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PERSONAL COMPUTER STUDY OF
FINITE-DIFFERENCE METHODS FOR THE TRANSONIC
SMALL DISTURBANCE EQUATION

Samuel R. Bland
NASA Langley Research Center, USA

ABSTRACT

Calculation of unsteady flow phenomena requires careful attention to the numer-
ical treatment of the governing partial differential equations. The personal computer
provides a convenient and useful tool for the development of meshes, algorithms, and
boundary conditions needed to provide time accurate solution of these equations. The
one-dimensional equation considered in this paper provides a suitable model for the
study of wave propagation in the equations of transonic small disturbance potential
fow. Numerical results for effects of mesh size, extent, and stretching, time step size,
and choice of far-field boundary conditions are presented. Analysis of the discretized
model problem supports these numerical results. Guidelines for suitable mesh and time
step choices are given.

1-INTRODUCTION

At present, transonic small disturbance (TSD) potential theory provides the only
practical method for the aeroelastic analysis of complete aircraft configurations at tran-
sonic speeds (Batina et al. [1]). In order to compute a time accurate flow field, careful
attention must be given to the mesh design and boundary conditions. Mesh fineness,
extent, and stretching all affect the accuracy with which the wave-like disturbances
inherent in the unsteady flow field can be described.

In applications of an early TSD code (Whitlow (2]), problems associated with poor
mesh design were encountered in calculating the unsteady lift and moment on an oscil-
lating airfoil. The nature of the inaccuracies is illustrated in figure 1 (Seidel [3]). Shown
are the real and imaginary parts of the lift curve slope for a flat-plate airfoil as func-
tions of pitching frequency, compared with the exact linear theory results (Bland [4])
with which they should agree. Figure 1(a) shows results calculated using an expo-
nentially stretched mesh which extends several hundred chord-lengths from the airfoil.



Figure 1(b) shows the improvement obtained with a better mesh design (25 chord-length
extent) and proper choice of the far-field boundary conditions.

With the sole exception of figure 1, the figures in the present paper were produced from
copies of the personal computer screen on a dot matrix printer.

The one-dimensional linear wave equation provides a model for the propagation of
signals in the vertical direction, which are an important component of solutions of the
unsteady TSD equation. Finite-difference solutions of this linear second-order partial
differential equation illustrate the care needed to capture the wave propagation in the
unsteady potential flow problem. Furthermore, the one-dimensional finite-difference
equation is subject to analytical treatment (Vichnevetsky [5]), which sheds additional
light on the numerical results. The importance of mesh fineness, extent, and stretching
and the proper treatment of both near- and far-field boundary conditions are demon-
strated in this paper.

2-ANALYSIS AND RESULTS
The transonic small disturbance equation in its simplest form may be written as
(1-M* — (v +1)M?4,)4.. + 4.. =2M*¢., + M?¢,, (1)

for two-dimensional flow. Elementary solutions of this equation for linear subsonic flow
represent circular waves radiating outward as their centers are convected downstream.
Waves propagating along a particular direction may be investigated by considering one-
dimensional wave motion. In particular the difficulties encountered in the TSD results
of figure 1 have been identified with wave reflections in the vertical direction.

2.1-One-dimensional wave equation

The effects of mesh extent, spacing, and stretching on the solution of the TSD flow
equation are clearly shown in the study of the wave equation

¢tt == C2¢zz (2)

This equation is obtained from equation (1) by omitting the z-derivative terms and
recognizing that M plays the role of the reciprocal of the wave propagation speed ¢ in
the nondimensional coordinates used.

The usefullness of this approach in understanding problems encountered in TSD
calculations is demonstrated in figure 2. Numerical solutions are given for the response
to a pulse in ¢, (analogous to the pulse in angle of attack used to generate the TSD
results of figure 1). In each case the finite-difference potential w(0,t) at z =0, is given
as a function of time in the left part of the figure. The resulting frequency response
functions F(k) are plotted on the right. Figures 1a and 2a use the same exponentially




stretched mesh in the z-direction. The quadratically stretched mesh of 25 chord-lengths
extent proposed by Seidel [3] is used in figures 1b and 2b-c. Figure 2c shows the effect of
using an improper far-field boundary-condition. The results of figure 2 are remarkably
similar to those shown in figures 1-2 of Edwards (6] for the TSD equation. In particular,
the oscillations in the time history ¢(0,t) in figure 2a are known to originate from the
large mesh stretching used and typically lead to oscillations in the frequency response
function F(k) similar to those seen in this figure. Furthermore, the disturbance in the
time history at ¢ ~ 50 in figure 2c originates from a far-field boundary reflection and
leads to the oscillations seen in F(k) at low values of k.

