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1.0 BACKGROUND 

NASA has undertaken an advanced technology development program in the area of high resolution 
high-frame-rate video imaging to  support microgravity science and applications experiments, with the 
goal of removing constraints on the amount of high speed, detailed data  that can be recorded and 
transmitted. Numerous microgravity experiments have been Space Station Freedom 
and the Shuttle which require a broad range of imaging capabilities. Figure 1 presents survey results 
of user requirements; the chart shows frame rate versus image resolution requirements for many of the 
proposed microgravity experiments. NASA will develop a digital video imaging system that will be 
capable of fulfilling as many of the requirements as is practicable. (Initial survey requirements from 
several of the experiments far exceed state-of-the-art video imaging capabilities. Reexamination of 
those requirements is now taking place.) 

proposed for 

A representative experiment, sponsored by scientists a t  NASA Lewis Research Center, is entitled 
Nucleate Pool Boiling. The experiment involves heating freon locally by mea.ns of passing a large 
current through a thin gold coating on quartz. At some point the freon begins to  boil causing vapor 
bubbles to  form, grow and depart from the surface. Information to  be derived from the experiment 
includes bubble shape, bubble growth, collapse, departure, and motion after departure from the 
surface. To obtain the desired measurement accuracy from the video image data, a minimum 
resolution of 500X1000 pixels is required at a desired frame rate of 1000 frames per second. These 
requirements are typical of the resolutions and frame rates needed in many of the proposed 
microgravi ty experiments. 

The imaging system development will progress in stages starting with a demonstration breadboard 
system which can be upgraded as technology advances. The system will consist of a high resolution 
imaging device (camera/solid state sensor), a high speed video interface, and a mass storage device 
(dynamic RAM/magnetic tape). The Phase 2 imaging device will be a 1024x1024 pixel-addressable 
solid-state sensor with an 80 Mpixels per second multichannel scan rate, providing monochrome 
images with 8 bits gray scale resolution. I t  will be capable of image subframing in order t o  trade off 
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field of view for frame rate. (For a 1024XlO24 pixel image, the 80 Mpixels/sec scan rate of the sensor 
would allow a maximum frame rate of 76.29 frames per second, however, a subframed image of 
128x128 pixels could achieve a frame rate in excess of 4800 frames per second.) The high speed video 
interface will provide synchronization and routing of data  t o  the mass storage devices. Both high 
capacity magnetic tape and high speed 512 Mbyte dynamic RAM will be available for mass storage of 
image data. 

Video data  compression is scheduled to  be incorporated into the imaging system to  enhance its 
capabilities for data  acquisition, storage and transmission. Researchers a t  NASA LeRC and the 
University of Nebraska-Lincoln are working together t o  develop appropriate compression algorithms. 
The data  compression aspects of the high resolution high-frame-rate video technology (HHVT) project 
will be the focus of this paper. 

2.0 DATA COMPRESSION IN THE H I N T  SYSTEM 

The quantity of image data  that will be generated by most, if not all, of the proposed microgravity 
experiments is so large that data  compression (image processing) will be a necessity in the imaging 
system. Image data  compression can be used to  enhance the capabilities of the HHVT system in at 
least two areas. First, compression that is achievable between the imaging device and the mass storage 
unit directly increases the storage capacity. A two-to-one compression factor would double the amount 
of storable data,  thereby doubling the available experiment time. (The high speed 512 Mbyte dynamic 
RAM can accommodate just 6.4 sec of data  at the full scan rate.) The second area of enhancement is 
with image data  transmission to  Earth. Here, da;ta compression can be used t o  reduce the transmission 
bandwidth and total time required for transmission. (A third area where it may be possible to  apply 
data  compression techniques is in the focal plane, however, this area is not currently under study). 

The data  compression requirements differ depending on where in the system compression is being 
applied. Compression prior t o  mass storage must be kept simple for straightforward implementation 
due to  the high data  throughput rate. The techniques used must work in real-time and, typically, 
should be lossless t o  maintain complete data integrity. (Lossy schemes may be acceptable for some 
experimental data  requirements, however, lossy schemes are generally more complex and hence more 
difficult t o  implement for real-time processing. Additionally, the compression techniques to  be 
incorporated a t  this stage in the system will be hardware based rather than software. I t  may not be 
desirable t o  have multiple algorithms in hardware due to weight constraints, therefore, a single lossless 
technique which is universally applicable would be preferred .) 

