@ https://ntrs.nasa.gov/search.jsp?R=19900006892 2020-03-20T00:09:22+00:00Z

N90-16208

CODED-APERTURE IMAGING IN NUCLEAR MEDICINE

Warren E. Smith
The Institute of Optics
University of Rochester

Harrison H. Barrett and John N. Aarsvold
Radiology Research Laboratory and
Optical Sciences Center
University of Arizona

SUMMARY

Coded-aperture imaging is a technique for imaging sources that
emit high-energy radiation. This type of imaging involves shadow
casting and not reflection or refraction. High-energy sources exist in
x-ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and
nuclear medicine. Of these three areas nuclear medicine is perhaps the
most challenging because of the limited amount of radiation available
"and because a three-dimensional source distribution is to be
determined. In nuclear medicine a radioactive pharmaceutical is
administered to a patient. The pharmaceutical is designed to be taken
up by a particular organ of interest, and its distribution provides
clinical information about the function of the organ, or the presence
of lesions within the organ. This distribution is determined from
spatial measurements of the radiation emitted by the
radiopharmaceutical.

The principles of imaging radiopharmaceutical distributions with
coded apertures will be reviewed. Included will be a discussion of
linear shift-variant projection operators and the associated inverse
problem. A system developed at the University of Arizona in Tucson
consisting of small modular gamma-ray cameras fitted with coded
apertures will be described.

INTRODUCTION

In nuclear medicine a radiopharmaceutical is given to a patient.
The pharmaceutical is designed to go to a particular organ of interest,
such as the brain, the heart, bone, or the liver, to name a few. The
three-dimensional distribution of the pharmaceutical provides clinical
information about how well the organ is functioning. This is quite
different than the type of information provided by x-ray imaging
(electron density), magnetic resonance imaging (MRI) (proton density
and magnetization relaxation rates) and ultrasound (acoustic impedance
of tissue). The distribution of the pharmaceutical is determined by
imaging the radiation given off by the isotope that tags it. There is
always a concern to limit the total amount of radiation that the
patient is exposed to, so that in nuclear medicine we have a photon-
limited situation.
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The isotopes used in nuclear medicine fall into two broad
categories: those that emit single gamma rays directly from the
nucleus, and those that emit positrons from the nucleus. Three-
dimensional imaging associated with the first category is called single
photon emission computed tomography (SPECT), and is the subject of this
paper. In this method the photons must be blocked by attenuating
apertures. Imaging associated with the second category is called
positron emission tomography (PET). In PET the positron that is
emitted by a source nucleus annihilates an electron within 1 to 2 mm of
the source point. This annihilation results in two photons, each of
approximately 511 KeV, traveling in almost opposite directions. By
coincidentally detecting these two photons with spatially separate
detectors, the line along their path which contains the source point
can be found. This technique removes the need to physically block the
photons with apertures to determine their direction of origin. With
PET one can obtain extremely good resolution by nuclear-medicine
standards, on the order of 5 mm. The disadvantage of PET is that an
on-site cyclotron is needed to create the short-lived positron-emitting
isotopes. The expense associated with this requirement has limited the
number of PET facilities. SPECT imaging, on the other hand, is
relatively less expensive and well established throughout the world.
Thus the motivation exists to continue to improve SPECT imaging
techniques to approach the quality already attainable with PET.

Two-dimensional projections of source distributions are obtained
in nuclear medicine by either scanning the source in two dimensions
with a single, collimated gamma-ray point detector or by forming a two-
dimensional image with a camera that is capable of measuring the x and
y positions of the incident gamma rays and storing them in an image
histogram. Such a camera is the Anger camera, named after its inventor
(ref.l). This camera can also estimate the gamma-ray energy. Energy
estimation is important for rejection of Compton-scattered radiation
from the nuclear-medicine image. A photon that is Compton scattered by
the attenuating tissues between the source and the detector will suffer
an energy shift, dependent upon the angle of scatter. Fortunately in
nuclear medicine the energy spectrum of the useful isotopes is
relatively narrow, so that the Compton-scattered photons can be
identified and removed if their energy is outside of the peak
associated with the source isotope.

