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PERSONAL COMPUTER STUDY OF

FINITE-DIFFERENCE METHODS FOR THE TRANSONIC

SMALL DISTURBANCE EQUATION

Samuel R. Bland

NASA Langley Research Center, USA

ABSTRACT

Calculation of mlsteady flow pllenomena requires careful attention to the numer-

ical treatment of the goveruing partial differential equations. The personal computer

provides a convenient mxd useful tool for the development of meshes, algoritluns, trod

botmdary conditions needed to provide time accurate solution of these equations. The

one-dimensional equation considered in this paper provides a suitable model for the

study of wave propagation in the equations of trmlsonic small disturbmlce potential

flow. Nmnerical results for effects of mesh size, extent, and stretching, tinie step size,

and choice of far-field bomxdary conditions are presented. Analysis of the discretized

model problem supports these numerical results. Guidelines for suitable mesh and time

step choices are given.

I-INTRODUCTION

At present, transouic small disturbance (TSD) potential theory provides the otdy

practical method for the aeroelastic analysis of complete aircraft configurations at tran-

soxric speeds (Batina et al. [1]). h_ order to compute a time accurate flow field, careful

attention must be given to the mesh design and boundary conditions. Mesh fineness,

extent, and stretching all affect the accuracy with wlfich the wave-like disturbances

inherent in the unsteady flow field cml be described.

In applications of an early TSD code (Wkitlow [2]), problems associated with poor

mesh design were encountered in calculating the unsteady lift and moment on an oscil-

lating airfoil. The nature of the inaccuracies is illustrated in figure 1 (Seidel [3}). Shown

are the real and imaginary parts of the lift curve slope for a flat-plate airfoil as func-

tions of pitching frequency, compared with the exact linear theory results (Bland [4])

with which they should agree. Figure l(a) shows results calculated using an expo-

nentially stretched mesh wlfich extends several hundred chord-lengths from the airfoil.



Figure l(b) shows the improvement obtained with a better mesh design (25 chord-length

extent) and proper choice of the far-field boundary conditions.

These and other difficulties associated with time-marclffng fizffte-difference methods

in TSD may be studied using much simplified model equations on a personal computer.

The use of the BASIC computer language with real-time graphics provides insight into

difficulties arising from both the discretization of the continuous process being modeled

and the solution algorithm used. Such insights are much more expensive and time

consuming to obtain from solutions of the complete equations on a supercomputer.

With the sole exception of figure 1, the figures in the present paper were produced from

copies of the personal computer screen on a dot matrix printer.

The one-dimensional linear wave equation provides a model for the propagation of

signals in the vertical direction, which are an important component of solutions of the

unsteady TSD equation. Finite-difference solutions of tiffs linear second-order partial

differential equation illustrate the care needed to capture the wave propagation in the

unsteady potential flow problem. Furthermore, the one-dimensional fuffte-difference

equation is subject to analytical treatment (Viclmevetsky [5]), which sheds additional

light on the nunlerical results. The importance of mesh fineness, extent, and stretching

mid the proper treatment of both near- mid far-field boundary conditions are demon-

strafed in this paper.

2-ANALYSIS AND RESULTS

The trmisonic small disturbance equation in its simplest form may be written as

(1 - M 2 - (7 + 1)M2_bx)qizr + qbzz -= 2M2d?_t + M2Ott (1)

for two-dimensional flow. Elementary solutions of this equation for linear subsonic flow

represent circular waves radiating outward as their centers are convected downstremn.

Waves propagating along a particular direction may be investigated by considering one-

dimensional wave motion. In particular the difficulties encountered in the TSD results

of figure 1 have been identified with wave reflections in the vertical direction.

2.1-One-dimensional wave equation

The effects of mesh extent, spacing, and stretching on the solution of the TSD flow

equation are clearly shown in the study of the wave equation

¢. = £¢,. (2)

Tiffs equation is obtained from equation (1) by omitting the z-derivative ternxs mid

recognizing that M plays the role of the reciprocal of the wave propagation speed c in
the nondinxensional coordinates used.

