
'
L/

N90-16446

SORT COMPUTATION

John E. Dorband

NASA/Goddard Space Flight Center/635
Greenbelt, MD 20771

ABSTRACT

Sorting has long been used to organize data in preparation for

further computation, but sort computation allows some types of

computation to be performed during the sort. Sort aggregation

and sort distribution are the two basic forms of sort computation.

Sort aggregation generates an accumulative or aggregate result

for each group of records and places this result in one of the

records. An aggregate operation can be any operation that is both

associative and commutative, i.e. any operation whose result

does not depend on the order of the operands or the order in which

the operations are performed. Sort distribution copies the value

from a field of a specific record in a group into that field in every

record of that group.

Keywords: Sorting, Aggregation, Distribution, SIMD, Mas-

sively Parallel, Data Parallel, MPP, Routing.

INTRODUCTION

Sort computation uses sorting as a control mechanism to support

interspersed routing and data manipulation. Sort computation is

performed on sets of records, grouped according to a key con-

tained in each record. Groups of records contain only records that

have been determined to be equal by some function. The sort

computation technique which has been developed here is simple.

View a sorting algorithm as having two parts -- the comparison

of records and the routing of records. The comparison deter-

mines if the two records are in the correct order. Routing takes

this result and determines where each of the records is to go next.

Thus, the sort contains a routing and a comparison routine, where

the routing routine calls the comparison routine when necessary.

All sort algorithms, such as merge sort, bubble sort, and bitonic

sort, consist of these two parts. Sort computation can use the

routing part of any sort algorithm. The routing routine only

determines the order in which the records finally line up after the

sort is through -- not how they are modified. The comparison

routine, on the other hand, is replaced with a comparison routine

whose nature depends on the type of sort computation it is to

perform. The comparison routine contains the code that deter-

mines how the contents of the records are changed. The compari-

son routine has two functions. One function is to determine if the

two records being compared are in the same group (generally

whether or not their keys are equal), whether a record from one

group will come before or after a record from another group, and

in some cases if the sort is complete. The other function is to

modify the records if they both belong to the same group.

A_E&ATE DISTRIBUTE

Figure 1. Conventional use of sorting to organize data

in preparation for computation.

Sorting has long been used to organize data in preparation for

further computation (Figure 1), but sort computation allows

some types of computation to be performed during the sort

(Figure 2). Sort aggregation and sort distribution are the two

basic forms of sort computation. Sort aggregation generates an

accumulative or aggregate result for each group of records and

places this result in one of the records. Usually, it is placed in the

Figure 2. Sort computation allows some types of com-

putation to be performed during the sort.

last record or the one with the largest key value. An aggregate

operation can be any operation that is both associative and

commutative, i.e. any operation whose result does not depend on

the order of the operands or the order in which the operations are

performed. Addition, multiplication, AND, OR, and EXCLU-

SIVE-OR are examples of valid operations. Sort distribution

copies the value from a field of a specific record in a group into

that field in every record of that group. The record that contains

the value to be distributed contains a flag that is set to true. Note

U.S. Go,,ernment Work. Not protected by

U.S. copyright.

137

https://ntrs.nasa.gov/search.jsp?R=19900007130 2020-03-20T00:19:39+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42825067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

thattheremaybemorethanonerecordinagroupinwhichthe
flagisset,aslongasallsuchrecordscontainthesamevalue.

SORT AGGREGATION

Sort aggregation is described here with pseudo code and a proof

is given to show that sort aggregation computes the aggregate

result for each group of records within the set of records being

sorted. The expression "A[5].(B,C,D)" defines an array of 5

records, where each record has 3 fields, B, C, and D. The terms,

sum or summing, are used as the generic terms for finding the

result of a valid aggregation operation. Thus, the command

"SORT(SUM,A)" performs the sort sum over the array A de-

fined by "A[nI.(K,V)". Note that the sum operation can be

replaced by any other valid aggregate operation.