Gamma rays have such a high energy that they cannot be
conveniently reflected or refracted. 1In front of the gamma-ray camera
is thus placed a shadow-casting aperture, usually made of lead or some
other high atomic-number element. There are two basic types of
apertures, the collimator and the pinhole. The collimator consists of
a large number of usually parallel holes drilled through a thick lead
plate. Each hole causes the sensitivity of a given detector element to
be confined to a narrow pencil that intersects the source distribution.
This narrow pencil is an approximation to a line integral through the
source. All of the holes together form a parallel-line 2-D projection
of the source onto the 2-D detector. The pinhole is a single hole
punched in a relatively thin lead plate. This aperture produces a
pinhole image of the source distribution on the 2-D detector. The
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pinhole image represents a series of line integrals through the object

that converge on the pinhole. Conventional systems in nuclear medicine
often employ parallel-hole collimators. The coded-aperture systems to

be discussed employ arrays of pinholes.

Tomography in nuclear medicine is achieved by taking multiple
views of the source distribution, and reconstructing a 3-D estimate of
the source from these views. Conventionally these views are obtained
by rotating a large gamma-ray camera fitted with a parallel-hole
collimator around the patient. The camera stops every few degrees and
takes a two-dimensional snapshot of the patient lasting about a minute.
Each snapshot of the patient approximates a set of parallel line
integrals, defined by the collimator, through the source volume at the
particular angle. Neglecting attenuation of the source by the body,
the set of all of these snapshots over 180 or 360 degrees constitutes
an approximation to the Radon transform of the source distribution.
The inverse Radon transform (ref.2) is then applied to these
projections to form an estimate of the three-dimensional source
distribution. This inverse involves filtering and then back-projecting
each projection into the reconstruction space, and can be done rapidly
with modern equipment. Without modification of the inverse Radon
transform to include attenuation of the photons by the body,
reconstructions appear darker for pixels deeper within the tomographic
slice. This attenuation problem can be corrected analytically by the
attenuated Radon transform (refs. 3,4), assuming constant attenuation
and a known convex attenuation boundary. Typical scan times for the
rotating-camera approach are 30 to 45 minutes. Dynamic studies of
pharmaceutical uptake are ruled out because of the required motion of
the camera about the patient.

In this paper we discuss tomography in nuclear medicine with non-
moving coded apertures. The reconstruction of both 2-D and 3-D source
distributions will be addressed. A coded-aperture system for nuclear
medicine being developed at the University of Arizona will be
described.

CODED-APERTURE TOMOGRAPHY IN NUCLEAR MEDICINE

In nuclear medicine we are able to observe only a small number of
photons because the radiation dose to the patient is kept as low as
possible and because the fractional solid angles of the collimator or
pinhole openings are small, on the order of 107°>. These openings must
be small because in shadow-casting the ability of the aperture to
resolve two closely spaced points in the source is directly
proportional to the size of the openings. Thus we have a fundamental
trade-off between the signal-to-noise ratio (SNR) in the nuclear-
medicine image, which goes as the square root of the number of detected
photons, and the resolution of the system. This trade-off is quite
different in focusing systems, such as lenses focusing visible light,
where the diffraction-limited spot size decreases (thus improving
resolution) as the aperture 1s opened up, allowing more photons into
the system.
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There is thus strong motivation for increasing the number of
photons in a nuclear-medicine image without degrading the resolution.
To this end coded apertures have been developed. Figure 1 shows a
single-view coded-aperture system. Here a planar source distribution
is projected through an aperture consisting of several pinholes to form
a coded image. The position of the pinholes represent the code. We
have thus increased the number of photons detected by the system, at
the price of overlap in the pinhole views of the object. This overlap
is referred to as spatial "multiplexing"”, and is more serious for
larger objects and denser spacing of the pinholes. Thus we suspect
immediately that the code should be optimized with respect to the type
of object that we wish to view.

In this planar case, neglecting radiometry and obliquity factors,
we can write the coded image as a convolution of the source with the

aperture:
g(xll,yll) ~ f(x"/m,y"/m) sk k h(X"/M,y"/M) (l)

where the double prime indicates detector coordinates. The quantity
g(x",y") is the coded image, h(x"/M,y"/M) is the scaled aperture
function, and f(x"/m,y"/m) is the scaled source distribution. The
source scaling m = (z-d)/z and the aperture scaling M = d/z, where z is
the source-aperture distance, and d is the source-detector distance.
The two-dimensional convolution operator is represented by **. As we
see, both the source and the aperture functions are scaled differently
in forming the coded image.

