60
*ilmenite ore

14311,90 3 90 1 6
*troctolite

14306,150 80 15 5

silica zir. glass
40 5
10 2 18
30 1 9

Summary of Z°7pb/2°6pb ages

Zircon-containing rock

fragments

I llil
_ I _4] I1 4 I1 4 _x_ I1 4 _NN_,_I ,

3.9 4.0 4.1 4.2 4.3 4.4

Individual zircons

L,+,+I+++'"
iii:_!iiiii I

3.9 4.0 4.1 4.2 4.3 4.4

billion years

_ granophyre _ plagioclase attached

Figure 5
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EVOLVED, KREEPY MAGMA: R. W. Morris _ , G. J. Taylor _ , H. E. Newsom _, and S. R. Gareia _ *Dept. of
Geology and Institute of Meteoritics, Univ. of New Mexico, Albuquerque, NM 87131; # Research Reactor Group,
INC-5, Mail Stop G776, Los Alamos National Laboratory, Los Alamos, NM 87545

Studies of evolved rocks from the Apollo 14 site have greatly expanded our knowledge of the early evolution

and differentiation of the Moon. The ongoing search for new lithologies in soils and breccias has uncovered
many important rock types, including very high-K mare basalt and granite. We have been studying a suite of 18

rock fragments, 2-4 mm in size, separated from soils 14167, 14161, 14257, and 14001. We will concentrate here
on five of these rock fragments; three with a unique REE pattern, and two typical impact melt rocks. The three
unique rocks are breceias; consisting of light-colored granitic clasts surrounded by a high-Fe brown glass. Granite
is a relatively rare but petrologically important evolved rock type. Although only 6 examples have been found
(1), granite has been postulated as the origin of the unusual chemistry of the very high-K mare basalts (2). The
three granitic breccias are characterized by extremely high REE abundances whose chondrite-normalized pattern

is quite distinct from both KREEP and granite.

PETROGRAPHY - The first of the two melt rocks, sample 14161,203.2 is composed of plagioclase (=55%),
pyroxene (=40%), and metal (=5%). Twinned plagioclase laths, up to 1.0 mm in length, form a framework,
producing an intergranular texture. Anhedral pyroxene grains, up to 0.3 mm in size, are interstitial to the laths.
Ilmenite and chromite grains, up to 0.1 mm, also occur between plagioclase laths. The second melt rock, sample
14257,80.2 is made up of pyroxene (=20%), plagioclase (=15%), and metal (=5%) set in a fine grained matrix.
Ragged pyroxene grains, up to 0.8 mm in size, poikilitically enclose small (0.05 mm) plagioclase grains. These
pyroxenes and stubby to lath-shaped twinned plagioclase grains (<0.6 mm) are dispersed in the matrix,

producing an ophitic texture. Also present are opaque metal grains (<0.15 mm). The matrix is a very fine-
grained assemblage of plagioclase and pyroxene, with minor metal and traces of a phosphate mineral.

The three granitic samples are breccias, composed of two lithologies: brown glass and shocked granite. The
brown to amber colored glass is high in FeO (=25 wt.%) and TiO 2 (=5 wt.%) and makes up about 10 to 40%
of each sample. About 2% of the glass appears devitrified to crystals smaller than 1 # m. The glass occurs as
large masses and ropy coatings draped over granitic clasts and as veins between clasts. Despite the severe
brecciation, hints of the original texture can be seen in the granitic clasts. Highly shocked, granophyric
intergrowths of quartz and ternary feldspar (A_3 Ath2 Or55 ) make up between 10 and 30% of each granite.
Intergrowth grains are up to 1.0 mm in size, although most grains are less than 0.4 mm. Individual lamellae
range from = 10 to 40 # m in thickness. The bulk of each granitic clast is made up of rounded grains of shocked

quartz (<0.4 mm in diameter), subangular to subrounded grains of shocked feldspar (< 0.3 mm), and grains of
isotropic feldspar (<0.3 mm) set in a matrix of colorless, feldspathic glass with about 12 wt.% FeO and 6% CaO.
Angular grains of zircon, up to 40 by 60#m, are also found in the colorless glass and make up=0.5% of sample
14001,28.3. The zircons are concentrated in a 6 mm by 3 mm area, making up =70% of that particular area.
Zircon is absent from the other sections.

WHOLE ROCK CHEMISTRY - Samples 14257,80.2 and 14161,203.2, characterized by INAA, have similar major
element chemistry with 11.4 and 12.8 wt.% CaO, 7.8 and 7.1 wt.% FeO, and Mg#'s of 48.3 and 61.9 respectively.
Na a O is about 0.65 wt.% in each. These samples have REE patterns that parallel KREEP, with chondrite
normalized La/Yb ratios of-_2.2. Ir is also abundant (=4 ppb), as expected for impact melts. U and Th are

enriched, with the TH/U ratio similar to that of KREEP (3).
Samples 14001,28.3, 14001,28.2, and 14001,28.4, the granitic breccias, contain high abundances of FeO (12.2,

11.0, and 9.1 wt.%) and low CaO (5.4, 5.5, and 3.9 wt.%). The breccias have Mg concentrations that were below
the detection limit of_0.6%, producing the extremely low Mg#'s (<5.0, <9.0, and <6.8) seen in these highly
evolved samples. Cr and Co abundances are very low while the incompatible elements like Th, U, Rb, and REE
are extremely enriched. Ir is detectable in 14001,28.2 but not in the others, suggesting that they might be pristine,
but the textures are obviously brecciated and non-pristine. The incompatible element abundances showed the
unique nature of the three granitic samples. Chondrite normalized (4) REE abundances (Gd value is inferred)
of the five samples are shown in figure 1. KREEP (3) and "average granite" (2) are shown for comparison. As
can be seen from figure 1, sample 14001,28.3 has extremely high bulk REE abundances, much higher than the

KREEP component of (3). The pattern of the three granitic samples is also quite distinct from any previously
measured lunar rocks. The chondrite normalized La/Sm ratio is 1.77, much greater than the KREEP ratio of

1.35. The heavy REE pattern is nearly fiat, with a TB/Yb ratio of 1.07. KREEP has a much higher Tb/Yb ratio
of 1.30(3).
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PETROGENESIS - The petrography of the breccias suggest that they may be simple mechanical mixtures of two
components: a KREEPy impact melt and a granite. However, the extreme REE abundances make this unlikely.
A least-squares mixing calculation indicates that sample 14001,28.3 would be a mixture of = 65% "supergranite"
(La=590X chondritic) and-_35% "super"KREEP (La_ 1280X chondritic), both of which contain far higher REE
abundances than normal.

The origin of lunar granites has generally been explained by two processes: silicate liquid immiscibility (e.g.
5,6) and crystal fractionation (e.g. 7). Despite the severe brecciation of these three rocks, there is evidence for
both processes in samples 14001,28.3, 14001,28.4, and 14001,28.2.

The dichotomy between the granite and the high-Fe glass is suggestive of liquid immiscibility. As was shown

by (8) a silicate melt may split into two immiscible liquids; one high in Fe, and the other high in Si. The high-
Fe melt will contain the bulk of the FeO, MgO, TiO2, REE, P2 05, and CaO while the high-Si melt will contain

most of the SIO2, K20, N_O, and AI20 a. This is the distribution of elements seen in these breccias.
Apparently, these samples represent an immiscible melt pair that were separated and then remixed by impact.
However, the abundance of FeO, TiO2, and Pz O5 are higher in the bulk granite than would be expected from
simple silicate liquid immiscibility (8). The areas of the granite with fairly pristine texture (quartz/feldspar
intergrowths) tend to have the very low FeO, TiO2, and P2 05 abundances predicted by liquid immiscibility, but
the glassy, highly-shocked areas tend to contain more of these elements. The clear glass might be a mixture of
granitic and high-Fe impact melts. A least-squares mixing calculation indicates that the clear glass could be a
mixture of about 40% of our high-Fe melt with 60% average granite. The presence of a granite juxtaposed with
its high-Fe immiscible partner implies that there was little spatial separation between the two melts in the target
source rocks. The relatively uniform K/REE ratios among KREEPy rocks also supports the idea that there
could not have been much large scale separation of immiscible melts.

Crystal fractionation of a magma with a KREEPy trace element pattern could produce the unique REE
pattern of the granitic breccias. Modelling of this fractionation has shown that this pattern can be produced by
i% fractionation of an assemblage composed of 98.5% apatite and 1.5% zircon, with other phases assumed to
have little effect on the pattern. If fractionation of these phases produced the abundances in 14001,28.3, it
demands a parent "super"-KREEP with La abundances = 1020 times chondritic (Figure 1). The fractionation of
phases could have taken place in the parent liquid prior to immiscibility or in the high-Fe fraction of the melt
pair after unmixing. The FeO content of the brown glass is=25 wt.%, significantly lower than predicted (=30

wt.%) by silicate liquid immiscibility (8). This implies that the fractionation occured after immiscibility since
fayalite would also fractionate from the high-Fe melt.

There is evidence for both crystal fractionation and silicate liquid immiscibility in these granitic breccias but
neither process alone is able to produce the observed granites (1,9). Apparently, lunar granite formed by a
complex combination of immiscibility and fractionation, probably associated with a KREEPy magma during the

last stages of magma ocean differentiation.
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FIGURE CAPTION - (next page) - Rare Earth patterns normalized to chondrites (4). Gd value is extraploated.
Samples measured in this work are shown with open symbols on dashed lines. Inferred compositions are shown
with closed symbols on solid lines.
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APOLLO 14 BASALT PETROGENESIS: GENERATION FROM AN OLIVINE-CPX

DOMINATED MANTLE, FOLLOWED BY CRUSTAL ASSIMILATION AND FRACTIONAL

CRYS_%LLIZATION. Clive R. Neal and Lawrence A. Taylor, Dept. of Geological

Sciences, University of Tennessee, Knoxville, TN 37996-1410.

Breccia pull-apart efforts have proven invaluable in the understanding of

basaltic volcanism at, and the nature of the mantle beneath the Apollo 14

site. For example, Very High Potassium (VHK) basalts were identified from

such pull apart efforts [i]. This discovery led to a re-evaluation of the

significance of lunar granite at this site [1-3].

Oz Two types of basalt exist at the

_ _ Apollo 14 site: I) high-alumina (HA)

basalts, containing between 11-14 wt% AI20 _

and < 0.3 wt% KgO , with K/La ratios o_
approximately i00, 2) VHK basalts, con-

taining >0.3 wt% K20 , a K20/NaoO ratio > i,
_Op_ _ and a K/La ratio > 150. F_rthermore,

Op×/_ ; \ unlike the HA basalts, the VHK basalts

/ _ H^ \ crystallize orthoclase and have a residual

• • BASALTS
/ _ BASAL TS _ glass containing 7-!2 wt% KgO. Apart from

/O,ivlne // _ Plag. _ these distinct i°ns' mine_ral and maj°r

Z[ ,,---L _/2 n__J'_ g" 1 k_k element whole rock chemist ry, and petrog-raphy for both HA and VHK basalts are

Ol ...... _ .... --_An similar [1,3-7]. It is the trace element

contents of these basalts which yield the

most information regarding their petrogenesis.

High-Al Basalts When plotted on an Oi-An-SiO o pseudoternary, HA basalt major

element compositions define a fractionati_n sequence (Fig. i). In this

diagram, we have plotted our most recent data [7] as points, and our previous

data [5] as fields. Olivine and chromite are the first phases to crystallize

[8]. By using the lever rule (Fig. i), only olivine (90%) and chromite (10%)

fractionate during the first 14% crystallization. This is consistent with the

petrography, where olivine phenocrysts with chromite inclusions are present

[6]. After 14% crystallization, the ol-plag cotectic is reached, and plagio-

clase (50%) fractionates with olivine (40%) i i ,

and chromite (10%) until 21% of the parental soo_

liquid has crystallized. At this point, the !,__
ol-opx-plag peritectic is reached, and oliv-

ine fractionation ceases with orthopyroxene

....becoming the domznant lzquzdus phase. Plag- ;
zoclase (30%), orthopyroxene (60%) and zlmen-
ite (10%) are the crystallizing phases until _ so..... =

70% of the parental liquid is solldlfzed, o j__The HA basalts exhibit a wide range in w

trace element abundances. There is a con-_ _"

tinuum of compositions from LREE depleted _< 1oF--_,_?7---'-.X_.

(primitive) types [(La/Lu)N = 0.75; (Sm/Eu)N L_tal_

= 1.3], to LREE enriched" (evolved) type_ 5

[(La/Lu)., -= 2.5;(Sm/Eu)N--- 4.0] [7]. The

compatibl_ elements decreASe and LIL and HFS

elements increase from primitive to evolved

types. The evolved types have REE profiles i I Ie Sm
which mirror those of KREEP (Fig. 2). On Eu

element-element plots, the HA basalts exhibit

I I i1

I

Parenlal Basalt -

Fig. 2

! ! i

Tb Yb Lu
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coherent trends from primitive to evolved,

leading towards KREEP. This has led to the

foralulation of an AFC model between a primitive
basalt and KREEP in order to account for HA

basalt con_positions. The AFC modelling of the

new HA basalts is conducted using the same KREEP

composition as in Neal et al. [5] (i.e., 15386
"IKFM": Vanin_In & Papike, [9]). This is taken as

a representative KREEP sample.
In the model calculations, the "r" value

[i0] was first estimated as 0.2 by studying the

compositions of the parental basalt and

assimilant. As this is basically a basalt-basalt

interaction, the r value will be low. The r value

of 0.2 was then adjusted slightly to 0.22 in order that the derived AFC path

passed through all HA basalt compositions. Using published Kd values, AFC

paths are constructed between a primitive HA .
(14321,1422: low incompatible trace element 4o °' Fig. 4 A

abundances and SiO2, and high MG#) and 15386
KREEP (Fig. 2). The HA basalt REE (dashed lines)

A G4

calculated by our AFC method demonstrates that _30 ._
the LREE-enriched nature of the evolved basalts = ',4_'\'°_
can be generated from a LREE-depleted parent In _ ',

Figure 3, La is plotted against Hf for all Apollo _20 .%_,_
14 HA basalts. This diagram was used by Dickinson X\._._.,
et al [ii] to demonstrate the presence of 5 _.0,

• lO "-,, _0 m5

distinct Apollo 14 basalt groups. Previously ....-°'

reported HA basalt compositions [4,5,11] are _-'-_

presented as fields (as in subsequent diagrams), f0 _%_--3_---
Two fields exist, but the new basalt data go some So/Sin

way to "closing the gap" on this plot. An AFC _-_--_
path has been calculated between basalt Fig. 4
14321,1422 and IKFM KREEP (Fig. 3). The AFC model 3

must be extended in order to acconT_date the new

data, and as such, has been calculated to 70% "_

crystallization of the parent and 15.4% KREEP _- __id

assimilation (r = 0.22). The AFC model is also

applicable to other elements (Fig. 4).

The relationship between major and trace ,
elements suggests that the assimilant may have an

effect upon the major elements. For example, the ,_

sample with the highest La abundance does not
contain the lowest MgO, even though a general 0 _ 4 _ _ ,% ,2

negative correlation exists between La and MgO. Sm/Eu

Shih [12] noted an inverse correlation between MG# and incompatible elements

in KREEP basalts, the opposite of what is expected. Therefore, prolonged

assimilation of a KREEP basalt composition could increase the incompatible

elements a_d the M_O content of the residual magma.
Hasalt_

The similarity in major element compositions between HA and VHK basalts

(except for elevated KoO) has resulted in models for VHK basalt petrogenesis

by an HA basalt assimilating granite [1,13]. However, the unusually low HFS
ele_ents in VHK basalts would appear to negate granite assimilation. It was

proposed that preferential assimilation of granitic feldspars would overcome



84 APOLLO 14 BASALT PETRO(3F2_rESIS
Neal, C. R. and Taylor, I,. A.

lOO

1o

1
100

E
Q.
_ 10

_J

1
100

lO

t ' t I

C ...--a,,
,1542,_ ._-11_, ,

.." ,' ,I ',_

/, 0 /* a i

"i._0""' ,_4' "Fig. 5

B 12033,517_,..-,,

.-._ =,_,, A_

•,'q_"_/ • !1 7a255C

,/HA," riP. _
£ .-0" I_1 VHK

i ! I I , J

A
..---,

.''_ _1_am ,,A

4"

_65-T A=Av. Granite

this problem, and still yield a VHK composition

[1,14]. Neal et al. [5] proposed an AFC process

(after [i0]), involving lunar granite and a HA

magma, in order to generate VHK basalts. This model

generates the low HFS and high LIL element
abundances. Assimilation of granite is supported

by the presence of K-feldspar and K-rich residual

glass in VHK basalts [6]. One surprising outcome
of this model was that no one parental HA basalt

can generate all VHK compositions, arguing not only
for _re than one VHK basalt flow, but also a KREEP

component in the VHK compositions. This is

necessary because as more evolved HA basalts are

required as parental magmas for some VHK

compos itions.
The VHK basalts fall between HA basalts and

lunar granites on trace element plots. In Figures

5 & 6, all VHK data are plotted as points, and

Apollo 14 HA mare basalts and lunar granites are

plotted as fields. For the purposes of

illustration, three parental HA compositions are
I_ , _ used in the AFC calculations: 1) Primitive

0.0l 0.I 1 10 (14321,1161 of [4]); 2) _ntermediate (14321,1443 of

_K [5]); and, 3) Evolved (14321,1542 of [7]). These

HA compositions span the entire range of Apollo 14 HA basalts. The

fractionating phases are the same as for the HA basalts because of the

similarity between major element compositions (Fig. 7). The r value of 0.5 is

the same as in this previous study. This higher value

is required because granite has a lower melting point
than basalt. Granite assimilants used are average

lunar granite, 73255c [15], and felsite 12033,517 [16].

This approach allows the compositional variability of 10
lunar granite to be accounted for in our model.

Figure 5 is of La (ppm) versus %K, a classic plot I

for VHK basalts. The diagram has been split into three

parts, in order to clearly demonstrate the calculated
AFC paths (tick marks represent increments of 5% 0 1

crystallization or 2.5% assimilation) between each

parental basalt and granite assimilant. In Figure 5a, _ 10
basalt 14321, 1161 is taken as parental. Note that all

VHK basalt Compositions cannot be generated from this = 1

parent magma and one granite composition as the assi- _

milant. In order for magma ,1161 to generate VHK
0.

basalts with high La abundances, it must assimilate up

to 17.5% of granite 12033,517 (Fig. 5a). Such a large

amount of granite assimilation will dramatically affect 10

the major element composition of the resulting VHK

basalt. In order for granite to not adversely affect I

the major element compositions of VHK basalts, a

maximum of only ]0% can be assimilated. Therefore,

basalt ,1161 cannot be parental to VHK basalts with

high La abundances. However, it may reasonably be
considered parental to VHK basaits with intermediate
and low La abundances, as these conpos itions can be

Fig. 6 ."}','

// J II 73255_
/0 l/._ff

/'HA/'_'_= C

12033,517,_l[''Ai

 ,,Ik

; ._-_" VHKj_, [ i !
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generated by a maximum of only 8% assi-

milation of average granite and 73255c,

respectively (Fig. 5a).
The VHK basalts with intermediate La

abundances are better represented by using

basalt 14321,1443 as the parental magma

and either the composition of average
granite or 73255c (Fig. 5b). A maximum of

7% assimilation of average granite or

73255c is required to generate these VHK
basalts. The VHK basalts containing the

highest abundances of La are generated by

using basalt 14321,1542 as the parental

magma assimilating a maximum of 7.5%

average granite or 73255c (Fig. 5c).

In Figure 6, Th (ppm) is plotted against %K, an element difficult to
model for VHK basalt petrogenesis (e.g., Shervais et al., 1985b), and a

similar picture is defined as in Fig. 5. For VHK basalts with low Th

abundances, 8% assimilation of 73255c by ,1161 is required (Fig. 6a). For

those with intermediate Th abundances, 8% assimilation of average granite by

,1161 is necessary. However, those VHK basalts with intermediate Th

abundances are better represented by our AFC model if basalt ,1443 is the

parental magma and 73255c is the assimilant (Fig. 6b). A maximum of 7.5%

granite assimilation is required to generate these VHK compositions. The

highest Th abundances (Fig. 6c) are generated between the parental basalt

,1542 assimilating up to 7.5% of either average granite or 73255c (as for La

in Fig. 5c).

The slight variation (+ 1%) in amount of required granite assimilation
for different elements in VHK basalts of low, intermediate, or high

incompatible element concentrations is well within error of the AFC

calulation. Another outcome of our modelling is that, generally, VHK basalts

with low, intermediate, or high incompatible element abundances are generated

by primitive, intermediate, and evolved parental magmas, respectively. This

leads us to conclude that the parental magma not only dominates the major

elements, but also the trace element composition of VHK basalts. As a maximum

of 8% granite assimilation (of either 73255c or average granite) is required,

it appears that only potassium is radically affected (see Figs. 5 & 6).