SUM (Figure 3) is the comparison routine that will, when used

in conjunction with a sort routine, sum all the values in field V of

the records for which the K fields are equal. SUMreturns avalue

of true if the records A 1 and A2 are in the correct order, and false

if they are not. SUM puts the sum of all the V fields of records

of the same group in the last (or largest) record in the group.

boolean function SUM(A l ,A2)

given AI.(K,V)

given A2.(K,V)

if A1.K =A2.K then

A1.V=0

A2.V = AI.V + A2.V

return(true)

end if

if A1.K < A2.K then

return(true)

end if

ifA1.K > A2.K then

return(false)

end if

end function

Figure 3. SUM routine.

The proof that aggregation works as described goes as follows.

Even though the keys of the records being compared may be

equal, SUM can affect their ordering by returning the response to

the routing routine that the records are in the correct order (true)

or not (false). This in effect gives order within a group. SUM

always designates the record that contains the result of the sum

as the larger of the two records, the larger contains a value of zero.

This means that the sum of the value fields of the group's records

will be contained in the record that was designated larger than all

others. Assume, however, that not all values of records in a

specific group were summed into the same record. This means

that at least two records contain only part of the result for that

group. Each one of these records would have been designated

greater than all records of that group. Yet, the records that

contained partial results must not have been compared to any

others or the partial results would have been summed into it.

Thus, each record would have been designated the largest in the

group. Because only one record is the largest of a group, there can

only be one record that contains the result for any group.

A comparison routine such as SUM can be written for any

operation that is both associative and commutative, as described

previously.

SORT DISTRIBUTION

Sort distribution is slightly more complex than sort aggregation

and is constrained somewhat compared to sort aggregation. The

constraint stems from the fact the result of a sort distribution must

be migrated to all the members of a group of records while the

result of a sort aggregation only needs to migrate to one record

of a group of records. This constraint will be clarified further

after the proof.

boolean function COPY(AI,A2)

given A 1.(K,F,V)

given A2.(K,F,V)

if A1.K = A2.K then

if A2.F then

A1.V = A2.V

A 1.V = true

return(true)

end if

if A 1.F then

A2.V = A1.V

A2.V = true

return(true)

end if

else

return(true)

end if

if A1.K < A2.K then

return(true)

end if

ifA1.K > A2.K then

return(false)

end if

end function

Figure 3. COPY routine.

The idea in sort distribution is to copy the value of a record in a

group of records, which has been flagged as having a valid value

for that group, to all records that do not already have that value.

The command to perform this is "SORT(COPY,A)", where

SORT is a routing routine, COPY is a comparison routine, and A

is an array of records. This array of n records is of the form

"A[n].(K,F,V)", where K is the key, F is the valid value flag, and

V is the value field. COPY used in conjunction with SORT

distributes the flagged value in each group to all members of the

group (see Figure 4). Like SUM, COPY returns a value of true

if the records A 1 and A2 are in the correct order, and false if they

are not. COPY puts the same value in all records of the same

138

group,or no value at all if no record of the group had its valid

value flag set prior to performing the distribution.

The proof that distribution can be accomplished during a sort is

similar to that of aggregation. Note that when two records are

determined to be in the same group, and one of the records

contains a valid value, it is copied to the other record and its valid

value flag is set. This, in effect, causes the record with a valid

value to be considered both larger and smaller than a record that

does not have a valid value. Thus, at the completion of the sort

computation, at least the largest and smallest record of each

group that had a record with a valid value will contain a valid

value. Assume that a record without a valid value remained after

the sort was completed. If it was either the largest or the smallest

record of the group, then no other record in the group bad a valid

value. If it was not the smallest or the largest value of the group,

either there was no record in the group with a valid value, or it was

not compared to a record in the group with a valid value. If there

is a record without a valid value and one with a valid value in the

same group, such a pair exists logically next to each other and has

never been compared. If such a pair exists, there is no way of

knowing which one is larger, since they have never been com-

pared. Thus, the sort must not have been completed. Therefore,

a record can only be left without a valid value if there are no

records in its group with a valid value when the sort is complete.

(a)

(b)

(C)

Figure 5. (a) Record A is smaller than B.

(b) Record A is larger than B.