To form a reconstruction of the original source distribution, we
use the concept of matched filtering. A matched filter is a version of

the actual signal that we are looking for. It can be shown that a
matched filter is the optimum filter to be used to detect a signal in
the presence of noise (ref. 5). In the coded-imaging case, the matched

filter is a properly scaled, inverted, complex-conjugated version of
the original code, so that the reconstruction f(x",y") can be written
as

%(x"/m,y"/m) - g(X",y") %k h*("X"/M, _yn/M) . (2)
Equation (2) can be written, using Eq. (1), as:
£(x"/m,y"/m) = £(x"/m,y"/m) ** [h(x"/M,y"/M) ** h* (-x"/M, -y"/M) 1, (3)

where the bracketed term represents the overall point-spread function
(PSF) of the data-taking and reconstruction process, and is called the
autocorrelation of the code. We must design the code to make its
autocorrelation function as close to a delta function as possible,
simultaneously allowing as many openings as possible. Unfortunately,
these two requirements work against each other. Generally the
autocorrelation has a large central peak surrounded by a background
with structure that depends upon the number of openings. This
background tends to both smear out the reconstruction as well as
increase the noise in the reconstruction.
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Note that we are not restricted to real and positive functions in
our search for optimum codes. Any physically realizable code will be
real and positive because of the shadow-casting nature of the image
formation from the incoherent source. Bipolar complex codes can be
simulated, however, by creating 4 separate codes and forming 4 separate
coded images and suitably adding them in the computer with proper
positive, negative, and imaginary weights. We pay the price for this
flexibility by increasing the amount of time needed to form an image,
however.

There has been considerable research into defining codes to
optimize the SNR of the final reconstruction. Some of the more well-
known codes are random pinhole arrays (ref. 6), the Fresnel zone plate
(ref. 7), the annulus (ref. 8), and time-modulated apertures (ref. 9).
Much of this code optimization has been in the context of single-view
imaging of a planar object, however, as in Fig. 1. If we were to image
a three-dimensional volume object with this approach, our
reconstruction of Eqg. (3) would be for a particular plane of the
source, depending upon the scale factor used for the matched filter.
The other planes of the source would present a strong background
superimposed on this reconstruction, degrading both resolution and SNR
of the plane of interest. Thus there is a fundamental limitation of
the planar correlation decoding method described above because our
basic data set consisting of a single view is not complete enough. We
must in fact take multiple views of a volume object so that we are
sampling its three-dimensional Fourier components sufficiently.
Combining multiple views of the object to form a single volume
reconstruction is not obvious with the planar decorrelation method
described. 1In fact, we must generalize our entire approach to the
problem and move away from the shift-invariant formulations of Egs. (1-
3).

With a multiple-view system, shown schematically in Fig. 2, we
must give up the convenience of shift invariance. Thus the convolution
operation can no longer be used to connect the object to the data.
Instead the mapping from object to data takes on the more general form:

g(x",y",z") = Jf(XIYIz) h(x",y",2"ix,y,2) a3v, (4)
source
where g(x",y",z") represents all of the coded images (spread out in

three-dimensions), f(x,y,z) 1s the three-dimensional source
distribution, h(x",y",z";X,y,z) 1is the shift-variant mapping from the
source to the coded images, and d3v is a volume element of the source.
All of the radiometry and aperture geometry is contained within
h(x",y",z";X,y,2). The distribution g(x",y",2z") forms the data set

from which to reconstruct the estimate of the object %(x,y,z).
Numerically, it is necessary to map the continuous problem into a
discrete formulation by choosing a suitable basis set. We can see how
this is done by a demonstration with a one-dimensional analog of Eqg.