Once the data  is in the mass storage device, high speed processing becomes less of a requirement 
on the data  compression system. A much broader range of compression techniques becomes available 
because implementation can be done in software rather than strictly in hardware. Because processing 
speed is no longer as critical at  this stage of the data handling process, different data  compression 
techniques can be applied to  particular experiments in order t o  take advantage of differing end 
requirements among the various experiments. For example, the fidelity criterion is experiment 
dependent. Some experiments may require that quantitative data  be measured from the video record, 
as in the measurement of bubble size. Other experiments may only require qualitative observation of 
experiment progress t o  enable control of activity. In the latter case, image resolution may not be as 
critical as near real-time control. The data  compression techniques selected will most likely be 
experiment dependent and as such will be capable of responding to individual experiment 
requirements. 
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Feature and data  extraction also offer the possibility for significant reductions in data  transmission 
requirements. If sufficient sophistication can be incorporated into the imaging system to  extract the 
required quantitative data  prior t o  downlinking, only the measurement results may need to be 
transmitted. For example, rather than transmitting the high resolution image of a bubble to  
determine its size, only the dimensions would need to  be transmitted if that  information could 
somehow be extracted from the data. While feature extraction is more commonly associated with 
image enhancement rather than data  compression, many of the same techniques may be applicable to  
both areas. 

The remainder of this paper shall address several of the algorithms which have been studied or are 
currently under study for application to  data  compression in the HHVT system. 

3.0 DATA COMPRESSION SCHEMES 

The different algorithms presented in this section are elements in a possible “toolkit” of schemes 
which may be available to  the user. The compression scheme presented in Section 3.1 is a lossless 
coding scheme which is very amenable to  real-time hardware implementation. This scheme is therefore 
a candidate for implementation between the imaging device and the mass stomge unit. The remaining 
algorithms are lossy algorithms and could be used (depending on user requirements) after mass 
storage. 

Several of the lossy algorithms were developed with different applications in mind, but can be 
adapted for use in the HHVT system. A common property of all the lossy systems is their edge 
preserving capability. This capability is especially important for the types of images generated by the 
microgravity experiments, as size and location information is usually derived from edges. 

It should be noted that the algorithms presented in this paper do not constitute all the algorithms 
t o  be investigated for inclusion in the toolkit. This program is in its initial stages and the algorithms 
presented in this paper are simply some of the algorithms that currently look promising. 

3.1 A DIFFERENTIAL LOSSLESS CODING SCHE,ME 

A high resolution image can be viewed as a n  image which has been “oversampled”. This view 
leads directly t o  the inference that there is a high degree of correlation between pixels. The 
oversampling point of view also automatically discards such pathological cases as images of snow on a 
TV screen, which can play havoc with any data  compression scheme. If we assume a Natural Binary 
Coding (NBC) or Folded Binary Coding (FBC) scheme, we can also assert that  a high degree of pixel 
t o  pixel correlation will result in a high probability of the most significant bits of the neighboring bits 
being identical. A similar argument can be used, with some modification, for other binary coding 
schemes. The noiseless coding scheme presented in this section takes advantage of this fact t o  provide 
compression. It has been motivated by an encoding scheme for tree structured vector quantization [l]. 
The algorithm functions by comparing the current pixel (byte) value with a, reference pixel t o  obtain a 
prefix and suffix value for each pixel in the image. The prefix and suffix values comprise the noiseless 
code for the pixel. In the following we describe the details of both the suffix and the prefix. 

The prefix value is the number of MSB (upper bits) in a byte that are identical to the reference 
pixel. For example: 
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reference pixel (previous byte) = 11010110 
current pixel (byte being coded) = 1101 1010 
prefix value = 4 _ _ _ _  (1101) 

I 

Before being sent the prefix value is Huffman encoded. A given prefix value is assigned a 
predetermined Huffman code. A Huffman code is a tree code with varying lengths. Values with higher 
probabilities of occurrence are given shorter binary codes than values with lower probabilities of 
occurrence. The prefix value can range from zero t o  eight. The prefix values zero to eight are assigned 
Huffman codes generated by that image. Currently, a unique set of Huffman codes (for the prefix 
values) is being generated for every image. Some examples of Huffman codes are shown in Table 1. 
Further investigation may be given t o  using standard sets (same set) of Huffman codes for every 
image. Initial investigation indicates that  more than one set of codes would be needed in order to not 
decrease the compression ratio. A set for high, medium, and low correlation would most likely be used. 

