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Abstract

lb. One of the problems associated with redundant manipulators which have been proposed for space

applications is that the reactions transmitted to the base ol the manipulator as a result of the motion of the

i_ manipulator will cause undesirable effects on the dynamic behavior of the supporting space structure. It is

therefore necessary to minimize the magnitudes of the forces and moments transrniited to the base. In

this report we show that kinematic redundancy can be used to solve the dynamic problem of minimizing

the magnitude of the base reactions. The methodology described in the report is applied to a four

degree-of-freedom spatial manipulator with one redundant degree-of-freedom.

iii i,
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1.0 Introduction

In the near future, autonomous robotic manipulators will be used on space stations to perform exhaustive

tasks such as repairing of the exteriorof a space station[1], and performing delicate experiments, etc. The

employment of these manipulators will reduce extravehicular activity of the astronauts and free them for

other tasks.

Manipulators used in space are operated under microgravzty conditions. Furthermore such manipulators

wil', in general have redundant degrees of freedom in order to facilitate the peformanoe of tasks. (It is well

known that redundant manipulators can be used to avoid obstacles, avoid singular configura_.ons, etc. [4]).

In this research we are concerned with planning trajectories for redundant manipulators operating under

microgravity conditions in sp_ce.

The forces and moments transmitted by such "space" manipulators to the supporting structure will, in

general, act as a disturbance on the spacecraft and therefore have an undesirable effect on the dynamic

behavior of the spacecraft. Compensatinq for the disturbance (caused by the transmitted forces and

moments) by means of a suitable control scheme is extremely difficult and expensive. An alternative

approach, described in this report, is to plan a traje_ory which minimizes the magnitude of the forces and

moments transmitted by the manipulator to the supporting structure. (We will refer to these forces and

moments as the base reactions.)

The trajectory-planning problem for a manipulator reduces to the problem of solving the inverse-kinematic

problem for the joint variables given the trajectory in the task-space. In the case of a non-redundant

manipulator, this inverse-kinematic problem has, in general, a unique solution whereas in the redundant

case, there are an infinite number of solutions to the inverse-kinematic problem. In this paper we pose an

optimization problem of minimizing the base reactions in order to obtain a unique solution to the

inverse-kinematic problem.

Since there is a large body of research -see, for example, [2,3,4,5,6] - it is important at the outset to indicate

the cor,tributions of the current work. In contrast to most of the research on redundant manipulators, which

has focused on the kinematics of these devices [2,4,5], we show how kir_omatic redundancy can be used }
t
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to resolvedynamic issues. In particular,we develop and apply a methodologyfor using kinematic

redundancyto minimizethe magnitudeofthe basereactionsgeneratedbythe motionof the manipulatorin

space.

2.0 Outline of Contents

The paper is organizedas follows.In the nextsection, we formallydefinethe problemof minimizingthe

magnitudeof the basereactions. The basicapproachto solvingtheproblem isdefinedin Section 4. The

approachconsistsof twopans:

1. generationof the end-effectortrajectory(Section5)

2. solutionofthe inverse-kinematicproblemforthejointtrajectories(Section6).

In Section6 we posethe optimizationproblemof minimizi,,'_the magnitudeof the base reactionsin order

to obtainthe unique inverse-kinematicsolution. The algorithm,used to implementthe methodology

developed in Sections5 and 6, is described =nSection 7. The applicationof the methodologyto

minimizingthe base reactionsof a four degree-of-freedomspatial manipulator (with one redundant

degree-of-freedom)is demonstratedin Section8. Finally,inthe lastsection,we draw someconclusions

andsummarizeourwork.

3.0 Problem Statement

In thissectionwe describethe trajectoryplanningproblemfor redundant manipulators.Considera m

degreesof freedom redundantmanipulatorwith m revoluteor prismaticjointsmountedto a base. The

baseof the manipulatorcan beconsideredas partofthe spacecrattorspacestation.

