
NASA Technical Memorandum 101643

LOAD-SHORTENING BEHAVIOR OF AN
INITIALLY CURVED ECCENTRICALLY
LOADED COLUMN

W. B. Fichter and Mark W. Pinson

December 1989

NA. A
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

(NASA-T_-IOlo4 3)

OF AN INITIALLY

COLUM_ (NASA)

LOAD-.SHORT_NING BFHAVIOR

CURVED FCCENTRICALLY LCAOEO

22 p CSCL 20K

G3/j9

N ,o0-16293

Uncl,_s

0256749

https://ntrs.nasa.gov/search.jsp?R=19900006977 2020-03-20T00:20:30+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42825083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Z_ :22 _

I

=



LOAD-SHORTENING BEHAVIOR OF AN INITIALLY

CURVED ECCENTRICALLY LOADED COLUMN

W.B. Fichtcr

and

Mark W. Pinson

SUMMARY

To explore the feasibility of using buckled columns to provide a soft

support system for simulating a free-free boundary condition in dynamic

testing, the nonlinear load-shortening behavior of initially imperfect,

eccentrically loaded slender columns is analyzed. Load-shortening curves

are obtained for various combinations of load eccentricity and uniform

initial curvature and are compared, for reference purposes, with the

limiting case of the classical elastica. Results for numerous combinations of

initial curvature and load eccentricity show that, over a wide range of

shortening, an axially loaded slender column exhibits load-deflection

compliance which is of the same order as that of a straight but otherwise

identical cantilever beam under lateral tip loading.
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Subscripts 0 and e denote initial stifle and Euler buckling value,

respectively.

INTRODUCTION

In many structural dynamics tests it is desirable to minimize the

interaction between a structure and its support system. One frequently

used scheme involves suspending the structure on long, flexible cords

when, for example, free vibration frequencies are of interest. Such an

arrangement is rrrost satisfactory when the suspension cords are long

enough to minimize side loads and the natural frequencies of the

suspension system are separated sufficiently from those of the test article.

Another possible approach is to mount the structure on

compression springs, if the springs can be made to have sufficiently

low stiffness while supporting the weight of the test article. One device

which might be able to satisfy the combined flexibility and load-bearing

requirements, and simultaneously avoid the need for spacious overhead

support capability, is the buckled column. After buckling, the column

continues to support its buckling load, while over a considerable deflection

range the slope of its load-shortening curve (i.e., its tangent stiffness) may

be low enough to satisfy test requirements.

To investigate the feasibility of such an approach, the shortening due to

the large lateral deflections of an eccentrically loaded, slender elastic
column with initial curvature is examined. Both the initial curvature and

the load eccentricity serve to preclude buckling instability which would be

troublesome in a support system. For reference, the load-shortening

curves for various combinations of initial imperfection and load

eccentricity are compared with results from reference 1 for the classical

elastica problem.
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ANALYSIS

Governing Equations

A sketch of a cantilevered, initially curved, inextensional column, before

and during eccentric loading at the free end, is shown in figure 1. For

simplicity, the initial imperfection shape is assumed to be a circular arc of

radius R 0. Hence, the initial tip rotation 70 is given by 70 =_I.,_ ,where L is
R0

the length of the column. The vertical force P ia applied at a normal

distance a from the column centroid, and so as to cause tip rotation of the

same sense as the initial curvature. During deformation, the moment arm

of length a is assumed to rotate with the end of the column. Equating the

internal moment at a distance s measured along the column centerline

from the tip, to the moment due to the applied force P yields

-EI0c-_Co)=P(y+acosT) (1)

where the initial curvature is r0=--L- 7is the angle of tip rotation relative
Ro '

to the vertical, y is the lateral displacement relative to the tip, _¢ is the total

curvature, and E1 is the column bending stiffness.

In terms of 0, the angle of rotation of the tangent at s, _¢=d0
ds

equation (1) can be written as

Thus,

do ___1_ k2(y + a cos 7)
ds Ro (2)

where k2= P The boundary conditions are
E1 "

and

0(0) = Y (and y = 0)

0(L)=0

(3)

(4)

Differentiation of equation (2) gives

d20 =_
ds 2 ds

or



d20 =_ k2sin0
ds 2

4

(5)

Multiplication by dO and integration yields
ds

d_s! = 2k2 cos 0 + C (6)

Applying boundary condition (3) and using equation (2) in

equation (5) gives

C = {R_o+ kZa cos T_ - 2k2 cos _/

Thus,

d0_s-4(_ +_ oos_)_,_k_(co,_oo_o) (7)

where the negative sign is consistent with the fact that 0(s) is a decreasing

function of s.