The wave equation (2) has a general solution of the form
#(z,t) = F(z — ct) + G(z + ct) (3)

in which F and G represent waves propagating in the positive (z — ct constant) and
negative (z + ct constant) z-directions with speed c.

To simulate the vertical component of the fluid flow problem, we may solve this
problem in the quarter plane z,¢ > 0 subject to two initial conditions at ¢+ = 0 and
boundary conditions at z = 0 and co. To solve our model problem numerically, we must
discretize the continuous variables z,¢ and replace the partial derivatives in equation (2)
by finite-difference analogues. Finally, the boundary condition at z = oo must be
replaced by a condition at some finite value z = L.

Before proceeding with the details of the numerical approach, several illustrations
of the nature of the difficulties with numerical solutions of an initial value problem
will be given. Calculations for an initial wave packet at t = 0 are shown in figures 3.
Exponentially stretched meshes of varying fineness (illustrated beneath each figure) are
used and the solutions are given at every other time step using a small step size. In
figure 3(a) the wave propagating outwards encounters a reflecting boundary at the right
and a non-reflecting boundary at the left. The initial pulse divides into two pulses
which propagate outward with little distortion until the boundary is encountered. In
figure 3(b) the same 97-point mesh is used with non-reflecting boundary conditions at
both sides. Figure 3(c) is for a coarser mesh which allows significant reflection from the
boundaries to occur. In figure 3(d) the mesh has become so coarse that essentially all
of the wave is reflected from within the mesh, even before reaching the boundaries. For
this case, at the boundaries there are only about two mesh points per wave length. Most
of the wave energy is trapped within the mesh. In an aerodynamic problem, the wing
would remain near z = 0 and would encounter these non-physical mesh reflections.
The initial pulse contains components of all frequencies and, as we shall see, the higher
frequencies propagate more slowly and therefore lag behind the main (low frequency)
wave.

The initial conditions for the remainder of the paper will be
#(z,0) =0 and  ¢(z,0) =0 (4)
As the boundary condition at z = 0 we use

¢:(0,¢) = f(t) (5)



This condition is analogous to imposing a condition on the vertical velocity (downwash)
at the oscillating airfoil surface in the aerodynamics problem. Finally, we must impose
a boundary condition at z = L which simulates the outgoing wave condition at infinity
in the original problem. The proper choice for this wave propagating upward is

$¢(L,t) + cp.(L,t) =0 (6)

2.2-Finite-difference formulation

The one-dimensional model equation (2) is discretized in a manner identical to that
used for the vertical z and time t coordinates of the TSD equation in the program
described by Batina [7]. The second-order accurate backward difference approximation
for the t-derivative at the new time level n + 1 is

B = (20"F! — 5p™ + 4" — o™ %) AL (7)
which involves four time levels. For reference we also state the first-order accurate form
Oup = (™! — 20™ + o™ 1)/ At? (8)

The second-order accurate central difference approximation for the z-derivative is

B..p = 2 (‘Pj+1 ~¥i  ¥Yi- ‘Pj—l) ' (9)

i1 T Zjon \ Zigy — oz % T %i-1
in which this equation applies at the internal mesh points 0 < j < J.

The boundary condition in equation (5) at z = 0 may be incorporated by solving
the differential equation (2) at z, using

2 _

< Y1 — %o

00— 2 (¥ - ft0)) (10)
Iy + ~1 ~]1 — g

in which the zeroth mesh point z, need be only near : = 0.

The far-field condition in equation (6) is derived by applying the boundary condition
at j = J - 1/2. The second-order accurate formulas needed are

azso = ﬂ:& (11)
2J =2y
and
Oup = (3™ — 4™ + p"71)/2A¢ (12)
and the first-order accurate formula is
Oep = (™! — ™)/ At (13)

The t-derivatives in equations (12) and ( 13) are evaluated at j = J —1/2 by applying
the operations on the right hand sides to the average (pj_-; + ¢)/2.