The suffix is the bits of the current pixel that are not identical to the reference pixel minus the 
most significant bit (MSB) of the nonidentical bits. The MSB (of the nonidentical bits) is not sent 
because i t  is obviously the opposite of the reference pixel (otherwise it would be the same as the 
reference and be included in the prefix value). 

The actual data  sent for each pixel is the Huffman code for the prefix value and suffix, sent as is 
(bit for bit). In the previous example, if the Huffman code for 4 is 10 the code sent for the current 
pixel given would be 10010. Due to the Huffman code (variable length code) and the fact that  the 
suffix length is directly dependent on the value of the prefix, the compressed code sent is a variable 
length code. 

The next problem is to actually transfer the new code. Data is transferred in bytes (eight bits). To 
get data  compression; the codes must be compacted into full bytes. If a byte is used for each code 
there would be no compression. Therefore, bits are placed into bytes and transferred as soon as a byte 
is filled. 

The decoding is done by reading the bytes bit by bit. The bit(s) are matched against the Huffman 
codes to determine the prefix value. The Huffman code is currently being sent with the encoded 
image. If no match is found, another bit is added to the prefix bits and the new set is matched against 
the Huffman codes. Once a match is found, that  many upper bits of the reference pixel are set in the 
current pixel being decoded. Then the next bit (bit # = 7-prefix value) value is flipped, from that of 
the reference pixel. Then, according to the prefix value, the suffix bits are set. If the prefix value is 
four, then the suffix must contain three bits. For exa.mple, reversing the first example: 

code sent = 1 0 0 1 0 
first bit compared = 1 (no match) 
add bit, compare = 1 0 (matches prefix = 4) 
if, reference pixel = 1 1 0 1 0 1 1 0 
set current pixel = 1 1 0 1 
flip next bit = 1 
set the next three (7-4) bits, suffix = 0 1 0 
current pixel = 1 1 0 1 1 0 1 0 

The next bit read from the code would be the start of the next prefix value. 

The very first pixel of every image is always sent as is and is always the first reference pixel. The 
first line always sets the reference pixel t o  be the previous pixel, t o  the left. For the first pixel on each 
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line the reference pixel is always the pixel directly above the current pixel. These reference pixels are 
always true no matter how the rest of the image is referenced. To determine the reference pixel for the 
rest of the image, three different algorithms have been investigated. The first algorithm, REFLEFT, 
sets the reference pixel, except for the first pixel on each line, t o  be the previous pixel, the pixel t o  the 
left. The second algorithm, REFUP, sets the reference pixel, except for the first line, t o  be the pixel 
directly above the current pixel. The third algorithm, THRESH, combined the first two algorithms. 
The third algorithm flips the reference pixel between above and to  the left depending on the threshold 
value. The threshold value is set at the beginning of the program. If a prefix value drops below the 
threshold value, the reference pixel is switched (from above to  left or vice versa). For example, if the 
reference pixel currently being used is t o  the left and the threshold value is three and the current 
prefix value is two, then for the next pixel, the reference pixel used will be above. 

In Table 1 the compression obtained, using several images, for the three different algorithms is 
presented. For the third algorithm, THRESH, the data  is presented using threshold values of three, 
four, and five. The results obtained by using these algorithms were compared against the 
commercially available compression program PKARC. PKARC compresses files by optimizing between 
Huffman encoding, a static Lempel-Ziv-Welch coding scheme, and a dynamic Lempel-Ziv-Welch 
coding scheme. Thus PKARC provides a good benchmark against which to test this algorithm. Note 
that as the current approach consists of a single algorithm, it is much simpler to implement than 
PKARC. The results are also shown in Table 1. 