The usefullness of this approach in miderstanding problems encountered in TSD

calculations is demonstrated in figure 2. Nmnerical solutions are given for the response

to a pulse in $_ (mlalogous to the pulse in migle of attack used to generate the TSD

results of figure 1). In each case the finite-difference potential _(0,t) at z = 0, is given

as a function of time in the left part of the figure. The resulting frequency response

fimctions F(k) are plotted on the right. Figures la and 2a use the smne exponentially



stretched mesh in the z-direction. The quadratically stretched mesh of 25 chord-lengths

extent proposed by Seidel [3] is used in figures lb and 2b-c. Figure 2c shows the effect of

using tm improper far-field boundary-condition. The results of figure 2 are remarkably

sinfflar to those shown in figures 1-2 of Edwards [6] for the TSD equation. In particular,

the oscillations in the time history _(0, t) in figure 2a are known to originate from tile

large mesh stretching used and typically lead to oscillations in the frequency response

function F(k) similar to those seen in tiffs figure. Furthermore, the disturbmtce in the

time history at t _ 50 in figure 2c originates from a far-field boundary reflection and

leads to the oscillations seen in F(k) at low values of k.

The wave equation (2) has a general solution of the form

c_(z,t) = F(z - ct) + G(z + ct) (3)

in which F and G represent waves propagating ill the positive (z - ct constant) and

negative (z + ct constant) z-directions with speed c.

To simulate the vertical component of the fluid flow problem, we may solve tiffs

problem in the quarter plane z, t > 0 subject to two initial conditions at f = 0 mid

botmdary conditions at z = 0 and oo. To solve our model problem numerically, we must

discretize tide continuous variables z, t and replace the partial derivatives in equation (2)

by finite-difference analogues. Finally, the bomddary condition at z = c¢ nmst be

replaced by a condition at sonde finite value z = L.

Before proceeding with the details of the nmnerical approach, several illustrations

of the nature of the difficulties with nmnerical solutions of an initial vMue proble,n

will be given. Calculations for an initial wave packet at t = 0 are shown in figures 3.

Exponentially stretched meshes of varying fineness (illustrated beneath each figure) are

used mid tide solutions are given at every other thide step using a small step size. hi

figure 3(a) the wave propagating outwards encounters a reflecting bomidary at the right

and a non-reflecting boundary at the left. The initial pulse divides into two pulses

which propagate outward with little distortion tmtil the boundary is encomitered, ht

figure 3(b) the same 97-point mesh is used with non-reflecting boundary conditions at

both sides. Figure 3(c) is for a coarser mesh wlfich allows significmit reflection from the

bolmdaries to occur, hi figure 3(d) tide mesh has become so coarse that essentially all

of the wave is reflected from within the mesh, even before reaching the botmdaries. For

this case, at tlde boundaries there are only about two mesh points per wave length. Most

of the wave energy is trapped within the mesh. In an aerodynanffc problem, the wing

would remain ,tear z = 0 mid would encomtter these non-physical mesh reflections.

The initial pulse contains components of all frequencies and, as we shall see, the lffgher

frequencies propagate more slowly and therefore lag behind the main (low frequency)

wave.

The initial conditions for the remainder of the paper will be

: o mid : 0 (4)

As the boundary condition at z = 0 we use

q_(0,t) = f(t) (5)
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This condition is analogous to imposing a condition on the vertical velocity (downwash)

at the oscillating airfoil surface in the aerodynanfics problem. Finally, we must hnpose

a boundary condition at z = L which simulates the outgoing wave condition at infinity

in the original problem. The proper choice for this wave propagating upward is

_t(L,t) + cc_(L,t) = O (o)

2.2-Finite-difference formulation

The one-dimensional model equation (2) is discretized in a manner identical to that

used for the vertical z and time t coordinates of the TSD equation in the program

described by Batina [7]. The second-order accurate backward difference approximation

for the t-derivative at the new time level n + 1 is

Ott_ = (2_ n+l - 5_0_ + 4_an-1 - _'_-2)/At2 (7)

wlfich involves four tinm levels. For reference we also state the first-order accurate form

: - 2 (8)

The second-order accurate central difference approximation for the z-derivative is

2 (_j+l-_j_gj-_Pj_l) (O)Ozz_ = zj+l - zj-1 zj+l - zj zj zj-1

in which this equation applies at the internal mesh points 0 < j < J.

The boundary condition in equation (5) at z = 0 may be incorporated by solving

the differential equation (2) at z0 using

i (_-_0 )¢(t)) (10)O:zW- Zo zl zo

in which the zeroth mesh point z0 need be otfly near z = 0.