Our modelling suggests that there must be at least three parental HA

magmas required to generate the observed VHK basalt compositions, and also

argues for a KREEP component in the VHK compositions. This is necessary

because as more evolved HA basalts are required as parental magmas for the

more evolved VHK compositions. As demonstrated above, HA basalts form a

continuum of compositions as a result of KREEP assimilation. We regard VHK

basalts as offshoots from this HA basalt evolution trend by granite replacing

KREEP as the assimilant. This adds support to a KREEP-granite relationship as

suggested by Ryder [17] and 5_al and Taylor [18]. Once again, the importance

of lunar granite cannot be over emphasized in light of the new VHK basalt

clasts recovered from Apollo 14 breccias.

The recent work of Dickinson et al. [19] has highlighted the importance

of the siderophile element concentrations in Apollo 14 HA and VHK basalts.
These authors noted that the Ge abundances in both HA and VHK basalts could

not be generated using the proposed end members of our AFC model. Rather, Ge

must have been enriched by several orders of magnitude over observed

concentrations in 15386 KREEP and twice that in lunar granite. However, we do
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not feel that this negates the proposed AFC models for HA and VHK basalt

petrogenesis. As stated earlier, a pure KREEP composition has not, as yet,

been defined and may contain greater abundances of the siderophiles than in

our proposed end member. A siderophile-rich KREEP component incorporated into
HA basalts will also account for the Ge composition of VHK basalts.

source  ning TThe modelling of Apollo 14 _ p\.__ 4_ PARTIALMELT

basalts byAFC defines a parental_ _/__ ___<//
magma composition, which is LREE _ / _____. :.-----*=

depleted with a small' negative Eu _ I° /._/ /_/%
anomaly, enriched in incompat- _

ibles, and has low SiO 2 and a high _ .... ,.Mo /""I
MG#. This cor_position is assumed _ ..... _ASAI,'r .--I-

SOURCE 1

im,m. SOURCE/m _ 01 5C_to be an unmodified mantle melt, _ L opx 3o_
CPX fC._

and can be used to estimate the _ _.._'- - PL;,C 5_
composition of the lunar mantle. < / Fig. 8 ILM 5_

A source composition is assumed _ .............................../ .
from the magma ocean theory (i.e., K u.Th L.C_ Sm E_ Tb _ _ S_,fT_

mafic cumulates containing a negative Eu anomaly: [20]). By iterative calcu-

i -.. 5_ PARTIAl. MELT

• _% -'_--c:_--t Y

m °
('-) .'-'. LHO _ -

t ,wIwWSOURCE /" " SOURCE
,._] / / ot 4o_

ll: _ ..._r_" OPX 30_

Q'_/.,r" CPX 20_hi 1:'-' - n PLAG 5_

.,"_ f / "19' 2/ ILM 5sOr}

lations, several possible source

trace element patterns are gener-

ated by varying the degree of

partial melting (i.e., assuming

our parental basalt is a product

of 2%, 5%, 10% partial melting

etc.). The trace element compos-

ition of the magma ocean from

which these hypothetical sources

have crystallized, can now be
calculated. The HA source cryst-

allized from a magma ocean with a

D__h u _ s._Fu Tb _b ,.,_s_ ,,,T. (La/La) ratio of 2 and a (Sm/Nd)t,]
of 0.89 [21-23]. Although the source mineralogy h_ been varied (O1 40-50,

Opx 30, Cpx 10-20, Piag 5, Ilm 5), the degree of partial melting required to

generate the parental HA magma from the calculated trace element abundances is

4-5% (Figures 8 and 9).
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LUNAR GRANITE PETIMgGENF.SIS AND THE PROCESS OF SILICATE LIQUID

IMMISCIBILITY: THE BARIUMPROBL_. Clive R. Neal and Lawrence A. Taylor,

Dept. of Geological Sciences, University of Tennessee, Knoxville, TN

37996-1410.

The Apollo 14 sample return has been particularly fruitful in that

several lunar granite samples have been identified. Granites contain the

highest Ba, K, Si, AI, and Cs abundances of any lunar rock type. The presence

of granite in generally mafic settings [1-3] is perplexing because of the lack

of any intermediate rock-types between basalt and granite, which would be

expected if normal magma fractionation generated such Si02-rich rocks. This
lack of intermediate rock types between basalt and granite, coupled with the

excellent experimental work on lunar basalts [4,5], demonstrate that silicate

liquid immiscibility (SLI) may be an important process in the formation of

lunar granite.

The Process of Silicate Liquid Immiscibility. When a fractionated magma

encounters the immiscibility field, high- (acidic) and low-silica (basic)

melts are produced. The experiments of Rutherford et al. [4], Hess et al. [5],

and Rutherford and Hess [6], and the observations of Roedder and Weiblen [7-9]

and Weiblen and Roedder [i0], suggest that SLI can only occur after extreme

(90-98%) crystallization of a basic magma. Hess et al. [5] concluded that the

fractionation path required for ultinate immiscibility of the residual is very

similar to the "Fenner Trend" (i.e., FeO rather than SiO 9 enrichment, with a

dramatic decrease in MgO). These authors also suggested _hat under conditions

of low oxygen fugacity (such as in a lunar environment), there is a "thermal

valley" which leads residual magmas towards a ferrobasalt composition. This

type of fractionat_on does not produce intermediate rock types between basalt

and granite, because silic_ enrich_._nt is su_ppre_sed. Experimental results,

which demonstrate SLI in actual lunar basalts [4-6], coupled with immiscible

glass analyses from lunar lunar basalts [7-10], indicate that SLI is a

feasible process in the lunar environment.

60

_"0
r-
F-
-- 20

- Fig. i .....'_....
I.'."'.".:-',/._"'_t..:.;"w

kC_..,
MARE

BASALTS
KREEP

SLI in Lunar Granite Petrogenesis. Inter-

element ratios of such elements as K, U, Th,

Rb, Ba, P, REE, and Zr are relatively un-

affected by normal fractional crystall-

ization of basaltic magmas (e.g., [ii]).

However, SLI can dramatically alter such

ratios as K/P, K/La, and K/Zr. Therefore, in

order to ascertain the role of SLI in the

I K/La_75_._,--",_-__T__r- production of lunar granite, comparison of

20 40 60 B0 ]00 20the K/La ratio between granite, Apollo 14

ta (ppm} basalts, and KREEP has been made (Fig. i).
Lunar granite is compared with Apollo 14 HA

mare basalts [12-14] and KREEP compositions [15]. The K/La ratio is similar

for both the basalts and KREEP (-= 75). The granites exhibit K/La ratio of up

to I000. Therefore, if the parent to granite was either a KREEP or mare

basalt, it is unlikely that granite was produced by fractional crystallization
alone.

Immiscible granitic glasses in basalt mesostasis have similar

compositions to actual lunar granites, suggesting a similar petrogenesis.

Experimental results from high- and low-Ti mare basalts [4-6], demonstrate the

relative ease with which lunar basalts, under low fO 9 conditions and slow
cooling, can eventually undergo silicate liquid immiscibility. Finally, the

lack of any intermediate rock types between basalt and granite on the Moon

_9
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negates any fractional crystallization sche_ that does not follow the "Fenner

Trend". This type of fractionation scheme produces a ferrobasaltic residual,

ideal for the production of immiscible melts [5].

Partitioning Between Immiscible Melts. Partitioning of elements between these

melts is a function of melt structure [16-19]. We have presented liquid-liquid

Kd's determined by experimentation and calculated from immiscible glasses in

basaltic mesostasis (Table i). These Kd's are presented as:

o_nc. of element in basic melt

conc. of element in acid melt

(* Db/a = liquid-liquid Kd)

and are produced for both major and trace elements. A Db/ value of >i
indicates that the element is preferentially partitioned inZ)_%he basic melt.

The magnitude of T^m.E I" Liquld-liqu|d partition coefficients calculated from

the liquid-liquid Immlsclble glasses in basaltic mesostases and experlr.ental results.

Kd's has been shown ' ' ' ' ' ' ' ' ' ' ' ' ' '
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................. |._80 _.920 ]:) .00 --- ]*#07

variations cause a _" ''°° ...... "r ,....... 0-,

widening of the ,.+.........,-,,,,,,,,,_,......_-,_+....._-_,,-,o-+.. ._ ,+- .....
I,4 W_ible,, |97]W 4 - We|bl*n s,_t Reed_er. 197_I 5 - _%hel[ot_ et Lu ...... S.d;55

i i ity ""' '"" '" ".... _ _" '"" ' "" ....... +".... '""' ' "mm scibil gap ..+....i,,, ....... ,2,
J

and probably acc- .' _........... '
ount for the range in Kd values pr_ented in Table I. The elements Si, AI, Na,

K, Rb, and Cs are concentrated in 6he acid or granitic melt (i.e., Kd < i),

whereas Ti, Cr, Fe, Mn, Mg, Ca, P, Zr, U, Th, the REE, F, CI, St, and Ta are
concentrated in the basic or ferrobasaltic melt (i.e., Kd > I: [4-6,19]).

The Barium Problem

Analyses of immiscible glasses in lunar basalts [7-10], and

interpretation of preliminary experimental results [4,5], led to the
conclusion that Ba was concentrated in the granitic n_It (D. , < I). However,

the experimental results of Watson [19] and Ryerson and Hes_/_18] de,_)nstrated

that Ba was concentrated in the ferrobasaltic or basic immiscible melt (Db/a =
1.5 and 1.4, resp.).

We have recently analyzed immiscible glasses from basalt 15434,188 to

evaluate Db. values for use in SLI modelling ([_ . 's calculated from adjacent
immiscible _asses). In order to increase the pr_sion of the minor element

analyses, extended count times of 60 seconds were used. Our results agree with

experimental Dh/_ values, except for Ba (Dh/a = 0.49). Other immiscible glass

analyses from K_511o 15 KREEP basalts (TaD_I_ I), give a Db/a for barium of
0.61 (G. Ryder pers. comm., 1988).

The variability of the Ba t_>-liquid Kd is addressed by consideration of
the immiscible melt structure. A1 can assume the role of either a

network-forming or network-modifying cation in silicate melts [20-22].

However, in order to assume the capability of a network-forming cation and

substitute for Si, A1 _ust be charged balanced by a mono- or divalent species.

Hess and Wood [22] and Roy and Navrotsky [23] proposed a list of cations

which would conplex with tetrahedral AI. These are_+in order of preference:
K > Na > Li > Ba > Sr >Ca > Fe_ > Mg.
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--_ _--_-_--_--_-- Hess and Wood [22] concluded that AIO A species

,4 Fig. 2a _ forn_d with cations at the beginning of this series

,2 preferentially enter the most polymerized silicate

[] units (i.e., the high-SiO 2 melt); those formed with
'° • .|•• cations at the end, favor the least polmerized melt
0. structures (i.e., the basic melt). Ryerson and Hess

o._ [17] suggested that the liquid-liquid Kd for Ba and
• Sr is _ i, and Wood and Hess [21] indicate that the

°_ .....n^S^,T transition between the the two states occurs at Ba.
o_ _OO_OEXrE_MF_NT^L It has been demonstrated that in a K- and

Na-free system which undergoes SLI, A1 is

0%_ 0_ 0, o, 0, ,0 ,_ , "preferentially partitioned into the low-SiOgmelt as
Oh/, Barium

a CaAl_O A complex (Ca is strongly partitioned into
_, _--_-_---'--_-_--the bagi_ melt, see above) [21-22]. However, with

o.o_ • Fig. 2b increasing alkali content, A1 is preferentially

partitioned into the high-SiO 9 melt. Potassium (or
Na) displaces Ca as the charg_ balancing cation for

the network-forming AIO. tetrahedra. The (Na,K)AIO 9

• " species favor the more_polymerized silicate mel_

" .•" structure. Ry_rson,and Hessg_18] concluded that the
" " behavior of K', Na', and Ba-- is explained by their

o o

oo_ strong affinity for sites associated with tetra-
.....³_____³.T hedral A1 Calcium and the REE 's display the oppo-
i }[_t J_ ,, ] EXPEId MFNTAL o

-0o_v-_ _? 0% o_--,%-,_C,--0site effect as a result of their greater affinity

D_/, m,,i,m, for the phosphate complexes in the basic melt.
We have combined our acid in_niscible glass data

with the experimental results of Watson [19] and Ryerson and Hess [18], and

plotted the Db/.a for barium against the alumina - "alkali" and alkali/alumina

ratio ("alkalZ"melt= K°O+Na20+CaO+ BaO) in the 60o0 i r----1 __-vc--c----1--
granitic (Fi_. 2 a,b), using oxide GFIANIT_ "_.::..'bqx.

moles. Our data, coupled with experimental - "l_._...: .>,_

results, suggest an A1203-("alkalis") value £a aooo Fig 3-= 0 corresponds to a D_/_ for Ba of 1. This a

° 1
indicates that an e_ess Ofratio_6_Alin the_=i m k _AnE __ '_
high-SiOo melt is required for the D_/= for 2000 KFIEEP -_

Ba to be'< i. The alkali/AlgO _ __oI]_ASALTS !

corresponds to a Dh/a oY-I. A similar o__7_ I _L--J=---
correlation between _ and La (Fig. 3) as 0 20 ao 60 80 I00

for K and La (Fig. i), demonstrates that Ba La (ppm)
is partitioned into the high-SiO_ inrniscible
melt during lunar granite petrog_nesis involving SLI.
Conclusions. It is probable that SLI was involved in lunar granite

petrogenesis, at the conclusion of extreme "Fenner Trend" fractional

crystallization of a basaltic magma. Such a scenario accounts for the lack of
intermediate rocks between basalt and granite on the Moon. The high Ba

abundances in lunar granite can be explained by SLI, even though

experimentation suggests Ba preferentially partitions into the basic

immiscible melt. Barium partitions into the high-SiO 2 melt if "alkalis"-Al203

is > 0, and the Al203/"alkalis" ratio is > I.
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OF POOR QUALITY

TIE SPL_ OF _ INgO IDE_IYIFIABLE ODMPONENTS: THE =K-FRAC=

AND vRE_-FRA¢ " Bi_(711_SIS. Clive R. NEAL and Lawrence A. TAYLOR, Dept. of

Geolgicai Sciences, University of Tennessee, Knoxville, TN 37996"1410.

_EP: contains high abundances of K, REE, and P and is considered to have

a noritic composition [i]. A generalized KREEP composition, as taken from the

literature, contains -=lwt% K20, Slwt% PoO_, Rb = 20-25ppm, Rb/Sr --"0.11, La =
300-350 times Chondrite, Hf - 35-40ppm,_ = 15-20ppm, and Ba = 1000-1500ppm.

_erally, _ has a LREE-enriched profile (e.g., [1,2]), which contains a

large negative Eu anomaly (Fig. I) with La/Lu -=22-25.
There have been basicaiiy two models proposed for the generation of

_, based upon the Lunar Magma Ocean hypothesis (LMO): i) partial melting

of an "AN_-suite" (KnOrthosite, Norite, Troctolite) cumulate (e.g., [3-5]); or

2) as a residual magma after extreme fractional crystallization (e.g.,

[1,6-8]). Warren and Wasson [i] argued for a uniform, almost Moon-wide KREEP

reservoir, and concluded that _ could not be produced by partial melting.

Warr_ and Wasson [i] also suggested KREEP to be the residual from the LMO.

_ey used the German prefix "Ur" (meaning primeval) to describe KREEP produced

in this way. The urKREEP hypothesis does not

' _ ' ' adequately explain several KREEP-related

Whi lockite phenomena. For example, the large KREEP

1°_ quantities (50-90%) that are essential in
the trace element modelling of soils,

... breccias, and olivine vitrophyres, facil-

itates the need for hypothetical "high-Mg"
components, (e.g., "primary matter" [9,10] ;

cD
z "SCCRV" [ii]; "MAF"- [12,13]; "MAF-14"
O 3
= 10 [14]), in order to generate the observed
t.)

"_ MG#'s Yet these "high-Mg" compositions
L_

-J have not been observed in the lunar sample
o.

returns.

The existence of "super-KREEPy" rocks

102: (Fig. i) is also difficult to explain with

the KREEP composition defined above. REE
abundances of "KREEP" (Fig. i) are below

I that of the Apollo 15 quartz monzodiorite
[15,16] and the "white clast" 14313,34

10_ [17,i8]. It has been demonstrated that
La Nd SmGd Dy Yb these two rock types cannot be generated

Ce Eu Tb Lu from the idealized KREEP conposition by

fractional crystallization or silicate liquid immiscibility [16,19].

It must be emphasized that in reality, _EP is a chemical signature, not

_ific rock-tYpe. This KREEP signature is seen in KREEP basalts, where an
inverse correlation between MG# and incompatible element concentration exists

[i8], the opposite of what is expected. Warren and Wasson [i], Ryder [20],

and Warren [21] conciuded that this dichotomy in KREEP basalts is due to the

incorporation of a possible urKRF_EP component into the basaltic melt during

magma petrogenesis. This highlights the problem of identifying a pure,

pristine _ composition. In order to reduce the effects of contamination,

_e have attempted to identify possible KREEP components. These must contain

high abundances of K, REE, and P, as well as other incompatible elements.
Identification of _ O_

Lunar granite contains the highest K concentrations of any rock returned
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from the Moon, and is considered to be a product of silicate liquid
inTniscibility or SLI (e.g., [22-25]). SLI tends to fractionate K (which is
preferentially partitioned into the acidic melt) from the REEand P (which are

preferentially partitioned into the basic melt [23,26,27]). Therefore, if

granite represents the K in KREEP, the KREEP signature can be split by SLI
into a K-Fraction (acid immiscible melt) and a REEP-Fraction (basic in_niscible

melt). However, another KREEPy component, enriched in the REE and P, is

required. A likely candidate for this component is not a rock type, but a

mineral. As reported by Shervais et al. [28] and Lindstrom et al. [29],

highly evolved phosphates (_litlockite and apatite) are present in primitive

Mg-rich highland lithologies. These phosphates (Fig. i) are highly enriched

in the REE - >i0,000 times chondrite [30].
A Model for urKREEP Evolution

One of the significant implications of our model is that there is no

distinction between "KREEp" and "urKREEP". In the following discussion, the

terms are synonymous. The model proposed for KREEP petrogenesis involves the

residual nagma from the LMO undergoing SLI. We consider that urKREEP repre-

HIGHLANDS

__ Fig. 2
PLAG-RICtl

"O_,LO"ARC.OS, \ COMOLA'rES
\\_j"_ ".'_EP-FRAO"\
"f • .,, _VJ_ \ MAnE
(/-'- ---------=

'_ lie =le_' "K" FRAC"

MIGRATION OF
KREEP RESIDUAL

OLIVINE/PYROXENE
CUMULATES

sents the conposition of the
residual LMO fractionate

just prior to the onset of

SLI. Although urKREEP form-
ation was extensive [i], SLI
was more localized in

extent. Extensive separ-

ation of inmiscible liquids

will only take place at

depth [25], which may be at
the base of the ferroan

anorthositic lunar crust

(Fig. 2). We envisage that

urKREEP was present as

residual pockets in the LMO

crystallate and locally

underwent SLI. The granitic

K-Fraction, although less dense than the ferrobasaltic REEP-Fraction, will not

migrate far from the scene of SLI, because of its high viscosity (= 30000

poise; Table i). However, it must be enphasized that most urKREEP does not

undergo SLI. Evidence for this is that a "pre-SLI" KREEP composition is an

important conponent required in HA basalt petrogenesis at the Apollo 14 site

[31], and of Apollo 15 KREEP basalts [20].
As the viscous granitic _elt cannot readily disseminate, the formation of

significant granite pods can occur, as required for VHK basalt generation
[32-34]. However, the ferrobasaltic "REF_P" melt is less viscous (10-15 poise;

Table i) by over 3 orders of magnitude such that it is likely to separate from

the granitic portion. The density of this Fe-rich melt is relatively high {s
3.3 g/cm ) so it should readily separate from the granitic n_it (-=2.7 g/cm )

by gravity. However, after separation, it is the low viscosity of this

water-like melt that will pen_lit it to move independently of gravity, largely
because of surface tension effects along grain boundaries. We suggest that

portions of this melt migrated upward, promoting the metasonatism of the lunar

crust by crystallizing the highly evolved phosphates noted by Lindstrom et al.