As one can see, the new algorithms provide consistently better compression. There is also a direct 
relationship between the validity of the oversampling assumption and the compression obtained. The 
compression obtained for the 384x512 images is in general substantially higher than the compression 
obtained for the 256x256 images. Among the 384x512 images the IBMAD image has the lowest 
compression because of the presence of granular noise in the image. This is evident from the IBMAD 
picture. The granular noise because of its “white” na.ture violates the oversampling assumption. The 
oversampling assumption is also violated in a more direct manner in Images 13 through 15, a.nd 
therefore there is a corresponding drop in compression. Obviously this scheme will perform best for 
the application for which it has been developed, namely, high resolution images. 

As mentioned previously, all our tests have been conducted on relative1.y low resolution images. 
We expect substantial increases in performance when we code high resolution images. Noting that 
going from a 256x256 image to  a 384x512 image approximately doubles the compression efficiency, we 
expect the same kind of performance improvement when going from 384x512 to 1024x1024 images. 

3.2 ENHANCED DPCM ALGORITHM 

An algorithm has been developed which is based on differential pulse code modulation (DPCM) 
for simplicity of implementation, but incorporates performance enhancements which result in 
reconstructed images that are subjectively indistinguishable from the original image at an average rate 
of 1.8 bits per pixel (bpp). A hardware implementation of the algorithm has been developed and is 
presently undergoing testing. The algorithm was developed for use with standard NTSC (National 
Television Systems Committee) video images, and will therefore need to  be modified for application to  
the HHVT imaging system. However, the required modifications should not be major, nor should they 
affect the performance of the algorithm. In addition to the DPCM, the algorithm incorporates a 
non-adaptive predictor value, non-uniform quantization and multilevel Huffman coding to  significantly 
improve upon the performance achievable using a standard DPCM approach. 
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A two-dimensional pixel average is used to generate the predicted value, PV, for determining 
difference values in the DPCM process, as shown in the block diagram in Figure 2. For the NTSC 
signal, sampling is done a t  four times the color subcarrier frequency (14.32 MHz). Neighboring pixels 
having the same subcarrier phasing relationship as the current pixel are used for the prediction. The 
difference value, DIF, is calculated by subtracting both the predicted value, PV, and a non-adaptive 
predictor value, NAP, from the current pixel value, PIX, ( D I F  = PIX - PV - N A P ) .  The function 
of the NAP is t o  improve the prediction of the current pixel. The non-adaptive predictor estimates the 
difference value that would be obtained if just the predicted value were subtracted from the current 
pixel value ( P I X  - P V ) .  The subtraction of the NAP value from PIX - PV causes the resulting 
difference value (DIF) to  be close to  zero. The smaller the DIF, the more efficiently the quantized 
pixel information can be transmitted due to  the use of Huffman coding prior t o  transmission over the 
channel. (Huffman coding assigns variable length codewords based upon probability of occurrence.) 
To reconstruct the pixel, the decoder uses a lookup table to  add back in the appropriate NAP value 
based upon knowledge of the quantization level from the previously decoded pixel. 

The development of the non-adaptive predictor was predicted on the likelihood that the difference 
values of adjacent pixels are similar. The prestored NAP values were generated from statistics of 
numerous television images covering a wide range of picture content. The NAP values represent the 
average difference values ( P I X  - P V )  calculated within the boundaries of the difference value ranges 
of each quantization level for the sample images. The use of the NAP results in faster convergence a t  
transition points in the image, thereby improving edge detection performance. The ra.pid convergence 
also reduces the total data  requirements by increasing the percentage of pixels in the middle 
quantization levels, where the shortest length codewords are assigned by the Huffman coding process. 

The quantizer shown in Figure 2 has thirteen (13) levels. Each level has a quantization value 
associated with a non-uniform range of difference values. The quantizer provides more levels for small 
magnitude differences which would result from subtle changes in picture content. The human eye is 
sensitive to  small variations in smooth regions of an image and can tolerate larger variations near 
transition boundaries where large difference values are more likely to  occur. The non-adaptive 
predictor discussed previously, acts to reduce the difference values thus improving image quality by 
reducing the quantization error. This is because the non-uniform quantizer results in lower 
quantization error for small magnitude differences than for large magnitude differences. 