The far-field condition in equation (6) is derived by applying the boundary condition

at j : J - 1/2. The second-order accurate fornmlas needed are

Oz_ -- _d -- _JOd-I (11)
ZJ -- ZJ-1

and

0,_, -=- (3_'_+' - 4_ '_ + _n-l)/2At (12)

mid the first-order accurate formula is

Otto =- (_"_ - _'_)/At (13)

The t-derivatives in equations (12) m_d (13) are evaluated at j = J - 1/2 by applying

the operations on the right hand sides to the average (_J-1 + _fj)/2.



2.3-Model equation

There is no loss of generality in normalizing the time t such that the wave speed

becomes c = 1. This choice slightly simplifies tile analysis.

Continuous Problem To be specific, in the quarter-plmm t, z >_ 0, solve

tt : (_zz

: = 0

c_z(O,t) = f(t) = -to sin_vt

 t+ z=0 asz--,oo

for t, z > 0 (14a)

for ilfitial conditions (14b)

for downwash b.c. (14c)

for outgoing wave (14d)

The exact solution is

6(z,t) : 1- ¢os (t- :) for z < t (15)

and 0 otherwise. This solution represents aaa undistorted wave propagating upward with

malt speed c = 1. We remark that this solution satisfies the outgoing wave condition of

equation (14d) everywhere.

Semi-Discrete Problem The semi-discrete aalalysis ('method of lines') considers the

effect of the spatial discretization olfly, wlfile treating the time as continuous. The mesh

characteristics are thereby isolated from the questions associated with time step size

(i.e., Courant nmnber u) such as stability.

For a uniform mesh

zj = hj forj - 0, 1,..., J (16)

with constant spacing h = Az, central differencing provides O(h _) accuracy. Letting

= 0_/0t, the senti-discrete version of equation (14) is

_30 = (2/h2)(_,, - _00) + (2w/h)sinwt (17a)

_j = (1/h2)(_i -, - 2Vj + Vj+,) (17b)

_oj-i + _j = (2/h)(qoj-1 - qaj) (17c)

Vichnevetsky and Bowles [8] and Viclmevetsky [5, 9], provide mi extensive treat-

ment of the problems encotmtered in using finite-difference methods to solve equations

govemfing wave-like phenomena. They concentrate on the first order advection equa-

tion (a model for the Euler equations) rather than the wave equation treated herein.

Trefethen [10] gives the analysis and some numericM results for both the one- mid two-

dimensional equations. For the analysis, we assmne that the solution is harmolfic in

time and space aud deternfine the conditions implied by this assumption. For more com-

plicated wave-forms the ideas of Fourier analysis apply. This approach does not capture

the transient effects present in the ilfitial value problem, but looks at the steady-state
behavior.

Substitution of the harmotfic trial solution

_,i(t) = e i(_t-_z') (18)



into equation (17b) yields the dispersion relation. Dispersion refers to the fact that

waves with different frequencies will propagate at different speeds. We obtain

_h wh

sin -_- = + -_ (19)

in wlfich we consider the temporal frequency w as given and the spatial wave number

as unknown. Choosing the + sign for the upward propagating wave yields

= g arcsi. 5- ~ 1 + > w (20)

Note that as wh -_ 0, we recover, as expected, the exact solution for which _ = w.

If we restrict attention to the outgoing wave solution (semi-infitfite mesh extent), the

+ sign in equation (19) is selected and imposing the boundary condition equation (17a)

then yields tile exact solution for the semi-discrete problem

1
_,j(t) = t - cos(wt - Czj) (21)

V/1 - (wh/2) 2

which is Mso an exact solution of the 'continuous' problem

_tt = c'2_,_ (22)

in wlfich the phase velocity

e" _ _ _ arcsinwh/2 "" 1-- _ -: 1 (23)

replaces the original wave speed c = 1, provided that we identify the discrete variable zj
with the c,,ntinuous variable z.

These results provide a great deal of insight into the behavior of the nmnerical

solution. Note that it depends o_dy on c', a fm_ction of wh, so that increasing either

0., or h has the same effect. Equation (19) implies Iwh/2] <'. 1 (cut-off frequency)

in order for harmolfic solutions to exist, although other types of behavior may appear

(Vichnevetsky [5, 9}). The wave propagates with the phase velocity c" and wave length

_" = 2rr/_ = c*A < )_ (24)

where w < _ < 7r/h so that the munerical wave propagates nmre slowly than the exact

wave and has a shorter length. The amplitude is too large by the factor

A = V/__ (wh/2) 2 -,- 1 + _ (25)

The decreasing propagation speed c* with increasing mesh spacing h lies at the root

of the strmlge behavior of the solution on the stretched meshes illustrated in figure 3.