(1984) and Shervais et al. (1984) in highlands lithologies.
From the calculated norns of ferrobasaltic inlniscible liquids (Table I),

we should expect to find a "REEP" assemblage of apatite/whitlockite, ilmenite,
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feldspar, pyroxene, quartz, but domin-
Tibl_ 1: ColnpoF+ltion_ with ca_cu]llted normE _nd vlscosJ_ie_ of

ated by fayalite. In the lunar high ....:_.._i=_. _ gl.....f.....p.r_.....c,......i.
1975) and lunar basalt'.- (_eiblen and _oedoer, l_73).

lands, we find predominantly apatite/ _

whitlockite with minor plagioclase, s_c2 743 3s4 _6 _46
which would appear to negate our SLI _% 070 3_o o6o 3.2s

j AI203 Ii .I 6.73 11.6 4 .B2model. However, ust because a magma P.0 6,_ 33: 3_7 3_

undergoes SLI does not mean that cryst, ,9o o o_ o5_ o o_ _67
allization ceases. It is perfectly c,o 2o7 1_ _6 _,

_a20 0.42 0.17 0.29 <c .03

feasible for this ferrobasaltic immi- _20 ,_7 o.. _26 o_9
scible melt to undergo further cryst- P_o_ on _6 _._o _0
allization. For example, comparison of ,_ ,_.,,,_._ _n ,,,_

mineral densities den_nstrates that if o_ _6 _.+ +_._ _.1
A_ 3.6 1.4 2.5 0.3

fayalite (density = 4.14) crystallizes ^_ ,, _, 6_ n_
immediately after SLI, it will settle :_- _ _ _ _
out from the residual liquid, promoted _ --- _o -- _

_a 11.6 52.7 4.9 4; ._

also by the melts' low viscosity. This _o. 0_ n0 0_ _

will significantly reduce the density o= _, _ _:o _
Cot 2.7 --- 0.9 ---

of the residual liquid, further promot-
ing upward migration through, and _...._(.) ,o,0_ n =,,_,_ _

metasomatism of the lunar crust by • ¢,_==_._o.._.,._o_o__, =.=_o_°__o=_,_=.n_,._zz
(1972).

grain boundary percolation. Therefore,
post-SLI fractionation can account for the phosphate-dominated lithologies

observed in the lunar highlands.

The above model does not conflict with isotopic evidence. The

crystallization age determined for granite is 4.1 Ga [18], whereas measured

KREEP ages are generally 3.9-4.1 Ga [e.g., 36]. However, KREEP model ages
cluster around 4.3-4.4 Ga [37], and granite model ages range from 4.25-4.56.

The discrepancy in measured and nDdel ages is facilitated by the ability of

the residuum from the magma ocean to remain liquid for at least 200 Ma after

the bulk of the crystallization [38,39]. The similarity of model ages for

KREEPy materials and granite may indicate a con_non source.

Another outcome of our hypothesis is that the REEP-Fraction may be

synonymous to the "LKFM (Low Potassium Fra Mauro) basalt" which has been

considered to be important in "KREEP" petrogenesis [40,41]. However, no

evidence has been found to suggest that this is an igneous rock type [18-42].
The name LKFM basalt was originally given to one of the dominant glass

¢omDositions in highland soils [43-45]. Also, Apollo 16 and 17 breccias are

close to thiscompositi0n. _ experimental study by [42], showed that LKFM

"basalts" probably represent a cotectic melt, saturated with olivine and

plagioclase. These authors considered that LKFM basalt is a fractionation

product of the LMO, and it occurs as an intercumulus phase in the anorthositic
crust. This conclusion is supported by our hypothesis. The REEP-Fraction by

definition is "Low-K" and is ferrobasaltic in composition. This could well be

the I/<FM component found in the lunar highlands, but rather than being an

intercumulus phase, we conclude that it is a metasomatic product.
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ELEMENTAL ABUNDANCES AROUND APOLLO 14 AND OTHER SELECTED
LUNAR REGIONS FROM TItE APOLLO GAMMA-RAY SPECTROMETER EXPERIMENT*;
Robert C. Reedy, Earth and Space Sciences Division, Mail Stop D438, Los Alamos National
Laboratory, Los Alamos, NM 87545.

The orbital geochemical experiments that flew on Apollos 15 and 16 provide our best descrip-
tions of the regional and global distributions of various elements on the Moon's surface. The Apollo
Gamma-Ray Spectrometer (AGRS) and the X-Ray Fluorescence (XRF) experiments obtained data
from which maps of thorium, potassium, iron, titanium, magnesium, and aluminum have been de-
rived for the parts of the Moon overflown by these two Apollo missions (1,2). The elemental results
from these orbital experiments have been reported in many publications. This paper briefly reviews
these experiments and gives and discusses some of the results from the AGRS, mainly for regions
around Apollo 14. The gamma-ray results for the naturally radioactive elements (Th, U, and K)
have been our best indicators of the evolved lunar materials that concentrated these relatively rare
elements, such as the KREEP found in high concentrations at Apollo 14 and granite.

The Ground Tr.acks and the Data Integration Re_ons. The Apollo 16 mission was in a nearly
equatorial orbit that flew over the crater Fra Mauro and near the Apollo 14 landing site, so provided
data on the distribution of elements in a narrow band on either side of Fra Manro. The Apollo
15 mission had a ground track that went _30 ° north of Fra Mauro near the crater Archimedes,
over parts of Mare Imbrium, and over the crater Aristarchus. Unfortunately, these two missions
only provided gamma-ray data for ,_20% of the Moon, and there are large gaps in the data base
for the regions where KREEP could be present, especially north and south of Fra Mauro. The
XRF experiment required solar X rays as the fluorescence source and only measured Mg/Si and
A1/Si ratios for about !talf of the two ground tracks. The Apollo 16 XRF experiment obtained only
poor-quality data west of Fra Mauro (2) due to low sun angle.

The XRF experiment with its collimators and high count rates produced results with fairly
high spatial resolution (,,_100 km), but the AGRS results have much poorer spatial resolution
because the spectrometer wasn't collimated and because considerable amounts of data (counting
times of ,,_1000 seconds or more) were needed to obtain reasonably good results. Initial elemental
results for the AGRS were reported for various longitudinal bins along the two ground tracks (3,4),
but such an approach often combined different kinds of regions, such as highlands just south or
north of a mare. Therefore, more detailed outlines were used to define regions that combined many

adjacent 1° x 1° units into a fairly homogeneous region such that the amount of v-ray data was
adequate for elemental analysis. These regions are defined in (5), with some minor revisions in (6),
and have been used in many of the papers reporting orbital geochemical results.

The Orbital Geochemical Experiments. The Apollo geochemical experiments are described
in detail elsewhere (1, 2, and referenceS/herein). The AGRS was a 7x7-cm NaI(T1) scintillator
crystal connected to associated electronics and a 512-channel analyzer. The energy of a gamma ray
indicates the element from which it was produced (7,8). As a NaI(T1) spectrometer has poor energy
resolution (unlike the germanium detectors planned for future planetary missions), considerable
efforts were involved in getting elemental results from the Apollo gamma-ray data. Initial processing
of the AGRS data concentrated on unfolding most of the 512 channels per spectrum using response
functions for the */rays from various elements. Initial results for Th, K, Fe, Mg, and Ti are given
in (3), and the last set of spectral-unfolding results, for Th, K, Fe, and Mg, are published in (4).

To get better spatial resolution, another approach was used where count rates were integrated

over various _roups of energy channels. This approach was used for the initial maps of natural
radioactivity (e.g., 9) as these elements emit most of their 7 rays with energies of 0.55 to 2.75 MeV.
Such maps showed that regions of high radioactivity were fairly localized on the Moon and firmly
established that KREEP was not a major component of the highlands (9). An improved version of
ttie radioactivity map was published in color (10). This same energy band was used by (5) to get
thorium abundances for the lunar regions mentioned above. Other energy bands have been used to

map iron from its high-energy neutron-capture (6,!0,11) and low-energy neutron-inelastic-scatter
(12)7 rays, titanium (I1,13), and potassium (14). the l:e a.d Th results from (10) are in a color
map, the rest of these papers give elemental abundances determined for a few (6,1,i) or most (1 !-13)
of the lunar regions defined by (5). The count rates used to map thorium (and uranium) were high
enough that the data could be "deconvoluted" to get better spatial resolution for the distribution
of t!mse radioactive elements on the lunar surface (15). Maps with such improved spatial resolution

for thorium have been published for Mare Smythii (15), the Apenninus region (16), Mare Imbrium,
Aristarchus, and adjacent regions (1 _), and the central highlands (18).
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Selected Results from the Apollo _amma-Ra¥ Experiment. Table 1 gives the elemental
abundances of Th, K, Fe, Ti, and Mg determined for regions along the Apollo 16 ground track
on either side of Fra Mauro and for selected Apollo 15 regions. Data sources are indicated. A_ree-
ments with abundances determined by others for these regions are generally good for Th (4,5), Ti

(11,13), and Fe (4,6,11,12). The Mg results (4) are in good agreement with the XRF values of
(19). The largest difference between two sets of analyses of the AGRS data is for potassium, where
the results of (14) are consistently lower that those of (4). The biggest differences are for regions
of low K, such as highlands (e.g., regions 12A and 12D in Table 1). Comparisons with lunar-soil
analyses (e.g., 20) are in better agreement with the K abundances of (14) than those in (4). Other
studies using the orbital geochemical data give results that are consistent with lunar sample results
(e.g., 21-24), and there are no indications that the orbital elemental abundances, such as those
summarized in Table 1, are seriously in error. The uncertainties of these elemental abundances
determined from the orbital data are typically ,._20% (higher for the lowest concentrations), but

this range of uncertainties is adequate for most lunar investigations.

Discussion. Only a few of the regions overflown by the orbital geochemical experiments on
Apollos 15 and 16 have elemental abundances characteristic of KREEP or other lunar materials that
have evolved with high contents of Th, U, or K. The regions of highest radioactivity are, besides Fra
Mauro, around the Imbrium basin, such as near the craters Archimedes and Aristarchus. There are
no signs of such materials elsewhere on the Moon, although a region of enhanced radioactivity was
observed on the lunar far side near the crater Van de Graaff (3,4,9,25). Van de Graaff and nearby
highland regions also have unique results from the Apollo 15 laser altimeter and magnetometers
(25). The nature of the material near Van de Graaff is unknown, but the elemental concentrations
(cf., Table 1) are similar to those in a mixture of mare basalts and far-side highland material.
There is a topographic low mainly south of Van de Graaff (the "big backside basin"), which could
have a unique chemical composition (3,4). ttowever, until more of this region is covered by orbital
geochemical experiments, the presence of unusual, evolved materials there is just speculation.

The thorium concentrations for the large regions given in Table 1 are not very high, being
_8 ppm. However, Metzger and co-workers have shown with their deconvolution techniques that
there are "hot spots" of thorium in each of these regions, centered at large craters. A 4 ° × 4 °

(,._120-kmxl20-km) unit centered on Aristarchus has 18-22 ppm thorium (17), a region about
5 ° × 5 ° in dimension south of and including Archimedes has 15-20 ppm Th (16,17), and the crater

Davy east of Fra Mauro has 16-22 ppm Th (18). Thesethorium concentrations approach those (22
ppm) determined by Warren (26) for average high-K KREEP, showing that several lunar regions
with dimensions of ,,_100 km are highly enriched in KREEP (or some other highly radioactive
component). The next "warmest" spots for thorium have ,,_10-ppm Th and are located at smaller
craters, in the mare west of Davy (and southeast of Fra Mauro), and on the Apennine Bench south
of Archimedes. The regions south and west of Fra Mauro have not been deconvoluted for thorium.
Concentrations for other elements have not been deconvoluted. For the three hottest regions in
Table 1 (Fra Mauro, Aristarchus, and Archimedes), potassium is also very high (_2200-3000 ppm),
iron is fairly high (_7-11%), but titanium and magnesium are quite variable (_0-3 %) and (_3-7

%). The large variability for titanium could reflect the presence of other materials around or mixed
into these reg#ons, such as high-titanium mare basalts near Aristarclms.

Another region with unusual results from the AGRS is Ptolemaeus, which has an iron abun-
dance as determined from the inelastic-scatter -/ ray that is considerably higher than that from
neutron-capture -/rays (12). The presence of elements with high neutron-absorption cross sections
(such as iron, titanium, gadolinium, or samarium) in the lunar surface could cause such a "flux-
depression" effect for thermal neutrons (8,27). As Th, re, and Ti are not unusually high, one is
tempted to ascribe the flux depression to the presence of large amounts of REE, but other possible
explanations (such as undetermined interferences) have not and need to be eliminated. Similar flux
depressions were also seen for Ptolemaeus and several other regions by (3). However, the quality
of the NaI(T1) data from the AGRS is not good enough to allow us to use such indirect methods of
geochemical mapping. With future instrumentation for planetary -/-ray and neutron spectrometers,
it should be possible to u:_e such indirect techniques (28).

The results of the AGRS show that the regions of high radioactivity around Fra Mauro are
fairly limited in extent, with the highest radioactivities being near and somewhat east (the Lalande-
Davy region) of Fra Mauro. Further east, highland-like material dominates, although some radioac-
tive material is mixed into the western parts of the central highlands. To the west, mare basalts
with relatively high titanium dominate in Oceanus Procellarum, with typical lunar highland ma-
terials present west of Oceanus Proce!laxum. The standard interpretation of the orbital results
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is that the highly radioactive material (most likely KREEP, because of its presence in returned
samples from other Apollo landing sites) is somehow related to the formation of the Imbrium basin
(and possibly other basins near Imbrium now covered by Oceanus Procellarum) and that the later
emplacement of mare basalts left large amounts of KREEP present only on higher lunar features
not flooded by mare basalts, such as Fra Mauro, Aristarchus, and Archimedes.

Table 1. Elemental abundances determined from the Apollo Gamma-Ray Spectrometer data for
regions along the Apollo 16 ground track on either side of Fra Mauro and for some selected lunar
regions along the Apollo 15 ground track. (Order of regions is usually from west to east.)

Region _ Latitude _ Th (ppm) _ K (ppm) b Fe (%)c Ti (%)d Mg (%)b

Apollo 16 gro_lla_t tracli around Fra Mauro

High. Far West No. (12D) 120-180°W 0.374-0.09 630 3.94-1.0
" (3404-110)

High. West Limb (llB) 78-120°W 0.384-0.09 660 4.34-1.0
" (510+120)

Oceanus Proc. South (9B) 30-64°W 4.14-0.4 1900 10.44-0.9
" (17104-150)

Oceanus Proc. South (9J) 50-62°W 3.34-0.3 - 11.24-1.5
Oceanus Proc. South (9K) 40-50°W 4.0+0.4 - 11.04-1.5
Oceanus Proc. South (9G) 30-40°W 4.84-0.4 - 10.84-1.3

Mare Cognitum (1) 20-28°W 6.14-0.5 2600 11.64-1.4
Fra Mauro, Total (24A) 5-20°W 8.04-0.6 3100 7.74-1.0

" (26804-200)
Fra Mauro, Limited (24C) 14-20°W 8.2+0.6 - 8.14-1.5

Lalande-Davy (24]]) 8-14°W 8.44-0.6 3100 7.24-1.5
Ptolemaeus (32) 4°W-l°E 4.84-0.4 2600 4.54-1.5

" (22104-250)
Albategnius ejecta (41) 0-8°E 3.54-0.3 - 6.14-1.6

Andei (19) 6-12°E 2.74-0.2 1400 5.74-1.5
Descartes (23) 12-22°E 1.894-0.19 1200 4.44-1.3

" (9104-160)
Theoplilus ejecta (33A) 22-30°E 2.14-0.2 880 6.54-1.3

:_e_tected regions aAong Apollo 15 ground track

Van de Graaff (35A) 162°E-166°W 2.44-0.2 1500 7.7+1.1
" (8804-160)

High. Fax West So. (12A) 120-166°W 0.484-0.09 620 5.64-0.9
" (2004-150)

Oceanus Proc. North (9A) 50-78°W 3.64-0.3 1800 13.4:[:1.1
" (14704-200)

Aristaxchus (22A) 42-54°W 6.94-0.6 2600 10.6-[-1.2
M. Imbrium (4A) 9-33°W 5.44-0.4 1900 13.64-1.0

" (1700-11-190)
Archimedes (21) 8°W-2°E 6.74-0.5 3400 10.64-1.7
Apennines (20) _4°W-6°E 4.64-0.4 - 9.04-1.7

M. Serenitatis (5A) _9-29°E 2.14-0.2 1300 13.44-1.2
" (11004-190)

M. Tranquillitatis (7A) _18-45°E 1.994-0.17 1100 10.64-1.1
" (1030±200)

1.04-0.4 2.7

0.24-0.4 2.9

1.84-0.4 6.8

1.1=[=0.6 -
2.2=t=0.5
1.84-0.5 -
0.5+0.6 5.3
1.54-0.4 7.0

1.64-0.7 -
1.8+0.6 6.9
0.54-0.6 6.8

0.4=[=0.7 -
0.1+0.6 5.5
0.7+0.5 5.3

1.74-0.6 3.5

0.24-0.5 4.8

0.64-0.4 4.6

2.44-0.5 2.7

2.64-0.5 6.4
2.04-0.4 4.9

0.54-0.6 3.6
0.84-0.7 -
2.34-0.5 4.8

2.94-0.5 4.9

a Name, region number, latitude, and thorium abundance from (5).

b Mg and K by (4). The K abundances on the following line in ( ) by (14) are lower, especially
in low-K regions, and are probably better values (20). Mg abundances are generally in fairly good
agreement with XRF values of (19)
c Iron from neutron-capture 7 rays by (11). Generally these values are in good agreement with
iron abundances by (4), (6), and (12).

d Titanium by (13), which are similar to Ti abundances by (11).
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Understanding Lunar Mantle Metasomatism: The Terrestrial Mantle Analogy.

W.Ian Ridley*, Jane E. Nielson**, and Howard G. Wilshire**

* Branch of Geochemistry, USGS, Denver, CO 80225

** Branch of Western Regional Geology, USGS, Menlo Park, CA 94025

Mantle differentiation and partial melting were important processes during the initial 1.5 Ga of
lunar evolution. Similar processes are recognized on Earth, and it appears probable that the lunar
lithosphere experienced some of the more subtle chemical variations eg. metasomatism, inferred
for the terrestrial mantle. We describe present understanding of terrestrial mantle metasomatism,
discuss those aspects that may be applicable to the lunar mantle and the consequences of
metasomatism for the evolution of lunar partial melts.

The paradigm of a terrestrial mantle simply composed of olivine (dominant), clinopyroxene,
orthopyroxene and either plagioclase, spinel or garnet (depending upon pressure) fails to
satisfactorily explain the lack of correlation between the isotopic and lithophile trace element

characteristics of primitive basaltic magmas. This behaviour requires decoupling of trace elements
as a consequence of mantle metasomatism, although more fundamental mantle differentiation
processes may also have contributed (1).

The characteristics of metasomatism can vary widely, but two main types have been recognized
(2,3,4):

1. A subtle geochemical signature sometimes called "cryptic" metasomatism in which
apparently barren (from a major element viewpoint) peridotites are enriched in incompatible
elements without any visible alteration to the rock.

2. A microscopic signature called "patent" or "modal" metasomatism in which incompatible
element enrichments are reflected in the presence of occasional to common grains of unusual
minerals such as amphibole, mica, calcite, sulfide.

Reconciling these types has proven difficult (5) and although the ad hoc concept of mantle
metasomatism has been established the relations between various metasomatic signatures, their
relative importance and mantle extent have not been determined. Insights provided by detailed
petrochemical studies of composite metasomites (6,7) suggest that many observations that have
been used as evidence for various metasomatic "styles,' (enrichment in LREE of cpx with
compositions that are high in Cr relative to AI and correlation of high LREE/HREE with lower CaO
in bulk samples) occur in one sample and can be accomodated in a single model for mantle
metasomatism. An important observation is that the operation of metasomatism rapidly enriches the
host and depletes the fluid in incompatible trace elements (LREE, K, Ti, Rb) together with Fe.
Thus, excepting very large "fluid"/rock ratios, a single mantle metasomatic event must be a

relatively local phenomenon and not mantle-wide, and enrichment of large mantle segments must
involve multiple stages of igneous activity

Proposed terrestrial metasomatizing mechanisms that require large scale mantle convection
(recycling of continental crust; injections of slab-derived melts) are untenable on the Moon given
the early thermal history (8). Mechanisms involving permeation of an aqueous fluid are not viable
in a dehydrated Moon although a carbonated fluid would be permitted. However, based upon
detailed studies of composite xenoliths we conclude that the Earth's upper mantle is a complex of
peridotite and basic igneous intrusions (in toto, the term pyrolite would be appropriate !) and that
lllRg.IllalJ._l is the principal cause of enrichment of the lithospheric mantle. Given that the lunar
mantle was thermally capable of delivering magma to the surface for at least 1.5 Ga we conclude

that magmatic enrichment of the lunar lithosphere to be an inevitable consequence.
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The concept of a lunar magma ocean and its subsequent cooling irr_lies the development of a

mineralogically layered mantle and a complimentary salic crust. Recent studies (9) have questions
the evidence for a planet-wide magma ocean and the evidence for a layered lunar mantle has never
been particularly compelling. The possibility exists that the lunar mantle is a relatively uniform
olivine pyroxenite, parts of which have been enriched in Fe and Ti through metasomatism
associated with repeated pulses of magmatism. This plum pudding structure could the0 provide the
spectrum of major element compositions observed in most mare basalts whilst meeting the
constraints provided by high pressure experiments which require an olivine-pyroxene source for
both high and low titanium mare basalts (10). Such mantle complications might also aJ:ld a measure
of ambiguity to the role of ACF processes (numerically precise but mechanistically obscure) in the
evolution of K1LEEP, VHA and HA basalts (11,12).