The final major aspect of the encoding algorithm is the multilevel Huffinan coding process. 
Huffman coding of the quantized data  allows shorter codewords to  be assigned to  quantized pixels 
having the highest probability of occurrence. A separate set of Hiiffman codes has been generated for 
each of the thirteen quantization levels. The matrix of code sets is used to  reduce the number of data 
bits required to  transmit a given pixel. The particular Huffman code set used for a given quantized 
pixel is determined by the quantization level of the previous pixel. As with the NAP, the Huffman 
code trees were generated by compiling statistical data  from numerous images covering a broad range 
of picture content. Probability of occurrence data was compiled for each of the thirteen quantization 
levels as a function of the quantization level of the previous pixel. A separate Huffman code set was 
then generated based on the probability data of “current” pixels falling into each of the thirteen 
quantization levels of the “previous” pixels. There is a tendency for neighboring pixels to fall into the 
same or close to the same quantization level. By recognizing and taking advantage of this fact, the use 
of the multilevel Huffman code sets provides significant reductions in bits per pixel over a single 
Huffman code tree because they allow a greater percentage of pixels to be represented by short length 
codewords. 
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Due t o  the predictive nature of DPCM-based schemes, bit-errors on the channel can effect the 
quality of the prediction of future pixels on a line. This has the subjective effect of producing a visible 
streak across the reconstructed image from the point of the error to  the end of the line. To minimize 
the propagation of such errors, the algorithm employs line and field resynchronization. In addition, 
the University of Nebraska has developed an error detection/correction scheme which is directly 
applicable to  this algorithm and offers significant error immunity for minimal data overhead. 

3.3 EDGE PRESERVING DPCM 

Adaptive Differential Pulse Code Modulation (ADPCM) is a very popular compression technique 
because i t  is easy to implement, has low processing overhead, and relatively good fidelity. However, 
ADPCM image compression is far from ideal. The most obvious drawback is poor edge performance. 
ADPCM cannot track sudden changes in the image statistics, and this causes substantial edge 
distortion in the reconstructed image. Some changes in the basic approach are required to reduce edge 
degradation, while retaining simple, high speed image compression. 

We have developed a modified ADPCM scheme which uses a very simple algorithm to prevent 
edge degradation [2]. The structure of the proposed system is based on the embedded DPCM scheme 
of Goodman and Sundberg [3]. The new system detects edges and sends extra bits containing edge 
information. We have shown that substantial improvements in both the subjective and objective edge 
performance can be obtained using this method [a]. 

Figure 3 shows the general block diagram of a DPCM system. It works much like Delta 
Modulation. In fact the basic concept is the same; only the information that cannot be predicted at 
the receiver is sent. P denotes the predictor and Q the quantizer; s is the value of the k input pixel 
and p is the predicted value. The difference, 

e = s - p  (1) 

is the prediction error. This value is quantized, and the quantized value eq  is sent to  the receiver. The 
quantizer error, q, can be viewed as an additive noise process. 

e ,  = e + c l  (2) 

The quantized error, eq,  is fed back to  the predictor, added to  the current predictor value, 

. G = e , + p  (3)  

and used as input t o  for the next prediction. 

The predictor function f(i, e , )  is discussed in the following section. A corrupted version of e ,  arrives 
a t  the receiver. 

E ,  = e ,  + c ( 5 )  
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where c is the channel noise. This is added to  the receiver’s predicted value, and if the predictors at  
the receiver and transmitter are the same, and the channel noise is negligible d and S will be the same. 
Therefore the reconstructed signal, S, and the true signal, s, will differ only by the quantizer noise. 

S = s + q  (6) 

This basic fact has led to  many designs that attempt to  minimize quantizer noise. Most of them 
are application specific, and for the most part they are successful, especially when applied t o  speech 
signals. However, the results are not as impressive when applied to  image data  [4] [5]. The best results 
have been achieved using adaptive quantizers and/or adaptive predictors. Such systems are usually 
referred to  as Adaptive DPCM, or ADPCM [4]. 

