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SUMMARY

The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic

dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-

difference methods and direct block solvers, is used to study the limits of linearized and equilibrium

theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to

illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane

interfaces, and the transient buildup of oxygen flux.

INTRODUCTION

Membranes have been found to be very useful for separating both gaseous and aqueous mixtures.

Artificial membranes with very selective separation properties are now commercially available and may

find many applications in advanced life support systems for future space missions. The concentration

and separation of aqueous wastes have been studied extensively using the reverse-osmosis process,

which depends on the passive action of membrane systems (Lonsdale, 1986). Another, and very intrigu-

ing, aspect of membrane separation is the facilitated transport mechanism (Schultz, 1986). This mode of

diffusive transport was discovered in experimental studies of oxygen diffusion through films of hemo-

globin solution, and has been the subject of many studies. Facilitated transport depends on the action of

a reversible chemical reaction to increase the flux of a permeant many times over that existing in a pas-

sive medium. This is a particularly effective method for the selective transport of specific molecules

such as oxygen through a liquid membrane of hemoglobin in blood plasma. This paper presents a new

analysis of facilitated transport in a particular biological process--the enhanced diffusion of oxygen

using oxygenated hemoglobin as a carrier. This analysis should also be useful in the development of new

carrier species, both natural and synthetic, for the efficient separation and concentration of gaseous com-

ponents of life support systems (such as carbon dioxide) for long-duration space missions.

Hemmingsen and Scholander (1960) and Scholander (1960) demonstrated that the oxygen flux

through thin liquid films is greatly enhanced by the presence of the protein hemoglobin. Furthermore,

the degree of enhancement was shown to be sensitive to the oxygen concentration difference across the

membrane. In an attempt to explain these important observations, many mathematical models were

developed (Collins, 1960; Wang, 1961; Fatt and La Force, 1965; Friedlander, 1965). These early papers

made the critical assumption that oxygen and hemoglobin were in chemical equilibrium across the film.

This is a reasonable assumption for the oxygen-hemoglobin system for films thicker than about

100 microns. In the equilibrium state, the degree of facilitation can be simply computed with algebraic

techniques or even estimated qualitatively using the oxygen dissociation curve.

The steady-state diffusion of oxygen through hemoglobin solution was computed for the case of

nonequilibrium chemical reactions by Kutchai et al. (1970). The equations governing the process are a

system of coupled nonlinear ordinary differential equations. Using a numerical algorithm based on the

quasi-linearization scheme, they were able to predict the overall facilitation as well as the detailed distri-

bution of oxygen and hemoglobin across the liquid membrane. The system of equations displays a

boundary layer effect at the air/film interfaces which has been the source of past difficulties in the



analysisof thesesystems.In Kutchai et al. (1970), a special iteration scheme was developed to obtain

converged solutions for increasing film thicknesses. An important conclusion of this work was that in

vitro studies of facilitated transport are adequately predicted by equilibrium theories, but for systems of

the dimensions of human erythrocytes, the more complex nonequilibrium analysis must be used since

the effective film thickness cannot be accommodated by equilibrium theory.

Following these studies, a number of new analysis methods were introduced. A numerical scheme

based on the concept of"local linearization" was introduced by Gonzalez-Fernandez and Atta (1981,

1982). An approach based on the finite element technique was used by Jain and Schultz (1982). This

latter work, in particular, includes a very comprehensive discussion of the boundary-layer effect and

introduces one particular method to treat this difficulty. On the analytical side, this problem has been

treated as an example of a "singular perturbation" (Goddard et al., 1970; Schultz et al., 1974) where the

governing differential equations are such that the highest derivative is multiplied by a small parameter.

In the limiting case of an infinitely thick membrane, this parameter vanishes and the system is in chemi-

cal equilibrium. In this limit, it is not possible to satisfy all the boundary conditions, and this has been

the source of some confusion in the past. This boundary-layer effect is also the basis for the term "stiff-

ness" that has been used for this class of transport processes and it causes many difficulties in the solu-

tion of facilitated transport problems. (It is interesting that this is a relatively benign singular pertur-

bation since the derivative of the unknown function is given as a boundary condition. Its limiting value,

however, can easily be computed from equilibrium theory. In the original singular perturbation problem

concerning the flow of a viscous fluid, the value of the function is given and its derivative is unknown.