Employing the identity cos 0= 1-2sin2_, integrating over the

length of the column, and using boundary condition (4) yields

I' 00
L= _/(R_0 + k2a cosy)2+ 4k2(sin_ _sin_ )

(8)

With the definition p = sin_ , and the change of variable pt = sin2_, equation

(8) becomes

f'L = 2p (It

4( 1 k2a cos _t)2_+ +4k_p_ 1-4i-_p_1-ff_
(9)
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where
r = n2e q cos

_o + 4L +/t2p2q

With the Euler buckling force for a

perfect column denoted by Pe =x2EI, then k 2 n2
4L2 = 4---_' where

q =-P-- is the normalized applied force. Finally, equation (9) can be written
Pe

as:

(10)

which is the governing relation between the applied force and the initial

and final tip rotations.

To obtain the relation between applied force and the column

shortening, which is defined herein as the vertical tip displacement in

excess of that due to the initial curvature, an expression for vertical

displacement is needed. (Note that in the present analysis the axial

compressive compliance of the column has been neglected.) Since _d#__=cos 0,
ds

where x is measured downward from the tip of the column, then

dx = cos0ds = cos0d-0-_d0, so that use of equation (7) gives
dO

dx = - cos 0 dO

_/(R_o + kZa c°s Y)2+ 4k2{ sin2-T2 "sin2OI

(11)

With the definitions and change of variable employed earlier, integration

of equation (11) over the length of the column yields

= 4rL f' 'V_-r2t 2dt_ L

xt _-"_J0 _
(12)

where xt is the height of the deformed column, and equation (10) has

been used to simplify the result. The column shortening due solely to



initial curvature is L-_; hence, the net shortening due to the vertical
%

tip force is A =L-xt-(L-_1 or% J

A=lq sin% 4r (l_dt

L Vo  ¢q]o (13)

To obtain the relation between applied force and net column shortening

for specified values of initial curvature and force eccentricity, equations

(10) and (13) must be solved simultaneously.

Computations

A numerical approach was used in solving equations (10) and (13).

Equation (10) was rewritten as

_-_qI' 1 =0 (14)f(V,Vo,a,q) = ,qr__ p2t25/-__dr r2t2

which is the form required by routines for solving nonlinear equations.

Before this equation could be solved, however, a numerical problem in

evaluating the integrals in equations (13) and (14) required resolution.

When r is very close to one, both integrals are nearly singular, giving rise

to numerical integration inaccuracy. To circumvent this problem a change

of variable was made, and asymptotic expansions were developed to

evaluate the integrals on the subinterval 0.99 < t < 1.0. The integrals and

their replacements are

1 = 1+
dt

---- lr-{J1 J12}
II = 1-_]-_p_2_ 1- r2t2 -

where
,T

Jil =
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r2! ' 4 r 2

J12= + 72__(1__28 l p2- 9p4 5p6_/(-i _ T)732r 2 8r 4+2r61 •

and

where

I2 =/'/1 "f_- p2t2dt = ]r-(J21+ J22)

.Io

iVJ21 = _ _ u2 du

- r2

and where, for the present computations, T = 0.99.

For prescribed values of a, _'o and ?, equation (14) can be solved for the

normalized force q. The integrals Jll and J21 were evaluated using a

standard mathematical library routine based on Simpson's rule. Equation

(14) was solved by use of an available mathematical library routine which

first bounds the root and then uses interpolation to obtain a converged

value. An error criterion for f of 10 -4 was used in equation (14). After

equation (14) was solved, _- was calculated from equation (13), again using
L

the routine based on Simpson's rule. A complete load-shortening curve

was generated by incrementing 7 and repeating the solution process for

numerous prescribed values of a and _'o"

RESULTS AND DISCUSSION

The results are presented in figure 2 as plots of q(_) for various
,,Ik,,d

combinations of initial curvature and load eccentricity. For reference, the
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elastica solution, which the present solution approaches from below as load
eccentricity and initial curvature vanish, is also shown in each figure.

Figure 2(a) shows that for zero load eccentricity, the present results
are barely distinguishable from the elastica solution when initial curvature
is very small (T_= 0.0001). As initial curvature is increased, the deviation
from the elastica solution becomes more pronounced, particularly at small

values of column shortening. However, for #-- greater than about 0.05, all of
L

the load-shortening curves are essentially parallel to the elastica curve,
indicating that the tangent stiffness of all the "buckled" columns is about
equal to that of the elastica.

For progressively larger dimensionless load eccentricity, _ , the relative
importance of initial curvature is seen to diminish. In figure 2(f), for
example, note the small range in the results for initial curvature values
from 0.0001 to 0.03. Hence, a value of 0.05 for dimensionless load
eccentricity would ensure smooth nonlinear load-shortening behavior, with
little chance of troublesome column instability. However, the slope of the

curve is somewhat greater than that of the elastica in the A-range of
L

interest, say, 0.1 to 0.3, indicating a tangent stiffness which is above the
minimum achievable.