References: (1) Kato, T., Irifune, T., and Ringwood, A.E. (1987) Geophy. Res. Lett., 14, 546-
549. (2) Menzies, M.A. (1983) Coninental Basalts and Mantle Xenoliths, 92-110. (3) Dawson,
J.B. (1984) Kimberlites. II, The Mantle and Crust-Mantle Relationships, 289-294. (4) Kempton,
P.D., Menzies, M.A., and Dungan, M.A. (1984) Ibid., 71-83. (5) Wilshire, H.G. (1987) Geol.

Soc. Amer. Special Paper 215, 47-60. (6) Nielson, J.E. and Noller, J.S. (1987) Ibid., 61-76. (7)
Nielson, J.E., Budahn, J.R., Unruh, D.M. and Wilshire, H.G. (1988) in review. (8) Hubbard,
N.J. and Minear, J.W. (1975) Geochim. Cosmochim. Acta, Proc. 6th Lunar Sci. Conf., Suppl.
6, 1057-1085. (9) Haskin, L.A. and Lindstrom, D.J'. (1987) Proc. 18th Lunar and Planet. Sci.
Conf. 1- 9. (10) Kesson, S.E. (1975) Conf. on Origins of Mare Basalts and Their Implications for
Lunar Evolution, Lunar Sci. Inst. 81-85. (11) Neal, C.R., Taylor, L.A. and Lindstrom, M.M.
(1987) Proc. 18th Lunar and Planet. Sci. Conf., 121-137. (12) Neal, C.M., Taylor, L.A. and
Lindstrom, M.M. (1987) Proc. 18th Lunar and Planet. Sci. Conf., p. 139-153.
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THE ABSENCE OF A HEAVY EARLY LUNAR BOMBARDMENT_
THE PRESENCE OF A 3.85 GA CATACLYSM, AND THE GEOLOGICAL

CONTEXT OF APOLLO 14 ROCK SAMPLES. Graham Ryder, Lunar and
Planetary Institute, 3303 NASA Rd. 1, Houston, TX 77058.

Jack. Yes, but you said yourself that a severe chill was not hereditary.
Al_ernon. It usen't to be, I know- but I daresay it is now. Science is always making wonderful
improvements in things.
Jack [piekin9 up a muffin dish/. Oh, that is nonsense; you are always talkin_ nonsense.

(Oscar Wilde: The Importance o/ Being Earnest. 1895)

The vogue that the "3.85 Ga lunar highland rock ages represent the sharp termination of a

continuous bombardment, and not an intense spike, actually restson no hard evidence derived
from the Moon. Rather, the postulationof a decliningheavy bombardment, a lingering accretion,
is the scion of models of planetary accretionand of philosophiesfavoring uniform change.

However, the heavy bombardment is undoubted by workers in many disciplines[1-7],is a
cornerstonefor understanding of the inner solar system, and is supposed to have had dramatic
effectseven on the earliestendogenous evolution of the Moon [e.g6,8]. The entirelyseparate
concept of a superposed late intense "terminal lunar cataclysm", cogently advocated by Tera et

al. {9] and once popular, has been disparaged and falleninto almost universal disfavor [1-7I.

The purpose of the present abstract is to argue that

I) there was no heavy bombardment of the Moon afterabout 4.4 Ga ago; accretionwas rapid
and did not linger,and then much endogenous activitywent on with littleexternal disturbance.

2) there was a late ('3.85 Ga) cataclysmic bombardment of the Moon that had severe effects
for both exogenous and endogenous processes.

3) the majority of the impacting in the entire4.4-3.85 Ga period for the Moon was confined
to the Earth-Moon system and cannot be extrapolated to any other body in the solar system.

4) the Apollo 14 samples both assistin constructingthis revised evolution of the Moon, and
must be considered in the lightof a revised geologicalhistory.

My approach is to show the weakness of the case for an old heavy bombardment, and the

strength of the case for a Moonwide set of large and small impact events at "3.85 Ga. The
theme uses new and old sample data, and severalideas at least mentioned by other workers. The
predictionsof a heavy bombardment are not fulfilledby the realitiesof lunar sample
characteristics.I concentrate on the accretionof the Moon, the absence of old impact melts, the

presence of old mare basalts,and the absence of a well-mlxed crust at 3.85 Ga. I consider the
evidence for a cataclysm, its possible cause, and its significancefor the Apollo 14 samples.

1. Lunar accretion:

Models for the bombardment history were created ten years ago [e.g. 4] and have not yet
changed in response to the "new T (giant impact splash to produce orbiting disk) model for the
originof the Moon; hence they have become strangely independent of the accretion of the Moon.
One cannot assume that accretionfrom a disk splashed into earth orbit would follow a course
similarto accretion from the heliocentricswarm that created the Earth. The Moon also accreted
then somewhat laterthan the Earth when much of the swarm had disappeared; the FINAL stages

of growth are dominated by large planetesimals [4,5]. Two probable consequences of the _new"

lunar originconcept are: 1) that the Moon accreted much fasterthan in previous heliocentric
swarm models (consistentwith its early differentiation)since material was closer together at the
start,and 2) that the Moon accreted with others in differentorbits (referredto again below).

Even Wetherill [4],advocating a continuous bombardment, noted that the lunar basin-formlng
population had a remarkable size distribution(dominated by large bodies); to keep such material
availablefor impact at "3.85 Ga required storing in Mars-crossing orbits.He found the best

explanation for Orientale,Imbriurn, and possibly Serenitatisto be Roche limit break up of a
singlelarge heliocentricplanetesimal;i.e.some ad hoc events in the natural heliocentricaccretion
models are required. (Whether what [4] was ta_=_mg"_bout constitutesa cataclysm is partly
semantic; if other basins were to be included it certainlywould be a cataclysm). Taking into

account the "new" origin of the Moon, other possibilitiesdevelop (below).
An inspectionof estimated crateringrates e.g.[1]indicatesthat an extrapolation of the rates

at "3.85 back to 4.5 Ga would build a Moon many times larger than the Moon actually is.
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2. Absence of impact melts older than 3.85 Ga:

Only the radiometric age of an impact melt can safely be said to date an impact event. I can
find no conclusive evidence for a single sample of impact melt older than 3.85 Ga among the
analyzed Apollo or Luna samples or the lunar meteorites. There is only one group of impact
melts for which an older age has been claimed: [10] obtained Ar-Ar data for some very
feldspathic Apollo 18 particles which they claimed gave plateau ages consistently of "4.15 Ga.
However, nearly all the samples give rather poor plateaus, with considerably lower, non-plateau
characteristics for much of the release suggesting events somewhat younger, "3.8-3.9 Ga. Given the
fine grain-size of the melt emd clasts, the abundance of the clasts, and the very low K/Ca of the
material giving the apparent old ages, these ages (as admitted by [#.a]) are almost certainly dating
plagioclases, not the melt. Some other samples of the same group give good "3.85 Ga plateaus,
and a coarse-grained equivalent gave an excellent Rb-Sr isochron of 3.81 Ga [7].

Lunge and Ahrens [11], concluded that the amount of impact melt present among lunar
samples could be explained by a continuous bombardment, but that the number of samples with
old ages was too small to be so consistent. They advocated a much higher flux at 4.0 Ga than
had been postulated'by _continuous bombarders n e.g. [12]. The problem is even worse, for two
reasons: none of the samples with old ages (>4.0 Ga) that Ill]used are impact melts, and the
amount of melt they claim to exist in the lunar highlands (30%) is too high by a factor of 2 or
3, because of biases in the collectedpopulations (see e.g. [13].If there had been a heavy
bombardment, there would be both more melt and older melt among the samples. The absence of
older melt could be explained by a IstonewallS effect(Hartmann [14]),but then there would be

even more (young) impact melt among the samples. The existenceof maze basalts (below)
demonstrates that there is not a 4.0 Ga _stonewalls effect,and that if old impact melts had

been produced, they would be among the sample collection.None have yet been identified.For
instance,the Apollo 14 landing sitewas affectedby severalpre-Nectarian events that should have
leftan imprint, but among the Apollo 14 impact melts, none is older than 3.85 Ga; I conclude

that none of these pre-Nectarian events is older than 3.85 Ga either.
The highlands rocks do show evidence of ages older than 3.85 Ga, but in only a few cases do

these demonstrate that impacts took place;most of the ages are for pristine(ifbrecciated)old

rocks, for which the age of brecciationis not known and could easilybe 4.0 Ga. Most granulites
for instance also give ages of "3.85 Ga; a real exception appears to be sample 78155, which has
a good Ar-Ar plateau age of "4.2 Ga. The older ages for impact produced rocks indicate some
impacting prior to 3.g Ga, but do not provide any evidence for a heavy bombardment.

3. The presence of mare basalts older than 3.85 Ga:

Mare basalts with ages older than 3.85 Ga and up to 4.33 Ga have been discovered in Apollo

14 breccias [15-18].Their preservationis an important factor:[lg] used the absence of such
basaltsto support the concept of a Istonewail" effectat "3.g Ga (following [14]),especiallyas
mare basaltswould be most susceptibleto destruction. This stonewall is clearlynot real.Indeed,

the characteristicssuggest that from 4.3 to 3.g Ga somewhere near the Apollo 14 site a huge
tractof fairlyundisturbed surface existed:sample 14321 contains a range of basalts fragments
with fairlyregularly varied ages (up to 4.3 Ga) and chemistry i.e.they are not an entirely
random collection.The effectof a heavy bombardment would have been to disperse mare basalts,
not concentrate them in a breccia.This might be coincidence ifit were not for the presence of

many more old mare basalts among other Apollo 14 breccias and soilparticles.I conclude that a
terrain which had existed with little modification from 4.3 Ga was modified by the pre-Nectarian

(but still 3185 Ga) events; yet while the flows were seriously broken up at 3.85 Ga, the mare
fragments were neither widely dispersed nor totally buried.

4. Absence of a well-mixed crust at 3.8 Ga:

A heavy bombardment would have tended to homogenize the crust, but at least over large
areas the crust was not well-mixed, laterally or vertically, at 3.8 Ga. Orbital geochemical data

shows quite small-scale variations. Pure anorthosite terrains existed in the uppermost crust, as
shown by the Apollo 16 dimict breccias and other _genomict _ anorthosites. Basins at "3.85 Ga
excavated ungardened material, such as norites and troctolites, and not material which had been
mixed by impact [20I. One argument of [g] for a cataclysm was the great range of Pb
compositions that were present at 3.85 Ga, rather than a fairly uniform, well-mixed crust. The
Imbrium basin probably induced KREEP volcanism [21], yet KREEP volcanism had not happened
in the region ever before, as fax as we can tell. In fact the arrival of KREEP at the surface, by
both volcanic (impact-induced) and impact processes is confined to very close to 3.85 Ga wherever
we have information. The siderophile abundances in both rocks and soils show considerable
variations showing a lack of mixing and that late ('3.85 Ga) additions could have a strong
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influence; the lunar meteorites have demonstrated this point, "by showing how abnormal some of
the Apollo 16 material is [22]. The sum of the data demonstrate that just after the completion of
the bombardment the crust retained both regional and small-scale heterogeneities, inconsistent with
the mixing expected of a heavy bombardment; if it was well-mixed at 4.0 Ga, then the 3.85 Ga

events (both exogenic and endogenic) added the variations.

5. A cataclysm:

The highlands show abundant evidence of severe impacting and isotopic resetting at "3.85 Ga.
There have been attempts to explain these ages as dominated by a few basin-forming events, in
particular Imbrium, partly because all sampling sites have some Imbrium morphological influence.
However, the bulk of ejecta from an impact is cold, and only a small portion has its radiogenic
isotopes reset. These attempts also ignore the wide range of variation of isotopic and chemical
compositions of the reset samples (or contend that a basin event produces a wide variety of
impact melt products), and the geological context of the samples. For example, the dimict
breccias at A16, if Imbrium material, require that the anorthosites into which they are intruded
were also ejected by Imbrium. However, a more local origin for these anorthosites is suggested by
the regional chemistry and by the fact that the sampled Apennine Front, surely partly Imbrium
ejecta, has little anorthositic component. The 6 lunar meteorites, which apparently represent at
least three distinct ejection events, show the same ages of "3.85 Ga, showing that this age is not
an Imbrium artifact but is moonwide; it is improbable that all of these meteorites sample areas
near Imbrium-affected areas.

The basins with reasonably defined ages i.e. Orientale, Imbrium, Serenitatis, and Nectaris, all
formed within a short period between 3.8 and 3.9 Ga. I know of no evidence which demonstrates
that they could not have formed within a few days of each other. But the absence of older ages
at the Apollo 14 site, which should show the effects of some of the oldest pre-Nectarian craters
(e.g. Insularum, Nubium) suggests that these older craters were also formed within this short time
span. It appears that a moonwide range of both small and large (including basin) impacts
occurred at 3.8-3.9 Ga. This intense activity induced endogenic activity from the crust (A15 and

A17 KREEP basalts) and excavated KREEP in the form of Low-K Fra Mauro to the surface,
which had also not happened before. The production of mare basalts, from much deeper sources,
was not noticeably affected by this impacting.

6. A possible cause of a cataclysm:

Meteorites do not show evidence of any terminal decline or peak of collisional intensity at the
3.9 Ga _horizon" shown by lunar highland samples. Thus an explanation for their protection is
required for models which extrapolate the lunar history to the rest of the inner solar system.
Wetherill [4] noted the unusual size distribution of the lunar basin-forming population, requiring
some adjustments to a uniform heliocentric wipe-up. Both these factors suggest to me that the
cataclysm may be instead confined to the Earth-Moon system. With the "new _ model for lunar
origin, it is at least possible to suggest that the accretion of a geocentric disk produced several
moons (of which the present may have been the largest}. The orbits of two others may have
gradually closed until a collision at 3.85 Ga created a cataclysm in the Earth-Moon system, with
profound effects on the Moon and the Earth. The impacting would not have affected Venus,
Mercury, or Mars, and their intense cratering (accretionary) history may have terminated much
earlier, or have their own local histories.

7. Apollo 14 samples:

The Apollo 14 samples provide important information on the evolution of the Moon,
particularly in its mare basalts and its impact melts. What little we know about the Apollo 12
highlands suggests its similarity with the Apollo 14 site. Photogeology indicates a complex set of
events including pre-Nectarian affecting the site, and whose products should be included in the
samples collected. These include impact melts from pre-Nectarian events; no impact melt older
than 3.85 Ga has been dated, although a range of (mainly KREEP-rich) compositions exists.
More work needs to be done to better establish the range of compositions (from coarse-fines and
rocks), including trace siderophile elements, and to establish their ages. The mare basalts are
critical by their presence, since a heavy bombardment history should have dispersed them, and by
their character they are important for understanding internal processes. It is most unlikely that
much of the A14 material is Imbrium ejecta, as it differs so much from A1S highlands material,
and it more likely represents material from local plains which had existed perhaps a short way to
the north, prior to the cataclysmic events. Mare volcanism may have continued after the Imbrium
event in the Apollo 14 general area, but into the nearby basins formed during the cataclysm
(Nubium, Riphaeus, Insularum, etc) and been buried.
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LUNAR CRUSTAL STRENGTH AND THE LARGE BASIN-KREEP

CONNECTION

H. H. Schmitt, Consultant, Albuquerque, NM

The interpretive evolution of the Moon as a planet can

be divided into seven major stages beginning sometime near

the end of the formation of the solar system (i). These

stages and their approximate durations in time are as

follows:

i. The Beginning - 4.6 billion years ago.

2. The Melted Shell - 4.5-4.4 billion years ago.

3. The Cratered Highlands - 4.4-4.2 billion years ago.

4. The Large Basins - 4.2-3.9 billion years ago.

5. The Light-colored Plains - 3.9-3.8 billion years ago.

6. The Basaltic Maria - 3,8-3.0(?) billion years ago to

the present.

Qualitative comparison of the relatively old and

relatively young large circular basins on the moon suggests

that the strengthening of the lunar crust occurred during

the formation of these basins. The younger basins

(Nectarian and Imbrium Systems) are sharply circular and

are underlain by mass concentrations (mascons) surrounded

by mass deficiencies under raised mountain rims several

thousand meters high. The older basins (Pre-Nectarian

System) are only irregularly circular with relatively low

rims and are fully compensated isostatically (2).

These differences strongly suggest that in the midst

of large basin formation about 4.2 billion years ago, a

major change occurred in the strength of the lunar crust.

A working hypothesis to _xplain this change includes the
following elements:

i. Prior to the beginning of the Large Basin stage of

lunar evolution, uncrystallized KREEP-Iike liquid existed
below the 60-70 km thick anorthositic crust. This residual

liquid from the Melted Shell stage would probably remained

uncrystallized due to the concentration of radiogenic heat

within it and the unusually insulating properties of the

battered upper crust underlying the cratered highlands.

2. As the Pre-Nectarian large basins formed, the

underlying KREEP-Iike liquid and the pervasively fractured

crust permitted the rapid isostatic adjustment of the lunar

crust to mass concentrations and deficiencies.

3. Also after the first large basins formed over much of

the moon's surface, the relatively low density KREEP-Iike

liquid moved upward into the now deeply and closely

fractured crust beneath and around the Pre-Nectarian large
basins.
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4. After moving upward into the cooler upper crust and

becoming significantly contaminated with crustal debris in

the process, the KREEP-Iike liquid crystallized and formed

interlocking networks of dikes. Once solidified, these

interlocking dikes, combined with the removal of underlying

KREEP-Iike liquid, strengthened the crust so that the mass

concentrations and deficiencies produced by Nectarian and

Imbrium age large basin events could not be fully

compensated.

5. After the deeper of the older large basins formed about

4.2 billion years ago, KREEP-Iike magmas, contaminated with

anorthositic crustal materials, may have reached the floor

of these basins. Later redistribution may account for the

observed distribution and ages of the spectrum of KREEP

basalts and related materials (3).

6. After the KREEP-Iike material had entered the lower

regions of the upper crust, the initial crustal excavation

of the Imbrium Basin was apparently deep enough to excavate

dike material and distribute it to where sampling and

geochemical remote sensing (4) find it today.

This KREEP dike network hypothesis appears to explain

the change in crustal strength during the Large Basin stage

of lunar evolution as well as several puzzling aspects of

the distribution and ages of KREEP related materials.
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Homogeneous, mafic lunar glasses are believed to be volcanic in origin
[e.g. i, 2, 3, 4]. The major element geochemistry of these glass beads indi-
cates that unlike mare basalts which have undergone significant near-surface
fractionation and possible crystal accumulation, the volcanic glasses are
closer to liquid compositions and in many cases represent less fractionated
magmas [4]. The petrogenetic relations between mare basalts and picritic
volcanic glasses is enigmatic. Longhi [5] demonstrated that most mare basalts
are not derived by simple low pressure fractionation from parental melts with
compositions of picritic glasses as tabulated by Delano [4]. However, Hughes
et al. [6], using trace element data, presented several petrologic scenarios
illustrating the connection between mare basalts and picritic glasses. Trace
element evaluation of the petrogenetic connection between mare basalts and the
picritic volcanic glasses is difficult due to the rarity and small size of in-
dividual glass beads (less than i00 vm). Only in rare occurrences (A-15 green
glass; A-17 orange glass) have trace element analyses of picritic glass beads
been performed [e.g. 6, 7, 8, 9, i0, II, 12]. With the introduction and advance
of trace element microbeam technologies (e.g. secondary ion mass spectrometry,
SIMS), the analysis of minute lunar glass beads (i0 vm-lO0 vm) is possible
[13], and is not restricted to glass types present in high concentrations. The
purpose of this study is to focus upon the following aspects of a larger on-
going trace element study of lunar glass beads: the trace element characteris-
tics of the picritic glass beads at the Apollo 14 landing site, their relation
to mare basalts, and the nature of their source regions within the lunar mantle.