Ingeneralletqi denote the joint displacementof joint i. The joint variableof each joint is either an angle Oi

(revolutejoint) or a distancedi (prismaticjoint). The joint displacement vector q can be defined as

q= [ql,q2, • ..... qrn]T

LetE be an arbitrarypointon theend effectorasshowninFigure1. Thepositionof E can be represented

withreferenceto the coordinateframexyzfixedinthe baseby

r,[x y z] T (1)

2
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Figure 1. A m DOF Redundant Manipulator
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The kinematic equations relating the end-effector position and the joint displacement variables are given

by

r(t) = g (q(t)) (2)

where g is the vector of turclions which are nonlinear inq(t).

For a redundant manipulator, the number degrees of freedom, m is more than the minimum number

degrees ¢f freedom required to perform a task which is denoted by n. Thsrefore, there are an infinite

number of joint space solutionsq(t) for a specified end-effector position, r(t). From these solutions, we

can select a joint space solutionbased on certain criteria. In this paper we use the minimization o! the base

reactions as the criterionto select appropriate jointspace solution.

The trajectory planning problem studied in this paper is restricted to point-to-point motion. In a

point-to-point motion, the objective is to move the end-effector of a manipulator from a starting position,ri

to a final position, rf. During the execution of point-to-point motion, the base force (Fo) and base moment

(No) exerted by the manipulator on the base cause undesired linear and angular motions of the supporting

slructures. Ideally, one would desire the base reactions to be zero. Since in reality this objective may not

be achievable, we seek instead to minimize the magnitude oi the base reactions.

The trajectory planning problem tot redundant manipulators which we are going to address has two

requirements • (1) to move a redundant manipulator according to specified motion requirements; (2) to

minimize the magnitude of the base reactions ( No and Fo ) transmitted by the manipulator to the base

during motion.

4.0 Description of the ApDroach

The basic approach to the trajectory planning problem was described in [7,8] and consists of splitting the

problem into two parts which enables us to deal with the end-effector trajectory and joint trajectories

separately.

The first part, described in Section 5, deals with the generation of the end-etfector trajectory to satisfyi1,.

certain motion constraints. The motion constraints of interest are the maximum acceleration of the

end-effector trajectory and the total hme of the task.

4
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In Section 6, we discuss the second part of the approach. The basic idea is to pose the inverse kinematics

problem for determining the joint trajectories a._ _n nntimiT=_i..... _.'^--_,............. v,v.,_,,, with a cost fucntlon that is a

measure of the base reactions. The approach begins by partitioning the joint variable vector, q into a set

of redundant joint variables and a set of nonredundant joint variables. This enables us to work with a

square Jacobian matrix as in the nonredundant manipulator case. Then the Jacobean matrix is partitioned

into a nonsingular square Jacobian matrix associated with nonredundant joint variables and a subm_trix

associated with redundant joint variables. Using these partitioned matrices, we are able to represent the

motion of all the joints in terms of an optimization parameter matrix. The unique inverse kinematic solution

can then be determined by finding the optimal parameter matrix for the optimization problem.

5.0 Part 1-Generation of End-effector Trajectory

Trajectory planning for a manipulator can be conducted in joint space or task space. However in order to

take advantage of the redundant kinematics, it is beneficial to spec,,y the end-effector trajectory in task

space.

Let the velocity, v and acceleration, v of the end eflector be defined as:

v ..,i"

Consider the motion of an end-effector moving from a specified starting position, r i (t) to a specified final

position, rf (t). There are many ways to execute this motion. A simple way is to move the end eftector

along a straight-line path that connects the two points. To describe this trajectory, the time histories of the

position, velocity, and acceleration of the end-effector in the task-space have to be specified. They can be

described by smooth and simple fucntions.

One of the constraints in trajectory planning is to have zero velocity at the initial and final positions. Cycloid

curve which satisfies this requirement can be used to describe the linear speed of the end-et' ,ctor

trajectory, Furthermore, it is a smooth function and can be defined by three constants (,".,b, c). Using

cycloid representation, the linear speed of the trajectory is given by

v(p) ,. b(1- cosp) (3)

5
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I where p is the parameter ( 0 _;p ; 2= ). When p - 0, the end effector is at the initial position, ri. And when
I'
_ :, p = 2 7t,the end-eflector reaches the ttnal position, rf.