2.3-Model equation

There is no loss of generality in normalizing the time ¢ such that the wave speed
becomes ¢ = 1. This choice slightly simplifies the analysis.

Continuous Problem To be specific, in the quarter-plane ¢,z > 0, solve

Pie = Pz for t,z >0 (14a)
#(z,0) = ¢¢(2,0) =0 for initial conditions (14b)
¢.(0,t) = f(t) = —wsinwt for downwash b.c. (14¢)
¢+ ¢, =0 asz— oo for outgoing wave (14d)
The exact solution is
#(z,t) =1 — cosw(t — z) for z < ¢t (15)

and 0 otherwise. This solution represents an undistorted wave propagating upward with
unit speed ¢ = 1. We remark that this solution satisfies the outgoing wave condition of
equation (14d) everywhere.

Semi-Discrete Problem The semi-discrete analysis (‘method of lines’) considers the
effect of the spatial discretization only, while treating the timne as continuous. The mesh
characteristics are thereby isolated from the questions associated with time step size
(i.e., Courant number v) such as stability.

For a uniform mesh
z; = hj forj =0,1,...,J (16)

with constant spacing h = Az, central differencing provides O(h?) accuracy. Letting
$ = Oyp/0Ot, the semi-discrete version of equation (14) is

o = (2/R*)(p1 — wo) + (2w/h) sinwt (17a)
¢; = (1/h*) i1 — 2p; + ¢jt+1) (17b)
¢+ 5 =(2/h)(ps-1 - ¢J) (17¢)

Vichnevetsky and Bowles [8] and Vichnevetsky [5, 9], provide an extensive treat-
ment of the problems encountered in using finite-difference methods to solve equations
governing wave-like phenomena. They concentrate on the first order advection equa-
tion (a model for the Euler equations) rather than the wave equation treated herein.
Trefethen [10] gives the analysis and some numerical results for both the one- and two-
dimensional equations. For the analysis, we assume that the solution is harmonic in
time and space and determine the conditions implied by this assumption. For more com-
plicated wave-forms the ideas of Fourier analysis apply. This approach does not capture
the transient effects present in the initial value problem, but looks at the steady-state
behavior.

Substitution of the harmonic trial solution

o3(8) = et (18)



into equation (17b) yields the dispersion relation. Dispersion refers to the fact that
waves with different frequencies will Propagate at different speeds. We obtain

h h
sin% = i%— (19)

in which we consider the temporal frequency w as given and the spatial wave number ¢
as unknown. Choosing the + sign for the upward propagating wave yields

2 wh 1 wh 2
S in — ~ 14+ - ==
£ harcsmz w( +6(2))>w (20)

Note that as wh — 0, we recover, as expected, the exact solution for which {=w.

If we restrict attention to the outgoing wave solution (semi-infinite mesh extent), the
+ sign in equation (19) is selected and imposing the boundary condition equation (17a)
then yields the exact solution for the semi-discrete problem

1

pi(t) =1~ \/]W cos(wt — £2;5) (21)

which is also an exact solution of the ‘continuous’ problem

Pu =, (22)
in which the phase velocity
N 2
r*zfz‘i%__xl__l(w_h> <1 (23)
§ arcsinwh/2 6\ 2

replaces the original wave speed ¢ = 1, provided that we identify the discrete variable z;
with the continuous variable .

These results provide a great deal of insight into the behavior of the numerical
solution. Note that it depends only on c¢*, a function of wh, so that increasing either
w or h has the same effect. Equation (19) implies lwh/2] < 1 (cut-off frequency)
i order for harmonic solutions to exist, although other types of behavior may appear
(Vichnevetsky [5, 9]). The wave propagates with the phase velocity ¢* and wave length

A =2r/¢=c* A< A (24)

where w < £ < w/h so that the numerical wave propagates more slowly than the exact
wave and has a shorter length. The amplitude is too large by the factor

A= 1 1wk’ 25
V- (whj2 +5(_2—) (25)

The decreasing propagation speed ¢* with increasing mesh spacing h lies at the root
of the strange behavior of the solution on the stretched meshes illustrated in figure 3.




The analysis shows that these effects are present in the semi-discrete equation and do
not depend on the time step used.