(c) Record A is both larger and smaller than

The statement in the proof written in italics is the key to whether

a sort algorithm can be used to perform sort distribution. The

distribution record must be seen as being both larger and smaller

than the replaced record. Figure 5(a) shows the order of records

A and B ifA is smaller than B, 5(b) shows the order if A is larger

than B, but in 5(c) A appears to be both larger and smaller than

B by replacing B with A. If the solution to the fact that two

records are out of order is simply that they need to be swapped,

then A may be made to appear to be both larger and smaller than

B by simply replacing B with A. This is the case with merge,

bubble, and bitonic sorts, for example. But this is not the case

however with insertion sorts that use a log n time insertion. In

an insertion sort, one of the records being compared has already

found its position in the list. Therefore, it is not the case that if

the records being compared are out of order, they are simply

swapped. Such a sort may be extensively modified to support

sort distribution, but it might be more effective to just use a sort
that needs no modification.

GENERALIZATION OF SORT COMPUTATION

Sort computation requires that records of data be grouped ac-

cording to some criterion. Order merely forces this grouping to

occur. Thus, any function that causes the desired grouping may

be used to perform the comparison part of the sort. The function

used for comparison must evaluate to one of three results, less

than, greater than, or equal to, depending on the two records that

are being compared. The data values need not literally be less

than, greater than, or equal to, as long as the end result is an

unambiguous ordering that causes the desired grouping of rec-

ords that are designated as equal.

Records can be grouped, for instance, as a set of non-overlapping

ranges. In this case, the conditions of the comparison function

would be lower than the minimum of the range, higher than the

maximum of the range, or within the range. Range ordering uses

two types of records -- records whose keys are ranges and

records whose keys are single values. Note that in the case of in-

range ordering, once a record is determined to be in-range, not

only must the appropriate action be performed on its aggregation

or distribution fields, but the key field of the in-range record must

be modified so that it becomes a range key rather than a single-

value key record.

AGGREGATE DISTRIBUTION

Aggregate distribution differs from aggregation in that all member

records of a group obtain the results of the aggregation instead of

just one member, h uses a sort algorithm that is made up of merge

steps, because the flag field must be set between each merge step.

It is not known if aggregate distribution will work for sorts that

are not made of merge steps. The following describes how a

merge aggregate distribution is performed.

Start with two sorted lists of records A i and B i, where i= 1...n and

j=l...m. Each record contains a 2-bit flag. The flags of records

in list A are set to 1 and the flags of records in list B are set to 2.

During the merge, if two records are determined to be in the same

group and one record's flag is 1 and the other's is 2, then the

aggregate function is performed, both records are given the

result, and their flags are set to 3. If one record's flag is 3 and the

other's is not, then the aggregate result contained in the record

with the flag value of 3 is copied to the other record. Otherwise,

if both records' flags are the same, nothing is done to either

record. When the merge is done, all records within a group have

the same aggregate results.

OPTIMIZATION OF SORT COMPUTATION

Sorting is generally a very time consuming function, particularly

on a single processor machine. However, on a multiple processor

machine such as the Massively Parallel Processor' (MPP), a sort

of 65536 records of 32 bits each takes about 29 milliseconds, and

a sort of 512K records of 32 bits each takes about 1 second. This

is very fast but still time-consuming if it is meant to be used very

often, as may be the case with sort computation. The time needed

to perform the necessary sort computation can be minimized in

139

several ways-- in either hardware or software. Hardware can be
improved by decreasing the interprocessor communication time
ot using a more far-reaching or elaborate processor interconnec-
tion scheme such as acomplete hypercube. Hardware improve-

ments to sorting or sort computation will not be discussed here.
However, methods to improve sort computation performance
through the use of prudent software design and programming
techniques have been developed by the author and are discussed
next.

A bitonic sort has been implemented by the author on the MPP.
This sort and most other sorts, require log n merge steps, each

merging two sorted lists into one sorted list. Time can be saved
during sort computation by performing a merge only if certain
conditions arc met: the records in each list must be in an order and

have values consistent with the result of a sort computation
performed on each list. An example of this is the use of sort

computation for table look-up. The table can be sorted once
before it is used. Therefore, it need only be merged with sorted
data records when its values are to be distributed to the data

records, rather than having to be sorted into the data records.