_I_ The parameter p can be related to the time of the motion by

t = a ( p- c sin p) (_;

The distance traversed by the end-effector, d can be oblained by integrating Eqn (3) with respect to time

d = a b [ ( 1+ 0.5 c) p - ( c + 1) sir, p + 0.25 c sin 2p] (5)

The magnitude of linear acceleration, _, is obtained by differentiating Eqns. (3! and (4)

bsinp

_;(P)"a(1-ccosp) (6)

The magnitude of the maximum acceleration is

b

I'_maxl= a(1-c2)0.5 (6a)

which occurs at the instant given by

Pmax = cos ' 1 c

The three constants a, b, and c can be determined by forcing the cycloid curve to satis!y three motion

constraints - total distance traversed, total time of the task, and the maximum acceleration magnitude In

other words, we can obtain these constants by solving Eqn. (6) and the following equations

T ( total time) = 2 s a (7)

D ( totaldistance ) =1q - ri I "ab (2 + c ) s (8)

After these constants are determined, the position vector, r can be obtained by

6
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r=_ +du (9) i
t

where u is an unit vector which points from the initial position to the final posstionand d is defined in Eqn.
II

(5).

Wl

Similarly, the velocity and acceleration of the end-effector are
l

V==VU

v-_'u

where vand ,_aregivenby Eqns.(3)and (6).

6.0 Part 2 - Joint Space Solution

Once the end-effector position, r(t) is defined, the minimization of base reactions reduces to determining

the joint space solution,q(t) that minimizes the base reactions.

In this section, we develope kinematics relations that are used in forn_lating the optimization problem for

minimizingbase reactions. Then we describe the optimization scheme.

6.1 hedundancy Reso/ution

We begin by determining the infinitesimal motion relation between the position vector, r(t) and joint

variable vector, q(t) for a m degrees of freedom redundant manipulator. This relation will be useful in

finding the Ioint space solution. For a given desired change in r(t), _r the required change in q(t), Aq is

given by:

_r= Jaq (10)

where J(q ) (:R nXm is known as the Jacobian rnatnx.

The corresponding velocity vector is

v = J(q)cl (11)

Differentiating Eqn. (11) with respect Io tim=., the acceleration of the end-eflector is I)

ID
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For redu'claN manipulators, the Jacobian matrix, J is not a square matrix. In order to obtain joint variables

_. Solutior' we have to resort to the generalized inverse appraoch [ 5] We break up th£ joint veclor q into the
following two sets:

a) a set of n independent joint variables denoted by qn and

b) a set of (m-.n) "redundant "joint variables denoted by qr. Thus the joint variable q can be written as:

Similarly, the J_K;obianmaldx, J can be partitioned as lollows :

J=[Jn Jr] (14)

where Jn = a nonsingular nxn matrix corresponding to qn and

Jr = a submatrix nx(m-n) matrix con'espondingto qr.

qr is arbitrarily chosen so that Jn is always invertible (nonsingular). Substituting partitioned J and q in

Eqns (10), (11), and (12), they become:

Cr = Jn Z_ln+ Jr &qr (15)

v = Jn tin + Jr qr (16)

_t=Jn¢ln +'Jr qr+Jnqn +Jrqr (17)

Rearrange Eqns. (15-17) we have

Z_ln = Jn -1 (&r- Jr Aqr) (18)

qn" Jn"1 ( v- Jr ¢lr ) (19)

qn " Jn"1 ( '_- 'r qr "in qn "Jr qr ) (20)

Eqns. (18-20) express the motion of the nonredur_ant joint variables, qn in terms of the, motion of the

8
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redundantjoint variables,qr.