The decrease in propagation speed (equation (23)) and increase in amplitude (equa-
tion (25)) for a harmonic wave are clearly seen in figure 4. In figure 4(a) the solution
¢(z,t) on a uniform 49-point mesh is shown at ¢ = 16. The numerical wave is prop-
agating more slowly across the mesh than the exact wave. In figure 4(b) the solution
time history ¢(0,t) is shown. For the parameters used here, w = m, h = 1/3, we
expect ¢* = 0.95 and A = 1.17. The numerical results agree with these values. For
this example there are six mesh points per spatial wave length, which is a reasonable
minimum number to capture the propagating signal.

The analysis considered to this point correctly describes the behavior of the numeri-
cal solution of the semi-discrete equation on a semi-infinite mesh as t — co. Considering
now the effect of limited mesh extent, we will show that the second-order accurate non-
reflecting far-field boundary condition equation (17c) produces a partial reflection of
the outward propagating wave. For an incident wave, equation (21) with amplitude A

i =1- Acos(wt — §z) (26)

the reflected wave is

P A1 ] .
¢ ——AA+lcos(wt+£(.f. 2L)) (27)

where L = (zj-1 + 2z7)/2 is the numerical boundary location. This reflected wave has
an amplitude reduced from that of the incident wave by the reflection ratio

_A’l 1(‘1@)2 28)
P= 411 a\2 (

and is propagating in the negative z-direction from an image point located two mesh
extents from the origin. It is difficult to observe such reflections for the harmonic
boundary condition under discussion here. However, they will be seen in the results for
the pulse boundary condition given below.

The semi-discrete harmonic analysis may also be used to show that changes in
mesh spacing produce internal (as opposed to boundary) reflections. This analysis has
application to the results observed on stretched meshes. Consider a mesh with a single
change in spacing at z = 0. Let the spacing be h for z < 0 and H for = > 0
with corresponding wave numbers §, and {x- We wish to determine the reflection
that occurs when the upward propagating wave of unit amplitude passes through the
discontinuity. We remark that the change in ¢ at the interface leads to a change in the
phase velocity c¢* there. Away from the interface the solutions will be

(,Oj(t) — ei(wt—fh:,) +pei(wt+£h:,) (29)

for z; <0 and
‘Pj(t) — Tei(wt—EH=1) (30)



for z; > 0. Here p is the reflection ratio and 7 is the transmission ratio. These
parameters are determined by applying equation (9) at the interface point z; yielding

5o 2 [(Pit1—9i  ei—pi,
‘*’"H+h( H & (31)

and by enforcing continuity to give a second equation
T=1+p (32)

The solution is a little complicated and it suffices to show the asymptotic results for
small mesh spacings and/or frequency

o~ (5) @ - (32)
r 14 (f;i)z(H‘z - h?) (33)

Note that as the wave passes through an interface with increased mesh spacing (H >
h), the amplitude of the transmitted wave is increased. This result suggests that the
amplitude would continue to grow as a wave propagates through a stretched mesh like
those normally used in solving exterior flow problems.

These reflections are illustrated in figure 5 for a pulse in #:(0,t). The pulse is
centered at #. ~ 2 and the mesh has spacings h = 3/8 for 0 < z < 6 and H = 3/4
for 6 < z < 12 (‘bi-uniform mesh’). In figure 5(a) the exact and numerical waves are
shown at t = 6. The solutions at the boundary ¢(0,t) are shown in figure 5(b). The
bold tic-marks indicate the times for the center of the pulse and its reflection from the
tar-field to occur. Three different effects may be noted: (1) the return of the boundary
reflection at t ~ 26; (2) the reflection generated by the mesh discontinuity at ¢ ~ 14;
(3) the oscillations near ¢ ~ 3 which are caused by too large a spacing to accurately
define the pulse boundary condition imposed at = = 0. In figure 5(c) the effects of these
inaccuracies on the frequency response function are shown. From the view point of the
aeroelastician, the results might bhe satisfactory since little error occurs for & < 0.3.

Additional insight into the behavior of the solution of the semi-discrete equa-
tion (31) on stretched meshes may be obtained by examining the modified equation
(Anderson et al. [11]). This equation is obtained by Taylor series expansion of the
potentials. For the uniform mesh the modified equation contains only even derivative
terms and has constant coefficients. For the nonuniform mesh, derivatives of all orders
are present and, in general, the coeflicients are functions of =. A unique feature of the
quadratically stretched mesh proposed by Seidel [3] is that the coefficient of the third
derivative term in the modified equation is a small constant.