If it is necessary to extract table records out from among the data
records to complete a table look-up, the table records could be
soiled using a major key that distinguishes them from data

records, This, however, defeats the use of the merge to combine
the two record types because the sort takes so much longer than
the merge. The records can be unmerged in no more time than

it takes to merge them by leaving a "trail of corn", so to speak.
During the merge, a set of log n bits in each processor is used to
record whether or not the pair of records in that processor are

exchanged during each of the log n comparison steps of the
merge. This set of bits is then used during the unmerge operation
to route the records back to their original locations.

Another means of reducing the time spent in sort computation is
to, at times, perform only partialor local sorting of the data. This
has shown to be useful during image registration 2when records
are being generated whose values need to be accumulated. Each

original pixel in the image is divided into much smaller subpix-
els. These subpixels carry a fraction of the original pixcl's value
and a calculated new position. The subpixel values are then
summed into their new pixel's value using sort summing. Since

the subpixels are likely to be summed with nearby subpixels,
many small local sort sums are performed to accumulate asmuch
as possible locally before sort summing across the entire image.
This saves space in the processor memory, as well as saving time.

Partial sorting can also be used when a table look-up needs to be

performed and the size of the table is much smaller than the
number of data records to which the table information is to be

distributed. In this case, multiple copies of the table are distrib-
uted across the processors, allowing the use of smaller sort
distribution operations confined to local areas of the array of

processors.

Sort computation can be made faster simply by using a faster sort

algorithm. This is interesting because where the records were

before the sort and where the records end up after the sort is
irrelevant. This allows sorts to be used that leave the records in

unusual orders, such as snake row major or shuffle row major, if

they are faster.

In the case of sortdistribution, if it is known that all records either

contain a value or will obtain a valid value during the sort
operation, acheck can be performed after every comparison step
to see if the sort distribution has been completed. Thus, the sort
distribution may be terminated before the sort is actually com-
plete.

To extend this concept one step further, it may not be necessary
for any arbitrary record to obtain the value it is looking for in any
given invocation of the sort computation. Therefore, many local

sort operations may be performed to get some local sort compu-
tation done quickly between successive complete son opera-
tions. This brings up an issue for further study: can the keys used
in the sort operations be generated for records that are created
between sort computation operations, so as to minimize the
number of complete sort computation operations that need to be

performed.

AN EXAMPLE OF SORT COMPUTATION

Multiplication of a sparse matrix times a vector is now presented
as an example of sort computation. This is presented as an

iterative refinement of the vector V (Vi._= M*V_). The form of
the record used is "T.(R,C,M,V)", where T has four fields: the
row R, the column C, the matrix coefficient at row R and column

C, and the vector coefficient at position C of the vector. To
perform a matrix multiply, first multiply M times C in each
record, giving new record values "T.(R,C,M,V=M*V)". A sort
sum operation is performed using R as the key and summing over
M*V. This leaves one record for each R which contains the value

of the new vector at position R. At this point the matrix multiply
is complete, but if further iterations must be perform the new
vector coefficients must be distributed so the value of V corre-

sponds to the value of C, not of R. This is done by making another

set of records "Tr(R_=C,CI=R,M_=M,Vj)" which contains a
record for every record in "T". V_ has been given no value yet.

Then form a set of records that is the union of T and T r A sort
distribution is performed using R as the key and distributing the
values of V from T to T r All record of T are deleted and a new
set of records for T are created of the form

"T.(R=C_,C=R_,M=M1,V=Vt)" from the records of T r Another
matrix multiply may now be performed since the values of V
correspond to the columns of M.

VIRTUAL LOCALITY

Virtual memory and virtual processors have become common

concepts. The concept of virtual memory allows the programmer
to imagine that there is as much memory as needed, alleviating

the need to account for physical memory constraints in designing
a program. It also allows him to imagine that he has complete
control of all physical memory. This concept is used in most

large computers, minicomputers, and the newest 32-bit micro-

140

computers. The concept of virtual processors allows the pro-

grammer to view a problem as though it was executing on as

many processors as needed, yet it may be using fewer proces-

sors3.

The key point here is that virtual memory addresses are not

physical addresses, but appear to be, and virtual processors are

not real processors, but also appear to be. The programmer must

still deal with addresses and fixed locations of data and the

knowledge that he is using one or several processors. The

programmer still has to deal with a hardware view of his compu-

tational environment, that of memory and processing units, in

spite of the fact that it is a virtual hardware view. The author has

developed the concept of virtual locality to move the program-

mer further away from hardware architecture concerns and

closer to the perception of a computationally pure environment.