Ill 6.2 OptimizationProblem Formulation

The end-effector trajectory can Dedivided into a number of segments. For conveniece, assume that the

duration of each step is the same even though this assumption;s not essential to the scheme described

_. below.

The jointtrajectoryat the end of an arbitral, step can be expressedas •

[ 0nlq=cb �Aqrj(21)

inwhichqo = the valueof q at the startof the timestep.

_, SubstitutingEqn. (18) _nEqn. (21), we have

. q=qo+ 0 0_ +L. I J0 _ (22)

Notethat the subscript[ • ] 0 denotesquantitiesevaluatedat the knownstartingpoint (qo) of the step and I

denotesan identitymatrixof size(m-n)x(m-n).

Forthe purposeof optimization,we expressthe ratesof changeof redundantjoint variables,qri as

Ctrl = Cl 1fl(t) + c12 f2(t)+ ....... +Clk fk(t)

(Ir2 =c21 fl(t) + c22f2(t) + ...... + C2kfk(t)

Clr(m-n)= C(m-n)lfl(t) + C(m-n)2f2(t)+...+ C(m-n)kfk(t) (23)
i

where cij = optimizationparameters
IP
[,. fi = shapefunctions.

Or inma_,i form,

9 i



elf = C f(t) (24)

where C is the matrixof optimizationparameters,Cij and

f(t) is the column vector of shape functions.

Forconvenience,polynomialsin t arechosenfor f(t)

f(t)= [1 t t2t3...t kiT (25)

where k is the degree of the polynomial.

Substituting Eqn. (24) in Eqns. (18 - 20), we have

F'nflq=qo + 0 06r +L_ I -10CfTt (26)

¢ln= Jn-1 ( v- Jr C f ) (27)

qn =Jn "1 [V-JrCf-JnJn'l(v'JrCl)-Jr ci] (28)

Now,we candescribethe motion of all the joint variables,q(t) by specifying the values of C matrix. For a

particular manipulator configuration, the base reactions (Fo and No) for the end of that time step are

dependent on the impending motions of all the joints which by Eqns. (24 - 28) are functions of the C
matrix.

RecursiveNewton-Eulerdynamicsformulation [9] is employedto obtainthe base reactions. It consistsof a

set of forward and backward recursive equations. The recursive forward equations are used to compute

linear velocity and acceleration,angular velocity and acceleration of each joint variable, proceeding from

joint 1to joint m. The backward recursiveequationsare usedto compute the forces and momentsexerted

on each joint, starting from joint m and backto joint 1. Once the momentsand forces exertedon joint 1 are

computed, the base reactions (Fo and No) can then be determined.

6.3 Cost Function

The problemof minimizingthe magnitudeof the base reactions is essentiallyone of minimizinga suitable

cost function,Bwhich isa measureof the base reactionsFo and No.

1990006131-014



in general, tile magnitude of base reaction force is given by

Fo 2 = FoI 2 + Fo22 + Fo3, (2_

andthe magnitude of base reaction moment is

No2 =No 12+No22+No 32 (30)

We introduce two weighting factors (w I and w2) that enable us to place different weights on base force

compo-ent and base moment components. Now, we can define a cost fucntion, B that is a measure of

the base reactions,

B=w I Fo2 +w 2No2

Or in matrixform,

,.,,o,o,[:,, ,3,,w21

ao,°'E:"o]w21

tile cost fucntion B becomes

B - RT O R. (32)

Note: The weights w 1 and w2 must be carefully chosen to:

(a) appropriately scale the base reactions with respect to a reference set of base

reactions and

(b) ensure that all terms in the cost function are dimensionally homogeneous.

In the example of S_ction 8, we demonstrate one way of choosing w ! and w2 to satisfy the above

requirements.

6.4 Optimization Scheme

11
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r The optimization problem for minimizing the magnitude of the base reactions is the following: determine

_, the optim!zationparameter rnatdx C which minimizes B = R"r Q R. The above optimization problem is solved

i using the following scheme:

_1_ 1. Divide the end-effector trajeclory r(t) into a sufficiently large number of

segments.
2. For a known initial conf_ju_tion of the manipulator, obtain C that will minimize

i_ the cost fucntion B at the end point of the segment.

| 3. Compute the joint trajectory cver this segment using Eqn. (26).