The limiting case is the nonphysical slip-flow solution with the derivative undefined.) All of the work

mentioned above treats the steady-state transport and assumes that the chemical reaction is a second-

order process.

The flow of oxygen across a thin film is not an instantaneous process and, in fact, the development

time is a strong function of the system parameters. The study of unsteady facilitated transport is not as

well developed as the steady problem. Recent studies of unsteady facilitated transport by Ruckenstein

(1982) and Varanasi (1983) also used the local linearization method mentioned above and assumed

second-order chemical reactions.

In this paper, the unsteady transport of oxygen across a hemoglobin solution with higher-order

chemical reactions is studied using a finite-difference algorithm based on the method of time lineariza-

fion. Before applying the algorithm, the governing systems of equations are recast into a first-order

matrix-differential equation. This has the distinct advantage that all fluxes are treated as dependent vari-

ables and are computed directly as the solution evolves. Another advantage is that the transport of mul-

tiple permeant-species can be easily accommodated--the only change being the order of the matrices

involved. A third advantage of the matrix approach is that the eigenvalue spectrum can be easily com-

puted, which gives a good physical understanding of difficulties found in previous solution methods. It

is shown that this problem is yet another example of a class of"stiff" problems that arise frequently in

practical situations. The facilitated transport problem is stiff in the spatial sense, which means that

eigenmodes of disparate scales are generated.

It has been demonstrated in the theory of nonequilibrium high-speed gas dynamics (Lomax and

Bailey, 1967) that implicit numerical methods are almost mandatory when solving stiff problems. In this

paper, an implicit algorithm based on a noniterative block-triadiagonal solver is implemented in the



developmentof anefficient solutionprocess.A linearizedform of thereaction-diffusionequationis
derivedthathighlights thedisparatetimescales.This linearizedsystemis usedto developanexplicit
formulafor thesizeof theboundarylayerregion.In thefollowing sections,solutionsto thefull nonlin-
earsystemsarepresentedfor theoxygen-hemoglobinsystemandcomparisonsmadewith previously
publishedresults.Theeffectof initial conditionsandphysicallyplausibleoxygendissociationcurveson
thefinal steady-stateflux is computedusingthesystemparametersof Scholander(1960),Hemmingsen
andScholander(1960),andKutchaiet al. (1970).

THE OXYGEN DISSOCIATION CURVE AND FACILITATED TRANSPORT

A very important measure of the oxygen affinity of hemoglobin is its characteristic dissociation

curve. In most theoretical treatments, a second-order reaction is assumed which restricts the curve to one

branch of a hyperbola. This is a good approximation for oxygen transport through myoglobin, but is not

as accurate for the cooperative binding that occurs in hemoglobin molecules. A simple analytical

approximation to the oxygen dissociation curve is (Stryer, 1981, p. 67):

ctnpO_
Y = (1)

otnpO_,0.5 + tx"pO_

where Y is the ratio of oxyhemoglobin to the total hemoglobin present and t_ is the solubility coefficient

(assuming Henry's Law). pO2 is the partial pressure of oxygen (o_pO2 is its concentration in moles/cc)

and pO2,0.5 is the oxygen partial pressure when Y = 0.5, which is a commonly used reference point for

the dissociation curve. The effect of the exponent n will be investigated for the cases n = 1 (hyperbolic

dissociation curve) and n = 2.8 (Hill's exponent, sigmoidal dissociation curve).

Dissociation curves are shown in figure 1 for (1) an approximate second-order curve that matches

the 50% saturation point in Scholander (1960), (2) an approximate 3.8th-order reaction that matches the

same 50% saturation point, and (3) an approximate 3.8th-order reaction that matches the 3.8th-order

reaction for hemoglobin at physiological conditions. The experimental data show a very rapid rise to

100% saturation that is better matched to the sigmoidal shaped curve than the hyperbola. The increased

oxygen affinity for the in vitro experiments referenced in Scholander (1960) may be due to the absence

of certain substances in the intact erythrocytes.