In this study, glass beads were identified and documented in selected
polished thin sections of A-14 regolith breccias using an electron microprobe.
This allowed us to differentiate volcanic from impact glasses [4] and to place
the volcanic glasses within the chemical classification scheme as defined by
Delano [4]. These chemically documented glass beads were then analyzed with
Cameca IMS-3f ion microprobes operated by the MIT-Brown-Harvard Consortium (MBHC)
and the University of Tsukuba (UI_). The REE were analyzed at MBHC using moder-
ate energy filtering to remove molecular ion interferences [14, 15] and with
a 25 to 30 vm spatial resolution. Using well-defined INAA-analyzed REE abun-
dances [16, 17, 18] in Apollo 15 green glass as a standard, and calculated
factors for each REE from the green glass, we were able to define calibration
working curves for the lunar glasses. The trace elements analyzed at UT were
obtained with a beam diameter of I0 to 30 vm and with more stringent energy
filtering. Calibration working curves for Li, Sc, V, Co, Sr, Zr and Ba were
defined using glass standards prepared at UT. Apollo 15 green glass was used
to define calibration working curves for Zn, Rb, and Y. At both MBHC and UT,
all concentrations were calculated from empirical relationships between inten-
sity ratios against Si (as Ce/Si) and abundances in the standards. Using these
calibration techniques Apollo 17 orange glass [74220] and Apollo 15 green glass
[15426] were analyzed as secondary standards (Table I )-

REE patterns for the Apollo 14 picritic glasses analyzed in this study
are illustrated on a plot of TiO 2 vs. MgO in Figure I. Green B, Green A and
VLT glasses are typically LREE enriched with Sm/Eu = 6-14. The total REE
abundances of Green A and VLT overlap (Ca = 30 to 70 X chondrite) whereas the
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REE abundances of the more MgO-rich Green B is substantially lower (Ce = 12 to
14 X chondrite). Zirconium (66-508 ppm) and Ba/Sr (>1.4) in these glasses
are distinguishably different from low-Ti mare basalts at other sites. Their
trace element signatures (REE, Zr, Ba/Sr) are similar to other basalts sampled
at the Apollo 14 site [20, 21]. The high-Ti picritic glasses exhibit a flat
to slightly positive LREE slope and a negative HREE slope. The orange glass
has a higher total REE abundance (Ce = 85 to 120 X chondrite) and a slightly
larger negative Eu anomaly (Sm/Eu = 4-7) than the black glass (Ce = 55 to 90
X chondrite; Sm/Eu = 3-5). Relative to Apollo 17 orange glass (74220), the

Apollo 14 high Ti picritic glasses are enriched in REE, LREE/HREE, Y, V, Zr,
Sr, Ba and Ba/Sr and are similar in the alkali elements (Li, Rb), Co and Sc.

Genetic linkages among the picritic glasses, between the picritic glasses
and the aluminous basalts at the Apollo 14 site and between the picritic glasses
and other mare basalts can be evaluated using the liquid line of descent and
crystallization sequence constructed from Longhi [5], distribution coefficients
in the literature and trace element characteristics of the Apollo 14 picritic
glasses documented in this study. Liquid lines of descent suggest the black,
orange, Green A and VLT-Green B are not related by low pressure crystallization
processes. Modeling of the trace element abundances of basaltic liquids along
the liquid lines of descent using the different picritic glasses indicates
(i) calculated basaltic liquids derived from orange or black glasses have Sr,
Ba, and REE concentrations considerably different from most high Ti basalts;
(2) it is possible that either the GREEN A or VLT glass compositions may be
derived by crystallization of olivine from a liquid of GREEN B glass composi-
tion; (3) Apollo 17 VLT basalts are not derived from liquids represented by
Apollo 14 VLT glasses; (4) picritic volcanic glasses sampled at the Apollo 14
site are not related by low pressure crystallization processes to produce the
Apollo 14 aiuminous mare basalts; and (5) if the glasses sampled at the Apollo
14 site represent unmodified primary basaltic liquids, the basalts derived from
these picritic parents have not been recognized.

Although the above modeling indicates low pressure crystallization processes
do not petrogenetically link the different basaltic liquid compositions repre-
sented by the picritic glasses and basalts at the Apollo 14 site, many of the
basaltic compositions share similar trace element signatures (e.g. Ba/Sr, Sm/Eu,
REE enrichment, LREE enrichment). This suggests an intrinsic character of the
crust-mantle at the Apollo 14 site that imparts this signature to many of the
basalts produced. This signature has been attributed to the assimilation of a
KREEP component [20, 21, 22] or partial melting of a hybrid mantle source with
varying proportions of trapped or mixed evolved liquid [6, 20, 21]. These data
indicate that these trace element signatures occur in some of the more "primi-
tive" basalt compositions. In addition, substantial assimilation of KREEP
(20-30%) necessary to modify the trace element chemistry of the picritic liquids
to those observed in A-14 picritic basalts, would affect the major element
characteristics of these basalts in a manner not observed.

As a possible alternative to a magmatic origin for these picritic glass
beads, impact fusion-mixing of a picritic basalt component and a KREEP-rich
regolith component may produce similar chemical characteristics. Delano [12]
illustrated that KREEP-Iike element abundances in glass Of a basaltic composi-
tion (A-15 yellow glass) could be produced by impact.
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Rb

L, I: l 11.1Sc 38.2 43.0 16,17 57.9
V 145.7 (.8) 150 16,17 108.7
Co 80.8 (3.0) 72 16,17 79.5
Zn 270.1
Zr 14.4 (2.3) 22.0 16,17 194.6
Sr 27.3 (l.0) 28 16 193.2
8a 14.7 (1.3) 17.0 15,17 70.6
Ce 22.8
Nd 18.9
Sm 6.8
Eu 1.89
Dy 8.6
Er 4.5
Yb 4.0
y 42.5

Table 1. Ion udcroprobe analyses of Apollo IS green glass (15425)
end Apollo 17 orange glass (74220). ItEE, Y, b and Zn
vere calculated using green glass as e standard.

Green Glass (s.d.) Ltt. Itef. Orange Glass (s.d.) Ltt. Itef.
.8 (.1) 1.1 18

(.8) lS 7
(2.0) 47.4 6
(4.9) 120 6

(s.2) 61.7 6
(17.3) 253 7
(s.3) les 18
(6.o) 20o 9
(3.4) 76.4 18

• 19.0 18
• 17.8 18
• 6.53 18
• 1.80 18
* 9.40 18
* 5.10 18
• 4.43 18

(2.6) 43.8 19
*Additlonal data for statistical analysis tn preparation.

s.d.: standard deviation
Lit.: Literature value
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Figure I. TiO 2 vs. MgO for Apollo 14 volcanic glasses, selec-

ted glass compositions from other landing sites, and selected
mare basalt compositions. Superimposed on diagram are REE

patterns for selected mare basalts and picritic glasses and

liquid lines of descent (constructed from Longhi [5]) for Iow-

Ti and high-Ti basaltic liquids. Black square: Apollo 17
orange glass (74220); Black triangle: Apollo 17 VLT [18];

Numbered black dots: Groups 1-5 of Apollo 14 aluminou5 mare

basalts [20, 21]. Index to REE diagrams: A: High-Ti basalts;

(i) Apollo 11 High-K, (2) Apollo II Low-K, (3) Apollo ILl;
B: Apollo 14 Black Glass; C: (I) Apollo 14 Orange Glass, (2)

A-17 Orange Glass 74220; D: (I) A-14 Green A, (2) A-14 Green

B; E: (I) Apollo 14 VLT glass, (2) Apollo 17 VLT mare basalt;

F: Range in Apollo 14 aluminous mare basalts [21].
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HIGHLAND CRUST AT THE APOLLO 14 SITE: A REVIEW
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Recent petrologic studies of pristine nonmare samples from the Apollo 14 site have demonstrated the

unique character of the western highlands crust. Many of the lithologies which occur here are not found at
other highland sites or represent unique variations of more common lithologies. Rare highland samples found
at the Apollo 12 site have petrologic and geochemical affinities with the Apollo 14 highland suite and the two
sites taken together constitute what can be called the Western Highland Province. Rocks of the Western

Highland Province are geochemically distinct from similar lithologies found at eastern highland sites (Apollo 15,
Apollo 16, Apollo 17, and the Luna sites) -- a fact which adds further complications to current petrogenetic
models for the lunar crust (e.g., [1]; [2]; [3]). Nonetheless, an understanding of how the Western Highlands
Province formed and why it differs from highland crust in the east is crucial to our overall understanding of
primordial lunar differentiation and petrogenesis.

OCCURRENCE: Highland plutonic rocks at the Apollo 14 site occur only as clasts in the crystalline-matrix Fra
Mauro breccia (e.g., 14304, 14305, 14321) or in younger regolith breccias (e.g., 14312, 14318). Many of these
clasts have rims of an older, dark breccia matrix attached, which shows that these rocks have been effected by

at least two or three episodes of brecciation. Texturally the clasts vary from cataclasites with no surviving
primary textures, to texturally pristine clasts with well preserved igneous textures. The texturally pristine clasts
are generally chemically pristine as well, unless they have been invaded by thin glass veins of melt rock. Many
texturally pristine clasts are known only from thin section and electron microprobe study, and no chemical data
are available. Pristinity of the cataclasites must be evaluated chemically using siderophile element concentra-
tions and the cut-off values for siderophile contamination suggested by Warren and Wasson [4].

LITHOLOGIES: Three distinct suites of plutonic rock are important at the Apollo 14 site: the Magnesian
suite, the Alkali suite, and a v_riety of evolved lithologies. The Magnesian suite can be further subdivided into
the olivine-bearing magnesian troctollte association (which includes troctolite, anorthosite, dunite, and pyrox-
ene-bearing troctolites) and the less abundant magnesian norite association (which includes norites, olivine
norites, gabbronorites, and ilmenite gabrros/norites). Ferroan anorthosites ("FAN"), which dominate highland
suites in some eastern provinces (Apollo 15, Apollo 16) are rare in the Western Highland Province. Each of
these suites, including FAN, will be considered here in order of their relative abundance.

MAGNESIAN SUITE

Magnesian Troctolite Association: The magnesian troctolite association includes a variety of olivine-bearing
rocks characterized by relatively calcic plagioclase compositions (An93-96) and a range in olivine compositions
(Fo75-90). Troctolite is the most common lithology in this association, with modes around 30-40% olivine and
60-70% plagioclase ([1]; [5]; [2]; [6]; [7]). More marie compositions with 50-60% olivine are less common (e.g.,

[7!; [11]), but troctolitic anorthosites with 10-15% olivine and 85-90% plagioclase are widespread ([5]; [81; [9]).
A few troctolltes also contain minor enstatite and diopside. Other important members of the Apollo 14

magnesian troctolite association include magnesian anorthosite, dunite, and pyroxene-rich troctolite.

Magnesian anorthosites are relatively new additions to the Mg-rich suite ([9]; [7]). These rocks are
characterized by plagioclase-rich modes (90-99% plagioclase) with mineral compositions similar to the Mg-
troctolites: An94297 plagioclase with minor Fo84-90 olivine. An REE-rich Ca-phosphate phase (probably

whitlockite) forms a large, 500 x 120 micron, anhedral grain in one of these anorthosites ([7] [19]) and may
contain almost all of the REE found in this samples.

Dunite is another rare but important member of the magnesian troctolite association. Two small
dunite clasts have been found to date: one in breccia 14321 ([7]), the other in breccia 14304 ([li D. Both consist

of nearly pure Fo88-89 olivine with almost no compositional variation either within or between the two clasts.
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Two pyroxene-rich troctolite clasts have also been found. One is an anorthositic troctolite with 80%

plagioclase, 15% olivine, and 5% diopside, the other is a mafic troctolite with 46% plagioclase, 47% olivine, 7%

enstatite, and minor Cr-pleonaste [8,9,10]. Mineral compositions are similar in both, with An94-95 plagioclase,

Fo88-89 olivine, and pyroxene Mg#s (= 100*Mg/[Mg+Fe]) of 90. The Mg-rich compositions of the olivines

and coexisting pyroxenes indicates that the parent magmas reached pyroxene saturation early in their fractiona-

tion history, prior to extensive olivine fractionation. In addition, the stable coexistence of olivine-enstatite and

enstatite-spinel (both in discrete grains and in enstatite-spinei symplectites) indicates that crystallization oc-

curred relatively deep in the crust, where the four-phase assemblage ol-pig-opx-sp was stable [8,9,10].

Hunter and Taylor [5] were first to notice a compositional gap between two troctolite subgroups (figure

1). Group I troctolites tend to have more mafic-rich modes and more magnesian phase compositions (olivine

Fo85-90); Group II troctolites are more felsic modally and have more Fe-rich mineral compositions (olivine

Fo74-81). All of the minor lithologies discussed above plot with the Group I troctolites. Only one sample of

Group II troctolite has been analyzed chemically (14321 c2 -- [2]). Its incompatible element abundances are in

the same range as the more numerous Group I troctolites.

Magnesian Norite Association: The magnesian norite association contains a diverse assemblage of rocks re-

ferred to as ilmenite gabbros, ilmenite norites, and gabbronorites [3,5,8,11]. Only four clasts have been de-
scribed so far that can be considered unequivocably part of the Mg-suite: norite 14063,61 [5], gabbronorite

14304 ,i25 [11], olivine norite 14318,149 [6], and olivine norite 14305,489 [12]. These rocks have modes with

subequal portions of plagioclase and pyroxene -- generally pigeonite with minor augite. Ilmenite is a common

accessory phase in some of these clasts, along with Ti-spinel, Fe-metal, and troilite. Plagiodase compositions
are around An87-90 and mafic silicates have Mg#s between 70-75. One a plot of An content of plagioclase

versus Mg# of mafic silicate (figure 1), these rocks plot between rocks of the magnesian troctolite association
and the alkali suite.

Several clasts in breccias 14303, 14304, and 14305 are gabbronorites with An90-95 plagioclase and rela-

tively Fe-rich marie silicates with Mg#s 65-70 [8,11,12]. These rocks generally have orthocumulate or mesocu-

mulate textures, with primocrysts of plagioclase and pigeonite surrounded by post-cumulus feldspar, pigeonite,

augite, ilmenite, and Ti-spinel. Their modes are similar to the magnesian norites described above, but they

plot below the Mg-suite field on an An-Mg# diagram, between the magnesian norites and the ferroan anorthos-

ite field (figure 1). This is the same region where Apollo 14 mare basalts plot, suggesting that some of these

gabbronorites may be cumulates derived from aluminous pigeonite basalts (e.g., [8]). Potential mare cumulates

are characterized by high modal ilmenite and Ti-rich (TiO 2 > 0.5 wt%) cumulus pigeonites. These rocks also
fall on calculated fractionation trends for Mg-suite parent magmas [13] and may be related to the Group II

troctolites by fractional crystallization. Gabbronorites with Ti-poor pigeonite and low modal ilmenite may thus

be related to more magnesian members of the Mg-suite.

ALKALI SUITE

Alkali Anorthosite/Norite Association: The Alkali suite was first recognized by Warren and Wasson [4] and

subsequent studies established it as the second most common highland rock association at the Apollo 14 site

[2,5,6,8,9,10]. This suite was once thought to be unique to the Western Highlands Province, but similar alkali

gabbronorites are now known from the Apollo 16 site [7,14]. The most common lithologies are anorthosite and

norite or gabbronorite; olivine norites are rare.

Alkali anorthosites were the first alkalic highland lithology recognized [1]. Seven true alkali anorthos-

ites are known from Apollo 14 [1,5,9,10,11]. These rocks are characterized by modes of 95-100% plagioclase

(An76-86) with minor pigeonite, augite, K-feldspar, ilmenite, silica, whitlockite, and Fe-metal. Marie silicates

have Mg#s 50-70, with the higher Mg#s being augite. Plagioclase primiocrysts are up to 1.5 mm across; acces-
sory phases are generally much smaller. Whitlockite (an REE-rich Ca-phosphate) occurs either as interstitial

grains or as small inclusions in plagioclase primocrysts (indicating co-saturation) and may comprise up to 2%

modally.
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Alkali norites are another common alkalic lithology -- at least six clasts are currently recognized

[5,6,8,10,11]. These rocks typically contain 75-85% modal plagioclase (An80-85), but more maric clasts with 14-
40% plagioelase are known. Pigeonite or hypersthene are the most common marie phases, and may occur
either as cumulus primoerysts or as post-cumulus crystals interstitial to plagioclase. Augite, K-feldspar, ilme-
nlte, and whitlockite are common post-cumulus accessory phases; Mg#s in the marie silicates are typically the
same as in the alkali anorthosites (53-63 in pigeonite, 64-68 in augite). Whitlockite is found in most alkali nor-
ites and may comprise up to 35% of the mode [10]. As a result, REE in these dasts exhibit a wide range in
concentrations.

Two alkali olivine norites have been described [12,14]. These rocks contain about 65% modal plagio-

clase, 25% orthopyroxene or pigeonite, and 5-10% olivine modally, with minor ilmenite, whitlockite, and troi-
lite. Plagloclase compositions are typical of the alkali suite (An78-83), but the marie silicate compositions are
Mg-rich compared to typical alkali norites and anorthosites, with olivine Fo70-80 and pyroxene Mg#s 75-85

(figure 1).

EVOLVED LITHOLOGIES

The most common evolved lithology at Apollo 14, commonly referred to as "lunar granite", is a grano-

phyric intergrowth of quartz and alkali feldspar, either alone, with sodic plagioclase (An60-80). The alkali
feldspar vary from nearly pure orthoclase (Or95 Ab5) to a ternary feldspar (Or45 Ab25) which plots in the
forbidden zone in a feldspar ternary [15,16,27]. In one small granite clast orthoclase and ternary feldspar both

occur as granophyric intergrowths with quartz [27]. Accessory minerals include pigeonite, augite, ferroaugite,
fayalite, ilmertlte, zircon, and Ca-phosphates (apatite, whitlocklte). Variations in mineral assemblages and in
mineral compositions (e.g., BaO in alkali feldspars, Mg# in mafics) indicate that at least four distinct parent
magmas are involved.

The only age data available at the Apollo 14 site on highland lithologies are from lunar zranite 14321,
1027 [16,28]. This granite has been dated at 4.1 Ga using Rb/Sr isochron techniques [281. Its 87Rb/86Sr and

87Sr/_86Sr ratios are the highest yet measured on any lunar material [28].

Granite clasts are relatively common at the Apollo 14 site, which suggests that granite differentiates of
marie plutons are a common and important crustal component in the Western Highlands Province. Based on
the abundance of K, Si-rich glasses in Apollo 14 soils and regolith breccias, granites are estimated to comprise
0.5% to 2% of the crust here [17,27].

FERROAN ANORTHOSITES

Ferroan anorthosites are rare at the Apollo 14 site. Only one clast of ferroan anorthosite has been
characterized chemically and petrographically [6]. This clast is a monomict cataclasite which consists of nearly

100% plagjoclase (An95.5) with relict grains up to 1.3 mm across. Olivine (Fo69) is the only marie phase.

GEOCHEMISTRY OF THE WES_RN HIGHLANDS PROVINCE

Plutonic rocks of the Western Highlands Province are characterized by high concentrations of incom-
patible trace elements compared to their eastern counterparts. This characteristic applies to the only FAN clast

analyzed to date, as well as to rocks of the magnesian and alkali suites [6]. Despite the fact that whole rock
analyses of Apollo 14 plutonic rocks are very sensitive to accessory mineral contents due to the small size of
most analyzed samples (< 100 rag), the observed enrichment of incompatible elements in these rocks appears
to reflect a fundamental geochemical characteristic of the Western Highlands Province, and is not a spurious
effect of sampling problems.
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Troctolites, anorthosites, and dunites of the magnesian suite are characterized by a wide range in REE

concentrations, with La ranging from 15x to 700x chondrite (figure 2). The highest REE concentrations are

found in magnesian anorthosites that contain abundant whitlockite [%19]. More realistic estimates of crustal

composition may be obtained from rocks with the lowest REE contents, but even these are much more en-

riched than comparable Mg-suite rocks from the east. In addition, parent magma REE concentrations of 3000x

(for La) to 1500x (for Lu) chondrite are implied by whitlockite/liquid partition coefficients and the high REE
concentrations found in the accessory whitlockite [7,19]. The calculated parent magma REE concentrations are

about 10x KREEP --- far to high to have precipitated the observed primitive mineral compositions [7,9,19].

Lindstrom and others [7,19] suggest that the whitlockites may not be in equilibrium with the Mg-suite parent

magma. They envisage formation of the phosphates after crystallization from metasomatic fluids which pene-
trate the rock from below. The source of this fluid and its physical nature (aqueous ? magmatic ?) is not yet

resolved.

Rocks of the alkali anorthosite suite are characterized by a similar wide range in REE concentrations,

with La from 35x to 600x chondrite (figure 3). As noted in the Mg-suite plutonic rocks, the highest incompati-

ble element concentrations seem to occur in samples with high modal whitlockite and apatite (e.g., [10]). REE

concentrations in accessory Ca-phosphate phases are similar to those observed in the Mg-suite rocks -- about

10,000x chondrite. Again, the parent magma composition implied by these concentrations is unrealistically high.