F. 4. Go to the next segment of the trajectory and repeat steps 2 and 3. Stop if the

end of the trajectory is reached.

• 6.5 Optimization Technique

In step 2 of the optimization scheme, an unconstrained optimization technique, the Hooke & Jeeves

.: approach [12] is used to obtain the optimal C for each time step. This algorithm is one of the earliest and

most succesful direct search methods. It does not require derivatives as in more sophiscated first-order

methods. The disadvantage is that it has difficulties with highly constrained problems.

7.0 Algorithm of the Approach

An algorithm of the approach described in sections 5 and 6 and a computer program written in Pascal have

been developed to implement the methodology. The flowchartm Figure 2 illustrates the basic algorithm.

The first step of the approach _s to find the constants of cycloid curve based on the three motion

constraints as outlined in section 5. Th3n we formulate the optimization problem using the equations

developed in previous section. The optimization scheme of Section 6.4 is applied to obtain a unique joint

space solution which minimizes the base reactions.

r.

8.0 0,iustrative Example

"_ In this section we demonstrate how our approach can be applied to minimize the base reactions of a four

degrees of freedom spatial manipulator proposed by NASA for space applications (see Figure 3). For a

point-to-point spatial motion, three degrees of freedom are required. Therefore, this manipulator has one

_ degree of redundancy. The manipulator has three links with lengths of 11,I2, and I3 respectively. The

reference frame XbYbZ b is located at the base. Link 1 is mounted to the supporting structure and the other

two links are each driven by a differential drive mechanism (a traction drive) which has two outputs that !f

1 2 ,i

!
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define cycloid

(a,b,c)

divide end-effectorJ

trajectory into
segments

start at a known

initial configuration

FindC-> min. cost

function, B

N

go to end point reach_
next segment

Y

stop

Figure 2. FIr'wchart of the Algorithm of Trajectory Planning
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X3

Link 3 X4
p /'"

Z2 , Y

(joint 3 axis) Z4
X2,Z3

(joint 4 axis)

Figure 3. A 4 DOF Spatial RedundantTraction-driveManipulator
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rotate about orthogonal axes. For the purposes of kinematic and dynamic analyses, this differential drive

mechanism can be considered as two intersecting revolute joints.

8.1End-ettector Trajectory

For the end-effector trajectory, the following task specifications are chosen:

T = 2.0s

l';'maxl=2.0rrVs2

ri = [1.5m 0.5m 0.5m IT

rf = [1.2 m -0.5m 0.2m ] T

D = I rf - ri I = 1.086m.

Solving Eqns. (6-8), the parameters for cycloid trajectory are obtained:

a = 0.3183

b = 0.39

c = 0.79.

8.2 Cost Function

To minimize the base reactions properly, it is important to select a suitable weighting matrix, Q for the cost

fucntion, B = RT Q R. Therefore, the choices of the values for the two weighting factors (w I and w2) are

crucial. To understand the effects of these weighting factors on the base reactions, three cases with
different Q matrices are studied:

8.21 Case I

In this case, we want to find out to what extent the base force component can be minimized by ignoring the

base moment component i. e. wi=1 and w2=0. The cost function, B is given by

B = Fo2 (33)

or in matrix form,

B = RT Q1 R (34)

L o/0

15
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_, 8.22 Case 2

In this case we select a cost function that only minimizes base moment component to study how small the

base moment can be obtained. The cost function takes the followingform:

B =No2 (36)
The weighting matrix becomes

8.23 Case 3

In general, we want to minimize both the base forcu, Fo and the base moment, NOtransmitted to the base.

Since Fo and No are different physical quantities, we require a weighting matrix Q to non-dimensionalize

and to appropriately scale the base force and base moment. The results of Cases 1 and 2 are useful in this

regard.