These curves can also be used to assess the relative degree of facilitation assuming equilibrium

conditions throughout the film. The slope of a line from the origin to any point on the dissociation curve

is proportional to the facilitation factor for the transport of oxygen from the indicated value of pO2 to a

vacuum. It is clear from figure 1 that for pO2 < pO2,0.5 the facilitation factor for a second-order reaction

is increased relative to that using Hill's exponent, while the reverse is true for pO2 > pO2,0.5. Similar

comparisons can be made for other oxygen concentration differences. Further details of the facilitation

process for nonequilibrium conditions must be made with the aid of the governing differential equations.
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GOVERNING EQUATIONS AND LINEARIZED FORMULATION

The continuity equation for the transient diffusion of a dilute permeant (oxygen) in a solvent that

supports a reversible chemical reaction (hemoglobin solution) is generally expressed as a reaction-

diffusion equation:

3C
_)--_-= DV2C- R (2)

where C is the species concentration, D is the diffusivity, and R is the rate of reaction of the species C.

In the case of a one-reaction/three-species system in a one-dimensional membrane, equation 2 is

replaced by three coupled partial differential equations:

3[02] DA 02[02 ]

3t L 2 3x 2
R

0[Hb] DB _)2[Hb]
R (3)

0t = V " 3x 2

0[HbO 2] DB 02[HbO2 ]

3t L 2 3x 2
+R

The bracketed quantities denote concentrations of oxygen, hemoglobin, and oxygenated hemoglobin,

respectively. The diffusivity for hemoglobin and oxygenated hemoglobin are assumed equal. The main

justification for this assumption is the much greater molecular weight of the hemoglobin protein com-

pared with the oxygen molecule (Kutchai et al., 1970). The distance x across the membrane is normal-

ized by the thickness L. The solution to equation 3 must satisfy the following boundary conditions at

every instant of time:

_)[HbO2] O[Hb]
[02] = Co 3x = _ = 0 @ x = -0.5

0[HbO2] 3[Hb]
[02] =C1 3x 3x -0 @x=+0.5

(3a)

which state that under the influence of the driving concentration gradient (Co - C1), the hemoglobin-

containing species are trapped in the membrane. The most useful result of the analysis is the flux of the

permeant, -DA/LO[O2]/3x, at the membrane exit.

Much of the literature on facilitated transport is concerned with the steady-state solution applied to

the following idealized second-order chemical reaction:



0 2 + Hb _-_ HbO 2 (4)

This reaction will be compared with the reaction

nO 2 + Hb _-o HbO2n (5)

which reproduces the experimental dissociation curve more accurately when n = 2.8 as shown as curve 2

in figure 1. It should be noted that the factor n is just an artifact used to match experimental data and is
not an actual stoichiometric coefficient.

The kinetic constants kl and k2 governing the rate of reaction are

R = k 1[O2]n[Hb] - k2[HbOzn] (6)

and the value of n is taken as either 1 or 2.8. The rate of reaction is a nonlinear function of the species

concentration, and this is the main source of difficulty in solving the system of equations analytically.

With the assumption that the diffusivities of the hemoglobin-containing species are equal, which is

quite good for this system, the relation between the Hb-containing molecules is simply (Kutchai et al.,

1970)

[Hb] + [HbOza] = Q* (7)

where Q* is the total hemoglobin concentration (a constant in moles/cc).

Aside from the nonlinearity, the other major difficulty is the disparate time scale in equation 3

between the diffusive process (the space derivative term) and the chemical reaction (the forcing

function). This important effect can best be illustrated with the aid of a linear model and an appropriate

scaling. A common assumption used in the literature to linearize the facilitated transport problem (Noble

et al., 1986) is that [Hb] is always at a constant level in equilibrium with [02] and[Hb02]. In the case of

n=l:

[Hb]- k2[HbO2] (8)
kl[O2]

Eliminating the hemoglobin-oxygen complex from equations 7 and 8 yields the final formula for

[Hb]:

Q_
[Hb] = (9)

1 + K[O 2]
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whereK is theequilibriumconstantkl/k2. Theoxygenconcentrationis somerepresentativevaluesuch
asthemeanboundaryconcentrationA0. With one of the reacting species constant, the system of equa-

tions reduces to a coupled set of linear ordinary differential equations:

D A 0

0 D E

0202

/)x 2

O2[HbO2]

Ox2

klQ*

1 + KA o

-klQ*

l+kAo

-k2

k2

[02 ]

[HbO 2]

- q

01
i i

= - (10)
I

ol

For further analysis, it is useful to consider the system as a set of first-order ordinary differential

equations. Let the vector w be defined as the nondimensional quantities {[O2]/Q*, [O2]'/Q*, [HbO2]/Q*,

[HbO2]'/Q* }T. The final 4×4 system of linear equations with constant coefficients is:

t

w 1

W2

w 3

!