In addition, major element compositions of the minerals in the alkali suite are much more evolved than miner-

als in the Mg-suite rocks, but their accessory phases have nearly identical trace element contents. Clearly, there

is no simple explanation to this apparent paradox.

Chemical differences between rocks of the Western Highlands Province and nonmare plutonic rocks

from the east are clearly illustrated by a plot of Sm (an incompatible MREE) and Eu (an MREE which is

compatible with plagioclase under the reducing conditions found on the moon). Figure 4 shows data for fer-

roan anorthosites, eastern Mg-suite rocks, western Mg-suite rocks, and western alkalic rocks. Ferroan anorth-

osites and eastern Mg-suite rocks are characterized by low concentrations of Eu (.5 to 1.0 ppm) and a wide

range of Sm concentrations, with Sm in FAN < 0.3 ppm and Sm in the eastern Mg-suite rocks > 0.5 ppm

(figure 4). Western Mg-suite rocks have a range in Sm similar to the eastern troctoiites (from 2 to 100 ppm
Sm) but are enriched in Eu relative to the eastern rocks. Alkali anorthosites are even richer in Eu, with 2 to 10

ppm Eu in rocks with the same Sm content as the Magnesian suite.
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ORIGIN OF THE WESTERN HIGHLAND PROVINCE

The high Sm concentrations which characterize plutonic rocks of the Western Highland Province also

result in low Ti/Sm and Sc/Sm ratios [1]. These ratios are sub-chondritic, as in KREEP, and suggest derivation

of western plutonic suites from an evolved crustal or upper mantle source. Alternatively, these low ratios may
reflect the assimilation of residual urKREEP by magmas parental to Mg-suite rocks (e.g., [20]). However, if

the incompatible element-rich magnesian suite troctolites, anorthosites, and dunites of Apollo 14 crystallized

from Mg-rich magmas that were severely contaminated with urKREEP [20], where did the alkali suite magmas
come from ??

Several scenarios can be envisioned for the origin of the western magnesian and alkali suite highland

rocks. All of these models have certain attractive features, but none are entirely consistent with what we cur-

rently know about the western highland suite, Some possibilities include:

(1) The Mg-suite and alkali suites represent distinct parent magmas, derived from different parts of the
lunar mantle, each of which assimilated variable amounts of urKREEP prior to crystallization. This

model begs the question of ultimate source, and does not address why there are two distinct parent

magmas. It does seem consistent with the gap between the alkali suite and troctolites of the Mg-suite,

and with the steep apparent fractionation trends seen in the magnesian troctolite association and in the

alkali suite (figure 1). This steep trend in the alkali suite is accentuated by the recent discoveries of

primitive olivine norites with typical alkalic plagioclase compositions.
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(2) The alkali suite represents Mg-suite magma which has evolved by AFC processes; its high alkali and
trace element contents are attributed to relatively large fractions of assimilation. This model has the

advantage of one parent magma, and seems in general consistent with the overall trend of the Mg-suite

in figure 1. It does not explain, however, why both suites have the same range in trace element concen-

trations, or why the alkali suite has higher Eu concentrations than either the Mg-suite or KREEP --

fractional crystallization of plagiodase and KREEP assimilation should both act to lower Eu in a resid-

ual magma derived from the Mg-suite. It is also puzzling why there are so few Mg-suite norites in-
termediate to the alkalic rocks and the Mg-troctolites (figure 1). If variable contamination of a single

magma was operative, a continuous trend in compositions would be expected.

(3) The alkali suite represents cumulate rocks which crystallized from a KREEP parent magma. This

magma was assimilated by Mg-suite parent magmas before they crystallized, or penetrated already

crystallized Mg-suite plutons to enrich them metasomatically. It is not clear if the alkali suite cumulate
rocks are consistent with this Origin, but it does offer an attractive explanation to the contrasts in major

and trace element compositions observed between the two suites.

The origin of the evolved lithologies cannot be established with any certainty [15,16,17,27]. Lunar granites are

characterized by V-shaped REE patterns with LREE and HREE concentrations 100-200 times chondritG

MREE 100 times chondrite, and significant negative Eu anomalies [15,16,17]. Dickinson and Hess [29] have

shown that lunar granites cannot form from KREEP parent magmas because overall REE concentrations are

too low in the granites, and because KREEP has a steep negative HREE slope, while granites have a shallow

positive slope. Other potential parent magmas include mare basalt, the alkali suite parent magma, and the Mg-

suite parent magma [15,16,17,30,31]. The V-shaped REE patterns have been attributed to apatite fractionation

[17], but fractional crystallization alone cannot create the observed major and trace element characteristics. In

particular, the high K/La ratios of lunar granites seem to require silicate liquid immiscibility at some point in

the fractionatlon history [15,16,17,27,30,31].

WHERE DO WE GO FROM HERE ?

Despite the tremendous increase since 1980 in geochemical and petrologic data on the Western High-

lands Province, there are still large gaps in our understanding of how the western crust formed, and why it is
different from the eastern crust. Since much of this uncertainty revolves around KREEP, a major priority

should be detailed studies which focus on the origin of KREEP, its geochemistry, and its phase relations. In

addition, age data is virtually nonexistent on highland lithologies at Apollo 14. Age data are critical to under-

standing how the alkali suite and Mg-suite rocks are related to one another, and to the aluminous mare basalts

which are common at this site (e_g., [21,22,23]. The Apollo 14 aluminous mare basalts range in age from 3.75 to

4.3 Ga -- the same age inferred for many highland crustal rocks [24,25,26]. The relationship between this early
mare volcanism and crust forming-processes needs to be thoroughly explored. In addition to these efforts,

more data are needed on the variety of highland rock types present at the Apollo 14 site, with special emphasis

on integrating whole rock chemistry with phase chemistry (e.g., [19]). The question of possible metasomatism

must be addressed, including the specific transport mechanism and the source of the metasomatic fluid.

The unique nature of the highland suite at Apollo 14 provides an exciting opportunity to investigate

variations in the lunar crust which formed during the earliest stages of lunar differentiation and perhaps earlier,

during accretion. Understanding the origin of these primordial variations in the lunar crust will increase our

understanding of how planetary crusts form and evolve, and should give us important insights into the early
evolution of the Earth as well.
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Road 1, Houston, TX 77058; 2NASA Johnson Space Center, Houston, TX 77058).

Recent petrologic, geochemical and isotopic investigations of igneous-textured cIasts of
Apollo 14 breccias, e.g. 14321, 14305 and 14304, have yielded several new lunar rock types.
Among these are at least two, and perhaps as many as five, groups of aluminous mare basalts
(1-3), VHK (very high potassium) basalts (4-7), a tridymite ferrobasalt (TFB) (2) and an
olivine basalt or olivine gabbronorite (8), as well as evolved rocks, such as granites (9,10).
These igneous rock clasts are pristine and have old isotopic ages in the range 3.9-4.2 Ga (e.g.
6-8,10,11), which are contemporaneous with KREEP basalts and some of the younger pristine
Mg-suite rocks of the highlands. In this report, we summarize Rb-Sr and Sm-Nd isotopic data
available for Apollo 14 igneous rock samples. Their ages and the corresponding initial 87Sr/SeSr
and 14SNd/144Nd ratios can provide useful information about their source materials as well as
petrogenetic processes leading to their formation. In addition, these isotopic data can provide
valuable informations about early mare basalt volcanism, differentiation of the lunar crust and
mantle, and relationships among aluminous mare basalts and very early highland plutonic
rocks.

Aoollo 14 A10minou_ mare
The Apollo 14 aluminous mare basalts were divided into at least two and probably five

groups, based chiefly on their REE (rare-earth element) distribution patterns and La vs. Hf
abundances (1). The bulk major element chemistry and mineral compositions for the five
basalt groups are very similar. Figure 1 shows the interrelationships between La (ppm) and
mg-value (MgO/[MgO+FeO] in molar %) for the five groups of Apollo 14 aluminous mare
basalts from a data base of 76 analyses reported in (1-3). The basalts were chemically grouped

using the classification proposed by Dickinson et al. (1). Dotted lines representing linear fits

for each basalt group are nearly parallel to each other and to the olivine (Fa2s) fractionation
trend line shown near the top of the figure. These results suggest that the variations of mg-
values within each group can be explained by moderate amounts (<15%) of olivine
fractlonation. However, the significant variations in La abundances between basalt groups,
which can not be produced by near-surface olivine fractionation, are probably due to
differences in degrees of partial melting, in source La abundances or in amounts of KREEP
basalt assimilation (1,2). A complex process involving partial melting +_.KREEP assimilation +
olivine fractionation is probably unavoidable for the petrogenesis of Apollo 14 aluminous mare
basalts. However, the recent AFC (assimilation-fractional crystallization) model of Neal et al.
(3), shown in a solid-llne curve, clearly can not explain the petrogenesis of all these basalts
because the majority of the data points lie far from their proposed AFC trend.

data and imoliscations
Rb-Sr ages and initial Sr/ Sr ratios for five groups of Apollo 14 aluminous mare basalts

ll), represented by error parallelgrams calculated from uncertainties in their ages and initial
_Sr/86Sr isotopic compositions, are shown in Fig. 2. Also plotted are data for other Apollo 14

mare basalts including VHK and HK (high potassium) basalts, a tridymite ferrobasalt, an
olivine basalt (OB), and young aluminous basalts from Apollo 12, Luna 16 and Luna 24 sites
(12-14). At least four isotopically distinct groups (i.e. G5; G5'; GI, G2 & G4; G3) were
identified for the five chemical groups of Apollo 14 aluminous mare basalts of Dickinson et
al. (1). Except for the basalt G5', all groups of aluminous mare basalts lie on a single
radiogenic growth curve for 87Sr/8(3Sr evolving from a primitive initial
87 86Sr/ Sr=LUNI=0.69903 at 4.56 Ga ago in source regions having Rb/Sr~0.021. The Rb/Sr
ratio for this source is very similar to that proposed by Nyquist el al. (15) for the

undifferentiated portion of the moon. Thus, the isotopic data suggest that most groups of
Apollo 14 aluminous basalts could have been extruded at different times from either a single
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mantle source in which the Rb/Sr ratio was ~0.021 or from different sources of the same

Rb/Sr ratio but having different absolute abundances of Rb and Sr.
VH.____.K.K_nd HK basalt_

As shown in Fig. 2., the initial STSr/86Sr ratio for the VHK basalt is comparatively

imprecisely determined because this basalt was distinctly more radiogenic than other mare
basalts. However, its crystallization age is well defined. The HK basalts are younger than most
of the Apollo 14 mare basalts, but significantly older than the VHK basalt. The Rb-Sr isotopic
results suggest that VHK and HK basalts were genetically related to other groups of aluminous
basalts and that all these basalts could have evolved from a common source region and formed
at different times. In addition, the Rb/Sr ratios of VHK and HK basalts are enriched

approximately ten-fold relative to their source materials. An assimilation model involving
assimilation of the K-feldspar component of granitic crustal materials into ascending
aluminous basalt magma could explain the chemical and isotopic characteristics of VHK and

HK basalts (6,7).
_Young aluminous mare basalts at _ 12, Luna 16 and Luna 24 sites

Aluminous mare basalts were not restricted to the Apollo 14 site. Young aluminous mare
basalts of -3.4 Ga have been reported at the Apollo 12, Luna 16 and Luna 24 sites (12-14).

However, these young aluminous basalts have slightly lower mg-values (0.36-0.41) in contrast
to mg-values of 0.41-0.58 for Apollo 14 basalts. As shown in Fig. 2, the time-averaged Rb/Sr
ratios for sources of these basalts are -0.004, about five-fold lower than those of Apollo 14
aluminous mare basalts. This ratio is even lower than those for the Apollo 11 and Apollo 12
mare basalt sources (e.g. 16). The extremely low Rb/Sr sources for these young aluminous
basalts indicate that they were derived from cumulate sources depleted in LIL (large ion
lithophile) elements and perhaps containing plagioclase.
Other _ 14 mare_ basalts (TFB and olivine basalt.)

Tridymite ferrobasalt exhibits the most radiogenic initial 87Sr/S6Sr ratio of all Apollo 14

mare basalts (11). The calculated Rb/Sr ratio for its source is -0.035 which is significantly
higher than that for aluminous mare basalts. This basalt is not directly related to the aluminous
mare basalts. However, the isotopic data do not preclude assimilation of bulk granitic materials
into aluminous mare basaltic magma to form the tridymite ferrobasalt. The bulk granitic
materials would significantly increase amounts of REE, STSr/86Sr, K and Rb and would also

decrease the rag-value of the parent aluminous mare basalt magma.
The olivine basalt 14305,122 and a group 5 aluminous mare basalt 14321,1384 (G5') have the

lowest initial STSr/SOSr ratio of all Apollo 14 mare basalts (8,11). The G5' basalt also has the
lowest La abundance and the highest rag-value of all aluminous mare basalt. These two basalts

are not isotopically related in a direct way to other groups of aluminous mare basalts. If
assimilation of KREEP by a primitive magma such as G5' played a significant role in the
petrogenesis of the other groups of aluminous mare basalts, it must have occurred in a manner
to mimic the regular increase in STSr/S6Sr which would occur in a source of fixed Rb/Sr ratio.
The time-averaged Rb/Sr ratio for the source of the olivine basalt and G5' basalt is -0.009, a
value similar to that defined for the parental magmas of four pristine norites as shown in Fig.

3. (17). A petrogenetic link between these Apollo mare basalts and the Mg-suite crustal rocks
is thus permitted by the age and initial 87Sr/86Sr data.

Nd-isotopi¢ data and
The ages and corresponding e.. values for lunar mare basalts are presented in Fig. 4. Er__

values represent the fractional deviation m parts m 104 (18,19) of the initial 14ZNd/144Nd o_'
rocks from a chondritic evolution line using the present-day values of 143Nd/144Nd=0.511847

and 1475m/144Nd = 0.1967 (20-22). Most mare basalts have characteristic positive Er_d values,

suggesting that their source regions had Sm/Nd ratios greater than chondritic (23,24). This
result is compatible with cumulate-remelting models for mare basalt genesis (e.g. 25).

Aluminous mare basalts are shown in solid symbols (see also Fig. 5). Apollo 14 mare basalts

have lower _Nd values relative to other mare basalts. Groups 4 and 5 aluminous basalts, the
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olivine basalt and the tridymite ferrobasalt have similar and slightly positive EN,t values (11).
Whereas both VHK and HK basalts lie on the chondritic evolution line of ENa=0 (6,7). The

chondritic ENd values for VHK and HK basalts could have resulted from'"interaction of
aluminous parent mare basalt magma of slightly positive ENd values (e.g. G5' or olivine basalt)
with old highland crustal materials having slightly negative Et_a values, such as granitic
materials, as discussed in the previous section.

Apollo 12 and Luna 24 aluminous basalts have slightly higher e_T_ values (12,14,24) than their
Apollo 14 counterparts, which is consistent with their low initial"erSr/S6Sr ratios and also their
cumulate sources.

The G5' basalt and the olivine basalt are similar to gabbronorites 73255,27,45 and 67667

(26,27) and troctolite 76535 (28) in ages and ENd values (Fig. 5), suggesting that all these rocks
were closely related and could be derived from a common source. This source was presumably
located in the shallower regions of the lunar interior, i.e. the lower crust or uppermost mantle,
relative to the deeper depleted source areas of mafi¢ cumulates proposed for younger and more

abundant high- and low-Ti mare basalts. The old mare basalt clasts found at the Apollo 14 site
represent melts from the earliest mare basalt volcanism soon after lunar crustal formation.
Crustal assimilation processes probably play a major role in the genesis of Apollo 14 aluminous
mare basalts.

KREEp
Ages and initial 87Sr/86Sr ratios of seven Apollo 14 KREEP basalts revealed that four

different isotopic groups of basalts were sampled (29-33). However, no clear groupings were
identified for KREEP basalts based on their Nd isotopic data (34,35). Figure 6 shows that
KREEP basalts sampled at the Apollo 14 and Apollo 15 sites have similar ages and initial

87Sr/86Sr ratios (29-33,36,37). The Apollo 17 KREEP basalt represented by pigeonite basalt
72275,171 (38) is significantly older and has much lower initial 87Sr/86Sr ratios. The age and Sr
isotopic datum for this basalt are indistinguishable from those for the G3 and HK aluminous
mare basalts shown in Fig. 2. The initial 87Sr/86Sr values for KREEP basalts suggest that
Apollo 14 and 15 KREEP were derived from high Rb/Sr source regions. A two-stage
evolution model yields Rb/Sr -0.05 for Apollo 14 and 15 KREEP sources and -0.02 for the
Apollo 17 KREEP source. The model also indicate that a significant Rb/Sr enrichment of -4x
occurred at crystallization for the Apollo 17 KREEP basalt. However, for Apollo 14 and 15
KREEP, the magnitude of Rb/Sr fractionation at crystallization is considerable less, -l.6x.
This result implies that the immediate precusors for Apollo 14 and 15 KREEP basalts were not

only enriched in Rb/Sr but also in trace elements like REE.
KREEP basalts exhibit the lowest ENa values (_Nd----I.5 relative to chondrites) of all lunar

samples as shown in Fig. 5. Negative ENd values suggest a low Sm/Nd or light REE-enriched
source for the KREEP basalts. Data of major crustal components including anorthosite,
norites, gabbronorites, troctolite, granite and KREEP basalts seem to follow a evolution trend
corresponding to a subchondritic _47Sm/X44Nd of-0.163.
Evolved rocks-_

Rb-Sr mineral isochrons of four granitic samples (12013,29, 12013,40, 73215,43, 14321,1062)
have been determined so far (10,39,40). Their ages are in the range of 3.9-4.1 Ga. The Rb-Sr
isochrons for 12013 and 73215 granites were reset and represent the time of brecciation
(39,40). The age for the pristine granite clast 14321,1062 was determined to be 4.12 Ga (10).
The young crystallization age suggests that this granite is probably not directly produced from
the differentiation of the primordial magma ocean. Instead, it may have formed in a layered
intrusion associated with Mg-suite rocks. The initial 87Sr/S6Sr ratio for the granite clast is

poorly defined because of the extremely radiogenic nature of the sample, however, the Rb/Sr
of the parent liquid is estimated to be -0.08. The source material of the granite could have
had a similar Rb/Sr ratio as the source of Apollo 14 KREEP. A two-stage model calculation
indicates that Rb/Sr fractionation during granite formation was -20-30x. This extreme
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enrichemnt of Rb/Sr could be achieved only by a combination of feldspar crystal fractionation

and silicate liquid immiscibility (e.g. 10).
LmDlicati0ns of early lunar diff_r_ntiati0n

Age data for pristine lunar plutonie rocks (10,17,26-28,38-65) are summarized in a histogram
presented in Fig. 7. These rocks are major constituents of the lunar crust. Ferroan anorthosites
have ages ranging 3.9-4.5 Go. The Mg-suite rocks comprised of norites, gabbronorites,
troctolites and dunites exhibit a slightly wider range of 3.9-4.6 Ga clustered at 4.2-4.4 Go.
Evolved rocks including granites and quartz monzodiorite formed between 3.9-4.4. All the
older age data, 4.2-4.4 Go, of evolved rocks are Pb-Pb ages from zircons (61-63). According
to the "magma ocean" hypothesis (e.g. 66), the Mg-suite rocks formed as layered plutons
intruded into the old ferroan anorthositic crust. However, the age data show that ferroan
anorthosites are not older than Mg-spite rocks. The model of lunar crust formation by "serial

magmatism _ proposed recently by Walker (67) seems to be more consistent with the age data
obtained from the pristine crustal rocks.
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As a contribution to the Cone-Crater-Consortium 4°Ar-39Ar ages of 21 Apollo-14 samples

were determined. Among these samples were 10 fragments from breccia 14063, which was

colIected only 20 m from the rim of Cone Crater. From impact mechanics it seems probable that

this breccia is Cone Crater ejecta. This view is supported by the exposure ages of the fragments

which range from 24 to 36 Ma which correspond to the assumed age of Cone Crater (25 Ma). The

4°Ar-39Ar age pattern show remarkable high apparent ages (>4Ga) in the high temperature

fractions in three of the 10 fragments. Figure 1 shows the K/Ca and the age pattern of fragment

14063,233. More than 50 % of 39Ar is released in temperature fractions with apparent ages above

4 Ga up to 4.11 Ga. The 4°Ar-39Ar age of 4.09 Ga is the highest so far found in the Apollo-14

rock-collection. The 40Ar-39Ar ages of the other fragments from breccia 14063 are scattered over

a broad range (Fig. 2). Apparently the fragment ages are mixing-ages between the age of

crystallisation of the individual fragment and the age of the breccia forming event. Consequently

the maximum of the age distribution curve is of no chronological significance, but the left edge of

the peak is an upper limit to the time

Fig. 1: 4°ArPAr age pattern and

K/Ca pattern of sample 14063,233.