(4) :
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g(x") = | £(x) n(x";x) dx. (5)

source
We can approximate f(x) and g(x") each in the following way:
N
£(x) =~ Y £n Wn(x) (6)
n=1
M
g(x") = Y gm Om(x") (7)
m=1
where
+ 00
fn= | £ yn*(0 ax (8)
and
+ oo
am = [ g(x") om*(x") dx. (9)

The basis sets Ypn(x) and ¢m(x") span their respective spaces and are

assumed orthonormal in this development. Thus we have approximated the
source and the data with N and M discrete coefficients, respectively.
An example of a particular source basis set is the "pixel" basis set,

where the Yp(x) are N non-overlapping shifted and scaled rectangle

functions. Another example is the Fourier basis set, where the Wyp(x)
represent complex exponentials, the eigenfunctions of shift-invariant
operators. By the appropriate substitutions, we can now approximate
Eg. (5) as:

N
gm = Y, hmn fn (10)
n=1
where
+ oo
+ 00 .
hpn = j h(x";x) Wn(x) Om™ (x") dx dx" . (11)

Thus the shift-variant problem of Eg. (5) is represented by a matrix
multiplication, where the nth column of the matrix H, with elements

38



hmn, represents the discrete, m-element shift-variant PSF due to the
nth expansion term of the source. 1In fact, if we choose the Yn (x) and

Om(x") correctly, dependent upon h(x";x), we can have hyn = hp for m =
n, and hpgpn = 0 otherwise. In other words, H is diagonal or pseudo-
diagonal if M is not equal to N. This choice of basis leads to what is
called the singular value decomposition (SVD) of H.

Generalizing to three dimensions, utilizing basis functions such
as Yn(x,y,z) and ¢p(x",y",z"), we can write Eq. (4) for all coded

images in a way identical to Eg. (10). This can be done by simply
ordering the N expansion coefficients of f(x,y,z) into a one-
dimensional N x 1 vector £ and the M expansion coefficients of
g(x",y",z") into a one-dimensional M x 1 vector g:

g=HEf + n, (12)

where we have introduced the M x 1 zero-mean noise vector n to allow
for image degradation from effects outside of the direct mapping due to
H. Equation (12) is the general form of a shift-variant imaging system
that we will use in the subsequent discussion of finding the source

estimate %.

In general, Eq. (12) represents an ill-posed problem, in that one
A
or more of the following conditions occur: no £ exists that satisfies

g exactly; % is not unique; the solution % is sensitive to small
changes in g or H. We must usually content ourselves with a solution

£ that agrees with g to within some limits, and if these approximate
solutions are not unique, choose one that satisfies some independent

prior knowledge about £. There are several techniques for finding %,
such as singular value decomposition (SVD) alluded to briefly above
(ref. 10), Monte Carlo methods (ref. 11), linear estimation theory
(refs. 12, 13), and iterative methods (ref. 14). We will focus here on
the Monte Carlo method, which we have found to be a practical technique
for handling the large-scale pseudoinversion of Egq. (12) in the coded-
aperture context. We have successfully simulated the reconstruction of
volume objects £ of up to 32000 source elements from data sets g
consisting of nearly the same number of detector elements using less
than 10 Mbytes of computer memory, in CPU times under 30 minutes on a
VAX 8600. The reason for this space and time economy is that the H
matrix is sparse in coded-aperture imaging. Of course this sparseness
is reduced as the number of pinhole openings increases, or as the size
of the pinholes increases, since more detectors are being illuminated
by each source element.

In the Monte Carlo reconstruction process we define an energy

function E that is minimized when the reconstruction £ achieves a
desired level of agreement with the data g and simultaneously is
consistent with any prior knowledge about the types of sources present.
Such prior knowledge in the nuclear-medicine context consists of source
positivity, source boundary, and perhaps correlation statistics between
nearby source pixels. One of the cost functions that we have used is:
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E=(l-a)|| g ~HE [|2+ ()] - <& ||2 (13)

where the double bar indicates magnitude of the vector and the brackets
indicate an averaging process over nearest-neighbor pixels in the given

estimate #. The first term of this expression measures agreement with
A

the data, and the second term imposes a smoothing constraint on £,
relating each pixel of the reconstruction to its nearest neighbors.

The adjustable scalar & weights the agreement-with-data term against
the smoothing term. We begin the reconstruction process with an
initial guess at t (a zero object or a uniform grey-level object). We
then perturb each pixel of % and calculate AE, the perturbation to E.

This calculation is relatively rapid, because only a few detectors out
of the hundreds or thousands of detectors actually see the perturbation

to £. It should be mentioned that only non-zero elements of H are
required, so that even a 32000 by 32000 matrix can be stored in a small
fraction of the space otherwise needed.