W4

0 1 0

" T1

o

0 0 0

- T2
0

0- "WlI

0 w21

1 w3l

0 w41

(11)

where primes denote x derivatives; the four relevant constants are

T1 = L2/DA, T2 = L2/DB, T3 = 1/(klQ*), T4 = l/k2

and the factor 13resulting from the linearization is 1/(1 + KA0).

The constants T1 through T4 have the dimension of time, which, even though the problem is steady-

state, have physical significance since the computed quantities represent transport rates. Unlike the tran-

sient problem considered in the following section, these parameters always appear as nondimensional

ratios.

The first two scales relate to the diffusion of the permeant and carrier species, and the latter two

relate to the forward and backward kinetic constants. The parameters DA, DB, kl, and k2 are fixed val-

ues for the O2-Hb reaction while the membrane length L and the total Hb concentration Q* are subject

to variation in particular experiments. The second through fourth columns of table 1 show expected val-

ues of the constants for a representative range of the parameter L using the system parameters from

Kutchai et al. (1970).
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Sincetheforward chemicaltime constantT3 is sofast, thechemicalreactionin equation4 is heavily
weighedtowardtheright. In addition,thediffusive timeconstantsarequitelargefor increasingmem-
branethicknesses.Sincethereciprocalsof thesediffusive timeconstantsmultiply thespacederivatives,
this termin equation3 is generallysmall,whichindicateschemicalequilibrium.Thedualconstraintof
satisfyingtheequationaswell astheboundaryconditionscauseslargedeviationsfrom equilibrium at
theboundarieswhentheratioof timeconstantsis large.Thedetailsof thesolutiondependon all four
timeconstants,outof which only threeindependentnondimensionalparameterscanbeformed.The
Damkohlernumber,definedastheratio of thediffusive to chemicaltime scales,hasoftenbeenusedasa
representativeparameter.The systemcorrespondingto L = 100_tis characterizedasonewith a large
Damkohlernumberandis referredto asa"fast" reaction.Suchlinearsystemshavebeenthoroughly
examinedin the literatureby assumingequilibriumthroughout,or by usingthemethodsof asymptotic
analysis.

Thegeneralsolutionof equation11is asumof four exponentialsthatdeterminethespatialdis-
tribution, eachhavingits own eigenvalueandeigenvector.Theparticulareigenvaluesactuallyexcited
dependson theboundaryconditions.Equation11hasthepropertythatthecoefficientmatrix possesses
aneigenvalueequalto zeroof rank2.This simplymeansthatequilibrium solutions(nochemical
reaction)areadmittedwith a linearspatialgradientin [02]. A singleparameterthatcharacterizesthe
systemis theabsolutevalueof theremainingtwo eigenvalueswhichcanbecalculatedfrom the
coefficientmatrix as

y__ T1 T2
(12)

The magnitude of the eigenvalue is computed for a range of membrane thicknesses and is also shown

in table 1 along with the inverse of the eigenvalue which is a measure of the boundary layer thickness.

Since one set of eigenvalues is always zero and the other set grows to very large values, this system of

fast reactions is characterized as a stiff system. There is a large and growing literature concerning stiff

systems of ordinary differential equations, mostly associated with initial value problems (Seider et al.,

1982). In the case of facilitated transport, the stiffness becomes a problem associated with the boundary

conditions as well as with the equations themselves, and is manifested by rapid spatial gradients near the

boundaries.

SOLUTION OF THE FULL NONLINEAR EQUATIONS

The nonlinear time-dependent equations are solved by the method of time linearization using an

implicit numerical algorithm with direct block tridiagonal solvers. In many applications it has been

found to be advantageous to use direct solvers rather than iterative techniques whenever possible. In the

unsteady implementation by Ruckenstein, an implicit algorithm was found to be more successful than

earlier attempts using explicit methods. However, iterative techniques are needed to solve the resulting

finite difference equations at each time step. Results are presented here using direct solvers for a range

of cases from slow to very fast chemical reactions, including the temporal evolution of the transport

process.