The analysis shows that these effects are present in the semi-discrete equation and do

not depend on the time step used.

The decrease in propagation speed (equation (23)) and increase in amplitude (equa-

tion (25)) for a harmotffc wave are clearly seen in figure 4. In figure 4(a) the solution

_(z,t) on a uniform 49-point mesh is shown at t = 16. The numerical wave is prop-

agating more slowly across the mesh thmx the exact wave. In figure 4(b) the solution

time history T(0,t) is shown. For the parameters used here, w = _, h = 1/3, we

expect c* = 0.95 and A = 1.17. Tile mtmerical results agree with these values. For

this example there are six mesh points per spatial wave length, wlfich is a reasonable

nfilffnmm number to capture the propagating signal.

The mlalysis considered to this point correctly describes the behavior of the nmneri-

cal solution of the senff-discrete equation on a senff-infinite mesh as t _ o¢. Considering

now the effect of limited mesh extent, we will show that the second-order accurate non-

reflecting far-field boundary condition equation (17c) produces a partial reflection of

the outward propagating wave. For an incident wave, equation (21) with amplitude A

_i= 1- Acos(wt- _z) (26)

the reflected wave is

_= _A A- 1 (wt + _(z 2L)) (27)
--_ COS

where L = (za-i + z j)�2 is the nmnerical boundary location. Tiffs reflected wave has

an mnplitude reduced from that of the incident wave by tile reflection ratio

A-1 l(wh) 2P- A + I "_ 4 2- (28)

and is propagating in the negative z-direction front an image point located two mesh

extents from the origin. It is difficult to observe such reflections for the harmonic

botuldary condition under discussion here. However, they will be seen in the results for

the pulse boundary condition given below.

The semi-discrete harmolffc analysis may also be used to show that changes in

mesh spacing produce internal (as opposed to boundary) reflections. This analysis has

application to the results observed on stretched meshes. Consider a mesh with a single

chaalge in spacing at z = 0. Let tile spacing be h for z < 0 mad H for z > 0

with corresponding wave numbers _h and _H- We wish to deternffne the reflection

that occurs when the upward propagating wave of mfft amplitude passes through the

discontinuity. We remark that the change in _ at the interface leads to a change in the

phase velocity c* there. Away from the interface the solutions will be

Wj(t) = e i(wt-&:_) + pe i(wt+&:') (29)

for zj <0 mid

= (30)



for zj > 0. Here p is the reflection ratio and r is the transmission ratio. These

parameters are determined by applying equation (9) at the interface point zj yielding

2 {_j+l - _i

_J- H+h _ H

\

- (31)
h /

and by enforcing continuity to give a second equation

r : 1 + p (32)

Tile solution is a little complicated and it suffices to show the asymptotic results for

small mesh spacings and/or frequency

2

w) H 2r -- 1+ _ ( -h 2) (33)

Note that as the wave passes through au interface with increased mesh spacing (H >

h), the mnplitude of the trans,uitted wave is iucreased. Tiffs result suggests that the

mnplitude would continue to grow as a wave propagates tlvrough a stretched mesh like

those normally used in solving exterior flow problems.

These reflectious are illustrated in figure 5 for a pulse iu _:(0't). The pulse is

centered at t¢ _2 tmd the mesh has spacings h= 3/8 for 0 < z < 6 and H = 3/4

for 6 < z <- 12 ('bi-uniform mesh'), hi figure 5(a) the exact and numerical waves are

showu at t = 6. The solutions at the boundary _(0, t) are shown iu figure 5(b). The

1,o1,1 tic-marks indicate the times for the center of the pulse and its reflection from the

far-field to ,wc,tr. Thr,'o different _ffccts may Iw noted: (1) the return of the boundary

reflection at t _ 26; (2) the reflection generated by the mesh discontinuity at t -_ 14;

(3) the oscillations near t _ 3 wlffch are caused by too large a spacing to accurately

defiam the pulse botmdary condition imposed at z = 0. In figure 5(c) the effects of these

inaccuracies on the fr_'quency response function are shown. From the view point of the

aer_,elastician, the results might be satisfactory since little error occurs for k < 0.3.