Fully Discrete Problem For simplicity, the analysis of the fully discrete equations
will be given only for the case of the uniform mesh. As in Batina [7], the time differencing
is written in implicit form. Both the first- and second-order time accurate equations
will be displayed, then the dispersion relations will be given and the implications for
the numerical solutions will be addressed.




The equations of O(At), obtained from equations (8), (13), and (17) are

(14 20%)ppt! — 2027 = 200 — ™! — 20V (1) (34a)
—2et (14 27T — vl = 207 - ;! (34b)
(1-20)p5 ] + (L +20)05 " = 951 +¢] (34¢)

in which equation (34b) applies for 0 < j < J.
The equations of O(At?), obtained from equations (7), (12), and (17) are

21+ v¥)pit — 2Tt = 5l —dpp Tt + g T2 — 2k’ f(t)  (35a)
—pPpTH 4 21+ )t = vPeT = 50T —del T )T (35b)
(3 — 4r)p™t! 4 (3 + dv)p ! = ApT_y +¢5) — (511 + @77 (35¢)

in which equation (35b) applies for 0 < j < J.

The tridiagonal systems in equations (34) and (35), which include the boundary
conditions, may be solved using the Thomas algorithm (Anderson et al. [11], p.128).
These equations have been used for all of the numerical results presented herein.

The dispersion relations are obtained by substituting the harmonic trial solution
o} = el (36)

with z; = jAz and ¢, = nAt into the field equations and dividing By ¢7. The result
for the O(At) equation (34b) is

1 . €Az 1 _oay . wAt
ot = At sin — (37)

It suffices to give the asymptotic solution of this equation which is

2
£~w (1+%(Az2 —4At2)—i‘§At+0(w3A3)) (38)

The result for the O(At?) equation (35b) is

1 A 1 At .
—— six €8z = — e WAt 2 g w2 V2 — e iwbt (39)

Az 2 At

for which
wz 7(.03
§ «-w(l-’r ﬂ(A:2 +11At2)—i‘ﬁAt3+0(w4A4)) (40)

In both equations (38) and (40) the negative imaginary parts lead to an expo-
nential decay of the solution with increasing z. In particular the amplitudes decay
as e~ 8t2/2 for the O(At) equation and as e~ 7w a2/16 for the O(At?) equation.
Thus, in contrast with the result for the semi-discrete analysis, which predicts that the
propagating harmonic wave will have its amplitude increased (see equation (25)), the
effect of the time discretization is to produce both a spreading out of the frequencies and
a decrease in amplitude with increasing distance z from the source of the disturbance



at the origin. Also, we see that the first-order method is much more dissipative than
the second-order one. This greater dissipation makes the first-order method much more
forgiving of poor mesh design and choice of far-field boundary conditions, at least in
applications to problems for which only the near-field solution is of interest.

The wave propagation speeds are computed from the real parts of the dispersion
relations (equations (38) and (40)). For the two cases under consideration here, we see
that the phase velocities will be approximately

¢ =Re{w/€¢} ~1-— L%}(A:2 - 4At%) (41)

for the O(At) equation (38) and

¢ = Re{w/€} ~1- g;i(Az2 + 11A¢%) (42)

for the O(At?) equation (40). Note that in equation (41) the error will vanish for
v = At/Az = 1/2, while no such possibility holds for the O(A#?) equation.

In order to treat a nonuniform mesh using the uniform mesh results we may apply
the conclusions just reached in a local sense (Vichnevetsky [9]). Then, for example, as a
wave propagates into a stretching mesh we would expect both the dispersion (separation
of frequencies) and dissipation (amplitude decay) to increase as the local Az increases.
One can think of the harmonic solution given above as remaining approximately valid
by simply treating Az as a function of z. An alternative approach is to consider
perturbation solutions of the nonconstant coefficient modified equation.

The effects of time step size and order of accuracy are illustrated in the final four
figures. In order to reduce the appearance of far-field boundary reflections, a mesh is
used which stretches quadratically from both boundaries. The mesh contains 25 points
and extends to z = 8. The mesh spacing varies from Az = 0.03 at the ends to 0.64 in
the center. The time step sizes are At ~ 1/8 and 1/2. The calculations are carried to
a total time of about 64 to allow all transients and reflections to dje out.