Most of thedevelopmentsreportedhereon theuseof implicit numericalmethodsfor stiff systemsof
equationsarebasedonwork performedat NASA AmesResearchCenterin the 1960sonnonequilibrium
aerodynamics.In LomaxandBailey (1967)thereis a completediscussionof therole of eigenvaluesin
choosinganappropriatenumericalschemefor high-speedcompressibleflow. fit is interestingthatthe
local linearizationtechniquespresentedin Gonzalez-Fernandez(1981)andMoretti (1965)arevery simi-
lar,but areappliedin twovery differentdisciplines:biophysicsandhypersonicgasdynamics,
respectively.)

Themethodof timelinearizationinvolvesthesimpleexpedientof expandingthenonlineartermin a
Taylor seriesaboutthesolutionataprevioustimestep.Thefirst stepis to discretizeequation3 in time
usingEuler forwarddifferences:

0[O 2] [0 2] -- [O21 p
m--

Ot At

O[HbO 2] [HbO 2] - [HbO2] p

Ot At

(13)

where the subscript p refers to the previous value of the indicated quantity. Next, assemble the resulting

equation in terms of the vector w defined previously

w-- = F(_W.,Wp)

where F is generally a nonlinear function of_.w at the current and previous time step. The linearized form

is easily found by expanding F in a first-order vector Taylor series about (._- wp):

w' = F(wp, Wp) + (_w.- Wp).VF(wp, Wp)

The net result of this operation is to add two extra terms to the second and fourth rows of the coefficient

matrix. It also affects the structure of the system by causing the coefficient matrix to vary in both space

and time. Since no analytical solution is readily available for this linear problem, a numerical approach

is necessary. In the development of such techniques for multidimensional problems with disparate

scales, special methods, usually based on stretched coordinates, were developed. These "grid generators"

are used to cluster the mesh in regions of high parameter variations. A typical application of this

approach is discussed in Dwyer et al. (1982). In the current problem, with only one space dimension, it

is useful to consider uniform grids to clearly highlight the resolution required to resolve the boundary

effects. It is fortunate that the limit solution, that of complete chemical equilibrium, is a known boundary

point for an infinitely dense grid.

The final system of equations is:

w-- = Aw + B



whereA is the4×4coefficientmatrixandB isa 4×1vector.BothA andB dependuponW_.p.Thematrix
A is:

0 1 0 0"

TI T: n T1 TI
0 -Wlp T3 T4 0

0 0 0 I

T 2

-nw_l(1-w3)
T2 T2 T2

o w,"=+=-+._'_ A_ 0

The inhomogeneous right-hand side B is:

0

T: T: T 1

_ n nWlpW3p _3 Wlp "_(1 n)w:pT33 + "

0

T2 n T2 T2

-0 - n)w__ - nw,w3__- w3_

The system is solved with second-order central finite differences in vector form. Second-order forward

and backward formulas are used at the boundaries to avoid including external mesh points.

After discretization, and incorporation of the boundary conditions, the solution vector w is easily

computed using the block tridiagonal inversion algorithm described in Isaacson and Keller (1966). As

mentioned above, one advantage of the matrix formulation is that more reactions and/or species can be

accommodated by simply increasing the size of the blocks in the tridiagonal system.

CALCULATED SOLUTIONS

Membrane thickness is a dominant parameter in facilitated transport. Extremely thick or thin mem-

branes can be analyzed using equilibrium or linearized methods, respectively. However, many problems

of practical importance lie in the intermediate range.