Additional insight into the behavior of the solution of the senti-discrete equa-

tion (31) on stretched meshes may be obtained by exmiffuing the modified equation

(Anderson et al. [11]). Tiffs equation is obtained by Taylor series exptmsion of the

potentials. For the uniform mesh the modified equation contains only even derivative

terms and has constmlt coefficients. For the nonmfiform mesh, derivatives of all orders

are present mid, in general, the coefficients are fmictions of z. A mfique feature of the

quadratically stretched mesh proposed by Seidel [3] is that the coefficient of the tlffrd

derivative term in the modified equation is a small constant.

Fully Discrete Problem For simphcity, the analysis of the fully discrete equations

will be given only for the case of the uniform mesh. As in Batina [7], the time differencing

is written in implicit form. Both the first- and second-order time accurate equations

will be displayed, then the dispersion relations will be given and the implications for

the nmnerical solutions will be addressed.



The equations of O(At), obtained from equations (8), (13), and (17) axe

(1 + 2v2)$,_ +1 - 2t,2_,_ '+1 = 2_0_-_o_ -1 - 2ht,2f(t) (34a)

v2W_+_ + (1 + 2t,2)_0_ +' .2 _n+, r_-, (34b)-v _vj+l =2T_-Tj

- • n+l n
(1 - 2t,)_o_ +', + (1 + "ZvItOJ = _J-1 "4-_0_ (34c)

in wlfieh equation (34b) applies for 0 < j < J.

The equations of O(At2), obtained from equations (7), (12), and (17) axe

2(1 + vz)_0 +1 - 2v2_,_ '+1 = 5qo_ - 4_0_'-1 +_o_ -2- 2hv_f(t) (35a)

v2_p_+_ + 2(1 + v2)_ +1 2 ,+1 ,-z (35b)- . - v _j+l = 5_ - 4_ -1 + _o_

(3 - .+1 4v)_3 +1 = 4 " - (_J-1"-1 _s_-I4v)Wj_, + (3 + (_g-1 + _3) + ) (35c)

in wlffeh equation (35b) applies for 0 < j < J.

The tridiagonal systems in equations (34) and (35), wlffch include the boundary

conditions, may be solved using the Thomas algorithm (Anderson et al. [11}, p.128).

These equations have been used for all of the numerical results presented herein.

The dispersion relations are obtained by substituting the harmonic trial solution

n = ei(,,t=-_zj) (36)_Vj

with zj = jAz and t, = nAt into the field equations and dividing by _. The result

for the O(At) equation (34b) is

1 sin _Az 1 -i,,,at/2 o.,At-- - e sin -- (37)
Az 2 At 2

It suffices to give the asymptotic solution of tiffs equation wlffch is

( )_, ..-w l + -_(Az 2 -4At2)-iw At2 +O(_v3A3) (38)

The result for the O(At 2) equation (35b) is

_vAt
A--zlsin _Az2 - At1 e-iwAt/2 sin _ X//2 -- e -iwat (39)

for which

( )-.-w 1+ _-4(Az _ +11At2)-i7w--_ZAt3 +O(w4A 4) (40)16

h_ both equations (38) and (40) the negative imaginary parts lead to all expo-

nential decay of the solution with increasing z. ht particular the amplitudes decay

as e -_2''tz/2 for the O(At) equation and as e -7"4Atzz/16 for the O(At _) equation.

Thus, in contrast with the result for the senti-discrete analysis, which predicts that the

propagating haxmo_ffc wave will have its amplitude increased (see equation (25)), the

effect of the time discretization is to produce both a spreading out of the frequencies and

a decrease in anlplitude with increasing distance z front the source of the disturbance
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at the origin. Also, we see that the first-order method is much more dissipative than

the second-order one. This greater dissipation makes the first-order method much more

forgiving of poor mesh design and choice of far-field boundary conditions, at least in

applications to problems for which only the near-field solution is of interest.

The wave propagation speeds are computed from the real parts of the dispersion

relations (equations (38) and (40)). For the two cases m_der consideration here, we see

that the phase velocities will be approximately

0) 2

c" = 1 -  (Az -4At 2) (41)

for the O(At) equation (38) and

02 2

c" = Re{0)/_} --- 1 - _-_(Az 2 + llAt z) (42)

for the O(At 2 ) equation (40). Note that in equation (41) the error will vanish for

v =- At/Az = 1/2, wlfile no such possibility holds for the O(At 2) equation.

hi order to treat a nomufiform mesh using the tufiform mesh results we may apply

the conclusions just reached in a local sense (Viclmevetsky [9]). Then, for example, as a

wave propagates into a stretching mesh we would expect both the dispersion (separation

of frequencies) mid dissipation (amplitude decay) to increase as the local Az increases.