Fig. 2: 4°Ar-39Ar age distribution of

10 fragments from sample 14063.

of the breccia forming event.

The other dated Apollo-14 rocks according to their

4°Ar-39Ar ages arrange themselves into three groups: Most

samples have 40Ar-39Ar ages between 3.80 and 3.85 Ga

(samples no. 14068, 14069, 14074, 14079, 14311, and

14431). In most cases their 'l°Ar-39Ar age pattern show

well defined plateaux with the result that the errors are small

(0.01 - 0.02 Ga). The samples 14179 and 14434 have higher

ages, 3.97 and 3.92 Ga, respectively. And finally there are

three samples with lower 40Ar-39Ar ages. The ages of 14051

(3.77 + 0.03 Ga), 14140 (3.76 + 0.05 Ga), and 14070 (3.73

:1:0.02 Ga) are the lowest among the examined samples.

Perhaps the low ages are due to argon loss during the

samples' residence close to the lunar surface. There is no

obvious correlation between the 4°Ar-39Ar ages and the

mineralogy of the samples. Exposure ages vary from 18 to
528 Ma.

! ! I I 1 I

3.7 3.8 3.9 4.0 4.I 4.Z
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19troductlon. In 1971 Apollo 14 was the first mission to the moon returning rock samples which were

predominantly polymict impact breccies. The interpretation of the brecciatad nature of these rocks proved to

be rather problematic since most workers at the time were not familiar with impact brecclas. This explains

why several attempts to classify and interpret the samples failed (1, 2, 3, 4, 5) leaving a confusing

situation until about 1977 when the misconception of "thermal metamorphism" of Apollo 14 breccias (3, 4) was

finally abandoned (6, 7, 8) and replaced by a generally accepted classification (9, I0) which was based on

the experience with terrestrial impact formations. Aceordln E to this classification the decimeter-slzed

samples are dominated by regolith brecclas and impact melt brecclas supplemented by a minor fraction of

fragmental breccias and basalte. The current vlew is that the Fra Manta Formation on which Apollo 14 landed,

is a polymict breccia deposit (megabreccla) which contains a large amount of clastic rock materlal derived

from the local brecclated bedrock (Ii, 12, 13, 14). The basic issue of this review can be put into the

following questions: _uat has been learned from the brecciatad nature of the Apollo 14 samples in terms of

the composition, provenance, and mode of emplacement of the Fra Mauro Formation? _lhat is the pre-lmbrian

impact history of the lunar crust in the source region of the Fra Mauro Formation? _hat are the implications

of the composition of the brecolas for the evolution of the pre-lmbrlan crust and mantle?

Classifinatlon and _ dlstrlbution of rock t_Ip_e!at Apollo 14

The Apollo 14 collection comprises several types of samples which differ in size and mode of collection (15)z

(a) Samples chipped from boulder__...____swhlch are in the size range from _0.3 to _5 m. A dozen boulders have been

photodocumented and recognized as pol_ct brecclas with clast sizes up to about 1.7 m (15),

(b) Handspscimen-sized indfvldual rock--ranging in size from centimeters to decimeters collected from

the regolith surface; 141 samples have been registered and numbered,

(c) Sell samples (or regollth samples) which are available in 4 sieved size fractions (4-10 mm, 2-4 ,w,, I-2

-_, and <I _),

(d) Drive tube samples taken from the regollth

These samples have been taken from 13 locations (stations) along a 3.5 km long traverse with 4 collecting

areas located on the ejects blanket of the 370 m diameter Cone crater (Fig. i). Petrographic classifications

of rocks are available for the larRe roc___kk_ (types a+b), for the llthi______cclas______tpopulation of

polyglot brecclas (large rock samples), and foe certain grain size fractions of the _representing

sample types c and d (Table I and (16-21)). It is _ost characteristic for the abundance and regional

distribution of the large rock s_mples at Apollo 14 that no plutonic rocks (anorthosites or rocks of the Hg-

suite) are present and that fragmental breccias are restricted to the rim area of Cone crater (station CI).

All types of "pristine" plutonic rocks so far recognized at Apollo 14 are confined to the lithic clast

population of polymict breccias in contrast to the other highland landing sites. A comparison of the

abundances of rock types among llthlc cleats of breccias and regollth is given in Fig. 2 for the Apollo 14

and 16 landing sites. The relative abundance of the various types of igneous llthlc clasts is not well known

for most typos of polymlct breccias slept for the fragmental brecclas from Cone crater (Table 2 and (18)).

Table 3 shows that the total frequency of plutonic igneous clasts is about 251 (16% anorthosites and 9%

norltlc-gabbrolc-troctolitic rocks) in the Cone crater basement brecclas compared to 381 in Apollo 16 North

Ray crater basement interpreted as Descartes Formation (22).

Textural an__d petrologic characteristics o.ff impact-induced lltholo_ies

All four major groups of breccias which have best recognized moon-wlde - regolith brecclas, fragmental

breccias, impact melt brecclas, and granu!itlc brsccias - are present in the Apollo 14 sample collection.

Among these groups the fragmental and impact malt breccias are genetically most important for the origin of

the Fra Mauro Formation and the evolution of the pre-lmbrlan crust. In principle, they represent the two

major allochthonous breccia unite of large impact craters, namely the polymict continous eJecta deposlta and

the coherent impact melt deposit (melt sheet), respectively.

The Eraln size characteristics of the impactoclastic detritus in both types of polymict breccias (19, 26)

indicates that it underwent multiple impact reworklng. It is intermediate in "maturity" between "mature"

regollth and the clestic material produced in a single impact event (e.g. terrestrial suevite). The modal

composition of the mineral clas______tpopulation is fsldepathlc with a plagioclase: marie minerals ratio ranging

from 1.5 to 2.3 in contrast to loose regollch and regullth bracclas where this ratio ranges from 0.6 to 1.25
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(Fig. 3). The lithic claets in fragmental breccias and impact melt breccias are dominated by a variety of

fine-grained impact melt lithologies and coarser-grained subophitic "basalts" which are in part impact melt

rocks. The proportion of fine-gralned intergranular melt breccia cleats ranges up to 84% in these brecclae

((19, 26)! compare also Fig. 2). The lithic clast modes and the chemical co_position of the mineral claste

indicate that the protollth(s) of the cleats were composed of a variety of different rock types (6) including

impact melt breccias, high alumina basalt, mare basalt, anorthosite, noritic-gabhroic-troctolitic rocks,

dunlte and granulitic lithologies. KREEP is a dominant component in the impact melt lithologies.

Considering the nature of the melt matrix it becomes obvious that the Apollo 14 impact melt lithologies with

crystalline matrix represent a unique group of such rocks which differ from all other highland sites in

composition, texture_ and frequency. Compared to the seven textural types at Apollo 16 (22) the large rock

samples at Apollo 14 fall into two types only: (a) fine-grained, clast-rich intergranular melt breccias, and

(b) coarse-gralned subophitlc melt rocks which are clast-poor or free of clasts (type 14310). Among the

lithic clasts of the fragmental breocias (14063, -64, -82_83) the textural variety of impact melts is

somewhat larger representing a broad range of cooling rates. In addition to the two types (a end b) very

flne-gralned to crypto-crystalllne variolltic and porphyritic types occur.

The modal composition of the matrix of the intergranular melt breccias is more mafic than the mode of the

mineral cleats (26, Pig. 3). The matrix texture is very heterogeneous on a small scale due to the variable

cleat content of the melt (light and dark matrix texture).

The chemical composition of the melt matrix of the various impact melt lithologies falls near to

the ternary peritectic in the olivine - anorthite - silica system but into different fields of primary

crystallization. The intergranular melt matrix may have plagioclase, pyroxene_ or olivine as liquidus phase

whereas in the suhophitic feldspathic melt matrix plagioclase crystallizes first. Some of the porphyritic

melt matrix types (eg. 14068 and clasts in 14063, -64, -82183) display olivine and spinel as phenocrysts. The

bulk chemistry of all types of impact melt lithologies suggest the presence of five chemical groups: (a)

KREEP rich melt breccias, (b) KREEP-rich alumlnoue melt rocks, (c) KREEP-rich, high Mg-, low K-melt breccies,

(d) KREEP-poor, low ME- , medium to high K-melt breccles, end _e_ KREEPy high Ti-melt _recciae. The latter

three are exclusively found as lithic cleats in the fragmental breccias of Cone crater (13, 17, 18). The

chemistry of the rare granulltic lithologies at Apollo 14 is also unique if compared with other highland

sites. One sample (14179) is KREEP-rlch and a s,mll clast from fragmental breccia 14063 is KREEP-free as most

granulites from Apollo 16 end 17 are.

Breccia genesis and implications for the _ of th___eeFr___aaMaur_.__._oFormation and fo__E th__! evolution of the pre-

Imbrian crust

The Apollo 14 breccias were formed by multiple cycles of pre-lmbrian and Imbrian cratering events in which

impact melts and clastic rock debris were mixed in very variable proportions. The observed textural variation

can be explained by the model given in Fig. 4. Clast-poor or claet-free melts not shown in Fig. 4 lead to

subophitic coarse-grained impact melt rocks (type 14310) as part of a coherent melt sheet. Cleats

_noorporated into coherent melt fn schlieren-llke agglomeration or m/xed interstLally into melt agglomerates

cause a two-stage cooling of the super-heated melt (27) which can explain the observed textural variation and

the light-dark matrix texture of the most common intergranular impact melt hreccies at Apollo 14. The light

matrix represents coarser grained clast-rich regions where crystallization started first. The mixing of small

amounts of melt with clastic material or Just mixing of solid claste forms fragmental hreccias as represented

by the Cone crater breccias. The clastic nature of the impact melt lithologies in these breccias speaks in

favor of the latter process. It is possible that the intergranular melt breccias of Apollo 14 may have been

part of one single melt sheet. The fragmental breccias are best explained as parts of an allochthonous

polymict ejects deposit.

In a local and global 8elenologlcal context the following conclusions can be drawn from the presently

available data:

I. The subregolith basement of the Apollo 14 landing site is a polymict clastic megabreccie which is

extremely rich in clasts of impact melt llthologles of restricted chemical variety compared to other

highland sites. These cleats are as young as 3.75 AE (13, 29) which therefore is the lower limit for

the age of the _ra Mauro Formation (29).

2. A group a fragmental hrecciae near Cone crater rim obviously represents a discrete older stratigraphic

subunlt whithin this megabreccia as demonstrated by the composition and age of impact melt clests

(28, 14) which are ell older than 3.9 At.
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3. The younger group of impact melt lithologies (Nectarian) is uniformly KREEP-rich and has been formed

in an impact-processed protolith compoBed of KREEP-rich rocks (mainly impact melt breecias and

possibly KREEP-basalts), aluminous basalts, mare basalts and minor amounts of anorthosotic (Mg- and

alkali type), norltlc-gabbroic, and troctolitic igneous rocks.

4. St is highly probable that the Nectarian melt breccia or melt rock clasts were once part of one or two

impact malt sheets produced in local Nectarian craters (ii) and were incorporated into the Fra Metro

Formation by secondary mass wasting during the Imbrium basin event (12).

The older breccia unit excavated by the Cone crater event may represent a megablock derived from the

allochthonous surflcial ejects deposits of a local pre-Nectarian crater again reworked by the emplace-

ment of Imbrlum ejects. The lithologieal nature of the primary Imbrium ejects is still not clear.

5. The Apollo 14 samples are representative only of the upper section of the Pra Metro Formation to a

maximum depth of about 35 m (excavation depth of Cone crater (30)) which according to most photo-

geologists is only a fraction of the total tickness of this formation (31).

6. The frequency statistics of the lithic cleats in the various polymict brecelas requires a crust

composition at the time of the formation of the oldest impact melt brecclas ( >3.9 AE) which was free

of ferroan anorthosites and dominated in its igneous rock component by rocks of the M E - and alkali

suites (Mg-anorthosites, norites, troctolites, gabbronorites, dunites, alkali anorthosites, and alkali

gabbronorltes). Clearly, the volumetrically largest fraction of the pre-Nectarlan crust were KREEP-rlch

impact melts derived from extrusive or intrusive voleanlcs or from KREEP ejected from the base of the

prs-Nectarian crust by any of the old multl-rlng basins in the general area of the present Imbrium basin

(e.g. South Procellarum or Procellarum (II, 31)). This scenario does not exclude the possibility that

the primordial ferroan anorthosits crust was present prior to these basin impacts also in the western

lunar frontside.
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Table 2: Number frequency (%) of 2476 lithic clasts (>ca. I00 _m) of

fragmental breccias 14063, 14064, and 14082/83 (data from (18))

and other breccias of Apollo 14 (19, 32)

T y_e

Fragmental Large Regolith Crystalline

breccias rock samples brecciss melt breccias

n=2476 (18) n-65 (15, 32) (19) (19)

Igneous rocks 26.4

anorthos[te 15.9

norite 3.25

troctolite 5.65

basalt J.2

granophyr 0.4

15.3 I .2 3.5

Metamorphic rocks 3.7

granulitic breccia 0.7

granulitic rock 3.0

].5 45. I 16.4

Impact melt lithologies

impact glasses

impact melt breccias

(mafic)

impact melt breccias

(feldspathic)

69.9 83.1 53.7 80.1

1.5

53.6

14.8



142

BRECCIATED NATURE OF APOLLO 14 SAMPLES

D. StSffler

75

v

.o

.<

g

D.

U0,._

_x

o

22

G

<

_ _ _-_o

- , oo I -- r_

I -- I I I

P'- I 1 |

I I t I

I -- I I

eq I ! I

0

r._ ,_

ilJ_, 0+

,-, '_
P_ +?,

o ,.,,,

g

°_

Im

++.+
.,-i

o III

2_ <_

N

N,--_

g.,

.t.,u ,-.I

_X

_ o

co r_
B

° ....

_ _Pe.,_ _-

• o

+o - + <=;___

.+..,

+o_.°v

+,..1

o <_ a0 t'_ e_i P_.

t_

- __

_ "Z_

,,® .._o_-
_: ._ _oo

.<



BRECCIATED NATURE OF APOLLO 14 SAMPLES

D. Steffler 143

1 b _ 1 cmbr

[ _/Cone crater) 3 ,br

3 rbr 2 rbr | _.._1 3 cmbr
4 cmbr - l 2. \ _ C2.Z---_'C '_ 1 ¢mr

19n_Or \ 2rbr \ /f_B3 2b

\ ,, t  \By/bq
\ \A

1,,br /L"_Z_ _ 'lkcmbr \ 0 200 400,00 m

26,mr,, / ( ) \ \ ___

3 b _ rbr 4

33 br 1 br
1 cmr

Fig. l: Apollo 14 landing site with sampling traverses and stations (A-H); LR - ALSEP-statlon; LM -
lunar module; circles - craters| rbr - regolith breccia, fbr - fragmental breccia, cmbr -

qrystalllne impact melt breccia, gmbr - "glassy" impact melt breccia, br - polymict breccia

(undetermined), gr - granulitic rock, b - basalt; curved line - outer limit of Cone crater eJecta

blanket
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Granulites

h
or,,,.,Z" =:'::"
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Fig. 2: Modal composition of llthic clasts (> _ 0.4 - 0.l mm) of breccias, regolith and. large, rock .

samples o_ Apollo 14 and 16 in the ternary system anorthosite + granulltes - relaspatblc melt
breccias - mafic melt braccias; Apollo 14: hatched area - lithlc cleats in breccias (total

variation in thin sections of fragmental brecclas 14063, -64, and -82/83); data for regollth

breccias and crystalline melt breccias from (19), others from (18); Apollo 16: hatched area -

lithic cleats in fragmental breccias of Station |I, North Ray crater (total variation in thin

sections), circled crosse average; Cayley field: large rock samples from all stations in the Cayley

plains; Apollo 16 data from (22)
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Fig. 3z Modal composltlon of mineral claets in brecc_a8 and regolith and modal mineralogy of =he
crystalline matrix of intergranuzar malt brecclas (Apollo 14)

Fig. 4z Evolutlon of textural characteristics of Apollo 14 breccfas! from left to right: clast-
laden melt, melt aKglomerates with interstitial claetlc debris, and m_ture.of clasts and.melt
nawt_c_es ("suevltlc")| from top to bottoml melt-clast mlx_ng, crystallization In c_ast-rlcn

rregione, crystallizatlon of clast-poor melt, and fragmentation by subsequent impacts and

incorporation into Fra Ha.to Formation (from (9); sea text)
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FRA MAURO FORMATION, APOLLO 14: IV. SYNOPSIS AND SYNTHESIS OF CONSORTIUM STUDIES. D. St_ffler I ,

K.D. Bobs I, E.g. Jessberger 2, S. Lingner I, H. Palme 3, B. Spettel 3 , F. Stadermann 2 , and H. W_nk_ , I Institut

fur Planetologie, Universit_t MUnster, D-44 MUnster, Germany, 2Max-Planck-lnstltut fur Kernphysik, D-69

Heidelberg, Germany, 3Max-Planck-Institut fur Chemic, D-65 Mainz, Germany.

Introduction. The aim of this paper is to discuss the results of a consortium study of Apollo 14 rocks (|,

2, 3) and their bearing to the genesis of the Era Mauro formation and the composition and formation of the

pre-lmbrian lunar crust in the wider area of the Imbrium basin. The discussion is based on the generally

accepted assumption that the Fra Mauro formation sampled by the Apollo 14 mission is part of the continuous

ejecta blanket of the Imbrium impact basin but contains a very large amount of rocks derived from the

vicinity of the sampling site by the process of secondary mass wasting (4). The interpretations and models

presented here are based on textural, mineralogical, chemical and isotope analyses of samples described in

(i, 5) and presented in (I, 2, 3, 5, 6). The approach of this consortium is identical to our Apollo and

lunar meteorites consortium studies (7, 8, 9). Therefore, relations to the Apollo 16 and other highland

sites will be presented here.

LitholoKical and st_ characterlzation of the _ 14 site. As defined by the photogeology and

morphology of the sampled region we distinguish two surface units in the Apollo 14 region: (a) the eJecta

blanket of the 25 m.y. old Cone crater and (b) the smooth older tartans around the landing site. The total

population of samples from (a) and (b) which we checked microscopically ( I00 handspecimen (large rocks),

2500 lithic cleats in polymlct fragmental breecias, and I00 lithic clasts from a soil sample), can be

classified into regolith breecias, fragmental brecclas, igneous lithologies, granulitic lithologies, and

impact melt lithologles (1). On the basis of the relative abundance, chemical composition, and the absolute

ages of these rock types it is possible to define two distinctly different lithological units which are

related to the two sampling areas described above. The composition of the first unit denominated

"Subregolith basement megabreccia" has been either obtained with some error from the bulk composition of the

regolith and from a weighted average of the large handspeclmen samples collected throughout the sampled

area. The second unit is represented by the bulk or the lithic cleat population of the fragmental breccia

boulders ("white rocks" 14063, -64, -82]83) near Cone crater and may be denominated "Cone crater basement

megabreccle". The essential differences between the two units are sulmarized in (I, 2, 3, 5, 6).

The age data summarized in Fig. I clearly put these two petrographlcally and chemically different

geological units into distinctly different stratigraphic positions with the Cone crater basement megabreccia

being older than the subregolith basement megabreccia. According to the principle that the youngest clast of

a polymict elastic matrix breccia determines the age of the breccia-forming process, the older breccia has

an absolute age of 3.85 b.y. whereas the younger breccia which forms the subregolith basement is 3.75 b.y.

old. These two ages coincide exactly with the ages we have recently proposed for the Nectaris and Imbrium

impacts respectively (7, i0).

Relations of the two stretigraphic units of th____eApollo 14 site to the local and _ _eology. The

interpretation of the younger stratigraphic unit (suhregolith basement) is straightforward. The rock samples

taken from the regolith outside the eJecta blanket of the young Cone crater display a wide range of exposure

ages (11, 12). They were brought to the surface by impact reworking of a substrata megabreccia unit through

nearby post-Imbrium small-scale impact craters as discussed in (7 and i0). Because of the observed crater

size-frequency distribution near Apollo 14 (lO) the majority of samples must originate from very shallow

depths of only a few meters below the regolith. Samples of the elastic matrix of the subregolith megabreccia

are lacking in the surface sample collection because they did not survive the regolith gardening process

because of lack of coherence. Such samples can only be expected at very young craters. Cone crater is such a

case where bulk samples of the basement megabreccia in the form of large boulders ("white rocks" 14063, -64,

-82]83) can be found in the rim eJecta. These boulders originate from a maximum depth of 32 m (5, 6_ 13).