The perturbation is always accepted if AE <= 0, and if AE > 0, it
is accepted according to the Boltzmann probability of statistical
mechanics:

P(AE) = exp (-AE/kT) (14)

where k i1s Boltzmann's constant (usually set to 1 in this context) and
T is an effective "temperature” of the estimate at any given time. If

T is large, we frequently allow large positive AEs into the reconstruc-

tion. If T is small, the probability of accepting large positive AEs
is much reduced. The concept of starting the reconstruction at a large
T and slowly reducing its value as E is decreased is known as
"simulated annealing"” (ref. 15). Such annealing is necessary if the
energy surface E exhibits local minima: the occasional uphill energy
swings of the reconstruction reduce the probability of being trapped in
a local energy minimum. For quadratic energy functions as shown in Eq.
(13), annealing is not required. However, if E is not quadratic,
perhaps due to the imposition of strongly non-linear prior knowledge,
annealing may become significant in improving the reconstruction. We
have observed the importance of annealing for cases of very powerful
prior knowledge, such as binary-object reconstruction, when a pixel is
constrained to be on or off and the rules weighting its agreement with
neighboring pixels are very nonlinear.

In our experience with the Monte Carlo algorithm, we find that we

can typically obtain estimates % that agree very well with the data,
within a fraction of a percent. The smoothing constraint is a very
important one; without it we get good data agreement, but there are
large local fluctuations in the reconstruction that reduce its visual
quality. The smoothing operation is imposed continuously as the
reconstruction evolves permitting an ongoing compromise between the
smoothing constraint and the data constraint.
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An important aspect of coded-aperture imaging is the determination
of the system operator H. This matrix contains all of the geometry and
radiometry (including attenuation, assuming known source-volume
attenuation parameters) mapping the discrete object space to the
discrete detector space. H can be modeled theoretically as in Eq.
(11) , but for an actual system it should be found experimentally by a
calibration procedure. Such a procedure consists of placing a point-
source gamma-ray emitter in a volume attenuator that approximates the
expected attenuating properties of the source, and stepping the point
source through this volume one pixel location at a time. For each
pixel location, the data set corresponds to a column of the H matrix,
including the effects of attenuation, radiometry, aperture vignetting,
and detector efficiencies. It is important to have a bright enough
source so that the SNR of the H-matrix elements is high enough not to
degrade the SNR of the reconstruction. Reconstructing the object using
this H matrix automatically includes the effects of attenuation and
detector characteristics.

There are several advantages to pinhole coded-aperture imaging as
compared to the conventional rotating collimated gamma-ray camera. The
ability of a collimator to resolve two source points degrades faster
with source depth than with a pinhole aperture. Thus the coded-images
may contain higher spatial-frequency information than the collimator
images. Also, the number of photons detected by a coded-aperture with
many openings is greater than that of a collimator because the
fractional solid angle of the coded aperture is greater. Thus we
expect the SNR of a coded image to be superior to that of a collimator
image. Finally, in a coded-aperture system consisting of multiple
views, no detector motion is required so that dynamic studies are
possible.

There are also disadvantages to the coded-aperture approach. Even
though we detect more photons, this advantage is offset by the fact
that we suffer from the multiplexing problem in the data sets. These
two effects are coupled and both together determine the final SNR of
the reconstruction. An additional complication is the need to
carefully characterize the H matrix through the calibration procedure
described above. For a fixed system of modules and attenuation
boundaries, however, this need be done only periodically. The
attenuation boundaries can be fixed by placing the patient within a
water sleeve, whose outer dimensions remain fixed. The reconstruction
of the object from a coded-image data set is also more difficult in
general than applying the inverse Radon transform in conventional
tomography, but special-purpose hardware is being developed to optimize
this procedure.

A set of small, independent gamma-ray cameras are being developed
at the University of Arizona for applications in coded-aperture imaging
(ref. 16). These cameras use a 10 cm by 10 cm NalI crystal coupled
optically to 4 photomultiplier tubes (PMTs). The outputs of the 4 PMTs
form a 20-bit address that extracts from a previously defined lookup
table the statistically most likely x and y location of the gamma-ray
impact point on the crystal face. Each camera, or a bank of cameras,
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has its own coded aperture, thus forming a camera module. These
modules can then be positioned about the patient in a configuration
that will optimally utilize the detector area. Figure 3 is an example
of an 8-view system for planar tomography that is currently being
constructed in Arizona to be used for heart and brain imaging.