The predictor function, f(i, e q ) ,  is chosen so as to  minimize the variance of eq. There are many 
well-known adaptive filter algorithms that can be used t o  adapt the predictor. We have found that the 
simple Least Mean Square (LMS) gradient search algorithm is an effective algorithm for adapting the 
predictor. We have previously shown that edge performance is improved if a pole zero or ARMA 
predictor is used instead of an all pole or AR predictor. Therefore the adaptive predictor used in the 
ADPCM system is an ARMA predictor. Both the AR and MA coefficients are adapted using an LMS 
algorithm. Because of the non-stationary nature of image data, optimization of the gain parameter in 
the LMS algorithm is not possible. The gain should be relatively small t o  insure stability. The 
presence of adaptive zeros also makes the system less susceptible to channel noise. 

The quantizer is a two-bit Robust Jayant quantizer [6] [7]. I t  is a uniform quantizer whose 
stepsize, (k), is adapted based on the previous sample. The stepsize is expanded if the input falls in 
the outer quantization levels while it is contracted if the input falls in the inner quantization regions. 
This algorithm is simple to  implement and requires very little computational overhead. Since DPCM 
is most often used in systems where speed is premium, this method is understandably quite popular. 
It decreases the quantizer noise; however, it doesn’t adapt well enough to  solve the edge distortion 
problem. Simulation results in [a] clearly show the poor edge performance of the ADPCM system. A 
plot of the quantization noise when encoding a simulated edge shows that the magnitude of q is large 
near the edge and slowly dies away as the system adapts. The error imagcs obtained in this study 
clearly show that the quantizer distortion is mainly an edge phenomena. 

The first step to  improving edges is detecting edges. Once this is done, steps can be taken t o  
alleviate the excess noise. Ideally the edge detection would be simultaneously performed a t  both the 
transmitter and the receiver thus eliminating the need for transmitting the edge location. Fortunately 
the Jayant quantizer is well-suited to  this task. The Jayant quantizer is designed to  track the variance 
of the quantizer input by changing its stepsize (k). Since edges are regions where the statistics change 
rapidly, it follows that the stepsize will expand repeatedly when it encounters an edge. This fact is 
made use of in the following rule to  detect edges: 

An edge is detected when the stepsize of the Jayant quantizer expands more than P times in 
succession, P > 1. P should be small to reduce the detection delay; a value of two seems to  work well. 
The output of the edge detector is one when edges are present ( that  is, the Jayant quantizer stepsize 
expands more than two times in succession) and zero everywhere else. This detector algorithm, with 
P = 2, was added to  the ADPCM simulation and tested using a step input. The results showed that 
both the receiver and the transmitter simultaneously detect the same edges. As such, no extra 
information is required to  synchronize the detectors. 

Now that  an effective mechanism for detecting edges at  both the transmitter and receiver has been 
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obtained, this information can be used to  improve the edge performance of the ADPCM system. The 
structure used in the current approach is the embedded DPCM structure proposed by Goodman and 
Sundberg [3]. The embedded DPCM scheme employs an additional or “embedded” quantizer to 
transmit the quantized quantization error of the DPCM structure t o  develop a strategy for 
transmission over noisy channels. In the current approach the embedded quantizer is switched on by 
the edge detector and remains active for as long as the edge detector declares the edge to be active. 
During this period the embedded quantizer transmits a quantized version of the ADPCM quantizer 
error q over a “side channel”. This is removed from the ADPCM receiver output S .  Thus during the 
period that the edge detector declares an edge t o  be active the reproduction error is ( q  - q )  instead of 
q. This has the effect of reducing the large quantization error a t  the edges and preventing edge 
degradation. As the edge is detected simultaneously a t  both the transmitter and receiver, the receiver 
knows when to  expect transmission over the side channel and the transmitted quantization error 
values are synchronized with the reconstructed values a t  the output of the ADPCM receiver. The 
issue of exactly how to  configure the side channel is not addressed in this work. However, the ability 
to  easily achieve synchronization seems to  suggest that  configuring the side channel should not be a 
very difficult task. 

The proposed system was simulated using the USC GIRL and USC COUPLE image as the source 
images. A two-bit robust Jayant quantizer and a pole-zero (ARMA) adaptive predictor of the type 
described before was used. There was considerable improvement in the edge performance. This was 
reflected in both objective (SNR) and subjective (perceptual) improvement. The overhead due to the 
side information was less than half a bit per pixel. 