Calculations are shown in figures 2 through 4 for membranes of thickness 1, 10, and 150 microns

using the system parameters in table 1. Curves are shown for X = [O2]/C0 and Y = [HbO2]/Q* from both

linear and steady-state nonlinear calculations. Also shown are curves of oxyhemoglobin concentration



usinglocal equilibriumvaluesof X. At L = 1It thedistributionof theoxygenpermeantispredicted
quitewell usingboth linearandnonlineartheory.Thedeviationfrom completeequilibrium (alinear
functionof X vs. x), is slight,butmoreapparentis thediscrepancybetweentheequilibriumcurveand
thetwo computedoxyhemoblobindistributions.Thereis a significantdifferencebetweenthelinearand
nonlinearoxyhemedistributionsnearthehighpressuresideof themembrane.Thelinearsystemin
equation11is constrainedto besymmetricalaboutx = 0, themidpointof themembrane,whichmay
accountfor thedifference.ThediscrepancybetweenthenonlinearY-curveandtheequilibriumcurve
reversessignat aboutx = 0.16.This indicatesareactionreversalin equation6 andsubsequentunloading
of oxygenat themembraneexit.

Figure3 showsthe samedependentvariables,but for a 10-micron-thickmembrane.Herethedis-
crepancyin thecomputedY-distributionsis obviousandthesymmetryconstrairitseemsto drive the
oxyhemecurveto valuesgreaterthanone--a physicallyunrealisticresult.Anothertendencyis for the
oxygenconcentrationcurves(X) to becomemoredistorted,butwith thesideeffect thatchemicalequi-
librium is almostcompleteexceptfor thestrongdeoxygenationof hemoglobinattheexit.

Figure4 showsthemostextremecaseof L = 150It. Herethelinearsolutionis obviouslyinapplica-
ble andis not shown.Thedistributionof oxygenpermeantis slightly moredistorted,but themostimpor-
tantaspectof thiscurveis not atall obvious.This is theflux continuityconstraintthatforcestheslopeof
theoxygencurveto matchat entranceandexit, sincethis speciesis conservedwithin themembrane.
The slope(or flux) changesvery rapidlywithin the lastonepercentof themembrane.Thegoverning
equationscanbemanipulatedin suchaway (FattandLaForce,1965)thattheflux canbeaccurately
computedfrom thedifferencein oxyhemeconcentrationacrossthemembrane.Thesensitivityof the
flux (e.g.,thedifferencein Y-valuesatentranceandexit) to thegrid is shownin asequenceof five
curveswith 32,64, 128,256,and512meshpoints.Thegrid sizeis shownto havean importanteffecton
thecomputedflux. Figure5showsanexpandedview of thisregionandshowsclearlyhow thezero-
slopeboundaryconditioncompeteswith theoxygendissociationcurvein suchaway to inducerapid
changesneartheboundary.Theextentof thisregionis directlyrelatedto theeigenvaluesfrom thelinear
analysisaspresentedin equation11.

Thetendencytowardequilibriumacrossthemembraneis very strong.Theonly deviationis avery
thinboundary-layerregionwheredissociationoccursin orderto satisfytheboundarycondition.Increas-
ing meshdensityshowsanapproachto anasymptoticvalueof Y which is just slightly abovetheequilib-
rium value.As mentionedabove,thesingularperturbationis suchthattheequilibriumvalueis always
availableasalower limit. This effectivelyfixes theupperlimit on thepossibleflux whichcanbecom-
putedusingalgebraictechniques.Thesizeof thisboundary-layerregioncanbeapproximatedfrom the
inverseeigenvalue(lastcolumnin table1).

A calculationshowingtheunsteadyevolutionof thepermeantis shownin figures6 to 9for thecase
L = 10It. All calculationsarefor a512-pointmeshinterpolatedto 50pointsfor clarity.Figure6 depicts
X asafunctionof spaceandtime for two differentinitial concentrations--alinearandanexponential
distribution.In bothcases,chemicalequilibriumwasassumedin computingtheinitial valuesof Y. The
linearinitial distributionin figure 6(a)correspondsto theclassicalcaseof passivediffusionthrougha
membranewith uniform flux throughout.Thedistributionof permeantadjustsveryrapidly to the imbal-
ancecausedby theboundaryconditionconstraint.Thisadjustmenttime is of theorderof 0.3 secwhich
correspondsto theslowchemicaltimescalein table 1.Theexponentialdistributionshownin figure 6(b)
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is probablyamorerealisticinitial conditionsincethestartingflux vanishesat themembraneexit. Relax-
ationto steadystatetakesalittle longer.Summarycurvesof entranceandexit flux areshownin figure7
whichgive abetterindicationof theapproachto steadystate.