Figures 2(b) through 2(e) are for values of load eccentricity in the

range 0.002 < a< 0.02. As expected, 311 of these results lie in the envelope
L

defined by the curves for load eccentricity, a of zero and 0.05, and show
L'

in the A-range of interest a gradual but discernable trend toward higher
L

slope (thus, higher tangent stiffness) with increasing load eccentricity.

Thus, the desire for the lowest practicable tangent stiffness would require

that load eccentricity be kept reasonably small.

The results also show that the effects of initial curvature and load

eccentricity are essentially the same. Thus, the relatively soft

"postbuckling" behavior of the nearly perfect slender column can be

obtained by imposing reasonable values of either initial curvature or load

eccentricity. In most situations it would appear that, of these two
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perturbing influences, load eccentricity would be easier to quantify and
control.

An appreciation of the magnitude of the tangent stiffness of the bent

column can be gained by comparing the slope of the load-shortening curve

for bending with that of the prebuckling load-shortening curve for the

straight column under axial compression. For illustrative purposes, the

two curves are combined in the sketch below to represent a continuous

prebuckling and postbuckling load-shortening curve for a perfect column.

The slope of the postbuckling curve is exaggerated for easier visualization.

P

A

Note that
tanct =(dP)bdA = _--_LP--)2tan[3<<(dP)c =tan[3"dA

From the elastica solution (ref. 1), it can be shown (See Appendix) that

the initial postbuckling slope of the load-shortening curve is, in
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dq =1, which can be rewritten as (d__)=xZEI,
dimensionless terms, _ b

,L,,
where the subscript b denotes bending. (As can be seen in figure 2, this is

a close approximation to the present results for a large range of column

shortening.) The corresponding expression for prebuckling axial

compression is /dPl = ,_-_-, where the c denotes compression.
_ /c 1-'dA

the two tangent stiffness measures is

The ratio of

dal E _ _2I rc2/ t2

(d_-)c 8L2---A - _ ,L-] '

where P is the radius of gyration of the column cross section. For slender

columns, this ratio is very small. However, to put this result in

perspective, note that the initial postbuckling slope is of the same order of

magnitude as the slope of the load-deflection curve for the tip-loaded

straight cantilever beam of length L, i.e.,

This means, of course, that a buckled-column support system would

simulate free-free specimen support conditions about as well as would a

system employing cantilever beams. Hence, although the slope of the load-

shortening curve for the buckled column is very small in comparison with

the perfect column's prebuckling slope, it is not negligible, particularly

when compared with the initial postbuckling slope of the plot of load as a

function of lateral tip deflection, which is zero.

CONCLUDING REMARKS

In this paper, the load-shortening behavior of an eccentrically loaded,

initially imperfect slender column has been analyzed. The results indicate

that such columns can be designed to behave as relatively soft springs
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over a wide range of column shortening, for reasonably broad ranges of
initial curvature and load eccentricity. Both initial curvature and load
eccentricity are seen to promote similar nonlinear behavior. Because load
eccentricity is probably easier to impose with accuracy, it is likely to be
the preferred parameter to specify in order to produce and control the soft
"postbuckling" behavior of the slender column. If the tangent stiffness of a
"buckled" column is low enough to satisfy test requirements, then a
specimen support system that incorporates eccentrically loaded slender
columns may present a useful alternative to a system requiring very long
suspension cords. It should be noted, however, that the tangent stiffness
of the deformed column is of the same order as that of an initially straight,
tip-loaded cantilever beam and, thus, may not be low enough to satisfy
some test requirements.
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APPENDIX

The Initial Postbuckling Slope of a Perfect Inextensional Column

From reference 1, the two equations governing the load-shortening

behavior of the elastica are, in dimensionless terms,

and

_L = k-_F-(p)- 1 (A1)

kL = K(p) (A2)

where K(p) and E(p) are complete elliptic integrals of the first and second

kind, respectively, p=sin_, and k= Xfq-. Letting _. =_, (A1) and (A2)2 L

become



and

I+K - 2E(p)
K(p)
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(A3)

_/-q-= K(p)
2

Differentiating both equations with respect to 7_,

and

dp _ K2

dp dp}

(A4)

(A5)

dX

Inserting (A5) into (A6) gives

dq _ 4 _r-q- d_K_d__EP

dpd_.

K_K
d q = 2¢q-_. dp

d_. _ BdK_ KdE

dp dp

For load only slightly above the buckling load (q=l), p=sin tx
2

(A6)

(A7)

is very small.

Hence, K(p) and E(p) have the valid power series

(A8)

and

E(P)=2_(1 P2 )4 64_-p4 +"" (A9)

Substitution of (A8) and (A9) into (A7) yields

d q _ "(q-(1 + O(p2))
dK 2
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As q_l+, p_0; therefore,

from above.

as the buckling load is approached
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Figure 1. Coordinate system and nomenclature.
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Figure 2.- Load-shortening curves for an initially curved, eccentrically loaded column.
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