While the use of the Jayant quantizer for edge detection is efficient from the point of view of 
savings on side information, the current definition of an edge is rather ad hoc. Because of this, the 
savings in side information during the edge detection process may be offset by the extra side 
information needed for the edge preserving process. In fact an overhead of itround 0.5 bits/pixel for a 
coding scheme with nominal rate 2 bits per pixel seems rather high. We arc’ currently examining this 
technique from several points of view. The first is t o  get a more exact definition of an edge in terms of 
the Jayant quantizer than the one used in the above study. The second is t o  examine more 
conventional edge detection systems including the IDS system proposed by Cornsweet [8] and Huck 
[9]. These methods would be used to  find and extract the edges from the image. The edges could then 
be coded separately, while the image sans edges could be very efficiently coded using a low rate 
DPCM system. Finally we are examining the possibility of developing multiquantizer ADPCM 
schemes where the switching between quantizers with different rates would be performed based on the 
behavior of the Jayant quantizer. 

3.4 A MODIFIED RUN-LENGTH CODING SCHEME 

The final algorithm presented here is also a variation of the popular DPCM scheme. Again, one of 
the objectives is t o  reduce the excessive edge degradation present in standard DPCM systems. 
Another objective is t o  have a system that can operate under situations where a common 
communication channel is being used by a number of users and thus the available channel capacity 
may vary over the period of a single transmission. Under such situations the system would be able to 
reduce the rate in return for accepting a certain amount of distortion. However, the edge fidelity 
which is the primary objective would still be protected. 

The system block diagram is essentially similar t o  the DPCM diagram of Figure 3 with one 
important modification. The DPCM encoder output forms the input t o  a modified run-length 
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encoder. Of course, the inverse operation precedes the DPCM decoder. This system is a variation of 
the system presented in [lo]. The various elements of the system are presented below. 

The predictor is a one tap “integer” predictor. The output of the predictor is given by 

where 1.J denotes the “floor7’ function. The floor function is used so as t o  force the predictor output to 
be an integer. This was done t o  allow the system to  be used for lossless encoding. 

The quantizer is a uniform quantizer with stepsize A which effectively contains an infinite number 
of levels. This means that the only type of quantization noise present is granular noise. There will be 
no overload noise at the output of the quantizer. If A = 1, the quantizer becomes an identity 
mapping. An infinite number of quantization levels would generally imply an infinite rate; something 
we definitely want t o  avoid. This is done by the use of the modified run-length encoder. 

The modified run-length encoder puts out n bit, fixed length, codewords corresponding to  2n 
output levels of the quantizer. The lowest output level represented is denoted by the symbol LOW 
while the maximum valued output level represented is denoted HIGH. Note that 

(8) HIGH = LOW + (2. - 1)A 

If the quantizer puts out a value corresponding to  the levels between HIGH and LOW, the 
corresponding n-bit codeword is transmitted by the modified run-length encoder. If the output value 
X is greater than or equal t o  HIGH, then the codeword for HIGH is transmitted and X is replaced by 
X - HIGH. If the new value of X is less than HIGH then the corresponding codeword is transmitted, 
or else the codeword for HIGH is transmitted and X is again decremented by HIGH. This procedure is 
repeated until the value of X falls below HIGH. The modified run-length decoder treats HIGH as a 
“concatenation symbol”. Whenever the codeword corresponding to HIGH is received the decoder 
begins accumulating the values until a codeword corresponding to a value less than HIGH is received. 
A similar procedure is used when the quantized value is less than equal t o  LOW. 

The effect of this approach is t o  raise the instantaneous rate whenever the prediction error is high, 
which usually occurs a t  edges. However because there is no overload noise there is none of the edge 
degradation usually associated with DPCM systems. Also by adaptively changing A,  the output rate 
of the coder can be made to  match the available channel capacity. 

The USC GIRL image was encoded using this scheme. Noiseless coding was achieved a t  the rate of 
about 6 bits per pixel. At bit rates above 2.5 bits per pixel there was no perceptual difference between 
the original and reconstructed images. Below two bits per pixel granular distortion was noticeable in 
the quasi-constant regions. However there was no noticeable edge degradation. 