Theseresultsshowthatthesteady-statesolutionis independentof initial conditions--an important
physicalconfirmationof themathematicalmodel,sinceit is by nomeansassuredthatlong-time
solutionsof nonlinearproblemsareindependentof initial conditions.

Figures8(a)and8(b)arethedirect counterpartsof figure 6exceptfor theuseof"sigmoid" shaped
dissociationcurves(specifically,curve2 in figure 1).Asidefrom adifferentdistributionof speciesin the
steadystate,thecalculateddatashowalargertransientafterthe initial start.This transientseemsto be
concentratedin the low-pressurekneeof thedissociationcurve.Thesteadydistributionof oxygenand
oxyhemoglobinis shownin figure9. A comparisonwith figure 3 showsthefollowing dissociationcurve
effects:1)Sincethesigmoidcurvehasahighaffinity for oxygen,thereisvery little freehemoglobinat
thehigh-pressureboundary;2) Theboundarylayerregionnearthe low-pressureendof themembraneis
wider.This indicatesareductionin stiffnessin thegoverningequationswith a lesssevererequirement
on thenumberof grid points.Finally, figure 10showstheapproachto steadystateasmeasuredby the
evolutionof theentranceandexit flux. Note theslightly longersettlingtimeandtheenhancedexcursion
of thetransientwhencomparedwith figure7.

Themostimportantsingleparameterin facilitatedtransportis theoverallfacilitation factor.Com-
putedfacilitation factorsarecomparedwith theexperimentsof Scholanderandthecomputationsof
Kutchaiin figure 11.As mentionedabove,thefacilitation factoris definedastheratioof theoxygen
flux throughthemembraneto theflux thatwouldexistwithout acarrierspecies(Hb in thiscase)pre-
sent.Thedefinition usedhereisonegreaterthanthatusedbyKutchaiet al. (1970).Thepatternedline in
figure 11representstheexperimentalvariationof F with variablepO2.Thecrossesandopencirclesrep-
resentcomputationsfrom Kutchaiandthepresentcode,respectively,usingthehyperbolicdissociation
curve.The slightdifferencesarebelievedto becausedby thediffering solubilitiesusedin thetwo calcu-
lations.Thesolidcirclesrepresentresultsusingthesigmoidaldissociationcurve.Referringto figure 1,
thiscurveis abetterfit to thedissociationdata,asreflectedin thebetteragreementbetweentheoryand
experiment.

Thisparticularcaseis agoodexampleof a stiff problemwhere the facilitation factor is quite close to

the equilibrium value. This behavior is illustrated in figure 12 for the particular case pO2 = 25 torr.

Referring to figure 1, the operating region for the dissociation curve is the range 0 < pO2 < 25. The solid

curve (dissociation curve 2) shows a more gradual fall in the normalized oxygen concentration at the

low-pressure boundary when compared to the dashed curve (dissociation curve 1). Figure 13 shows a

similar comparison for the oxyhemoglobin curves. As expected, the curve obtained using Hill's expo-

nent is almost completely saturated at the high-pressure end of the membrane. Finally, figure 14 depicts

the ratio of the flux of free oxygen to the total (free and oxygenated) flux across the membrane. A value

of one indicates pure oxygen transport and a value of zero indicates oxyhemoglobin transport only.

These curves indicate that the physically significant Hill's curve has a less-severe boundary layer effect

and that only a small percentage of the oxygen is transported as a free species across the bulk of the

membrane. This curve also clearly shows the region of active chemical reactions, as indicated by severe

gradients. The beneficial effect of facilitated transport can be attributed to the fact that a rapid forward

chemical reaction converts the oxygen to a combined form which is transported across the membrane in

11



this form. At the low-pressureend,theoxygenmoleculesare"dumped"in areversereaction.Thestrong
asymmetrycausedby thenonlinearinteractionseemsto beanimportantaspectof thetransportprocess
for this stiff problem.

CONCLUSIONS

A numerical study of unsteady facilitated transport of oxygen in the nonequilibrium range has been

extended to model more realistic dissociation processes. A new analysis using implicit numerical

schemes with direct tridiagonal solvers has been used to solve the governing reaction-diffusion

equations.