One caal thiitk of the harlnolxic solution given above as remaining approximately valid

by simply treating Az as a function of z. An alternative approach is to consider

perturbation solutions of the nonconstaalt coefficient modified equation.

The effects of time step size &lid order of accuracy are illustrated in the filial four

figures. 111 order to reduce the appearance of far-field boundary reflections, a mesh is

used which stretches quadratically front both bomldaries. The mesh contains 25 points

and extends to z = 8. The mesh spacing varies from Az = 0.03 at the ends to 0.64 in

the center. The tinie step sizes are At _ 1/8 and 1/2. The calculations are carried to

a total time of about 64 to allow all transients and reflections to die out.

Figures 6-7 give results using the second-order accurate equation (35). For the

larger time step in figure 6, the solution spreads out as it propagates across the mesh

(figure 6(a)). No reflections are apparent in the time history shown in figure 6(b).

Although the frequency response results (figure 6(c)) are smooth, large errors are present

for k 0.5 which would go un-noted were the exact results not available for comparison.

For the smaller time step results of figure 7, an unanticipated difficulty appears in the

many lfigh frequency oscillations in the time lfistory of figure 7(b). These oscillations

are also seen in the trailing part of the spatial wave in figure 7(a). In a TSD calculation,

the appearance of oscillations like these in a solution might lead to nonlinear instability.

However, the frequency response results of figure 7(c) are quite good for k < 1.

Figures 8-9 give results using the first-order accurate equation (34). Here the

results are quite smooth for both time step sizes and no inaccuracies are apparent in

the frequency response results of either figure 8(c) or 9(c), although large errors occur

for the larger time step (figure 8). Exanfination of figure 8(b) shows that the nmnericM

result predicts that the pulse center occurs too early in time. An arbitrary shift of
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At�2 in the application of the forcing function f(t) in equation (34a) corrects this

discrepancy very nicely.

In choosing a vertical mesh for use in solving the TSD equation, one would not

in general be able to 'waste' mesh points at the far-field bomxdaries by employing the

very small spacing used in these examples, especially in three-dimensions. Nevertheless,

the spacing must not be allowed to grow too large in the lnid-field and should reduce

somewhat at the far-field boundaries in order to avoid the appearance of non-physical

osciUations in the calculation.

3-CONCLUSIONS

The personal computer provides a convenient aaxd useful tool for tile study of the

techifiques of mesh and algoritlmx design needed to provide time accurate solutions of

the unsteady flow equations. The one-dimensional wave equation considered in this

paper provides a suitable model equation for studying wave propagation in the vertical

direction in trmlsonic small disturbaaxce potential flow. The following conclusions may

be drawn from this study:

(1) The appearance of non-physical oscillations in the solution may result from either

(a) inappropriate use of reflecting bom_dary conditions, (b) too large a mesh spac-

ing at the boundary to correctly model the boundary condition, or (c) too nmch

stretching of the mesh, leading to internal reflections.

(2) hi order to accurately convect wave like disturbaalces through the finite-difference

mesh, there must be at least six mesh points per spatial wave length.

(3) First-order time accurate methods are much more forgiving of poor mesh design

thaal are second-order methods. The higher dissipation present with the first-order

methods reduces the appearance of unwanted reflections, but at the price of a nmch

poorer simulation of the overall flow field.

(4) Improved finite-difference meshes may be designed using the one-dimensional model

problem as a guide.

4-NOMENCLATURE

A

c

c*

F(k)

f(t)
J

J
k

L

M

/1

t

;r

z

amplitude of wave

wave speed in exact solution

phase velocity in discrete solution

frequency response flmction

boundary value of d_.

index of last mesh point
index for discrete z

reduced frequency

far-field boundary for z

Mach number

index for discrete t

time

streamwise coordinate

vertical coordinate
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A

A*

I/

p

_o

spatial wave length in exact solution

spatial wave length in discrete solution

Courant number cat/Az

wave number

wave reflection ratio

wave tr_msnfission ratio

continuous perturbation potential

discrete perturbation potentiM
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