This is especially important, as well as particularly feasible,

when it comes to massively parallel architectures, such as the

MPP.

Virtual locality views data in computational units of records.

Computations are carried out on the data of these records accord-

ing to the groups to which the records belong (their locality).

These records contain fields, as in any traditional view of data

records. Groups can contain any number of records. Records axe

grouped according to any number of schemes, based on field

values. Because all computation is dependent only on the values

within the records and the interrelationship of those values, the

computation is independent of the record's location in the com-

putation environment before, during, and after the computation

and, it is also independent of the number of processors used to

accomplish the computation. This differs from the view of

computation in other massively parallel architectures that use

more traditional routing schemes, or, for that matter, any com-

puter architecture that depends on pointers or fixed addresses to

direct data to and from specific locations in the environment.

Virtual locality facilitates position-independent computation. It

only matters that the appropriate data comes together sometime

during the computational step. Generalized routing schemes and

traditional memory addressing schemes require that data is

placed where it can later be found. Therefore, it has to be

allocated space and can only be moved after all places that refer

to it have been changed. This makes dynamic allocation, re-

allocation, de-allocation and garbage collection difficult, if not

impossible in some circumstances. Position dependent compu-

tation is used in the implementation of virtual locality, but is not

seen by the programmer. With virtual locality, records of data

may be created and deleted at will without allocating them to

specific locations in the environment. Virtual locality is possible

through the use of the sort computation concept 2. Sort computa-

tion defines the types of operations supported under virtual

locality and describes how they are implemented.

APPLICATION OF SORT COMPUTATION

Currently, image rotation, image registration, and computer

graphic generation by ray tracing have been implemented by the

author on the MPP using sort computation techniques. Three-

dimensional rendering of elevation maps has also been imple-

mented on the MPP using these techniques by a NASA summer

student, Jennifer Trainer, under the direction of the author.

However other applications exist that require the processing of

irregular arrangements of data. For example, the implementation

of pure LISP, which was designed and implemented by Tim

Busse of Science Applications Research and the author, requires

this capability.

The pure LISP is implemented by distributing the pointer pairs

that make up the LISP data structure across the processors of the

MPP. Sort computation is used to bring the pointer pairs together

according to the functions that must be performed on them, such

as the creation of a new pointer. The basic function s of pure LISP

were implemented (i.e., CAR, CDR, CON S, EQ, ATOM, COND,

APPLY, EVAL, EVLIST, and LAMBDA). The MPP ray tracing

approach' is based on an algorithm that finds the intersections of

light rays and objects in a 3-dimensional space. It is done by

recursively subdividing space. Records are created that keep

track of whether a specific ray or object intersects a subdivision

of space. If a subdivision of space is not intersected by both a ray

and an object, all records associated with it are deleted. Sort

computation is used to determine where this condition is true.

These two applications have been implemented on the MPP

using MPP Parallel FORTH.

CONCLUSION

Future plans in the area of application of sort computation

include the study of its use on data bases and for implementation

of a compiler inside the MPP array. Virtual locality is worthy of

further study also because it allows the simultaneous develop-

ment of parallel algorithms and hardware architectures, requir-

ing only a minimal amount of effort to port and test previously

developed algorithms on new architectures. Sort computation is

a feasible means of facilitating virtual locality. As with other

virtual concepts, care must be taken, while knowledge about it's

effective use and implementation in both software and hardware

develops.

REFERENCES

(1) The Massively ParallelProcessor, J.L. Potter, ed., IS B N:

0-262-16100, The MIT Press, Cambridge, MA, 1985.

(2) Dorband, John E., Sort Computation and Conservative

Image Registration, Ph.D. thesis, Pennsylvania State

Univ., December 1985.

(3) Hillis, W. Daniel, The Connection Machine, ISBN: 0-

262-08157-1, The MIT Press, Cambridge, MA, 1985, p.

135.

(4) Dorband, John E., 3-D Graphic Generation on the MPP ,

Proceedings of the 2nd International Conference on

Supercomputing, Vol. II, pg 305-309, 1987.

141