Preliminary simulations with systems similar to that of Fig. 3
demonstrate that state-of-the-art reconstructions are obtainable with
data-acquisition times of the order of a third or less than that of the
conventional rotating gamma-ray camera, which are typically 30 to 40
minutes. This potential data-acquisition time reduction, as well the
static nature of the system allowing dynamic studies, may contribute to
improving the state-of-the-art in nuclear-medicine imaging.

CONCLUSION

We have briefly described the principles of imaging in nuclear
medicine, and have focused on a particular approach using coded
apertures. The formulation of this shift-variant problem was
developed, and a particular reconstruction algorithm was presented. A
coded-aperture system being developed at the University of Arizona for
tomographic imaging in nuclear medicine was briefly described.

ACKNOWLEDGMENTS

This work was supported by the National Cancer Institute through
grant no. 2 P01 CA 23417. We thank Bruce Moore for his technical

assistance.

REFERENCES

1) Anger, H.O., "Scintillation Camera," Rev. Sci. Instrum., 29, 27
(1958) .

2) Barrett, H.H., and W. Swindell, Radiological Imaging: The Theory
of Image Formation, Detection, and Processing, Vols. I and II
(Academic, New York, 1981).

3) Tretiak, 0., and C. Metz, "The Exponential Radon Transform," SIAM.
J. Appl. Math. 39, 341 (1980).

4) Clough, A.V., and H.H. Barrett, "Attenuated Radon and Abel
Transforms," J. Opt. Soc. Am. A, 73, 1590-1595 (1985).

5) Gaskill, J.D., Linear Systems, Fourier Transforms, & Optics (John
Wiley, New York, 1978).

6) Dicke, R.H., "Scatter-hole Cameras for X-rays and Gamma Rays,"
Astrophys. J. 153, L101 (1968).

7) Barrett, H.H., "Fresnel Zone Plate Imaging in Nuclear Medicine," J.
Nucl. Med. 13, 382-385 (1972).

42



8)

9)

10)

11)

12)

13)

14)

15)

16)

Simpson, R.G., "Annular Coded-Aperture System for Nuclear
Medicine," doctoral dissertation (University of Arizona, Tucson,
Ariz., 1978).

Koral, K.F.,W.L. Rogers, and F.G. Knoll, "Digital Tomographic
Imaging with a Time-Modulated Pseudorandom Coded Aperture and an
Anger Camera," J. Nucl. Med. 16, 402 (1975).

Strang, G. Linear Algebra and Its Applications, (Academic, New
York, 1976).

Smith, W.E., R.G. Paxman, and H.H. Barrett, "Image Reconstruction
from Coded Data: I. Reconstruction Algorithms and Experimental
Results,” J. Opt. Soc. Am. A, 2, 491-500 (1985).

Melsa, J.L., and D.L. Cohn, Decision and Estimation Theory,
(McGraw-Hill, New York, 1978).

Smith, W.E., and H.H. Barrett, "Linear Estimation Theory Applied
to the Evaluation of A Priori Information and System
Optimization in Coded-Aperture Imaging,” J. Opt. Soc. Am. A, 5,
315-330 (1988).

Frieden, B.R., "Image Enhancement and Restoration," in T.-S.
Huang, ed., Picture Processing and Digital Filtering, Vol. 6 of
Topics in Applied Physics, (Springer-Verlag, New York, 1975).

Kirkpatrick, S., C.D. Gelatt, Jr., and M.P. Vecchi, "Optimization
by Simulated Annealing," Science, 220, 671-680 (1983).

Aarsvold, J.N., H.H. Barrett, J. Chen, A.L. Landesman, T.D.
Milster, D.D. Patton, T.J. Roney, R.K. Rowe, R.H. Seacat, III,
and L.M. Strimbu, "Modular Scintillation Cameras: A Progress
Report,"Medical Imaging II: Image Formation, Detection,
Processing, and Interpretation, SPIE 914, 319-325 (1988).

43




A single-view coded-aperture system,

Figure 1)

imaging a planar source.

-view coded-aperture system,

A multiple

Figure 2)

imaging a volume source.
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An octagonal coded-aperture system being used at the

University of Arizona for planar tomography.
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