The average value of the force ( Fo2 ) transmitted to the base in Case 1, Favg2 is an indicator of small we

can reduce the base force. Similarly, the average value of the moment transmitted to the base in Case 2.

Navg2 measures how small we can reduce the base moment. We therefore choose,

B = fo2 / favg2 + No2/Navg 2. (38)

The weighting matrix is given by

0 w2 I

where w I = 1/Favg2 = average of FoT Fo in Case 1 and,

w2 =1/Navg 2 = average of NoT No in Case 2.

Note that the above choices of w 1 and w 2 simultaneously achieve the desired scaling and

non-dimensionalization.

16
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8.3 Optimization Scheme

Using the methodology developed in section 6 we can formulate the base reactions optimization problem

for the example using the following procedures:

1. Select ql as the redundant joint variable.

qr = ql (40)

qn = [ q2 q3 ]T (41)

Using Eqn. (24) we can represent the rate of change of joint 1 by

_1 =c o+c It (42)

2. Then partition J into Jn and Jr (see Appendix for detailed expressions)

3. Substituting qr in Eqns (26-28) we have a complete description of the joint

trajectories.

4. Apply the optimization scheme outlined in section 6 with At = O.ls.

8.4 Discussion of Results

The magnitudes of the base reactions corresponding to the above three cost functions are illustrated in

Figures 4 and 5. In Figure 4 the base forces for all three cases are shown. The base force in Case 1 is the

smallest among the three cases. This is expected as in Case 1 only the magnitude of the base force is

minimized. In Case 2 where only moment component is weighted, we have the largest base force. The

magnitude of base force in Case 3 (where we minimize the scaled and weighted sum of Fo and No ) lies in

between Cases 1 and 2.

Figure 5 shows the base moment for all three cases. For case 1, we have a peak in base moment at t=

1.2s. But in Cases 2 and 3 better resultsare observed. This indicatesthat the cost function must include a

suitably weighted base moment.

From results of these three different c_se studies, the cost function that weights both the base force and

base moment is obviously a suitable choice for properly minimizing base reactions. The results of Figures 4

and 5 also indicate that the weights w1 and w2 given by Eqn. (39) are good choices for minimization of B.

The end-effector trajectory generated using cycloid curve is shown in Figures 6-8. In Figure 9, the time

history of the redundant joint variable, ql is also shown. Note the joint trajectory obtained using our _i
t

17 .,
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algorithm is smooth.

9.0 Conclusions

It In this paper we have shown how kinematic redundancy can be employed in planning joint trajectories to

minimize the base reactions exerted by the manipulator on the supporting space structure. Using the

approach proposed in this paper the joint trajectories are obtained by minimizing a quadratic cost function

ill which is a measure of the magnitude of the base reactions. From the results obtained, we observe that

the cost fucntion which weights both the base force and base moment as given by Eqns. (38-39) is most

suitable for minimizing the base reactions

The major advantage of this approach is that the cost function can either be an ana?ytical expression (ie

explicit) or computed from other formulations e.g., Newton-Euler dynamic Formulations ( i.e. implicit),

The disadvantage of this approach is that it is computationally intensive and hence time consuming

because an optimization routine is required to find the optimal joint trajectories. One possible solution is

to use an optimization technique with a faster convergence rate.

[
We have posed an optimization problem which minimizes the cost function

B.RTQR

|. at every instant of time. It is probably useful to compare the ?r_;sent approach with the use of an " integral"

i Cost function, for example
B.J'RTQRdt

i over a time interval of interest. In the case of the "integral" cost function we would be minimizing thei
average magnitude of the base-reactions. We also need to explore the effect of the choice of the

i_, end-effector trajectory on the magnitude of the base reactions: in the present work we choose a cycloid as
,4
: it meets all our motion constraints.