This leaves two options for the stratigraphic and structural position of the parent megabreccia unit of

these boulders which is older than the subregolith basement megabreccia (Fig. 2): (a) the Cone crater

basement megabreccia forms a sublayer of the Fra Mauro formation and represents an ejecta layer of a pre-

Imbrian crater, or (b) it forms large megablocks from such a pre-Imbrian ejecta layer which were

incorporated into the Fra Mauro formation by secondary mass wasting of the local basement during the

emplacement of the Imhrian Fra Mauro formation. The latter appears more probable to us because the former

would allow not much more than about 20 m total thickness for the Fra Mauro Formation at the Apollo 14 site

(Fig. 2). The question remains whether the source crater for the Nectarian megabreccia unit exposed in the

basement of Cone crater can be identified. The distribution and size of possible candidate craters has been

studied by (14). It appears probable that one of the nearest large pre-Neotarian or early Nectarlan (Phase IB

of (14)) craters has produced the megabreccia unit sampled by Cone crater.
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Composition of the prlmordial _ crust of the two etratIKraphic units of the Fra Mauro formation. As

outlined in an companion abstract (3), the igneous precursor rocks of the secondary Apollo 14 lithologies

have been deduced by means of mixing calculations. According to the results of these calculations (3, 6),

the Imbrian megabreccia is derived from a crust section in which the primordial igneous rocks are dominated

by norltlc to gabbrolc lithologles whereas the Nectarian megabrsccia unit is typified by non-ferroan,

evolved enorthosltes and by troctolites and only minor amounts of noritic-gahbroic rocks. Both units are

typically poor in ferroan anorthosltes which are the dominant igneous llthology of the parental crust of the

Apollo 16 formations end of the source regions of lunar meteorites (Table i). In addition, the latter crust

sections are extremely poor in troctolites. These model compositions are compatible with the observed ratios

Of anorthosltlc to norltic-gabbrolo-troctolltlc-dunltlc rocks (M_-sulte) as given in Table 2. The higher

ratios in Table 2 are probably due to the fact that the Mg-sults rocks are the main mixing components of all

secondary lithologies which appear i_ the form of thslr igneous rock components in Table I.

_odsl of the histor_ o__fth___eeprimordial _rust in the Imbriumand Procsllarumre_ion. The question whether the

pre-Nectarlan Procellarum impact basin existed or not (15) plays an important role for the deduction of a

model history for the primitive cruet of the fronteide of the moon. The main thesis of this paper is that

the Apollo 14, 15 and 16 data are in favor of the existence of the Procellarum basin which according to (15)

has a rim diameter of 3200 km (?). This basin which may have an excavation depth of more than 150 km, must

have exposed a very large section of the lunar mantle and lowermost crust so that mafic (norltic) end

ultramaflc rocks and KREEP formed the basin floor of Procellarum (Fig. 3). The basin floor was probably also

flooded by aluminous basalt flows at later times. Consequently, a mixture of K]_EEP end maflc lithologies

either formed as a product of the magma ocean, in layered intrusions or as volcanic flows constituted the

target rocks for many generations of Nectarian craters. Apollo 14 appears to be located at the edge of the

Proceilarlan KREEP layer where layered intrusions rich in alkali- and Mg-anorthosltes and troctolites were

exposed. This may be the source region for the Nectarian (Cone crater basement) megabreccla unit. The

emplacement of the Imbrian Pra Mauro formation lead to a megebreccia unit dominated by Nectarlen impact melt

llthoiogies which were mainly derived from craters located on the KREEP-rich parts of the Procellarum basin

floor (Pig. 3). An important implication of this scenario is that the retreat anorthoelte crust (of magma

ocean origin) was primarily present also in wider Procellarum area but had been removed by Procellarum

before the Imbrlum basin was formed.

Table 11 Abundances of primordial igneous rocks in the parental crustal regions of various highland
formations based on mixlng calculations (3, 6)

Rock type

Imbrlum Region Apollo 16 region Meteorites'parent regions

Imbrlan Nectarlan Descartes Cayley yam-to ALHA

megabreccla megahraecla Formation Formation 791197 82192 81032 81005
(a) (b) (c) {d) (7) (7) (8)

Anorthoslte,
fsrroan 14.5 - 5 86 82 72 56 66 62

Anorthoslte, mag-
nesian and elkall 43.5 24 54 60 - 0.3 0

Troctollte 0 0 38 30 0.i 2 0 0

Norite - Gabbro 42 75 O 3 ii 13 28 44 34 33

Dunite 0 1 3 7 3 3 0 0 0 5

a = based on bulk Apollo 14 regollth (3)I b - based on a weighted average of large rock Apollo 14
samples (6)I c - based on the bulk composition of breccia 14063; d - based on a weighted average
of llthlc clasts in 14063
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Table 2= Frequency of pristine rocks in the lunar highlands (sta-
tistics based on the exclusion of regolith and fragmental

breccias)

Anorthosites Mg-suite Total Ratio of
anorthosita

Apollo _
subragolith

basement (16) 0

Cone crater

basement (3) 15.8

Lunar meteorites

81005 r(8 ) 28.8

Yamato 791197 (8) 20,3

Yamato 82192/193 (9) 22.2
Yamato 81032 7.7

3.0 28.8 8.6

7 7 O0

88 25 1.8

0.8 29.6
23.7 0.5 0.7 20.8 24.6 35.0

0.7 22.9
10.7 18.4 0.7
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(a) (b)

Fig. 2z Stratigraphlc relation between Xmbrlan (subragolith basement| with
black cleats) and Nectsrian (Cone crater basement) megabracclaa| see

text
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For the distinctive lunar rock type affectionately known as KREEP, the Apollo 14 landing site is

essentially the type locality, albeit KREEP was first recognized, as "K,P glass," among highlands

samples from Apollo 12 [I I. An old synonym for KREEP is "Fra Mauro basalt" -- named after the Fra

Mauro Formation, which the Apollo 14 mission extensively sampled. Since the vast majority of KREEP

samples are actually impact melt breccias, and thus not truly basalts, "Fra Mauro basalt" is a term with

misleading connotations. (Before the Apollo 14 mission, the Fra Mauro Formation was assumed to

represent a layer of nearly pure ejecta from the Imbrium basin. Today, the Fra Mauro Formation is more

commonly interpreted as a mixture of mainly local material, sculpted by Imbrium ejecta. The vast

majority of the rocks at the Apollo 14 site are polymict impact breccias.) In rare instances where KREEP

rocks are found in monomict or "pristine" form (mainly, if not exclusively, among rocks from missions

other than Apollo 14), they range in major-element composition at least from basaltic (MgO = 8.4 wt%)

to quartz-monzodioritic, and perhaps all the way to granitic. They range in texture at least from glassy to

coarse-subophitic [2].

The two definitive traits shared by all KREEP rocks are: (a) highly enriched concentrations of

incompatible trace and minor elements (ITE), such as K, P, REE, Th and U; and (b) ratios among ITE

close to those characteristic of the "type" KREEP samples -- e.g., the soils and typical breccias from

Apollo 14. Another way of stating criterion (b) would be that the ratios among ITE must be close to those

for an average composition of all ITE-rich lunar highlands rocks, because the KREEP "component"

appears to account for nearly the entire budget of ITE in the lunar crust. Very little material seems to

exist that is ITE-rich without also being KREEPy, in the sense of criterion (b). The main exceptions,

rocks that are ITE-rich but not KREEPy, are rare granites and some of the "alkali" type cumulates.

Arguably, a third criterion should also be applied, (c): the texture (or major-element composition) of the

sample should not give indications of origin as an igneous cumulate. Criterion (c) is mentioned because

the "KREEP" classification should probably be restricted to rocks formed by solidification of KREEPy

melts (or by impact-mixing of such rocks). An igneous cumulate could conceivably derive a KREEP-like

trace element pattern through complexities associated with accumulation from a nonKREEPy melt.

Possible examples of this sort include a few of the most REE-rich alkali anorthosites. However, some

models for the origin of alkali anorthosites favor accumulation from KREEPy melts.

A widely-held model of early lunar evolution suggests that primordial heating engendered a magma

ocean, or magmasphere, which produced the earliest crust by flotation of ferroan anorthosite (and in

some models additional nonmare rock types as well), thus accounting for, among other things: (a) the

hyper-magmatic average Al203 content of the upper lunar crust; (b) the total absence, due to deep burial
during magmasphere crystallization, of "ferroan" mafic cumulates expected to have formed as

complements to the near-monomineralic ferroan anorthosites; and (c) the remarkable compositional

uniformity (in terms of ratios among ITE, especially REE) displayed by ITE-rich lunar rocks, i.e., by

KREEP [3]. Clearly, key constraints on the origin of KREEP, and thus on the origin of the lunar crust in

general, can be derived from a careful assessment of the composition of KREEP. Both the average

composition, and evidence for systematic compositional diversity among KREEPy rocks (e.g.,

compositional effects linked to the "field" provenance) are of interest.

With this aim in mind, I have compiled an extensive data base for the compositions of ITE-rich

lunar rocks (using data from far too many literature sources to be specified here), and fine-tuned the

Warren and Wasson [3] "KREEP component" composition. A better name for this composition is high-K

KREEP. KREEP is remarkably uniform, and no convincing evidence for compositional clustering into
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genetically distinct low-K, medium-K and high-K subclasses has been adduced (except for clustering

produced by limited sampling of a compositionally diverse lunar crust). The simplest assumption would

be that a continuum exists from low-K to highest-K KREEP. Nonetheless, a range of enrichments does

occur, and (as we shall see below) even for ITE ratios, differences exist between the extremes of this

range. Also, confusion arises between the "KREEP component" of Warren and Wasson [3] and their

separate "urKREEP" material -- the hypothetical residual melt from the magmasphere, posulated to be at

least indirectly parental to all KREEP. This confusion should be reduced by renaming the KREEP

composition "high-K KREEP."

I follow the approach used (at least for most elements) by [3], and model the "high-K KREEP _

composition not as a simple average, but rather by interpolation (or for some elements upward

extrapolation) along correlation trends shown by the element in question, when plotted vs. ITE,

especially REE. Warren and Wasson [3] arbitrarily defined their "KREEP component" to have 49 _g/g

of Sm -- for the sake of consistency with earlier proposed compositions, and because available samples

are seldom ITE-enriched enough to allow estimation (except by extensive extrapolation) of a "KREEP"

composition more "high-K" than one with 49 _,g/g of Sm. l have likewise arbitrarily defined "high-K

KREEP" to have 10.0 _g/g of "lb. For most REE, this results in virtually the same composition for my

high-K KREEP as for the "KREEP component" of [3]. Rather than plotting all other elements vs. Tb (in

many analyses Tb is determined poorly, or not at all), I plot the elements vs. an average ITE ratio, KR.

The KR ratio is arbitrarily defined as the average of sample/KREEP ratios for a large set of ITE, where

for the present compilation the "KREEP" composition used was that of [3], except with Ce revised to 280

_g/g. Two different KR ratios were calculated for each sample: one based on light REE (La, Ce, Nd, Sm,

Gd, Tb and Dy) alone, and the other based on these same light REE, plus Rb, Ba, Er, Lu, Ta, Th and U.

Data for the element in question are plotted vs. KR (using both KR ratios, shown by different symbols, on

the same diagram), and the intercept of the data trend (which ideally is linear) at KR = 1.0 (i.e., Tb

10.0 _,g/g) defines the composition of high-K KREEP.

Results for a few ITE and the mg ratio are shown in Fig. 1. On these diagrams, the filled symbols

represent samples from Apollo 14, the unfilled symbols represent samples from all other sites. Results for

La and Lu are unsurprising: well-defined intercepts at KR = 1.0 agree precisely with the "KREEP

component" composition of [3]. However, results for a few other elements present some surpises. For

example, Th shows a KR = 1.0 intercept clearly defined to be at least 22 _g/g, i.e., 22% higher than the

value suggested by [3]. Major revisions also seem advisable for Li, Mg, Y, Zr, Nb, Cs (revised by a
factor of two), Ta, W and U (Table 1). In general, the element (or ratio) vs. KR diagrams show little

distinction between Apollo 14 KREEPy samples and those from other sites, except for a tendency for

Apollo 14 samples to have medium-high KR. Note, however, that the trend for La (Fig. la) appears

distinctly shallower in slope for Apollo 14 samples. This difference in slope is consistent with the

observation of McKay et al. [4] that KREEPy rocks from Apollo 14 tend to have slightly more "concave

up" chondrite-normalized REE patterns than KREEPy rocks from other sites.

A few other apparently distinctive traits of the Apollo 14 KREEPy rocks are also noteworthy. In

comparison to non-Apollo-14 rocks of similar KR ratio, those from Apollo 14 tend to have systematically

higher Mg contents (a disparity that is almost equally apparent from their mg ratios: Fig. Id), and slightly

lower Si contents. Also, far more scatter is seen among Apollo 14 rocks for alkali elements (Li, K, Rb

and Cs). The higher Mg and lower Si make sense when considered vis-a-vis the predominance of

troctolitic lithologies (and surprising scarcity of norites) among the few pristine nonmare rocks from this

site. Apparently, after a noritic form of KREEP (unfortunately not yet found in clearly pristine form), the

second most abundant pristine component in the Fra Mauro Formation is troctolite. Two possible

explanations come to mind for the greater alkali scatter: (a) the data for Apollo 14 samples tend to be
older than the data for other nonmare samples, and thus some of the scatter might be caused by inferior
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analyses; (b) granitic and alkali-cumulate lithologies appear to be unusually abundant in the Apollo 14

region, and these non-KREEPy rock types may account for major proportions of the total alkali element

contents of typical Apollo 14 breccias. Of these two factors, (b) is probably the most important.
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This study has also revealed some surprising ITE differences between low-KR KREEP and high-KR

KREEP. The ratio Zr/Th shows a clear negative correlation with KR (Fig. 2). The ratio Ta/Hf shows a

weak positive correlation with KR. However, the ITE compositions of KREEPy rocks are more

remarkable for their uniformity than for their diversity. Of course, most relevant in this connection are

the compositions of unmixed, pristine KREEPy rocks. Unfortunately, except for Apollo 15, most sites

have provided few or no samples of pristine KREEP. Few, if any, KREEPy rocks are incontrovertibly

pristine. The main grounds for deeming a few KREEPy rocks pristine are low siderophile element

contents, indicating a lack of meteoritic involvement in their genesis. However, Ryder [21 argues that the

most common variety of ostensibly pristine KREEP, the KREEP basalts from Apollo 15, often show

signs of multi-stage cooling; and Ryder interprets these complex cooling histories as a result of
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meteoritic-impact disa_regation of the cooling lavas (nevertheless, Ryder remains confident that these

rocks are pristine). Other samples of probably pristine KREEP that have been analyzed for ITE are a set

of quartz monzodiorite clasts in Apollo 15 breccia 15405 [5], and a set of pigeonite basalt clasts in Apollo

17 breccia 72275 [6]. Also, arguably a pristine granitic clast from Apollo 14 breccia 14304 [7] might be

considered to have KREEP affinity. The contents of a number of commonly-determined ITE in these

samples are shown normalized to high-K KREEP (Table i) in Fig. 3. Also shown for comparison is an

apparently polymict melt lithology from Apollo 16 breccia 67975 [81, included because it is far more

REE-rich than any other Apollo 16 lithology; and a pristine granite clast from breccia 14321 [7]. These

data suggest that the correlations between the Zr/Th and Ta/Hf ratios and KR are not restricted to

polymict samples. However, compared to other REE-rich pristine lithologies, such as the 14321 clast, the

ITE patterns (and especially the REE patterns) of pristine KREEPy rocks are flat.

The general uniformity of the ITE patterns among KREEPy rocks (and most significantly among the

pristine ones), despite their great diversity of major-element compositions, suggests derivation of nearly

all of the ITE budget of the lunar crust from a common parental material -- presumably the residual melt

of the primordial magma ocean, i.e., urKREEP [3]. The paradox that all but the very highest-K varieties

of KREEP have moderate mg ratios (Fig. ld) is readily explained as a consequence of mixing between

urKREEP and eariy-post-magmasphere Mg-rich intrusions into the region of the lower crust [9].

Rderences: [1] Meyer C. and Hubbard N. J.
(1970) Meteoritics 5, 210. [2]. Ryder, G. (1987)
PLPSC 17, E331. [31 Warren P. H. and Wasson J.
T. (1979) RGSP 17, 73. [4] McKay G. K. et al.
(1978) 661. [5] Ryder G. (1985) Catalog of Apollo
15 Rocks, NASA-j$C Curatorial Public. 72. [6]
Salpas P. A. et al. (1987) PLPSC 17, E340. [7]
Warren P. H. et al. (1983) EPSL 64, I75. [8]
Lindstrom M. M. (1984) PLPSC 15, C50. [9]
Warren P. H. (1988) PLPSC 18, 233.
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Table I. The composition of high-K KREEP, as compiled by Warren and Wuson (1979), and proposed revisions.

W&W '79 This work Strength of High-K Uncertainty
KREEP KREEP correlation KREEP/CI elm*

(av. high-K) (av. high-K) with "KR" wt. ratio (see below)

Li pg/g 56 40 moderate + 25 IT[

Be pg/g not est. ! 0 moderate + 370 (II)

B pg/g not est. 25 moderate + 21 (HI])

F pg/g not est. I00 weak + (7) 1.56 (OIVD

Na mg/g 6A 7 moderate + 1.43 II

Mg mg/g 64 50** moderate - 0.52 II

AI mg/g 88 80 weak - 9.3 I

Si mg/g 224 235 weak + (7) 2.24 I

P mg/g 3.4 3-5 moderate + 3.4 HI

S mg/g I.I 1.1 none 0.02 (HII)

Ci Jag/g not est. 100 v. weak + (7) 0.15 (OM)

K mg/g 6.9 8 weak + 14 IB

Ca mg/g 68 70 weak - 7.6 H

Sc pg/g 23 23 none 4.0 II

Ti mg/g I0 12 v.weak + 29 HI

V _g/g 43 40 weak - 0.73 II

Cr pg/g 1.3 1.2 weak - 0.45 II

Mn pg/g 1.08 1.05 none 0.55 H

Fe mg/g 82 80 weak + 0.44 II

Co pg/g 33 25 weak - 0.05 fir

Cu _g/g 20 20 weak + (7) 0.17 (OM)

Zn _g/g 3.6 5 none (?) 0.02 OM

Ga Pg]g 7.5 9 weak + 0.92 (lid

Ge ng/g 40 500 none (?) 0.02 OM

Br ug/g not est. 120 moderate + 0.03 HII

Rb pg/g 22 22 weak + 9,9 Ill

Sr pg/g 200 200 v. weak + 25 I

y pg/g 300 400 strong + 278 (II)

Zr pg/g 1700 1400 strong + 368 HI

Nb ug/g 80 100 moderate + 370 (Ill)

Cd ng/g 15 I00 none (7) 0.15 (OM)

Cs ng/g 2000 1000 weak + 5.46 III

Ba pg/g 1200 1300 strong + 565 II

La _g/g II0 II0 v, strong+ 466

Ce pg/g 270 280 v.strong+ 455 I

Pr pg/g not est. 37 v. strong + 398 I

Nd pg/g ! 80 178 v. strong + 389

Sm _ug/g 49 48 v. strong + 322

Eu ,ug/g 3.0 3.3 moderate + 59 I

Gd pg/g 57 58 v. strong + 294

Tb )Jg/g 10 10.0 v. strong + 282

Dy pg/g 65 65 v. strong + 265

Ho pg/g 14 14 strong+ 256 I

Er pg/g 39 40 v. strong + 250

Tm _g/g not est. 5.7 v. strong + 231 I

Yb pg/g 36 36 v.strong+ 226

Lu ]Jg/g 5.0 5.0 v.strong+ 204

Hf _g/g 37 38 strong+ 317 I

Ta _g/g 4.0 5.0 v,strong+ 313 II

W pg/g 2.0 3.0 strong + 30 (HI)

Pb ng/g not est. i I weak + 4.6 HI

Bi ng/g not est. 230 weak + 2. ! Ill

Th pg/g 18 22 v. strong + 759 I

U _g/g 5 6.1 strong + 744 I

Molar Mg/(Mg+Fe) 0.64 0.59** moderate - II

Molar Ca/(Ca+Na) 0.86 0.84 moderate - II

*Estimated uncertainties for the av, high-K KREEP composition, expressed as maximum expected percentages

of deviation between "true" average and estimates: blank = 5%, I = I0%, II = 2070, Ill = 30%, IIll = 4070,

OM = Order of magnitude. Parentheses denote elements for which extrapolation to high "KR" is required.

** Mg concentrations appear to be systematically higher in Apollo-14 KREEP vs. KREI_ from other locales,
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