The most important results from this analysis are: (1) Higher-order reaction models that better match

oxygen dissociation curve data yield better agreement among theory and experiment for in vitro studies;

(2) The linearized approximation can give useful information concerning the effect of the system

parameters, but certain inherent symmetries of the linear theory cause serious errors in the facilitation

factor as the equations become stiff; (3) The steady-state oxygen flux through a membrane is indepen-

dent of the initial conditions; (4) The sigmoid oxygen dissociation curve causes almost 100% oxygen

saturation in the high-pressure side of the membrane and increases the size of the boundary-layer region

in the low-pressure side. This latter effect relaxes the stringent grid resolution problems using numerical

methods.

The computational results reported in this paper were obtained on a VAX minicomputer. The analy-

sis, however, is quite general and can be extended to greater space dimensions using more powerful

computer resources to study more complex systems. It is expected that the unsteady aspects will be very

important for biological systems since the characteristic diffusion time is probably larger than the

molecular uptake time of a circulating red cell.
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TABLE 1- Expected Values of Time Constants for Facilitated Transport of Oxygen through

Hemoglobin Solution

DA = 1.45x10 -5 cm2/sec

DB = 3.00x 10-7 cm2/sec

kl = 3.18x109 (sec-moles/cc) "1

k2 = 40 sec-1

Q* = 10xl0 -6 moles/cc

pO2 = 100 torr at entrance
o_= 1.7x10 -9 moles/cc/torr

Co = 1.7x10 "7 moles/cc

C1 = 0.0

L T1, sec T2, sec T3, sec "I"4, sec Z,

1 0.00069 0.0333

10 0.0690 3.33

100 6.90 333

150 15.5 750

0.0000314

0.0000314

0.0000314

0.0000314

0.025

0.025

0.025

0.025

2.04

20.4

204

306

0.4902

0.04902

0.00490

0.00327
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Figure 1.- Dissociation curves for oxygen transport through hemoglobin solution. Curve 1, Second-

order chemical reaction, pO2,0.5 = 7.4 torr; Curve 2, Sigmoid dissociation curve, pO2,0.5 = 7.4 torr;

Curve 3, Sigmoid dissociation curve for physiological conditions, pO2,0.5 = 26 torr. Symbols,

experiment (Hemmingsen, 1960).
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Figure 2.- Distribution of X = [O2]/C0 and Y = [HbO2]/Q* across the membrane. Second-order

chemical reaction, L = 1 micron, pO2 = 100 torr at entrance, 0 at exit. _, nonlinear calculation;

, linear calculation; .......... equilibrium curve Y(X).
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Figure 3.- Distribution of X = [O2]/C0 and Y = [HbO2]/Q* across the membrane. Second-order chemi-

cal reaction, L = 10 microns, pO2 = 100 torr at entrance, 0 at exit. _, nonlinear calculation; --

, linear calculation; ........... equilibrium curve Y(X).
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Figure 4.- Distribution of X = [O2]/C0 and Y = [HbO2]/Q* across the membrane. Second-order chemi-

cal reaction, L = 150 microns, pO2 = 100 torr at entrance, 0 at exit. _, nonlinear calculation; -

, equilibrium curve Y(X). Curves of Y shown for 5 different computational grids.
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Figure 5.- Same conditions as figure 4 showing low-pressure side of membrane.
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Figure 6.- Space-time distribution of oxygen concentration. Second-order chemical reaction,

L = 10 microns, pO2 = 100 torr at entrance, 0 at exit. a) Constant flux (linear) initial distribution,

b) variable flux (exponential) initial distribution.
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pO2 = 100 torr at entrance, 0 at exit. a) Constant flux (linear) initial distribution, b) variable flux

(exponential) initial distribution.
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Figure 9.- Distribution of X = [O2]/C0 and Y = [HbO2]/Q* across the membrane. Sigmoid dissociation

curve, L = 10 microns, pO2 = 100 torr at entrance, 0 at exit. _, nonlinear calculation;

linear calculation; ......... equilibrium curve Y(X).
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Figure 12.- Comparison of X = [O2]/C0 distributions across a membrane, pO2 = 25 torr at entrance.

_, sigmoid dissociation curve; , second-order dissociation curve.
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