In summary, we have demonstrated the feasibility of using kinematic redundancy to solve the dynamic

problem of minimizing base reactions.
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Appendix - Kinematics Analysis

The manipulator of interest is shown in Figure 3. Links 2 and 3 are each driven by a 2 DOF tract;on drive

joint. The coordinate frame X4Y4Z4 represents the position and orientation of the end effector. The

coordinate systems in Figure 3 are assigned according to Denavit-Hartenberg notation [10]. The axis

about which a link rotates is defined as the z-axis and the corresponding joint variable is q. An A (4)

matrix is used to describe the relative position and orientation between two link coordinate frames. The

position and orientation of the end effector with respect to the base coordinate frame described t'Y the

matrix T4 which isgiven by

T4 .. A0 Ai(ql) A2(q2) A3(q3) A4(q4) (A1)

"_on°'lP?o0

where ql, q2, q3, and q4 are the jointvariables of joint 1 tc joint 4 respectively,

[no a] - orientationmatrix of the X4Y4Z4 with respec1to the base coordinate frame XbYb.Zb It is the

upper lefl 3x3 partitioned matrixof T4, and

p= position vector which points from the origin of the base coordinate frame to the origin of the

X4Y4Z4 frame.

The following shorthand notatiors of sine and cosine of joint variables will be used.

Si - sin (qi ), Ci - cos ( qi ), Sij - sin (qi + qj), Cij - cos (qi + qj)

It can be shown that for this manipulator, the homogeneous transformahon matrices (Ai, i=0,1, .,4) are

1 0 0 II

A0 = 0 1 0 0 (A,2)

0 0 1 0

0 0 0 1

- _ !

i
i
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l

CI 0 -Sl 0

A1 = $1 0 C1 0 (A.3)

0 -1 0 0

0 0 0 1

C2 0 $2 /2(32

A2 = SZ 0 -C2 12S? (A.4)

0 1 0 0

0 0 0 1L-
m

m m

C3 0 $3 0

A3 = $3 0 -C3 0 (A.5)

0 1 0 0

0 0 0 1
m ..i

B

C4 -$4 0 /3C4

A4 = S4 C4 0 13S4 (A.6)

0 0 1 0

0 0 0 1

Performing matrix multiplications, T4 in Eqn. (A.1) is given by

J
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,: nx Ox ax Px

T4 - ny Oy ay Py (A.7)

le nz Oz az Pz

0 0 0 1
where " -

_. nx = C1(C2 C3 C4 + $2 S4) - S1 S3 C4

ny - S1(C2 C3 C4 + S2 $4) + C1 $3 C4

nz = -$2 C3 C4 + C2 $4

Ox = C1(S2 C4- C3 C2 S4) +Sl S3 S4

Oy = $1($2 C4 - C3 C2 $4) - C1 $3 $4

Oz ,, S2 C3 S4 + C2 C4

ax =C1 C2 $3 + $1C3

ay = $1C2S3 - C1C3

az = -$2 $3

_x = C1[13(C2 C3 C4 + $2 $4) + 12C2] - 13C4 $1 + I1

Py = S1[13(C2 C3 C4 + $2 $4) + 12C_ + 13C4 $3 C1

Pz = !3(C2 $4 -$2 C3 C4)-/2 $2

If joint 1 is chosen to be the redundant joint, we have

qr - ql (A,8)

and the partitioned Jacobian matrices Jn and Jr are

I 13(C1C2S4-C1S2C3C4)-L2ClS2 -13(C1C2S3C4+S 1C3C4)

Jn = 13(S1C2S4-S1S233C4)-L2S1$2 13_ClC3C4-$1C2S3C4)

-13($2S4+C2C3C4)-L2C2 13S2S3C4

24



-1

13(CLS2C4-C 1C2C3S4+S1S3S4) /
/

i3(SIS2C4"S 1C2C3S4-C 1S334) J13(C2C4+S2C3S4) (A.9)

I -13(S1C2C3C4+S 1$2S4+C 1S3C4)" 12S1C2 1

Jr = I_C1 C2C3C4+C 1S2S4-Sl S3C4)+12C 1C2 (A. 10)

0
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