Figures 6-7 give results using the second-order accurate equation (35). For the
larger time step in figure 6, the solution spreads out as it propagates across the mesh
(figure 6(a)). No reflections are apparent in the time history shown in figure 6(b).
Although the frequency response results (figure 6(c)) are smooth, large errors are present
for & - 0.5 which would go un-noted were the exact results not available for comparison.
For the smaller time step results of figure 7, an unanticipated difficulty appears in the
many high frequency oscillations in the time history of figure 7(b). These oscillations
are also seen in the trailing part of the spatial wave in figure 7(a). In a TSD calculation,
the appearance of oscillations like these in a solution might lead to nonlinear instability.
However, the frequency response results of figure 7(c) are quite good for k < 1.

Figures 8-9 give results using the first-order accurate equation (34). Here the
results are quite smooth for both time step sizes and no inaccuracies are apparent in
the frequency response results of either figure 8(c) or 9(c), although large errors occur
for the larger time step (figure 8). Examination of figure 8(b) shows that the numerical
result predicts that the pulse center occurs too early in time. An arbitrary shift of

10




At/2 in the application of the forcing function f(¢) in equation (34a) corrects this
discrepancy very nicely.

In choosing a vertical mesh for use in solving the TSD equation, one would not
in general be able to ‘waste’ mesh points at the far-field boundaries by employing the
very small spacing used in these examples, especially in three-dimensions. Nevertheless,
the spacing must not be allowed to grow too large in the mid-field and should reduce
somewhat at the far-field boundaries in order to avoid the appearance of non-physical
oscillations in the calculation.

3—-CONCLUSIONS

The personal computer provides a convenient and useful tool for the study of the
techniques of mesh and algorithm design needed to provide time accurate solutions of
the unsteady flow equations. The one-dimensional wave equation considered in this
paper provides a suitable model equation for studying wave propagation in the vertical
direction in transonic small disturbance potential low. The following conclusions may
be drawn from this study:

(1) The appearance of non-physical oscillations in the solution may result from either
(a) inappropriate use of reflecting boundary conditions, (b) too large a mesh spac-
ing at the boundary to correctly model the boundary condition, or (c¢) too much
stretching of the mesh, leading to internal reflections.

(2) In order to accurately convect wave like disturbances through the finite-difference
mesh, there must be at least six mesh points per spatial wave length.

(3) First-order time accurate methods are much more forgiving of poor mesh design
than are second-order methods. The higher dissipation present with the first-order
methods reduces the appearance of unwanted reflections, but at the price of a much
poorer simulation of the overall flow field.

(4) Improved finite-difference meshes may be designed using the one-dimensional model
problem as a guide.

4-NOMENCLATURE

A amplitude of wave

c wave speed in exact solution

c* phase velocity in discrete solution
F(k) frequency response function

boundary value of ¢,
index of last mesh point
index for discrete z
reduced frequency
far-field boundary for =
Mach number

index for discrete ¢

time

streamwise coordinate
vertical coordinate

—
Y
S’

R I LR e

11



*

B T N T ~ T S S W

spatial wave length in exact solution
spatial wave length in discrete solution
Courant number cAt/Az

wave number

wave reflection ratio

wave transmission ratio

continuous perturbation potential
discrete perturbation potential
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Figure 2.- Time history and frequency response solutions of the one- dimensional model
problem using the meshes of the TSD solution in figure 1.



14

l e |IHlH“l"lllII”“Illllllll.‘l'lll”"lll“lll.lill| UL NN SN N] ' l IRRENIT] l|||||[|||||“j|]ﬂ“nlll]lll.*-l‘"l"u,l“][||||||“||[”l] [EEENEN] l

{
1
|
{
i
i
|
{
i
i

(n) 97 points, reflecting boundary condition

(1) 97 points

l sl llllIIIIlllllll“lul!l'lll.l)lullll!lIllllllllll Lttt I l

-8

i t lllllllllll“‘llllllllllll| | i '

, 8 -8 8

z

(c) 65 points (1) 33 points

Figure 3.-
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Figure 5.- Comparison of exact and numerical solutions on bi-uniform mesh; h = 3/8

and H = 3/4.
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Figure 6.- Comparison of exact and second-order accurate nmmerical solutions with
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Figure 9.- Comparison of exact and first-order accurate numerical solutions with

At =~ 1/8.
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