4.0 SUMMARY AND CONCLUSIONS 

In this paper we have attempted to  present the environment and conditions under which data 
compression is t o  be performed for the microgravity experiment. We have also presented some coding 
techniques that would be useful for coding in this environment. It should be emphasised that we are 
currently a t  the beginning of this program and the “toolkit” mentioned is far from complete. 

102 



REFERENCES 

1 D.L. Neuhoff and N. Moayeri, “Tree Searched Vector Quantization with Interblock Noiseless Cod- 
ing,” Proc. 1988 CISS, Princeton, N J ,  pp. 781-783, 1988. 

2 S.M. Schekall and K. Sayood, “An Edge Preserving DPCM Scheme for Image Coding,” Proc. 31 
Midwest Symp. Circ. Syst., St. Louis, MO, 1988. 

3 D.J. Goodman and C.E. Sundberg, “Combined Source and Channel Coding for Variable-Bit-Rate 
Speech Transmission,” Bell Syst. Tech. J., Vol. 62, pp. 2017-2036, Sept. 1983. 

4 N.S. Jayant and Peter Noll, Digital Coding of Waveforms, Prentice-Hall, New Jersey, 1984. 

5 K. Sayood and S. Schekall, “Adaptive Prediction Algorithms in Differential Encoding of Images,” 
Proc. 29 Midwest Symp. on Circuits and Systems, Lincoln, NE, 1987, pp. 415-418. 

6 N.S. Jayant, “Adaptive Quantization with a One-Word Memory,” Bell System Tech. J . ,  pp. 1119- 
1144, Sept. 1973. 

7 D.J. Goodman and R.M. Wilkinson, “A Robust Adaptive Quantizer,” IEEE Trans. on Commu- 
nications, pp. 1362-1365, Nov. 1975. 

8 T.N. Cornsweet and J.I. Yellot, Jr., “Intensity-dependent Spatial Summation,” J. Opt. Soc. Am., 
pp. 1769-1786, 1975. 

9 F.O. Huck, “Local Intensity Adaptive Image Coding,” Proc. NASA Science Data Compression 
Workshop, Snowbird, UT, pp. 301-309, May 1988. 

10 I<. Sayood and M.C. Rost, “A Robust Compression System for Low Bit Rate Telemetry - Test Re- 
sults with Lunar Data,” Proc. of the Scientific Data compression Workshop, CP-3025, Snowbird, 
UT, 1988, pp. 237-250. 

103 



TABLE 1 
IMAGE PKARC 

(384 x 512) 
IBMAD 13% 
DERIN 33% 
EWEEK 41% 
PATTY 35% 
KARANNE 26% 
MARILYN 30% 

(256 x 256) 
HAT 7% 
IMAGE01 24% 
IMAGE02 27% 
IMAGE 0 3 13% 
IMAGE04 31% 
IMAGE05 7% 
IMAGE06 42% 
IMAGE13 7% 

REFLEFT 

23.3% 
45.2% 
49.3% 
46.1% 
39.7% 
41.3% 

21.8% 
28.3% 
33.6% 
21.1% 
16.0% 
15.3% 
42.8% 
16.3% 

REFUP 

26.9% 
50.6% 
53.6% 
46.7% 
48.5% 
38.2% 

25.0% 
28.1% 
35.0% 
23.7% 
16.8% 
13.2% 
43.1% 
14.6% 

THRESHOLD 
3 4 5 

26.7% 26.8% 26.5% 
50.8% 50.9% 50.9% 
54.9% 55.1% 55.2% 
47.8% 48.1% 48.1% 
47.5% 47.4% 47.2% 
39.8% 40.0% 40.5% 

23.8% 23.6% 23.4% 
28.5% 
36.3% 
22.5% 
16.7% 
14.8% 
43.8% 
15.8% 
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.... . ... ............ _. _-.__ 

............. .. . 1. .:...L::. 

RESOLUTION (Pixels/Frame) 
Exp. below scole-1 10.302.325.41 3.415.416.427o.501,504,540 
See appendix I 

Figure 1. User Requirements Survey Results 
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Figure  2 .  Enhanced DPCM Algorithm Block Diagram 
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